1
|
Lehmann A, Geburek I, Hessel-Pras S, Enge AM, Mielke H, Müller-Graf C, Kloft C, Hethey C. PBTK model-based analysis of CYP3A4 induction and the toxicokinetics of the pyrrolizidine alkaloid retrorsine in man. Arch Toxicol 2024; 98:1757-1769. [PMID: 38528153 DOI: 10.1007/s00204-024-03698-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 01/31/2024] [Indexed: 03/27/2024]
Abstract
Cytochrome P450 (CYP)3A4 induction by drugs and pesticides plays a critical role in the enhancement of pyrrolizidine alkaloid (PA) toxicity as it leads to increased formation of hepatotoxic dehydro-PA metabolites. Addressing the need for a quantitative analysis of this interaction, we developed a physiologically-based toxicokinetic (PBTK) model. Specifically, the model describes the impact of the well-characterized CYP3A4 inducer rifampicin on the kinetics of retrorsine, which is a prototypic PA and contaminant in herbal teas. Based on consumption data, the kinetics after daily intake of retrorsine were simulated with concomitant rifampicin treatment. Strongest impact on retrorsine kinetics (plasma AUC24 and C max reduced to 67% and 74% compared to the rifampicin-free reference) was predicted directly after withdrawal of rifampicin. At this time point, the competitive inhibitory effect of rifampicin stopped, while CYP3A4 induction was still near its maximum. Due to the impacted metabolism kinetics, the cumulative formation of intestinal retrorsine CYP3A4 metabolites increased to 254% (from 10 to 25 nmol), while the cumulative formation of hepatic CYP3A4 metabolites was not affected (57 nmol). Return to baseline PA toxicokinetics was predicted 14 days after stop of a 14-day rifampicin treatment. In conclusion, the PBTK model showed to be a promising tool to assess the dynamic interplay of enzyme induction and toxification pathways.
Collapse
Affiliation(s)
- Anja Lehmann
- German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
- Department of Clinical Pharmacy and Biochemistry, Institute of Pharmacy, Freie Universitaet Berlin, 12169, Berlin, Germany
| | - Ina Geburek
- German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Stefanie Hessel-Pras
- German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Anne-Margarethe Enge
- German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Hans Mielke
- German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589, Berlin, Germany.
| | - Christine Müller-Graf
- German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Charlotte Kloft
- Department of Clinical Pharmacy and Biochemistry, Institute of Pharmacy, Freie Universitaet Berlin, 12169, Berlin, Germany
| | - Christoph Hethey
- German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| |
Collapse
|
2
|
Lehmann A, Geburek I, These A, Hessel-Pras S, Hengstler JG, Albrecht W, Mielke H, Müller-Graf C, Yang X, Kloft C, Hethey C. PBTK modeling of the pyrrolizidine alkaloid retrorsine to predict liver toxicity in mouse and rat. Arch Toxicol 2023; 97:1319-1333. [PMID: 36906727 PMCID: PMC10110657 DOI: 10.1007/s00204-023-03453-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 02/02/2023] [Indexed: 03/13/2023]
Abstract
Retrorsine is a hepatotoxic pyrrolizidine alkaloid (PA) found in herbal supplements and medicines, food and livestock feed. Dose-response studies enabling the derivation of a point of departure including a benchmark dose for risk assessment of retrorsine in humans and animals are not available. Addressing this need, a physiologically based toxicokinetic (PBTK) model of retrorsine was developed for mouse and rat. Comprehensive characterization of retrorsine toxicokinetics revealed: both the fraction absorbed from the intestine (78%) and the fraction unbound in plasma (60%) are high, hepatic membrane permeation is dominated by active uptake and not by passive diffusion, liver metabolic clearance is 4-fold higher in rat compared to mouse and renal excretion contributes to 20% of the total clearance. The PBTK model was calibrated with kinetic data from available mouse and rat studies using maximum likelihood estimation. PBTK model evaluation showed convincing goodness-of-fit for hepatic retrorsine and retrorsine-derived DNA adducts. Furthermore, the developed model allowed to translate in vitro liver toxicity data of retrorsine to in vivo dose-response data. Resulting benchmark dose confidence intervals (mg/kg bodyweight) are 24.1-88.5 in mice and 79.9-104 in rats for acute liver toxicity after oral retrorsine intake. As the PBTK model was built to enable extrapolation to different species and other PA congeners, this integrative framework constitutes a flexible tool to address gaps in the risk assessment of PA.
Collapse
Affiliation(s)
- Anja Lehmann
- German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
- Department of Clinical Pharmacy and Biochemistry, Institute of Pharmacy, Freie Universitaet Berlin, 12169, Berlin, Germany
| | - Ina Geburek
- German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Anja These
- German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Stefanie Hessel-Pras
- German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Jan G Hengstler
- Leibniz Research Centre for Working Environment and Human Factors (IfADo), Technical University of Dortmund, 44139, Dortmund, Germany
| | - Wiebke Albrecht
- Leibniz Research Centre for Working Environment and Human Factors (IfADo), Technical University of Dortmund, 44139, Dortmund, Germany
| | - Hans Mielke
- German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589, Berlin, Germany.
| | - Christine Müller-Graf
- German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Xiaojing Yang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning, People's Republic of China
| | - Charlotte Kloft
- Department of Clinical Pharmacy and Biochemistry, Institute of Pharmacy, Freie Universitaet Berlin, 12169, Berlin, Germany
| | - Christoph Hethey
- German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| |
Collapse
|
3
|
Structure-Dependent Toxicokinetics of Selected Pyrrolizidine Alkaloids In Vitro. Int J Mol Sci 2022; 23:ijms23169214. [PMID: 36012484 PMCID: PMC9408898 DOI: 10.3390/ijms23169214] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/04/2022] [Accepted: 08/13/2022] [Indexed: 11/16/2022] Open
Abstract
Phytochemicals like pyrrolizidine alkaloids (PAs) can affect the health of humans and animals. PAs can occur for example in tea, honey or herbs. Some PAs are known to be cytotoxic, genotoxic, and carcinogenic. Upon intake of high amounts, hepatotoxic and pneumotoxic effects were observed in humans. This study aims to elucidate different toxicokinetic parameters like the uptake of PAs and their metabolism with in vitro models. We examined the transport rates of differently structured PAs (monoester, open-chained diester, cyclic diester) over a model of the intestinal barrier. After passing the intestinal barrier, PAs reach the liver, where they are metabolized into partially instable electrophilic metabolites interacting with nucleophilic centers. We investigated this process by the usage of human liver, intestinal, and lung microsomal preparations for incubation with different PAs. These results are completed with the detection of apoptosis as indicator for bioactivation of the PAs. Our results show a structure-dependent passage of PAs over the intestinal barrier. PAs are structure-dependently metabolized by liver microsomes and, to a smaller extent, by lung microsomes. The detection of apoptosis of A549 cells treated with lasiocarpine and monocrotaline following bioactivation by human liver or lung microsomes underlines this result. Conclusively, our results help to shape the picture of PA toxicokinetics which could further improve the knowledge of molecular processes leading to observed effects of PAs in vivo.
Collapse
|
4
|
He Y, Ma J, Fan X, Ding L, Ding X, Zhang QY, Lin G. The key role of gut-liver axis in pyrrolizidine alkaloid-induced hepatotoxicity and enterotoxicity. Acta Pharm Sin B 2021; 11:3820-3835. [PMID: 35024309 PMCID: PMC8727778 DOI: 10.1016/j.apsb.2021.07.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 06/12/2021] [Accepted: 06/14/2021] [Indexed: 12/12/2022] Open
Abstract
Pyrrolizidine alkaloids (PAs) are the most common phytotoxins with documented human hepatotoxicity. PAs require metabolic activation by cytochromes P450 to generate toxic intermediates which bind to proteins and form protein adducts, thereby causing cytotoxicity. This study investigated the role of the gut-liver axis in PA intoxication and the underlying mechanisms. We exposed mice to retrorsine (RTS), a representative PA, and for the first time found RTS-induced intestinal epithelium damage and disruption to intestinal barrier function. Using mice with tissue-selective ablation of P450 activity, we found that hepatic P450s, but not intestinal P450s, were essential for PA bioactivation. Besides, in RTS-exposed, bile duct-cannulated rats, we found the liver-derived reactive PA metabolites were transported by bile into the intestine to exert enterotoxicity. The impact of gut-derived pathogenic factors in RTS-induced hepatotoxicity was further studied in mice with dextran sulfate sodium (DSS)-induced chronic colitis. DSS treatment increased the hepatic endotoxin level and depleted hepatic reduced glutathione, thereby suppressing the PA detoxification pathway. Compared to RTS-exposed normal mice, the colitic mice displayed more severe RTS-induced hepatic vasculature damage, fibrosis, and steatosis. Overall, our findings provide the first mode-of-action evidence of PA-induced enterotoxicity and highlight the importance of gut barrier function in PA-induced liver injury.
Collapse
|
5
|
Guo L, Zhang L, Xu H, Yu P, Wang Z, Lu D, Chen M, Wu B. Diurnal hepatic CYP3A11 contributes to chronotoxicity of the pyrrolizidine alkaloid retrorsine in mice. Xenobiotica 2021; 51:1019-1028. [PMID: 34311664 DOI: 10.1080/00498254.2021.1950867] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
1. Retrorsine (RTS) is a pyrrolizidine alkaloid (distributed in many medicinal plants) that has significant hepatotoxicity. Here, we aimed to determine the daily variations in RTS hepatotoxicity (chronotoxicity) in mice, and to investigate the role of metabolism in generating RTS chronotoxicity.2. Acute toxicity and pharmacokinetic studies were performed with mice after RTS administration at different times of the day. Hepatotoxicity was assessed by measuring plasma ALT (alanine aminotransferase) and AST (aspartate aminotransferase) levels. mRNA and proteins were determined by qPCR and Western blotting, respectively. Time-dependent in vitro metabolism of RTS was assessed by using mouse liver microsomes.3. We found that RTS toxicity was more severe in the dark phase (zeitgeber time 14 or ZT14 and ZT18) than in the light phase (ZT2 and ZT6). This chronotoxicity was associated with a dosing time difference in the systemic exposures of RTS and a pyrrolic ester metabolite (a cause of hepatotoxicity, measured by the levels of pyrrole-GSH conjugate and pyrrole-protein adducts due to a high chemical reactivity). Moreover, the CYP3A11 (a major enzyme for RTS bioactivation) inhibitor ketoconazole decreased the production of pyrrole-GSH conjugate and abrogated diurnal rhythm in RTS metabolism. In addition, E4bp4 (a circadian regulator of Cyp3a11) ablation abolished the rhythm of CYP3A11 expression and abrogated the dosing time-dependency of RTS toxicity.4. In conclusion, RTS chronotoxicity in mice was attributed to time-varying hepatic metabolism regulated by the circadian clock. Our findings have implications for reducing pyrrolizidine alkaloid-induced toxicity via a chronotherapeutic approach.
Collapse
Affiliation(s)
- Li Guo
- Department of Critical Care Medicine, Zhongshan Torch Development Zone Hospital, Zhongshan, China
| | - Li Zhang
- Jinan University, Guangzhou, China
| | | | - Pei Yu
- Jinan University, Guangzhou, China
| | - Zhigang Wang
- Department of Intensive Care Unit, First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Danyi Lu
- Jinan University, College of Pharmacy, Guangzhou, China
| | - Min Chen
- Jinan University, Guangzhou, China
| | - Baojian Wu
- Institute of Molecular Rhythm and Metabolism, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
6
|
Dai Y, Luo J, Xiang E, Guo Q, He Z, Gong Z, Sun X, Kou H, Xu K, Fan C, Liu J, Qiu S, Wang Y, Wang H, Guo Y. Prenatal Exposure to Retrorsine Induces Developmental Toxicity and Hepatotoxicity of Fetal Rats in a Sex-Dependent Manner: The Role of Pregnane X Receptor Activation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:3219-3231. [PMID: 33685126 DOI: 10.1021/acs.jafc.0c06748] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Pyrrolizidine alkaloids (PAs) are a type of natural phytotoxin that contaminate food and feed and become an environmental health risk to humans and livestock. PAs exert toxicity that requires metabolic activation by cytochrome P450 (CYP) 3A, and case reports showed that fetuses are quite susceptible to PAs toxicity. The aim of this study was to explore the characteristics of developmental toxicity and fetal hepatotoxicity induced by retrorsine (RTS, a typcial toxic PA) and the underlying mechanism. Pregnant Wistar rats were intragastrically administered with 20 mg/(kg·day) RTS from gestation day (GD) 9 to 20. Results showed that prenatal RTS exposure lowered fetal bodyweights, reduced hepatocyte numbers, and potentiated hepatic apoptosis in fetuses, particularly females. Simutaneously, RTS increased CYP3A expression and pregnane X receptor (PXR) activation in female fetal liver. We further confirmed that RTS was a PXR agonist in LO2 and HepG2 cell lines. Furthermore, agonism or antagonism of androgen receptor (AR) either induced or blocked RTS-mediated PXR activation, respectively. As a PXR agonist, RTS toxicity was exacerbated in female fetus due to the increased CYP3A induction and self-metabolism, while the inhibitory effect of AR on PXR activation reduced the susceptibility of male fetus to RTS. Our findings indicated that PXR may be a potential therapeutic target for PA toxicity.
Collapse
Affiliation(s)
- Yongguo Dai
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071 Hubei Province, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071 Hubei Province, China
| | - Jinyuan Luo
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Wuhan, 430060 Hubei Province, China
| | - E Xiang
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071 Hubei Province, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071 Hubei Province, China
| | - Qi Guo
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071 Hubei Province, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071 Hubei Province, China
| | - Zheng He
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Zheng Gong
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071 Hubei Province, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071 Hubei Province, China
| | - Xiaoxiang Sun
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071 Hubei Province, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071 Hubei Province, China
| | - Hao Kou
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071 Hubei Province, China
- Department of Pharmacy, Zhongnan Hospital of Wuhan University, Wuhan, 430071 Hubei Province, China
| | - Kequan Xu
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071 Hubei Province, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071 Hubei Province, China
| | - Chengpeng Fan
- Department of Biochemistry and Molecular Biology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071 Hubei Province, China
| | - Jie Liu
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071 Hubei Province, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071 Hubei Province, China
| | - Shuaikai Qiu
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071 Hubei Province, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071 Hubei Province, China
| | - Yanqing Wang
- Gynecology and Obstetrics, Renmin Hospital of Wuhan University, Wuhan, 430060 Hubei Province, China
| | - Hui Wang
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071 Hubei Province, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071 Hubei Province, China
| | - Yu Guo
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071 Hubei Province, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071 Hubei Province, China
| |
Collapse
|
7
|
Human Family 1-4 cytochrome P450 enzymes involved in the metabolic activation of xenobiotic and physiological chemicals: an update. Arch Toxicol 2021; 95:395-472. [PMID: 33459808 DOI: 10.1007/s00204-020-02971-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 12/29/2020] [Indexed: 12/17/2022]
Abstract
This is an overview of the metabolic activation of drugs, natural products, physiological compounds, and general chemicals by the catalytic activity of cytochrome P450 enzymes belonging to Families 1-4. The data were collected from > 5152 references. The total number of data entries of reactions catalyzed by P450s Families 1-4 was 7696 of which 1121 (~ 15%) were defined as bioactivation reactions of different degrees. The data were divided into groups of General Chemicals, Drugs, Natural Products, and Physiological Compounds, presented in tabular form. The metabolism and bioactivation of selected examples of each group are discussed. In most of the cases, the metabolites are directly toxic chemicals reacting with cell macromolecules, but in some cases the metabolites formed are not direct toxicants but participate as substrates in succeeding metabolic reactions (e.g., conjugation reactions), the products of which are final toxicants. We identified a high level of activation for three groups of compounds (General Chemicals, Drugs, and Natural Products) yielding activated metabolites and the generally low participation of Physiological Compounds in bioactivation reactions. In the group of General Chemicals, P450 enzymes 1A1, 1A2, and 1B1 dominate in the formation of activated metabolites. Drugs are mostly activated by the enzyme P450 3A4, and Natural Products by P450s 1A2, 2E1, and 3A4. Physiological Compounds showed no clearly dominant enzyme, but the highest numbers of activations are attributed to P450 1A, 1B1, and 3A enzymes. The results thus show, perhaps not surprisingly, that Physiological Compounds are infrequent substrates in bioactivation reactions catalyzed by P450 enzyme Families 1-4, with the exception of estrogens and arachidonic acid. The results thus provide information on the enzymes that activate specific groups of chemicals to toxic metabolites.
Collapse
|
8
|
Zhang T, Rao J, Li W, Wang K, Qiu F. Mechanism-based inactivation of cytochrome P450 enzymes by natural products based on metabolic activation. Drug Metab Rev 2020; 52:501-530. [PMID: 33043714 DOI: 10.1080/03602532.2020.1828910] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Cytochrome P450 enzymes (P450 enzymes) are the most common and important phase I metabolic enzymes and are responsible for the majority of the metabolism of clinical drugs and other xenobiotics. Drug-drug interactions (DDIs) can occur when the activities of P450 enzymes are inhibited. In particular, irreversible inhibition of P450 enzymes may lead to severe adverse interactions, compared to reversible inhibition. Many natural products have been shown to be irreversible inhibitors of P450 enzymes. The risks for intake of naturally occurring irreversible P450 enzyme inhibitors have been rising due to the rapid growth of the global consumption of natural products. Irreversible inhibition is usually called mechanism-based inactivation, which is time-, concentration- and NADPH- dependent. Generally, the formation of electrophilic intermediates is fundamental for the inactivation of P450 enzymes. This review comprehensively classifies natural P450 enzyme inactivators, including terpenoids, phenylpropanoids, flavonoids, alkaloids, and quinones obtained from herbs or foods. Moreover, the structure - activity correlations according to the IC50 (or Ki) values reported in the literature as well as the underlying mechanisms based on metabolic activation are highlighted in depth.
Collapse
Affiliation(s)
- Tingting Zhang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, P.R. China.,Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P.R. China
| | - Jinqiu Rao
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, P.R. China.,Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P.R. China
| | - Wei Li
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, P.R. China.,Faculty of Pharmaceutical Sciences, Toho University, Chiba, Japan
| | - Kai Wang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, P.R. China
| | - Feng Qiu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, P.R. China.,Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P.R. China
| |
Collapse
|
9
|
In vitro metabolism of pyrrolizidine alkaloids - Metabolic degradation and GSH conjugate formation of different structure types. Food Chem Toxicol 2019; 135:110868. [PMID: 31586656 DOI: 10.1016/j.fct.2019.110868] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 09/30/2019] [Accepted: 10/02/2019] [Indexed: 01/27/2023]
Abstract
Pyrrolizidine alkaloid (PA) forming plants are found worldwide and may contaminate food products at levels being of concern for human health. Due to the high biodiversity of PA producing plants many different types of PA structures are formed. PAs themselves are not toxic but require metabolic activation to exert toxicity. To investigate if the structure of the PAs affects their in vitro metabolism, we incubated a set of 22 PAs and compared the degradation rates and the amount of formed glutathione (GSH) conjugates. With human liver microsomes, no metabolic degradation of monoesters was found. Degradation rates of diester PAs tended to correlate with their hydrophilicity, whereby the more polar and branched-chained PAs exhibited lower degradation. There was a trend towards higher degradation rates in the presence of rat liver microsomes, but the GSH conjugate levels were similar. Although an effective degradation seems to be related with high GSH conjugate levels, no clear correlation between both parameters could be deduced. For both species no GSH conjugates, or only trace amounts, were formed from monoesters. However, for both open-chained as well as cyclic diesters GSH conjugates were detected and determined levels were comparable for both ester types without major structure-dependent differences.
Collapse
|
10
|
Liu Z, He X, Wang L, Zhang Y, Hai Y, Gao R. Chinese Herbal Medicine Hepatotoxicity: The Evaluation and Recognization Based on Large-scale Evidence Database. Curr Drug Metab 2019; 20:138-146. [PMID: 30101702 PMCID: PMC6635764 DOI: 10.2174/1389200219666180813144114] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 05/28/2018] [Accepted: 06/27/2018] [Indexed: 12/17/2022]
Abstract
Background: Due to the special nature of Chinese Herbal medicine and the complexity of its clinical use, it is difficult to identify and evaluate its toxicity and resulting herb induced liver injury (HILI). Methods: First, the database would provide full profile of HILI from the basic ingredients to clinical out-comes by the most advanced algorithms of artificial intelligence, and it is also possible that we can predict possibilities of HILI after patients taking Chinese herbs by individual patient evaluation and prediction. Second, the database would solve the chaos and lack of the relevant data faced by the current basic re-search and clinical practice of Chinese Herbal Medicine. Third, we can also screen the susceptible patients from the database and thus prevent the accidents of HILI from the very beginning. Results: The Roussel Uclaf Causality Assessment Method (RUCAM) is the most accepted method to evalu-ate DILI, but at present before using the RUCAM evaluation method, data resource collection and analysis are yet to be perfected. Based on existing research on drug-metabolizing enzymes mediating reactive me-tabolites (RMs), the aim of this study is to explore the possibilities and methods of building multidimen-sional hierarchical database composing of RMs evidence library, Chinese herbal evidence library, and indi-vidualized reports evidence library of herb induced liver injury HILI. Conclusion: The potential benefits lie in its ability to organize, use vast amounts of evidence and use big data mining techniques at the center for Chinese herbal medicine liver toxicity research, which is the most difficult key point of scientific research to be investigated in the next few years.
Collapse
Affiliation(s)
- Zhi Liu
- Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China.,Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin 300193, China
| | - Xin He
- Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China.,Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin 300193, China
| | - Lili Wang
- Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China.,Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin 300193, China
| | - Yunhua Zhang
- Tianjin Clinda Medical Technology Co., Ltd., Tianjin, China
| | - Yue Hai
- Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Rui Gao
- Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| |
Collapse
|
11
|
Ebmeyer J, Braeuning A, Glatt H, These A, Hessel-Pras S, Lampen A. Human CYP3A4-mediated toxification of the pyrrolizidine alkaloid lasiocarpine. Food Chem Toxicol 2019; 130:79-88. [PMID: 31103741 DOI: 10.1016/j.fct.2019.05.019] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 05/08/2019] [Accepted: 05/13/2019] [Indexed: 01/05/2023]
Abstract
Pyrrolizidine alkaloids (PA) are widely distributed phytotoxins contaminating food and feed. Hepatic enzymes are considered to bioactivate PA. Previous studies showed differences in the metabolism rate in liver homogenates of different species. Thus, uncertainty remains with respect to the relevance of human metabolism. Our study aimed to analyze whether the PA representative lasiocarpine is toxified by human cytochrome P450 (CYP) enzymes. We compared the metabolic elimination of lasiocarpine in the presence of rat and human S9 fractions and liver microsomes. Experiments with the potent CYP3A/Cyp3a inhibitor ketoconazole and supersomes containing individual human and rat CYPs revealed that enzymes of the CYP3A/Cyp3a family of both species are of major relevance for lasiocarpine metabolism. To assess if metabolism by human CYP3A4 results in a toxification of lasiocarpine we performed experiments with V79 cells. γH2AX and micronucleus formation were analyzed as endpoints for genotoxicity. No effects were observed in the wildtype cells, which lack CYP activity. By contrast, a V79 clone engineered for expression of human CYP3A4 showed concentration-dependent γH2AX and micronucleus formation. Concluding, our results showed the CYP3A4-dependent formation of genotoxic metabolites of lasiocarpine. The results confirm previous data indicating the need to include metabolism of PA for human risk assessment.
Collapse
Affiliation(s)
- Johanna Ebmeyer
- German Federal Institute for Risk Assessment, Department Food Safety, Max-Dohrn-Straße 8-10, 10589, Berlin, Germany
| | - Albert Braeuning
- German Federal Institute for Risk Assessment, Department Food Safety, Max-Dohrn-Straße 8-10, 10589, Berlin, Germany
| | - Hansruedi Glatt
- German Federal Institute for Risk Assessment, Department Food Safety, Max-Dohrn-Straße 8-10, 10589, Berlin, Germany
| | - Anja These
- German Federal Institute for Risk Assessment, Department Safety in the Food Chain, Max-Dohrn-Straße 8-10, 10589, Berlin, Germany
| | - Stefanie Hessel-Pras
- German Federal Institute for Risk Assessment, Department Food Safety, Max-Dohrn-Straße 8-10, 10589, Berlin, Germany.
| | - Alfonso Lampen
- German Federal Institute for Risk Assessment, Department Food Safety, Max-Dohrn-Straße 8-10, 10589, Berlin, Germany
| |
Collapse
|
12
|
Cobalt(II) Porphyrin Catalyzed Cascade Reaction of Pyrrolyl Ketones for Construction of Polysubstituted Pyrrolizidines and Pyrrolizines. Adv Synth Catal 2018. [DOI: 10.1002/adsc.201701472] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
13
|
|
14
|
Hepatotoxicity of Herbal Supplements Mediated by Modulation of Cytochrome P450. Int J Mol Sci 2017; 18:ijms18112353. [PMID: 29117101 PMCID: PMC5713322 DOI: 10.3390/ijms18112353] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 11/03/2017] [Accepted: 11/03/2017] [Indexed: 12/11/2022] Open
Abstract
Herbal supplements are a significant source of drug-drug interactions (DDIs), herb-drug interactions, and hepatotoxicity. Cytochrome P450 (CYP450) enzymes metabolize a large number of FDA-approved pharmaceuticals and herbal supplements. This metabolism of pharmaceuticals and supplements can be augmented by concomitant use of either pharmaceuticals or supplements. The xenobiotic receptors constitutive androstane receptor (CAR) and the pregnane X receptor (PXR) can respond to xenobiotics by increasing the expression of a large number of genes that are involved in the metabolism of xenobiotics, including CYP450s. Conversely, but not exclusively, many xenobiotics can inhibit the activity of CYP450s. Induction of the expression or inhibition of the activity of CYP450s can result in DDIs and toxicity. Currently, the United States (US) Food and Drug Administration does not require the investigation of the interactions of herbal supplements and CYP450s. This review provides a summary of herbal supplements that inhibit CYP450s, induce the expression of CYP450s, and/or whose toxicity is mediated by CYP450s.
Collapse
|
15
|
[Dedicated to Prof. T. Okada and Prof. T. Nishioka: data science in chemistry]Classification of Alkaloid Compounds Based on Subring Skeleton (SRS) Profiling: On Finding Relationship of Compounds with Metabolic Pathways. JOURNAL OF COMPUTER AIDED CHEMISTRY 2017. [DOI: 10.2751/jcac.18.58] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
16
|
Diaz GJ. Toxicosis by Plant Alkaloids in Humans and Animals in Colombia. Toxins (Basel) 2015; 7:5408-16. [PMID: 26690479 PMCID: PMC4690142 DOI: 10.3390/toxins7124892] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 11/19/2015] [Accepted: 12/04/2015] [Indexed: 01/27/2023] Open
Abstract
Due to its tropical location, chains of mountains, inter-Andean valleys, Amazon basin area, eastern plains and shores on both the Atlantic and Pacific Oceans, Colombia has many ecosystems and the second largest plant biodiversity in the world. Many plant species, both native and naturalized, are currently recognized as toxic for both animals and humans, and some of them are known to cause their toxic effects due to their alkaloid content. Among these, there are plants containing the hepatotoxic pyrrolizidine alkaloids, neurotoxins such as the indolizidine alkaloid swainsonine and the piperidine alkaloids coniine and γ-coniceine and tropane alkaloids. Unfortunately, the research in toxic plants in Colombia is not nearly proportional to its plant biodiversity and the scientific information available is only very scarce. The present review aims at summarizing the scarce information about plant alkaloid toxicosis in animals and humans in Colombia.
Collapse
Affiliation(s)
- Gonzalo J Diaz
- Laboratorio de Toxicología, Facultad de Medicina Veterinaria y de Zootecnia, Universidad Nacional de Colombia, Bogotá, Colombia.
| |
Collapse
|
17
|
Jahouh F, Marongiu F, Serra MP, Laconi E, Banoub J. Gas-phase fragmentation of the N-oxide and N-hydroxylated derivatives of retrorsine using liquid chromatography/electrospray ionization quadrupole time-of-flight tandem mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2015; 29:1733-1748. [PMID: 26331923 DOI: 10.1002/rcm.7276] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 07/09/2015] [Accepted: 07/11/2015] [Indexed: 06/05/2023]
Abstract
RATIONALE We report the electrospray ionization mass spectrometry and low-energy collision-induced dissociation tandem mass spectrometry (CID-MS/MS) analysis of a pyrrolizidine alkaloid extract containing both retrorsine [C18H25NO6] and its N-oxide [C18H25NO7] and N-hydroxyl [C18H26NO7] derivatives measured with a QqTOFMS hybrid instrument. METHODS A solution of the pyrrolizidine alkaloid extract containing retrorsine and its N-oxide and N-hydroxyl derivatives was directly infused into an electrospray ionization-quadrupole-time-of-flight (ESI-QTOF) mass spectrometer and product ion scans of the protonated molecules of each species were acquired. Labile protons of each compound were deuterated and computational energy calculations of the proposed structures of the product ions were used to determine the fragmentation pathways of retrorsine and its N-oxide and N-hydroxyl derivatives. RESULTS ESI-MS of the pyrrolizidine alkaloid extract containing retrorsine and its N-oxide and N-hydroxyl derivatives afforded the protonated retrorsine [M1 + H](+) at m/z 352.1760 and the protonated retrorsine N-oxide [M2 + H](+) at m/z 368.1631 in addition to the formation of the unexpected protonated N-hydroxyl radical [M3 + H](+•) at m/z 369.1686. CID-MS/MS of this series of protonated molecules allowed the evaluation of their gas-phase fragmentations and the establishment of their fragmentation pathways. It was also found that several product ions could be assigned to different structures. Deuterium exchange and computational energy calculations allowed us to determine the most probable structures for the characterized product ions. CONCLUSIONS To our knowledge, the identification of the protonated retrorsine N-hydroxyl radical [M3 + H](+•) is reported for the first time. In addition, the MS/MS results can be used for the identification of retrorsine and its N-oxide and N-hydroxyl derivatives in different complex biological matrices.
Collapse
Affiliation(s)
- Farid Jahouh
- Chemistry Department, Memorial University of Newfoundland, Saint John's, Canada
- Special Projects, Science Branch, Department of Fisheries and Oceans Canada, Saint John's, Canada
| | - Fabio Marongiu
- Department of Biomedical Sciences, University of Cagliari, Italy
| | | | - Ezio Laconi
- Department of Biomedical Sciences, University of Cagliari, Italy
| | - Joseph Banoub
- Chemistry Department, Memorial University of Newfoundland, Saint John's, Canada
- Special Projects, Science Branch, Department of Fisheries and Oceans Canada, Saint John's, Canada
| |
Collapse
|
18
|
Fashe MM, Juvonen RO, Petsalo A, Vepsäläinen J, Pasanen M, Rahnasto-Rilla M. In Silico Prediction of the Site of Oxidation by Cytochrome P450 3A4 That Leads to the Formation of the Toxic Metabolites of Pyrrolizidine Alkaloids. Chem Res Toxicol 2015; 28:702-10. [DOI: 10.1021/tx500478q] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Muluneh M. Fashe
- School of Pharmacy, Faculty
of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Risto O. Juvonen
- School of Pharmacy, Faculty
of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Aleksanteri Petsalo
- School of Pharmacy, Faculty
of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Jouko Vepsäläinen
- School of Pharmacy, Faculty
of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Markku Pasanen
- School of Pharmacy, Faculty
of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Minna Rahnasto-Rilla
- School of Pharmacy, Faculty
of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| |
Collapse
|
19
|
Fashe MM, Juvonen RO, Petsalo A, Rahnasto-Rilla M, Auriola S, Soininen P, Vepsäläinen J, Pasanen M. Identification of a New Reactive Metabolite of Pyrrolizidine Alkaloid Retrorsine: (3H-Pyrrolizin-7-yl)methanol. Chem Res Toxicol 2014; 27:1950-7. [DOI: 10.1021/tx5002964] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Muluneh M. Fashe
- School
of Pharmacy, Faculty
of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Risto O. Juvonen
- School
of Pharmacy, Faculty
of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Aleksanteri Petsalo
- School
of Pharmacy, Faculty
of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Minna Rahnasto-Rilla
- School
of Pharmacy, Faculty
of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Seppo Auriola
- School
of Pharmacy, Faculty
of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Pasi Soininen
- School
of Pharmacy, Faculty
of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Jouko Vepsäläinen
- School
of Pharmacy, Faculty
of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Markku Pasanen
- School
of Pharmacy, Faculty
of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| |
Collapse
|
20
|
Abstract
This review covers pyrrolizidine alkaloids isolated from natural sources. Topics include: aspects of structure, isolation, and biological/pharmacological studies; total syntheses of necic acids, necine bases and closely-related non-natural analogues.
Collapse
Affiliation(s)
- Jeremy Robertson
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford, OX1 3TA, UK.
| | | |
Collapse
|
21
|
Tu M, Li L, Lei H, Ma Z, Chen Z, Sun S, Xu S, Zhou H, Zeng S, Jiang H. Involvement of organic cation transporter 1 and CYP3A4 in retrorsine-induced toxicity. Toxicology 2014; 322:34-42. [PMID: 24799337 DOI: 10.1016/j.tox.2014.04.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Revised: 04/20/2014] [Accepted: 04/23/2014] [Indexed: 01/11/2023]
Abstract
Retrorsine (RTS) is a hepatotoxic pyrrolizidine alkaloid present in plants of the Senecio genus. The present study is aimed at clarifying the role of organic cation transporters (OCTs) in the liver disposition of RTS, and the coupling of OCT1 and cytochrome P450 (CYP) 3A4 in the hepatotoxicity of RTS. MDCK or LLC-PK1 cells stably expressing liver uptake or efflux transporters were used to investigate the interaction of RTS with these transporters. Primary cultured rat hepatocytes (PCRH) and double-transfected MDCK-hOCT1-CYP3A4 cells were used to determine the contribution of OCT1 and CYP3A4 to the toxicity of RTS. The results showed that RTS inhibited the OCT1-mediated 1-methyl-4-phenylpyridinium (MPP(+)) uptake in MDCK-hOCT1 cells with the IC50 of 2.25±0.30μM. The uptake of RTS in MDCK-hOCT1 cells and PCRH was significantly inhibited by OCT1 inhibitors, while hOCT3, human multidrug and toxin extrusion (hMATE) transporter 1, multidrug resistance 1 (MDR1), and breast cancer resistance protein (BCRP) showed weak or no obvious interaction with RTS. The toxic effect of RTS on the PCRH was attenuated by OCT1 inhibitors, quinidine and (+)-tetrahydropalmatine ((+)-THP). Compared to mock cells, MDCK-CYP3A4 cells showed a decrease in viability after being treated with RTS. Furthermore, RTS showed a more severe toxicity in the OCT1/CYP3A4 double-transfected cells compared to all other cells. Our data suggests that OCT1 mediates the liver-specific uptake of RTS, and plays an important role in RTS-induced hepatotoxicity together with CYP3A4. Consequently, the OCT1 inhibitors could be applied to protect the liver from the toxicity of RTS.
Collapse
Affiliation(s)
- Meijuan Tu
- Laboratory of Pharmaceutical Analysis and Drug Metabolism, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Liping Li
- Laboratory of Pharmaceutical Analysis and Drug Metabolism, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Hongmei Lei
- Laboratory of Pharmaceutical Analysis and Drug Metabolism, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Zhiyuan Ma
- Laboratory of Pharmaceutical Analysis and Drug Metabolism, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Zhongjian Chen
- Zhejiang Cancer Research Institute, Zhejiang Cancer Hospital, Hangzhou, China
| | - Siyuan Sun
- Laboratory of Pharmaceutical Analysis and Drug Metabolism, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Siyun Xu
- Laboratory of Pharmaceutical Analysis and Drug Metabolism, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Hui Zhou
- Laboratory of Pharmaceutical Analysis and Drug Metabolism, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Su Zeng
- Laboratory of Pharmaceutical Analysis and Drug Metabolism, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Huidi Jiang
- Laboratory of Pharmaceutical Analysis and Drug Metabolism, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.
| |
Collapse
|