1
|
Liang WK, Zhang LB, Xu JL. Dietary steroids promote body weight growth and induce gametogenesis by increasing the expressions of genes related to cell proliferation of sea cucumber (Apostichopus japonicus). COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 49:101191. [PMID: 38237259 DOI: 10.1016/j.cbd.2024.101191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 12/07/2023] [Accepted: 01/06/2024] [Indexed: 02/15/2024]
Abstract
Steroids play a vital role in animal survival, promoting growth and development when administered appropriate concentration exogenously. However, it remains unclear whether steroids can induce gonadal development and the underlying mechanism. This study assessed sea cucumber weights post-culturing, employing paraffin sections and RNA sequencing (RNA-seq) to explore gonadal changes and gene expression in response to exogenous steroid addition. Testosterone and cholesterol, dissolved in absolute ethanol, were incorporated into sea cucumber diets. After 30 days, testosterone and cholesterol significantly increased sea cucumber weights, with the total weight of experimental groups surpassing the control. The testosterone-fed group exhibited significantly higher eviscerated weight than the control group. In addition, dietary steroids influenced gonad morphology and upregulated genes related to cell proliferation,such as RPL35, PC, eLF-1, MPC2, ADCY10 and CYP2C18. Thees upregulated differentially expressed genes were significantly enriched in the organic system, metabolism, genetic information and environmental information categories. These findings imply that steroids may contribute to the growth and the process of genetic information translation and protein synthesis essential for gonadal development and gametogenesis.
Collapse
Affiliation(s)
- Wen-Ke Liang
- College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China; CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China; CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Li-Bin Zhang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China; CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China.
| | - Jia-Lei Xu
- Zhongke Tonhe (Shandong) Marine Technology Co., Ltd, Dongying 257200, China
| |
Collapse
|
2
|
Perillo M, Sepe RM, Paganos P, Toscano A, Annunziata R. Sea cucumbers: an emerging system in evo-devo. EvoDevo 2024; 15:3. [PMID: 38368336 PMCID: PMC10874539 DOI: 10.1186/s13227-023-00220-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 12/24/2023] [Indexed: 02/19/2024] Open
Abstract
A challenge for evolutionary developmental (evo-devo) biology is to expand the breadth of research organisms used to investigate how animal diversity has evolved through changes in embryonic development. New experimental systems should couple a relevant phylogenetic position with available molecular tools and genomic resources. As a phylum of the sister group to chordates, echinoderms extensively contributed to our knowledge of embryonic patterning, organ development and cell-type evolution. Echinoderms display a variety of larval forms with diverse shapes, making them a suitable group to compare the evolution of embryonic developmental strategies. However, because of the laboratory accessibility and the already available techniques, most studies focus on sea urchins and sea stars mainly. As a comparative approach, the field would benefit from including information on other members of this group, like the sea cucumbers (holothuroids), for which little is known on the molecular basis of their development. Here, we review the spawning and culture methods, the available morphological and molecular information, and the current state of genomic and transcriptomic resources on sea cucumbers. With the goal of making this system accessible to the broader community, we discuss how sea cucumber embryos and larvae can be a powerful system to address the open questions in evo-devo, including understanding the origins of bilaterian structures.
Collapse
Affiliation(s)
- Margherita Perillo
- Bell Center for Regenerative Biology and Tissue Engineering, Marine Biological Laboratory, 7 MBL St., Woods Hole, MA, 02543, USA.
- Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Naples, Italy.
| | - Rosa Maria Sepe
- Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Naples, Italy
| | - Periklis Paganos
- Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Naples, Italy
| | - Alfonso Toscano
- Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Naples, Italy
| | | |
Collapse
|
3
|
Ordoñez JFF, Galindez GGST, Gulay KT, Ravago-Gotanco R. Transcriptome analysis of growth variation in early juvenile stage sandfish Holothuria scabra. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2021; 40:100904. [PMID: 34488170 DOI: 10.1016/j.cbd.2021.100904] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 07/28/2021] [Accepted: 08/14/2021] [Indexed: 06/13/2023]
Abstract
The sandfish Holothuria scabra is a high-value tropical sea cucumber species representing a major mariculture prospect across the Indo-Pacific. Advancements in culture technology, rearing, and processing present options for augmenting capture production, stock restoration, and sustainable livelihood activities from hatchery-produced sandfish. Further improvements in mariculture production may be gained from the application of genomic technologies to improve performance traits such as growth. In this study, we performed de novo transcriptome assembly and characterization of fast- and slow-growing juvenile H. scabra from three Philippine populations. Analyses revealed 66 unigenes that were consistently differentially regulated in fast-growing sandfish and found to be associated with immune response and metabolism. Further, we identified microsatellite and single nucleotide polymorphism markers potentially associated with fast growth. These findings provide insight on potential genomic determinants underlying growth regulation in early juvenile sandfish which will be useful for further functional studies.
Collapse
Affiliation(s)
- June Feliciano F Ordoñez
- The Marine Science Institute, University of the Philippines Diliman, Velasquez St., Diliman, 1100 Quezon City, Philippines.
| | - Gihanna Gaye S T Galindez
- The Marine Science Institute, University of the Philippines Diliman, Velasquez St., Diliman, 1100 Quezon City, Philippines; Division Data Science in Biomedicine, Peter L. Reichertz Institute for Medical Informatics of TU Braunschweig and Hannover Medical School, Germany.
| | - Karina Therese Gulay
- The Marine Science Institute, University of the Philippines Diliman, Velasquez St., Diliman, 1100 Quezon City, Philippines.
| | - Rachel Ravago-Gotanco
- The Marine Science Institute, University of the Philippines Diliman, Velasquez St., Diliman, 1100 Quezon City, Philippines.
| |
Collapse
|
4
|
Kornthong N, Phanaksri T, Saetan J, Duangprom S, Lekskul B, Vivattanasarn T, Songkoomkrong S, Jattujan P, Cummins SF, Sobhon P, Suwansa-ard S. Identification and localization of growth factor genes in the sea cucumber , Holothuria scabra. Heliyon 2021; 7:e08370. [PMID: 34825084 PMCID: PMC8605306 DOI: 10.1016/j.heliyon.2021.e08370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 10/07/2021] [Accepted: 11/10/2021] [Indexed: 11/23/2022] Open
Abstract
The sea cucumber Holothuria scabra is both an economically important species in Asian countries and an emerging experimental model for research studies in regeneration and medicinal bioactives. Growth factors and their receptors are known to be key components that guide tissue repair and renewal, yet validation of their presence in H. scabra has not been established. We performed a targeted in silico search of H. scabra transcriptome data to elucidate conserved growth factor family and receptor genes. In total, 42 transcripts were identified, of which 9 were validated by gene cloning and sequencing. The H. scabra growth factor genes, such as bone morphogenetic protein 2A (BMP 2A), bone morphogenetic protein 5-like (BMP5-like), neurotrophin (NT) and fibroblast growth factor 18 (FGF18), were selected for further analyses, including phylogenetic comparison and spatial gene expression using RT-PCR and in situ hybridization. Expression of all genes investigated were widespread in multiple tissues. However, BMP 2A, BMP5-like and NT were found extensively in the radial nerve cord cells, while FGF18 was highly expressed in connective tissue layer of the body wall. Our identification and expression analysis of the H. scabra growth factor genes provided the molecular information of growth factors in this species which may ultimately complement the research in regenerative medicine.
Collapse
Affiliation(s)
- Napamanee Kornthong
- Chulabhorn International College of Medicine, Thammasat University, Rangsit Campus, Pathumthani, 12121, Thailand
| | - Teva Phanaksri
- Chulabhorn International College of Medicine, Thammasat University, Rangsit Campus, Pathumthani, 12121, Thailand
| | - Jirawat Saetan
- Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
| | - Supawadee Duangprom
- Chulabhorn International College of Medicine, Thammasat University, Rangsit Campus, Pathumthani, 12121, Thailand
| | - Buranee Lekskul
- Chulabhorn International College of Medicine, Thammasat University, Rangsit Campus, Pathumthani, 12121, Thailand
| | - Tipok Vivattanasarn
- Chulabhorn International College of Medicine, Thammasat University, Rangsit Campus, Pathumthani, 12121, Thailand
| | - Sineenart Songkoomkrong
- Chulabhorn International College of Medicine, Thammasat University, Rangsit Campus, Pathumthani, 12121, Thailand
| | - Prapaporn Jattujan
- Chulabhorn International College of Medicine, Thammasat University, Rangsit Campus, Pathumthani, 12121, Thailand
| | - Scott F. Cummins
- GeneCology Research Centre, University of the Sunshine Coast, Maroochydore, Queensland, 4558, Australia
- Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Maroochydore, Queensland, 4558, Australia
| | - Prasert Sobhon
- Department of Anatomy, Faculty of Science, Mahidol University, Rama VI Road, Ratchathewi, Bangkok, 10400, Thailand
| | - Saowaros Suwansa-ard
- GeneCology Research Centre, University of the Sunshine Coast, Maroochydore, Queensland, 4558, Australia
| |
Collapse
|
5
|
Han L, Sun Y, Cao Y, Gao P, Quan Z, Chang Y, Ding J. Analysis of the gene transcription patterns and DNA methylation characteristics of triploid sea cucumbers (Apostichopus japonicus). Sci Rep 2021; 11:7564. [PMID: 33828212 PMCID: PMC8027599 DOI: 10.1038/s41598-021-87278-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 03/26/2021] [Indexed: 02/01/2023] Open
Abstract
Breeding of polyploid aquatic animals is still an important approach and research hotspot for realizing the economic benefits afforded by the improvement of aquatic animal germplasm. To better understand the molecular mechanisms of the growth of triploid sea cucumbers, we performed gene expression and genome-wide comparisons of DNA methylation using the body wall tissue of triploid sea cucumbers using RNA-seq and MethylRAD-seq technologies. We clarified the expression pattern of triploid sea cucumbers and found no dosage effect. DEGs were significantly enriched in the pathways of nucleic acid and protein synthesis, cell growth, cell division, and other pathways. Moreover, we characterized the methylation pattern changes and found 615 differentially methylated genes at CCGG sites and 447 differentially methylated genes at CCWGG sites. Integrative analysis identified 23 genes (such as Guf1, SGT, Col5a1, HAL, HPS1, etc.) that exhibited correlations between promoter methylation and expression. Altered DNA methylation and expression of various genes suggested their roles and potential functional interactions in the growth of triploid sea cucumbers. Our data provide new insights into the epigenetic and transcriptomic alterations of the body wall tissue of triploid sea cucumbers and preliminarily elucidate the molecular mechanism of their growth, which is of great significance for the breeding of fine varieties of sea cucumbers.
Collapse
Affiliation(s)
- Lingshu Han
- grid.410631.10000 0001 1867 7333Key Laboratory of Mariculture and Stock Enhancement in North China’s Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, 52 Heishijiao Rd., Dalian, 116023 Liaoning People’s Republic of China ,grid.203507.30000 0000 8950 5267Ningbo University, Ningbo, 315832 Zhejiang People’s Republic of China
| | - Yi Sun
- grid.410631.10000 0001 1867 7333Key Laboratory of Mariculture and Stock Enhancement in North China’s Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, 52 Heishijiao Rd., Dalian, 116023 Liaoning People’s Republic of China
| | - Yue Cao
- grid.410631.10000 0001 1867 7333Key Laboratory of Mariculture and Stock Enhancement in North China’s Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, 52 Heishijiao Rd., Dalian, 116023 Liaoning People’s Republic of China
| | - Pingping Gao
- grid.410631.10000 0001 1867 7333Key Laboratory of Mariculture and Stock Enhancement in North China’s Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, 52 Heishijiao Rd., Dalian, 116023 Liaoning People’s Republic of China
| | - Zijiao Quan
- grid.410631.10000 0001 1867 7333Key Laboratory of Mariculture and Stock Enhancement in North China’s Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, 52 Heishijiao Rd., Dalian, 116023 Liaoning People’s Republic of China
| | - Yaqing Chang
- grid.410631.10000 0001 1867 7333Key Laboratory of Mariculture and Stock Enhancement in North China’s Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, 52 Heishijiao Rd., Dalian, 116023 Liaoning People’s Republic of China
| | - Jun Ding
- grid.410631.10000 0001 1867 7333Key Laboratory of Mariculture and Stock Enhancement in North China’s Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, 52 Heishijiao Rd., Dalian, 116023 Liaoning People’s Republic of China
| |
Collapse
|
6
|
Yang Y, Zheng Y, Sun L, Chen M. Genome-Wide DNA Methylation Signatures of Sea Cucumber Apostichopus japonicus during Environmental Induced Aestivation. Genes (Basel) 2020; 11:genes11091020. [PMID: 32877994 PMCID: PMC7565549 DOI: 10.3390/genes11091020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 08/21/2020] [Accepted: 08/28/2020] [Indexed: 02/07/2023] Open
Abstract
Organisms respond to severe environmental changes by entering into hypometabolic states, minimizing their metabolic rates, suspending development and reproduction, and surviving critical ecological changes. They come back to an active lifestyle once the environmental conditions are conducive. Marine invertebrates live in the aquatic environment and adapt to environmental changes in their whole life. Sea cucumbers and sponges are only two recently known types of marine organisms that aestivate in response to temperature change. Sea cucumber has become an excellent model organism for studies of environmentally-induced aestivation by marine invertebrates. DNA methylation, the most widely considered epigenetic marks, has been reported to contribute to phenotypic plasticity in response to environmental stress in aquatic organisms. Most of methylation-related enzymes, including DNA methyltransferases, Methyl-CpG binding domain proteins, and DNA demethylases, were up-regulated during aestivation. We conducted high-resolution whole-genome bisulfite sequencing of the intestine from sea cucumber at non-aestivation and deep-aestivation stages. Further DNA methylation profile analysis was also conducted across the distinct genomic features and entire transcriptional units. A different elevation in methylation level at internal exons was observed with clear demarcation of intron/exon boundaries during transcriptional unit scanning. The lowest methylation level occurs in the first exons, followed by the last exons and the internal exons. A significant increase in non-CpG methylation (CHG and CHH) was observed within the intron and mRNA regions in aestivation groups. A total of 1393 genes were annotated within hypermethylated DMRs (differentially methylated regions), and 749 genes were annotated within hypomethylated DMRs. Differentially methylated genes were enriched in the mRNA surveillance pathway, metabolic pathway, and RNA transport. Then, 24 hypermethylated genes and 15 hypomethylated genes were Retrovirus-related Pol polyprotein from transposon (RPPT) genes. This study provides further understanding of epigenetic control on environmental induced hypometabolism in aquatic organisms.
Collapse
Affiliation(s)
- Yujia Yang
- Laboratory for Evolution and Development, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China;
| | - Yingqiu Zheng
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266071, China;
| | - Lina Sun
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences (CAS), Qingdao 266003, China
- Correspondence: (L.S.); (M.C.)
| | - Muyan Chen
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266071, China;
- Correspondence: (L.S.); (M.C.)
| |
Collapse
|
7
|
Fraik AK, Margres MJ, Epstein B, Barbosa S, Jones M, Hendricks S, Schönfeld B, Stahlke AR, Veillet A, Hamede R, McCallum H, Lopez-Contreras E, Kallinen SJ, Hohenlohe PA, Kelley JL, Storfer A. Disease swamps molecular signatures of genetic-environmental associations to abiotic factors in Tasmanian devil (Sarcophilus harrisii) populations. Evolution 2020; 74:1392-1408. [PMID: 32445281 DOI: 10.1111/evo.14023] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 05/14/2020] [Indexed: 12/11/2022]
Abstract
Landscape genomics studies focus on identifying candidate genes under selection via spatial variation in abiotic environmental variables, but rarely by biotic factors (i.e., disease). The Tasmanian devil (Sarcophilus harrisii) is found only on the environmentally heterogeneous island of Tasmania and is threatened with extinction by a transmissible cancer, devil facial tumor disease (DFTD). Devils persist in regions of long-term infection despite epidemiological model predictions of species' extinction, suggesting possible adaptation to DFTD. Here, we test the extent to which spatial variation and genetic diversity are associated with the abiotic environment (i.e., climatic variables, elevation, vegetation cover) and/or DFTD. We employ genetic-environment association analyses using 6886 SNPs from 3287 individuals sampled pre- and post-disease arrival across the devil's geographic range. Pre-disease, we find significant correlations of allele frequencies with environmental variables, including 365 unique loci linked to 71 genes, suggesting local adaptation to abiotic environment. The majority of candidate loci detected pre-DFTD are not detected post-DFTD arrival. Several post-DFTD candidate loci are associated with disease prevalence and were in linkage disequilibrium with genes involved in tumor suppression and immune response. Loss of apparent signal of abiotic local adaptation post-disease suggests swamping by strong selection resulting from the rapid onset of DFTD.
Collapse
Affiliation(s)
- Alexandra K Fraik
- School of Biological Sciences, Washington State University, Pullman, Washington, 99164
| | - Mark J Margres
- School of Biological Sciences, Washington State University, Pullman, Washington, 99164
| | - Brendan Epstein
- School of Biological Sciences, Washington State University, Pullman, Washington, 99164.,Plant Biology, University of Minnesota, Minneapolis, Minnesota, 55455
| | - Soraia Barbosa
- Department of Biological Sciences, Institute for Bioinformatics and Evolutionary Studies, University of Idaho, 875 Perimeter Drive, Moscow, Idaho, 83844
| | - Menna Jones
- School of Biological Sciences, University of Tasmania, Hobart, TAS, 7004, Australia
| | - Sarah Hendricks
- Department of Biological Sciences, Institute for Bioinformatics and Evolutionary Studies, University of Idaho, 875 Perimeter Drive, Moscow, Idaho, 83844
| | - Barbara Schönfeld
- School of Biological Sciences, University of Tasmania, Hobart, TAS, 7004, Australia
| | - Amanda R Stahlke
- Department of Biological Sciences, Institute for Bioinformatics and Evolutionary Studies, University of Idaho, 875 Perimeter Drive, Moscow, Idaho, 83844
| | - Anne Veillet
- Department of Biological Sciences, Institute for Bioinformatics and Evolutionary Studies, University of Idaho, 875 Perimeter Drive, Moscow, Idaho, 83844
| | - Rodrigo Hamede
- School of Biological Sciences, University of Tasmania, Hobart, TAS, 7004, Australia
| | - Hamish McCallum
- School of Environment, Griffith University Nathan, Nathan, QLD, 4111, Australia
| | - Elisa Lopez-Contreras
- School of Biological Sciences, Washington State University, Pullman, Washington, 99164
| | - Samantha J Kallinen
- School of Biological Sciences, Washington State University, Pullman, Washington, 99164
| | - Paul A Hohenlohe
- Department of Biological Sciences, Institute for Bioinformatics and Evolutionary Studies, University of Idaho, 875 Perimeter Drive, Moscow, Idaho, 83844
| | - Joanna L Kelley
- School of Biological Sciences, Washington State University, Pullman, Washington, 99164
| | - Andrew Storfer
- School of Biological Sciences, Washington State University, Pullman, Washington, 99164
| |
Collapse
|
8
|
Wu X, Chen T, Huo D, Yu Z, Ruan Y, Cheng C, Jiang X, Ren C. Transcriptomic analysis of sea cucumber (Holothuria leucospilota) coelomocytes revealed the echinoderm cytokine response during immune challenge. BMC Genomics 2020; 21:306. [PMID: 32299355 PMCID: PMC7161275 DOI: 10.1186/s12864-020-6698-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 03/24/2020] [Indexed: 12/18/2022] Open
Abstract
Background The sea cucumber Holothuria leucospilota belongs to echinoderm, which is evolutionally the most primitive group of deuterostomes. Sea cucumber has a cavity between its digestive tract and the body wall that is filled with fluid and suspended coelomic cells similar to blood cells. The humoral immune response of the sea cucumber is based on the secretion of various immune factors from coelomocytes into the coelomic cavity. The aim of this study is to lay out a foundation for the immune mechanisms in echinoderms and their origins in chordates by using RNA-seq. Results Sea cucumber primary coelomocytes were isolated from healthy H. leucospilota and incubated with lipopolysaccharide (LPS, 10 μg/ml), polyinosinic-polycytidylic acid [Poly (I:C), 10 μg/ml] and heat-inactived Vibrio harveyi (107 cell/ml) for 24 h, respectively. After high-throughput mRNA sequencing on an Illumina HiSeq2500, a de novo transcriptome was assembled and the Unigenes were annotated. Thirteen differentially expressed genes (DEGs) were selected randomly from our data and subsequently verified by using RT-qPCR. The results of RT-qPCR were consistent with those of the RNA-seq (R2 = 0.61). The top 10 significantly enriched signaling pathways and immune-related pathways of the common and unique DEGs were screened from the transcriptome data. Twenty-one cytokine candidate DEGs were identified, which belong to 4 cytokine families, namely, BCL/CLL, EPRF1, IL-17 and TSP/TPO. Gene expression in response to LPS dose-increased treatment (0, 10, 20 and 50 μg/ml) showed that IL-17 family cytokines were significantly upregulated after 10 μg/ml LPS challenge for 24 h. Conclusion A de novo transcriptome was sequenced and assembled to generate the gene expression profiling across the sea cucumber coelomocytes treated with LPS, Poly (I:C) and V. harveyi. The cytokine genes identified in DEGs could be classified into 4 cytokine families, in which the expression of IL-17 family cytokines was most significantly induced after 10 μg/ml LPS challenge for 24 h. Our findings have laid the foundation not only for the research of molecular mechanisms related to the immune response in echinoderms but also for their origins in chordates, particularly in higher vertebrates.
Collapse
Affiliation(s)
- Xiaofen Wu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, PR China.,University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Ting Chen
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, PR China.,Institution of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, ISEE, CAS, Guangzhou, PR China
| | - Da Huo
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, PR China.,Institution of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, ISEE, CAS, Guangzhou, PR China.,South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou, 510301, People's Republic of China
| | - Zonghe Yu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, PR China.,Institution of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, ISEE, CAS, Guangzhou, PR China.,South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou, 510301, People's Republic of China
| | - Yao Ruan
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, PR China.,University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Chuhang Cheng
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, PR China.,University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Xiao Jiang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, PR China.,Institution of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, ISEE, CAS, Guangzhou, PR China.,South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou, 510301, People's Republic of China
| | - Chunhua Ren
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, PR China. .,Institution of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, ISEE, CAS, Guangzhou, PR China. .,South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou, 510301, People's Republic of China.
| |
Collapse
|
9
|
Fraik AK, Quackenbush C, Margres MJ, Comte S, Hamilton DG, Kozakiewicz CP, Jones M, Hamede R, Hohenlohe PA, Storfer A, Kelley JL. Transcriptomics of Tasmanian Devil ( Sarcophilus Harrisii) Ear Tissue Reveals Homogeneous Gene Expression Patterns across a Heterogeneous Landscape. Genes (Basel) 2019; 10:E801. [PMID: 31614864 PMCID: PMC6826840 DOI: 10.3390/genes10100801] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 10/03/2019] [Accepted: 10/08/2019] [Indexed: 02/06/2023] Open
Abstract
In an era of unprecedented global change, exploring patterns of gene expression among wild populations across their geographic range is crucial for characterizing adaptive potential. RNA-sequencing studies have successfully characterized gene expression differences among populations experiencing divergent environmental conditions in a wide variety of taxa. However, few of these studies have identified transcriptomic signatures to multivariate, environmental stimuli among populations in their natural environments. Herein, we aim to identify environmental and sex-driven patterns of gene expression in the Tasmanian devil (Sarcophilus harrisii), a critically endangered species that occupies a heterogeneous environment. We performed RNA-sequencing on ear tissue biopsies from adult male and female devils from three populations at the extremes of their geographic range. There were no transcriptome-wide patterns of differential gene expression that would be suggestive of significant, environmentally-driven transcriptomic responses. The general lack of transcriptome-wide variation in gene expression levels across the devil's geographic range is consistent with previous studies that documented low levels of genetic variation in the species. However, genes previously implicated in local adaptation to abiotic environment in devils were enriched for differentially expressed genes. Additionally, three modules of co-expressed genes were significantly associated with either population of origin or sex.
Collapse
Affiliation(s)
- Alexandra K Fraik
- School of Biological Sciences, Washington State University, Pullman, WA 99164, USA.
| | - Corey Quackenbush
- School of Biological Sciences, Washington State University, Pullman, WA 99164, USA.
| | - Mark J Margres
- School of Biological Sciences, Washington State University, Pullman, WA 99164, USA.
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA.
| | - Sebastien Comte
- School of Natural Sciences, Hobart, TAS 7001, Australia.
- Vertebrate Pest Research Unit, NSW Department of Primary Industries, 1447 Forest Road, Orange, NSW 2800, Australia.
| | | | | | - Menna Jones
- School of Natural Sciences, Hobart, TAS 7001, Australia.
| | - Rodrigo Hamede
- School of Natural Sciences, Hobart, TAS 7001, Australia.
| | - Paul A Hohenlohe
- Department of Biological Sciences, University of Idaho, Institute for Bioinformatics and Evolutionary Studies, University of Idaho, 875 Perimeter Drive, Moscow, ID 83844, USA.
| | - Andrew Storfer
- Department of Biological Sciences, University of Idaho, Institute for Bioinformatics and Evolutionary Studies, University of Idaho, 875 Perimeter Drive, Moscow, ID 83844, USA.
| | - Joanna L Kelley
- Department of Biological Sciences, University of Idaho, Institute for Bioinformatics and Evolutionary Studies, University of Idaho, 875 Perimeter Drive, Moscow, ID 83844, USA.
| |
Collapse
|
10
|
MiR-200-3p Is Potentially Involved in Cell Cycle Arrest by Regulating Cyclin A during Aestivation in Apostichopus japonicus. Cells 2019; 8:cells8080843. [PMID: 31390757 PMCID: PMC6721757 DOI: 10.3390/cells8080843] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 08/02/2019] [Accepted: 08/04/2019] [Indexed: 11/16/2022] Open
Abstract
The sea cucumber (Apostichopus japonicus) has become a good model organism for studying environmentally induced aestivation in marine invertebrates. We hypothesized that mechanisms that arrest energy-expensive cell cycle activity would contribute significantly to establishing the hypometabolic state during aestivation. Cyclin A is a core and particularly interesting cell cycle regulator that functions in both the S phase and in mitosis. In the present study, negative relationships between miR-200-3p and AjCA expressions were detected at both the transcriptional and the translational levels during aestivation in A. japonicus. Dual-luciferase reporter assays confirmed the targeted location of the miR-200-3p binding site within the AjCA gene transcript. Furthermore, gain- and loss-of-function experiments were conducted in vivo with sea cucumbers to verify the interaction between miR-200-3p and AjCA in intestine tissue by qRT-PCR and Western blotting. The results show that the overexpression of miR-200-3p mimics suppressed AjCA transcript levels and translated protein production, whereas transfection with a miR-200-3p inhibitor enhanced both AjCA mRNA and AjCA protein in A. japonicus intestine. Our findings suggested a potential mechanism that reversibly arrests cell cycle progression during aestivation, which may center on miR-200-3p inhibitory control over the translation of cyclin A mRNA transcripts.
Collapse
|
11
|
Zhan Y, Lin K, Ge C, Che J, Li Y, Cui D, Pei Q, Liu L, Song J, Zhang W, Chang Y. Comparative transcriptome analysis identifies genes associated with papilla development in the sea cucumber Apostichopus japonicus. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2019; 29:255-263. [DOI: 10.1016/j.cbd.2018.12.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 12/24/2018] [Accepted: 12/26/2018] [Indexed: 10/27/2022]
|
12
|
Li Y, Kikuchi M, Li X, Gao Q, Xiong Z, Ren Y, Zhao R, Mao B, Kondo M, Irie N, Wang W. Weighted gene co-expression network analysis reveals potential genes involved in early metamorphosis process in sea cucumber Apostichopus japonicus. Biochem Biophys Res Commun 2017; 495:1395-1402. [PMID: 29180012 DOI: 10.1016/j.bbrc.2017.11.154] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 11/22/2017] [Indexed: 11/15/2022]
Abstract
Sea cucumbers, one main class of Echinoderms, have a very fast and drastic metamorphosis process during their development. However, the molecular basis under this process remains largely unknown. Here we systematically examined the gene expression profiles of Japanese common sea cucumber (Apostichopus japonicus) for the first time by RNA sequencing across 16 developmental time points from fertilized egg to juvenile stage. Based on the weighted gene co-expression network analysis (WGCNA), we identified 21 modules. Among them, MEdarkmagenta was highly expressed and correlated with the early metamorphosis process from late auricularia to doliolaria larva. Furthermore, gene enrichment and differentially expressed gene analysis identified several genes in the module that may play key roles in the metamorphosis process. Our results not only provide a molecular basis for experimentally studying the development and morphological complexity of sea cucumber, but also lay a foundation for improving its emergence rate.
Collapse
Affiliation(s)
- Yongxin Li
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650203, China
| | - Mani Kikuchi
- Department of Cell Biological Science, Faculty of Advanced Life Science, Graduate School of Life Science, Hokkaido University, Sapporo, Hokkaido 001-0021, Japan
| | - Xueyan Li
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Qionghua Gao
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Zijun Xiong
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; College of Forensic Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; China National GeneBank, BGI-Shenzhen, Shenzhen, 518083, China
| | - Yandong Ren
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650203, China
| | - Ruoping Zhao
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Bingyu Mao
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Mariko Kondo
- Misaki Marine Biological Station, Graduate School of Science, The University of Tokyo, Kanagawa 238-0225, Japan
| | - Naoki Irie
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Wen Wang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China.
| |
Collapse
|
13
|
Differential gene expression in the intestine of sea cucumber (Apostichopus japonicus) under low and high salinity conditions. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2017; 25:34-41. [PMID: 29145027 DOI: 10.1016/j.cbd.2017.11.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 09/20/2017] [Accepted: 11/01/2017] [Indexed: 01/04/2023]
Abstract
Sea cucumber, Apostichopus japonicus is an important species for aquaculture, and its behavior and physiology can change in response to changing salinity conditions. For this reason, it is important to understand the molecular responses of A. japonicus when exposed to ambient changes in salinity. In this study, RNA-Seq provided a general overview of the gene expression profiles in the intestine of A. japonicus exposed to high salinity (SD40), normal salinity (SD30) and low salinity (SD20) environments. Screening for differentially expressed genes (DEGs) using the NOISeq method identified 109, 100, and 89 DEGs based on a fold change of ≥2 and divergence probability ≥0.8 according to the comparisons of SD20 vs. SD30, SD20 vs.SD40, and SD30 vs. SD40, respectively. Gene ontology analysis showed that the terms "metabolic process" and "catalytic activity" comprised the most enriched DEGs. These fell into the categories of "biological process" and "molecular function". While "cell" and "cell part" had the most enriched DEGs in the category of "cellular component". With these DEGs mapping to 2119, 159, and 160 pathways in the Kyoto Encyclopedia of Genes and Genomes database. Of these 51, 2, and 57 pathways were significantly enriched, respectively. The osmosis-specific DEGs identified in this study of A. japonicus will be important targets for further studies to understand the biochemical mechanisms involved with the adaption of sea cucumbers to changes in salinity.
Collapse
|
14
|
Gao L, He C, Bao X, Tian M, Ma Z. Transcriptome analysis of the sea cucumber (Apostichopus japonicus) with variation in individual growth. PLoS One 2017; 12:e0181471. [PMID: 28715451 PMCID: PMC5513535 DOI: 10.1371/journal.pone.0181471] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 06/30/2017] [Indexed: 01/07/2023] Open
Abstract
The sea cucumber (Apostichopus japonicus) is an economically important aquaculture species in China. However, the serious individual growth variation often caused financial losses to farmers and the genetic mechanisms are poorly understood. In the present study, the extensively analysis at the transcriptome level for individual growth variation in sea cucumber was carried out. A total of 118946 unigenes were assembled from 255861 transcripts, with N50 of 1700. Of all unigenes, about 23% were identified with at least one significant match to known databases. In all four pair of comparison, 1840 genes were found to be expressed differently. Global hypometabolism was found to be occurred in the slow growing population, based on which the hypothesis was raised that growth retardation in individual growth variation of sea cucumber is one type of dormancy which is used to be against to adverse circumstances. Besides, the pathways such as ECM-receptor interaction and focal adhesion were enriched in the maintenance of cell and tissue structure and communication. Further, 76645 SSRs, 765242 SNPs and 146886 ins-dels were detected in the current study providing an extensive set of data for future studies of genetic mapping and selective breeding. In summary, these results will provides deep insight into the molecular basis of individual growth variation in marine invertebrates, and be valuable for understanding the physiological differences of growth process.
Collapse
Affiliation(s)
- Lei Gao
- Key Laboratory of Marine Fishery Molecular Biology of Liaoning Province, Liaoning Ocean and Fisheries Science Research Institute, Dalian, China
| | - Chongbo He
- Key Laboratory of Marine Fishery Molecular Biology of Liaoning Province, Liaoning Ocean and Fisheries Science Research Institute, Dalian, China
| | - Xiangbo Bao
- Key Laboratory of Marine Fishery Molecular Biology of Liaoning Province, Liaoning Ocean and Fisheries Science Research Institute, Dalian, China
| | - Meilin Tian
- Key Laboratory of Marine Fishery Molecular Biology of Liaoning Province, Liaoning Ocean and Fisheries Science Research Institute, Dalian, China
| | - Zhen Ma
- Dalian Fisheries Research Institute, Dalian, China
| |
Collapse
|
15
|
Wang T, Yang Z, Zhou N, Sun L, Lv Z, Wu C. Identification and functional characterisation of 5-HT4 receptor in sea cucumber Apostichopus japonicus (Selenka). Sci Rep 2017; 7:40247. [PMID: 28059140 PMCID: PMC5216381 DOI: 10.1038/srep40247] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 12/05/2016] [Indexed: 02/07/2023] Open
Abstract
Serotonin (5-HT) is an important neurotransmitter and neuromodulator that controls a variety of sensory and motor functions through 5-HT receptors (5-HTRs). The 5-HT4R subfamily is linked to Gs proteins, which activate adenylyl cyclases (ACs), and is involved in many responses in peripheral organs. In this study, the 5-HT4R from Apostichopus japonicus (Aj5-HT4R) was identified and characterised. The cloned full-length Aj5-HT4R cDNA is 1,544 bp long and contains an open reading frame 1,011 bp in length encoding 336 amino acid proteins. Bioinformatics analysis of the Aj5-HT4R protein indicated this receptor was a member of class A G protein coupled receptor (GPCR) family. Further experiments using Aj5-HT4R-transfected HEK293 cells demonstrated that treatment with 5-HT triggered a significant increase in intracellular cAMP level in a dose-dependent manner and induced a rapid internalisation of Aj5-HT4R fused with enhanced green fluorescent protein (Aj5-HT4R-EGFP) from the cell surface into the cytoplasm. In addition, the transcriptional profiles of Aj5-HT4R in aestivating A. japonicas and phosphofructokinase (AjPFK) in 5-HT administrated A. japonicus have been analysed by real-time PCR assays. Results have led to a basic understanding of Aj5-HT4R in A. japonicus, and provide a foundation for further exploration of the cell signaling and regulatory functions of this receptor.
Collapse
Affiliation(s)
- Tianming Wang
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science College, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, People's Republic of China
| | - Zhen Yang
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science College, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, People's Republic of China
| | - Naiming Zhou
- Institute of Biochemistry, College of LifeSciences, Zijingang Campus, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Lina Sun
- Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, Shandong 266071, People's Republic of China
| | - Zhenming Lv
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science College, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, People's Republic of China
| | - Changwen Wu
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science College, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, People's Republic of China
| |
Collapse
|
16
|
Developmental transcriptome analysis and identification of genes involved in formation of intestinal air-breathing function of Dojo loach, Misgurnus anguillicaudatus. Sci Rep 2016; 6:31845. [PMID: 27545457 PMCID: PMC4992823 DOI: 10.1038/srep31845] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 07/26/2016] [Indexed: 11/17/2022] Open
Abstract
Dojo loach, Misgurnus anguillicaudatus is a freshwater fish species of the loach family Cobitidae, using its posterior intestine as an accessory air-breathing organ. Little is known about the molecular regulatory mechanisms in the formation of intestinal air-breathing function of M. anguillicaudatus. Here high-throughput sequencing of mRNAs was performed from six developmental stages of posterior intestine of M. anguillicaudatus: 4-Dph (days post hatch) group, 8-Dph group, 12-Dph group, 20-Dph group, 40-Dph group and Oyd (one-year-old) group. These six libraries were assembled into 81300 unigenes. Totally 40757 unigenes were annotated. Subsequently, 35291 differentially expressed genes (DEGs) were scanned among different developmental stages and clustered into 20 gene expression profiles. Finally, 15 key pathways and 25 key genes were mined, providing potential targets for candidate gene selection involved in formation of intestinal air-breathing function in M. anguillicaudatus. This is the first report of developmental transcriptome of posterior intestine in M. anguillicaudatus, offering a substantial contribution to the sequence resources for this species and providing a deep insight into the formation mechanism of its intestinal air-breathing function. This report demonstrates that M. anguillicaudatus is a good model for studies to identify and characterize the molecular basis of accessory air-breathing organ development in fish.
Collapse
|
17
|
Delroisse J, Mallefet J, Flammang P. De Novo Adult Transcriptomes of Two European Brittle Stars: Spotlight on Opsin-Based Photoreception. PLoS One 2016; 11:e0152988. [PMID: 27119739 PMCID: PMC4847921 DOI: 10.1371/journal.pone.0152988] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 03/22/2016] [Indexed: 11/19/2022] Open
Abstract
Next generation sequencing (NGS) technology allows to obtain a deeper and more complete view of transcriptomes. For non-model or emerging model marine organisms, NGS technologies offer a great opportunity for rapid access to genetic information. In this study, paired-end Illumina HiSeqTM technology has been employed to analyse transcriptomes from the arm tissues of two European brittle star species, Amphiura filiformis and Ophiopsila aranea. About 48 million Illumina reads were generated and 136,387 total unigenes were predicted from A. filiformis arm tissues. For O. aranea arm tissues, about 47 million reads were generated and 123,324 total unigenes were obtained. Twenty-four percent of the total unigenes from A. filiformis show significant matches with sequences present in reference online databases, whereas, for O. aranea, this percentage amounts to 23%. In both species, around 50% of the predicted annotated unigenes were significantly similar to transcripts from the purple sea urchin, the closest species to date that has undergone complete genome sequencing and annotation. GO, COG and KEGG analyses were performed on predicted brittle star unigenes. We focused our analyses on the phototransduction actors involved in light perception. Firstly, two new echinoderm opsins were identified in O. aranea: one rhabdomeric opsin (homologous to vertebrate melanopsin) and one RGR opsin. The RGR-opsin is supposed to be involved in retinal regeneration while the r-opsin is suspected to play a role in visual-like behaviour. Secondly, potential phototransduction actors were identified in both transcriptomes using the fly (rhabdomeric) and mammal (ciliary) classical phototransduction pathways as references. Finally, the sensitivity of O.aranea to monochromatic light was investigated to complement data available for A. filiformis. The presence of microlens-like structures at the surface of dorsal arm plate of O. aranea could potentially explain phototactic behaviour differences between the two species. The results confirm (i) the ability of these brittle stars to perceive light using opsin-based photoreception, (ii) suggest the co-occurrence of both rhabdomeric and ciliary photoreceptors, and (iii) emphasise the complexity of light perception in this echinoderm class.
Collapse
Affiliation(s)
- Jérôme Delroisse
- School of Biological & Chemical Sciences, Queen Mary University of London, London, United Kingdom
| | - Jérôme Mallefet
- Catholic University of Louvain-La-Neuve, Marine Biology Laboratory, Place croix du Sud, Louvain-La-Neuve–Belgium
| | - Patrick Flammang
- University of Mons—UMONS, Research Institute for Biosciences, Biology of Marine Organisms and Biomimetics, Mons, Belgium
| |
Collapse
|
18
|
Zhou X, Cui J, Liu S, Kong D, Sun H, Gu C, Wang H, Qiu X, Chang Y, Liu Z, Wang X. Comparative transcriptome analysis of papilla and skin in the sea cucumber, Apostichopus japonicus. PeerJ 2016; 4:e1779. [PMID: 26989617 PMCID: PMC4793329 DOI: 10.7717/peerj.1779] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 02/17/2016] [Indexed: 01/02/2023] Open
Abstract
Papilla and skin are two important organs of the sea cucumber. Both tissues have ectodermic origin, but they are morphologically and functionally very different. In the present study, we performed comparative transcriptome analysis of the papilla and skin from the sea cucumber (Apostichopus japonicus) in order to identify and characterize gene expression profiles by using RNA-Seq technology. We generated 30.6 and 36.4 million clean reads from the papilla and skin and de novo assembled in 156,501 transcripts. The Gene Ontology (GO) analysis indicated that cell part, metabolic process and catalytic activity were the most abundant GO category in cell component, biological process and molecular funcation, respectively. Comparative transcriptome analysis between the papilla and skin allowed the identification of 1,059 differentially expressed genes, of which 739 genes were expressed at higher levels in papilla, while 320 were expressed at higher levels in skin. In addition, 236 differentially expressed unigenes were not annotated with any database, 160 of which were apparently expressed at higher levels in papilla, 76 were expressed at higher levels in skin. We identified a total of 288 papilla-specific genes, 171 skin-specific genes and 600 co-expressed genes. Also, 40 genes in papilla-specific were not annotated with any database, 2 in skin-specific. Development-related genes were also enriched, such as fibroblast growth factor, transforming growth factor-β, collagen-α2 and Integrin-α2, which may be related to the formation of the papilla and skin in sea cucumber. Further pathway analysis identified ten KEGG pathways that were differently enriched between the papilla and skin. The findings on expression profiles between two key organs of the sea cucumber should be valuable to reveal molecular mechanisms involved in the development of organs that are related but with morphological differences in the sea cucumber.
Collapse
Affiliation(s)
- Xiaoxu Zhou
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University, Dalian, China.,College of Fisheries and Life Science, Dalian Ocean University, Dalian, China
| | - Jun Cui
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, China
| | - Shikai Liu
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences and Program of Cell and Molecular Biosciences, Auburn University, Auburn, Alabama, United States
| | - Derong Kong
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, China
| | - He Sun
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, China
| | - Chenlei Gu
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, China
| | - Hongdi Wang
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, China
| | - Xuemei Qiu
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University, Dalian, China.,College of Fisheries and Life Science, Dalian Ocean University, Dalian, China
| | - Yaqing Chang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University, Dalian, China.,College of Fisheries and Life Science, Dalian Ocean University, Dalian, China
| | - Zhanjiang Liu
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences and Program of Cell and Molecular Biosciences, Auburn University, Auburn, Alabama, United States
| | - Xiuli Wang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University, Dalian, China.,College of Fisheries and Life Science, Dalian Ocean University, Dalian, China
| |
Collapse
|
19
|
Zhao Y, Yang H, Storey KB, Chen M. Differential gene expression in the respiratory tree of the sea cucumber Apostichopus japonicus during aestivation. Mar Genomics 2014; 18 Pt B:173-83. [PMID: 25038515 DOI: 10.1016/j.margen.2014.07.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 06/30/2014] [Accepted: 07/03/2014] [Indexed: 10/25/2022]
Abstract
Sea cucumbers, Apostichopus japonicus, experience seasonally high water temperatures during the summer months and enter aestivation to survive. Aestivation is characterized by strong metabolic rate depression which is supported by a series of strategies including reorganizing metabolic processes, suppressing cell functions, enhancing cytoprotective mechanisms, and altered gene expression. The respiratory tree tissue of the sea cucumber is an excellent material for studying aestivation, undergoing obvious atrophy during aestivation. The present study analyzed the global gene expression profile of respiratory tree tissue of A. japonicus during aestivation by constructing and screening three libraries representing key stages of aestivation: non-aestivation (NA), deep-aestivation (DA), and arousal from aestivation (AA) using RNA-seq. A total of 1240, 1184 and 303 differentially expressed genes (DEGs) were identified following the criteria of |log2 ratio|≥1 and FDR≤0.001 in comparisons of DA vs. NA, AA vs. NA and DA vs. AA. A set of respiratory tree specific DEGs was identified the first time and, in addition, common DEGs that were responsive to aestivation in both respiratory tree and intestine were identified. Functional analysis of DEGs was further performed by GO enrichment analysis and respiratory tree specific GO terms were screened out and provide interesting hints for further studies of the molecular regulation of aestivation in A. japonicus.
Collapse
Affiliation(s)
- Ye Zhao
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Hongsheng Yang
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, PR China.
| | - Kenneth B Storey
- Institute of Biochemistry, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada
| | - Muyan Chen
- Fisheries College, Ocean University of China, Qingdao 266003, PR China.
| |
Collapse
|