1
|
Zhou X, Guo Z, Liu S, Chen Z, Wang Y, Yang R, Li X, Ma K. Transcriptomics and molecular docking reveal the potential mechanism of lycorine against pancreatic cancer. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 122:155128. [PMID: 37839227 DOI: 10.1016/j.phymed.2023.155128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 09/15/2023] [Accepted: 09/28/2023] [Indexed: 10/17/2023]
Abstract
BACKGROUND Pancreatic cancer is an extremely malignant digestive tumor, however, owing to its high drug resistance of pancreatic cancer, the search for more effective anti-pancreatic cancer drugs is urgently needed. Lycorine, an alkaloid of natural plant origin, exerts antitumor effects on a variety of tumors. PURPOSE This study aimed to investigate the therapeutic effect of lycorine on pancreatic cancer and elucidate its potential molecular mechanism. METHODS Two pancreatic cancer cell lines, PANC-1 and BxPC-3, were used to investigate the therapeutic effects of lycorine on pancreatic cancer in vitro using the CCK8 assay, colony formation assay, 5-Ethynyl-2'- deoxyuridine (EdU) incorporation assay, flow cytometry, and western blotting. Transcriptome sequencing and gene set enrichment analysis (GSEA) were used to analyze the differentially expressed genes and pathways after lycorine treatment. Molecular docking, quantitative real-time PCR (qRT-PCR), oil red O staining, small interfering RNA (siRNA) transfection, and other experiments were performed to further validate the differentially expressed genes and pathways. In vivo experiments were conducted to investigate lycorine's inhibitory effects and toxicity on pancreatic cancer using a tumor-bearing mouse model. RESULTS Lycorine inhibited the proliferation of pancreatic cancer cells, caused G2/M phase cycle arrest and induced apoptosis. Transcriptome sequencing and GSEA showed that lycorine inhibition of pancreatic cancer was associated with fatty acid metabolism, and aldehyde dehydrogenase 3A1 (ALDH3A1) was a significantly enriched target in the fatty acid metabolism process. ALDH3A1 expression was significantly upregulated in pancreatic cancer and was closely associated with prognosis. Molecular docking showed that lycorine binds strongly to ALDH3A1. Further studies revealed that lycorine inhibited the fatty acid oxidation (FAO) process in pancreatic cancer cells and induced cell growth inhibition and apoptosis through ALDH3A1. Lycorine also showed significant suppressive effects in tumor-bearing mice. Importantly, it did not result in significant toxicity to liver and kidney of mice, demonstrating its therapeutic potential as a safe antitumor agent. CONCLUSION Lycorine inhibited pancreatic cancer cell proliferation, blocked the cell cycle, and induced apoptosis by targeting ALDH3A1. FAO inhibition was identified for the first time as a possible mechanism for the anticancer effects of lycorine. These findings enrich the theory of targeted therapy for pancreatic cancer, expand our understanding of the pharmacological targets of lycorine, and provide a reference for exploring its natural components.
Collapse
Affiliation(s)
- Xin Zhou
- The Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Ministry of Education, Shihezi University Medical College, Shihezi 832002, China; NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, Shihezi 832002, China; Department of Physiology, Shihezi University Medical College, Shihezi 832002, China
| | - Zhenli Guo
- The Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Ministry of Education, Shihezi University Medical College, Shihezi 832002, China; NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, Shihezi 832002, China; Department of Physiology, Shihezi University Medical College, Shihezi 832002, China
| | - Shizhong Liu
- The Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Ministry of Education, Shihezi University Medical College, Shihezi 832002, China; NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, Shihezi 832002, China; Department of Physiology, Shihezi University Medical College, Shihezi 832002, China
| | - Zhijian Chen
- The Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Ministry of Education, Shihezi University Medical College, Shihezi 832002, China; NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, Shihezi 832002, China; Department of Pathophysiology, Shihezi University Medical College, Shihezi 832002, China
| | - Yan Wang
- The Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Ministry of Education, Shihezi University Medical College, Shihezi 832002, China; NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, Shihezi 832002, China
| | - Rui Yang
- The Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Ministry of Education, Shihezi University Medical College, Shihezi 832002, China; NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, Shihezi 832002, China; Department of Physiology, Shihezi University Medical College, Shihezi 832002, China.
| | - Xinzhi Li
- The Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Ministry of Education, Shihezi University Medical College, Shihezi 832002, China; NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, Shihezi 832002, China; Department of Pathophysiology, Shihezi University Medical College, Shihezi 832002, China.
| | - Ketao Ma
- The Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Ministry of Education, Shihezi University Medical College, Shihezi 832002, China; NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, Shihezi 832002, China; Department of Physiology, Shihezi University Medical College, Shihezi 832002, China.
| |
Collapse
|
2
|
Zhao M, Wu J, Xu J, Li A, Mei Y, Ge X, Yin G, Liu X, Wei L, Xu Q. Association of environmental exposure to chromium with differential DNA methylation: An epigenome-wide study. Front Genet 2023; 13:1043486. [PMID: 36685967 PMCID: PMC9845398 DOI: 10.3389/fgene.2022.1043486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 12/12/2022] [Indexed: 01/06/2023] Open
Abstract
Introduction: Previous studies have reported that chromium (Cr)-induced epigenetic alterations and DNA methylation play a vital role in the pathogenesis of diseases induced by chromium exposure. Epigenomic analyses have been limited and mainly focused on occupational chromium exposure; their findings are not generalizable to populations with environmental Cr exposure. Methods: We identified the differential methylation of genes and regions to elucidate the mechanisms of toxicity related to environmental chromium exposure. DNA methylation was measured in blood samples collected from individuals in Cr-contaminated (n = 10) and unexposed areas (n = 10) by using the Illumina Infinium HumanMethylation850K array. To evaluate the relationship between chromium levels in urine and CpG methylation at 850 thousand sites, we investigated differentially methylated positions (DMPs) and differentially methylated regions (DMRs) by using linear models and DMRcate method, respectively. The model was adjusted for biologically relevant variables and estimated cell-type compositions. Results: At the epigenome-wide level, we identified five CpGs [cg20690919 (p FDR =0.006), cg00704664 (p FDR =0.024), cg10809143 (p FDR =0.043), cg27057652 (p FDR =0.047), cg05390480 (p FDR =0.024)] and one DMR (chr17: 19,648,718-19,648,972), annotated to ALDH3A1 genes (p < 0.05) as being significantly associated with log2 transformed urinary chromium levels. Discussion: Environmental chromium exposure is associated with DNA methylation, and the significant DMPs and DMR being annotated to cause DNA damage and genomic instability were found in this work. Research involving larger samples is required to further explore the epigenetic effect of environmental chromium exposure on health outcomes through DNA methylation.
Collapse
Affiliation(s)
- Meiduo Zhao
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China,Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Jingtao Wu
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China,Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Jing Xu
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China,Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Ang Li
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China,Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Yayuan Mei
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China,Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Xiaoyu Ge
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China,Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Guohuan Yin
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China,Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Xiaolin Liu
- Department of Epidemiology and Biostatistics, Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Lanping Wei
- Jinzhou Central Hospital, Jinzhou, Liaoning, China
| | - Qun Xu
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China,Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China,*Correspondence: Qun Xu,
| |
Collapse
|
3
|
Liu Y, Myojin T, Li K, Kurita A, Seto M, Motoyama A, Liu X, Satoh A, Munemasa S, Murata Y, Nakamura T, Nakamura Y. A Major Intestinal Catabolite of Quercetin Glycosides, 3-Hydroxyphenylacetic Acid, Protects the Hepatocytes from the Acetaldehyde-Induced Cytotoxicity through the Enhancement of the Total Aldehyde Dehydrogenase Activity. Int J Mol Sci 2022; 23:ijms23031762. [PMID: 35163684 PMCID: PMC8836260 DOI: 10.3390/ijms23031762] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 01/31/2022] [Accepted: 02/01/2022] [Indexed: 12/20/2022] Open
Abstract
Aldehyde dehydrogenases (ALDHs) are the major enzyme superfamily for the aldehyde metabolism. Since the ALDH polymorphism leads to the accumulation of acetaldehyde, we considered that the enhancement of the liver ALDH activity by certain food ingredients could help prevent alcohol-induced chronic diseases. Here, we evaluated the modulating effects of 3-hydroxyphenylacetic acid (OPAC), the major metabolite of quercetin glycosides, on the ALDH activity and acetaldehyde-induced cytotoxicity in the cultured cell models. OPAC significantly enhanced the total ALDH activity not only in mouse hepatoma Hepa1c1c7 cells, but also in human hepatoma HepG2 cells. OPAC significantly increased not only the nuclear level of aryl hydrocarbon receptor (AhR), but also the AhR-dependent reporter gene expression, though not the nuclear factor erythroid-2-related factor 2 (Nrf2)-dependent one. The pretreatment of OPAC at the concentration required for the ALDH upregulation completely inhibited the acetaldehyde-induced cytotoxicity. Silencing AhR impaired the resistant effect of OPAC against acetaldehyde. These results strongly suggested that OPAC protects the cells from the acetaldehyde-induced cytotoxicity, mainly through the AhR-dependent and Nrf2-independent enhancement of the total ALDH activity. Our findings suggest that OPAC has a protective potential in hepatocyte models and could offer a new preventive possibility of quercetin glycosides for targeting alcohol-induced chronic diseases.
Collapse
Affiliation(s)
- Yujia Liu
- School of Biological Engineering, Dalian Polytechnic University, Dalian 116034, China;
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; (K.L.); (X.L.)
- Graduate School of Environmental and Life Science, Okayama University, Okayama 700-8530, Japan; (T.M.); (A.K.); (M.S.); (A.M.); (S.M.); (Y.M.); (T.N.)
| | - Takumi Myojin
- Graduate School of Environmental and Life Science, Okayama University, Okayama 700-8530, Japan; (T.M.); (A.K.); (M.S.); (A.M.); (S.M.); (Y.M.); (T.N.)
| | - Kexin Li
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; (K.L.); (X.L.)
- Graduate School of Environmental and Life Science, Okayama University, Okayama 700-8530, Japan; (T.M.); (A.K.); (M.S.); (A.M.); (S.M.); (Y.M.); (T.N.)
| | - Ayuki Kurita
- Graduate School of Environmental and Life Science, Okayama University, Okayama 700-8530, Japan; (T.M.); (A.K.); (M.S.); (A.M.); (S.M.); (Y.M.); (T.N.)
| | - Masayuki Seto
- Graduate School of Environmental and Life Science, Okayama University, Okayama 700-8530, Japan; (T.M.); (A.K.); (M.S.); (A.M.); (S.M.); (Y.M.); (T.N.)
| | - Ayano Motoyama
- Graduate School of Environmental and Life Science, Okayama University, Okayama 700-8530, Japan; (T.M.); (A.K.); (M.S.); (A.M.); (S.M.); (Y.M.); (T.N.)
| | - Xiaoyang Liu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; (K.L.); (X.L.)
- Graduate School of Environmental and Life Science, Okayama University, Okayama 700-8530, Japan; (T.M.); (A.K.); (M.S.); (A.M.); (S.M.); (Y.M.); (T.N.)
| | - Ayano Satoh
- Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama 700-8530, Japan;
| | - Shintaro Munemasa
- Graduate School of Environmental and Life Science, Okayama University, Okayama 700-8530, Japan; (T.M.); (A.K.); (M.S.); (A.M.); (S.M.); (Y.M.); (T.N.)
| | - Yoshiyuki Murata
- Graduate School of Environmental and Life Science, Okayama University, Okayama 700-8530, Japan; (T.M.); (A.K.); (M.S.); (A.M.); (S.M.); (Y.M.); (T.N.)
| | - Toshiyuki Nakamura
- Graduate School of Environmental and Life Science, Okayama University, Okayama 700-8530, Japan; (T.M.); (A.K.); (M.S.); (A.M.); (S.M.); (Y.M.); (T.N.)
| | - Yoshimasa Nakamura
- Graduate School of Environmental and Life Science, Okayama University, Okayama 700-8530, Japan; (T.M.); (A.K.); (M.S.); (A.M.); (S.M.); (Y.M.); (T.N.)
- Correspondence: ; Tel.: +81-86-251-8300; Fax: +81-86-251-8388
| |
Collapse
|
4
|
Meadows V, Baiocchi L, Kundu D, Sato K, Fuentes Y, Wu C, Chakraborty S, Glaser S, Alpini G, Kennedy L, Francis H. Biliary Epithelial Senescence in Liver Disease: There Will Be SASP. Front Mol Biosci 2022; 8:803098. [PMID: 34993234 PMCID: PMC8724525 DOI: 10.3389/fmolb.2021.803098] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 11/23/2021] [Indexed: 12/12/2022] Open
Abstract
Cellular senescence is a pathophysiological phenomenon in which proliferative cells enter cell cycle arrest following DNA damage and other stress signals. Natural, permanent DNA damage can occur after repetitive cell division; however, acute stress or other injuries can push cells into premature senescence and eventually a senescence-associated secretory phenotype (SASP). In recent years, there has been increased evidence for the role of premature senescence in disease progression including diabetes, cardiac diseases, and end-stage liver diseases including cholestasis. Liver size and function change with aging, and presumably with increasing cellular senescence, so it is important to understand the mechanisms by which cellular senescence affects the functional nature of the liver in health and disease. As well, cells in a SASP state secrete a multitude of inflammatory and pro-fibrogenic factors that modulate the microenvironment. Cellular SASP and the associated, secreted factors have been implicated in the progression of liver diseases, such as cholestatic injury that target the biliary epithelial cells (i.e., cholangiocytes) lining the bile ducts. Indeed, cholangiocyte senescence/SASP is proposed to be a driver of disease phenotypes in a variety of liver injuries. Within this review, we will discuss the impact of cholangiocyte senescence and SASP in the pathogenesis of cholestatic disorders.
Collapse
Affiliation(s)
- Vik Meadows
- Hepatology and Gastroenterology, Medicine, Indiana University, Indianapolis, IN, United States
| | | | - Debjyoti Kundu
- Hepatology and Gastroenterology, Medicine, Indiana University, Indianapolis, IN, United States
| | - Keisaku Sato
- Hepatology and Gastroenterology, Medicine, Indiana University, Indianapolis, IN, United States
| | - Yessenia Fuentes
- Clinical and Translational Sciences Institute, STEM GEHCS Program, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Chaodong Wu
- Department of Nutrition, Texas A&M University, College Station, TX, United States
| | - Sanjukta Chakraborty
- Department of Medical Physiology, Texas A&M University College of Medicine, Bryan, TX, United States
| | - Shannon Glaser
- Department of Medical Physiology, Texas A&M University College of Medicine, Bryan, TX, United States
| | - Gianfranco Alpini
- Hepatology and Gastroenterology, Medicine, Indiana University, Indianapolis, IN, United States.,Richard L. Roudebush VA Medical Center, Indianapolis, IN, United States
| | - Lindsey Kennedy
- Hepatology and Gastroenterology, Medicine, Indiana University, Indianapolis, IN, United States.,Richard L. Roudebush VA Medical Center, Indianapolis, IN, United States
| | - Heather Francis
- Hepatology and Gastroenterology, Medicine, Indiana University, Indianapolis, IN, United States.,Richard L. Roudebush VA Medical Center, Indianapolis, IN, United States
| |
Collapse
|
5
|
Zhai C, Lv J, Wang K, Li Q, Qu Y. HSP70 silencing aggravates apoptosis induced by hypoxia/reoxygenation in vitro. Exp Ther Med 2019; 18:1013-1020. [PMID: 31363363 PMCID: PMC6614734 DOI: 10.3892/etm.2019.7697] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 02/28/2019] [Indexed: 01/09/2023] Open
Abstract
Lung ischemia-reperfusion can cause acute lung injury, which is closely associated with apoptosis. Heat shock protein 70 (HSP70) is an anti-apoptotic protein that promotes cell survival under a variety of different stress conditions. However, the role and mechanism of HSP70 in lung ischemia-reperfusion injury is yet to be fully elucidated. In the present study, an in vitro hypoxia/reoxygenation model of A549 cells was established to simulate lung ischemia-reperfusion and HSP70 was silenced by transfecting A549 cells with an shRNA sequence targeting HSP70. Western blotting, reverse transcription-quantitative polymerase chain reaction, Cell Counting kit-8 and flow cytometry were used to detect protein levels, RNA expression, cell activity and apoptosis. The results revealed that silencing HSP70 reduced cell viability, aggravated apoptosis, increased lactate dehydrogenase levels and induced a G2/M blockade in a hypoxia-reoxygenation A549 cell model. Furthermore, silencing HSP70 decreased the phosphorylation levels of protein kinase B (AKT) and extracellular signal-regulated kinase (ERK); however, the total AKT and ERK levels did not change significantly. Pretreating A549 cells with the AKT pathway inhibitor, LY294002 and the ERK pathway inhibitor, U0216 led to a decrease in HSP70 expression. These results indicate that silencing HSP70 may aggravate apoptosis in hypoxia-reoxygenation cell models, potentially via the mitogen-activated protein kinase/ERK and phosphoinositide 3-kinase/AKT signaling pathways.
Collapse
Affiliation(s)
- Congying Zhai
- Intensive Care Unit, Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao, Shandong 266071, P.R. China.,Department of Respiratory Medicine, Zibo First Hospital, Zibo, Shandong 255200, P.R. China
| | - Jiling Lv
- Department of Respiratory Medicine, Zibo First Hospital, Zibo, Shandong 255200, P.R. China
| | - Keke Wang
- Department of Emergency, Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Qingshu Li
- Intensive Care Unit, Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Yan Qu
- Intensive Care Unit, Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao, Shandong 266071, P.R. China
| |
Collapse
|
6
|
Rodríguez-Zavala JS, Calleja LF, Moreno-Sánchez R, Yoval-Sánchez B. Role of Aldehyde Dehydrogenases in Physiopathological Processes. Chem Res Toxicol 2019; 32:405-420. [PMID: 30628442 DOI: 10.1021/acs.chemrestox.8b00256] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Many different diseases are associated with oxidative stress. One of the main consequences of oxidative stress at the cellular level is lipid peroxidation, from which toxic aldehydes may be generated. Below their toxicity thresholds, some aldehydes are involved in signaling processes, while others are intermediaries in the metabolism of lipids, amino acids, neurotransmitters, and carbohydrates. Some aldehydes ubiquitously distributed in the environment, such as acrolein or formaldehyde, are extremely toxic to the cell. On the other hand, aldehyde dehydrogenases (ALDHs) are able to detoxify a wide variety of aldehydes to their corresponding carboxylic acids, thus helping to protect from oxidative stress. ALDHs are located in different subcellular compartments such as cytosol, mitochondria, nucleus, and endoplasmic reticulum. The aim of this review is to analyze, and highlight, the role of different ALDH isoforms in the detoxification of aldehydes generated in processes that involve high levels of oxidative stress. The ALDH physiological relevance becomes evident by the observation that their expression and activity are enhanced in different pathologies that involve oxidative stress such as neurodegenerative disorders, cardiopathies, atherosclerosis, and cancer as well as inflammatory processes. Furthermore, ALDH mutations bring about several disorders in the cell. Thus, understanding the mechanisms by which these enzymes participate in diverse cellular processes may lead to better contend with the damage caused by toxic aldehydes in different pathologies by designing modulators and/or protocols to modify their activity or expression.
Collapse
Affiliation(s)
| | | | - Rafael Moreno-Sánchez
- Departamento de Bioquímica , Instituto Nacional de Cardiología , México 14080 , México
| | - Belem Yoval-Sánchez
- Departamento de Bioquímica , Instituto Nacional de Cardiología , México 14080 , México
| |
Collapse
|
7
|
Muzio G, Ricci M, Traverso N, Monacelli F, Oraldi M, Maggiora M, Canuto RA. 4-Hydroxyhexenal and 4-hydroxynonenal are mediators of the anti-cachectic effect of n-3 and n-6 polyunsaturated fatty acids on human lung cancer cells. Free Radic Biol Med 2016; 99:63-70. [PMID: 27480845 DOI: 10.1016/j.freeradbiomed.2016.07.031] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 07/28/2016] [Accepted: 07/29/2016] [Indexed: 01/09/2023]
Abstract
Cachexia, the most severe paraneoplastic syndrome, occurs in about 80% of patients with advanced cancer; it cannot be reverted by conventional, enteral, or parenteral nutrition. For this reason, nutritional interventions must be based on the use of substances possessing, alongside nutritional and energetic properties, the ability to modulate production of the pro-inflammatory factors responsible for the metabolic changes characterising cancer cachexia. In light of their nutritional and anti-inflammatory properties, polyunsaturated fatty acids (PUFAs), and in particular n-3, have been investigated for treating cachexia; however, the results have been contradictory. Since both n-3 and n-6 PUFAs can affect cell functions in several ways, this research investigated the possibility that the effects of both n-3 and n-6 PUFAs could be mediated by their major aldehydic products of lipid peroxidation, 4-hydroxyhexenal (HHE) and 4-hydroxynonenal (HNE), and by their anti-inflammatory properties. An "in vitro" cancer cachexia model, consisting of human lung cancer cells (A427) and murine myoblasts (C2C12), was used. The results showed that: 1) both n-3 and n-6 PUFAs reduced the growth of lung cancer cells without causing cell death, increased lipid peroxidation and Peroxisome Proliferator-Activated Receptor (PPAR)α, and decreased TNFα; 2) culture medium conditioned by A427 cells grown in the absence of PUFAs blocked myosin production and the differentiation of C2C12 muscle cells; conversely, muscle cells grown in culture medium conditioned by the same cells in the presence of PUFAs showed myosin expression and formed myotubes; 3) adding HHE or HNE directly to C2C12 cells maintained in culture medium conditioned by A427 cells in the absence of PUFAs stimulated myosin production and myotube formation; 4) putative consensus sequences for (PPARs) have been found in genes encoding fast isoforms of myosin heavy chain, by a bioinformatics approach. The overall results show, first, the ability of both n-3 and n-6 PUFAs and their lipid peroxidation products to prevent the blocking of myosin expression and myotube formation caused in C2C12 cells by medium conditioned by human lung tumour cells. The C2C12 cell differentiation can be due to direct effect of lipid peroxidation products, as evidenced by treating C2C12 cells with HHE and HNE, and to the decrease of pro-inflammatory TNFα in A427 cell culture medium. The presence of consensus sequences for PPARs in genes encoding the fast isoforms of myosin heavy chain suggests that the effects of PUFAs, HHE, and HNE are PPAR-mediated.
Collapse
Affiliation(s)
- G Muzio
- Department of Clinical and Biological Sciences, University of Turin, Corso Raffaello 30, 10125 Turin, Italy
| | - M Ricci
- Department of Clinical and Biological Sciences, University of Turin, Corso Raffaello 30, 10125 Turin, Italy
| | - N Traverso
- Department of Experimental Medicine, University of Genoa, Via Leon Battista Alberti 2, 16132 Genoa, Italy
| | - F Monacelli
- Internal Medicine and Medical Specialties, University of Genoa, Viale Benedetto XV 6, 16132 Genoa, Italy
| | - M Oraldi
- Department of Clinical and Biological Sciences, University of Turin, Corso Raffaello 30, 10125 Turin, Italy
| | - M Maggiora
- Department of Clinical and Biological Sciences, University of Turin, Corso Raffaello 30, 10125 Turin, Italy
| | - R A Canuto
- Department of Clinical and Biological Sciences, University of Turin, Corso Raffaello 30, 10125 Turin, Italy.
| |
Collapse
|
8
|
Muzio G, Perero S, Miola M, Oraldi M, Ferraris S, Vernè E, Festa F, Canuto RA, Festa V, Ferraris M. Biocompatibility versus peritoneal mesothelial cells of polypropylene prostheses for hernia repair, coated with a thin silica/silver layer. J Biomed Mater Res B Appl Biomater 2016; 105:1586-1593. [DOI: 10.1002/jbm.b.33697] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 03/29/2016] [Accepted: 04/06/2016] [Indexed: 01/16/2023]
Affiliation(s)
- Giuliana Muzio
- Department of Clinical and Biological Sciences; University of Turin; 10125 Turin Italy
| | - Sergio Perero
- Department of Applied Science and Technology; Politecnico of Turin; 24 10129 Turin Italy
| | - Marta Miola
- Department of Applied Science and Technology; Politecnico of Turin; 24 10129 Turin Italy
- Department of Health Sciences; University “Amedeo Avogadro” of East Piedmont; Novara Italy
| | - Manuela Oraldi
- Department of Clinical and Biological Sciences; University of Turin; 10125 Turin Italy
| | - Sara Ferraris
- Department of Applied Science and Technology; Politecnico of Turin; 24 10129 Turin Italy
| | - Enrica Vernè
- Department of Applied Science and Technology; Politecnico of Turin; 24 10129 Turin Italy
| | - Federico Festa
- Department of Surgical Sciences; University of Turin; 10126 Turin Italy
| | - Rosa Angela Canuto
- Department of Clinical and Biological Sciences; University of Turin; 10125 Turin Italy
| | - Valentino Festa
- Department of Surgical Sciences; University of Turin; 10126 Turin Italy
| | - Monica Ferraris
- Department of Applied Science and Technology; Politecnico of Turin; 24 10129 Turin Italy
| |
Collapse
|
9
|
Kato H, Izumi K, Saito T, Ohnuki H, Terada M, Kawano Y, Nozawa-Inoue K, Saito C, Maeda T. Distinct expression patterns and roles of aldehyde dehydrogenases in normal oral mucosa keratinocytes: differential inhibitory effects of a pharmacological inhibitor and RNAi-mediated knockdown on cellular phenotype and epithelial morphology. Histochem Cell Biol 2012; 139:847-62. [PMID: 23250514 DOI: 10.1007/s00418-012-1064-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/29/2012] [Indexed: 01/02/2023]
Abstract
Aldehyde dehydrogenases (ALDHs), enzymes responsible for detoxification and retinoic acid biosynthesis, are considered a potent functional stem cell marker of normal and malignant cells in many tissues. To date, however, there are no available data on ALDH distributions and functions in oral mucosa. This study aims to clarify the levels and types of ALDH expression using immunohistochemistry with accompanying mRNA expression as well as an ALDEFLUOR assay, and to assess phenotypic and histological changes after manipulation of the ALDH activity of oral keratinocytes to increase the potency of a tissue-engineered oral mucosa by a specific ALDH inhibitor, diethylaminobenzaldehyde (DEAB), together with small interfering RNA of ALDH1A3 and ALDH3A1. Results showed the mRNA and cytoplasmic protein expression of ALDH1A3 and ALDH3A1 to be mostly localized in the upper suprabasal layer although no ALDH1A1 immunoreaction was detected throughout the epithelium. Oral keratinocytes with high ALDH activity exhibited a profile of differentiating cells. By pharmacological inhibition, the phenotypic analysis revealed the proliferating cell-population shifting to a more quiescent state compared with untreated cells. Furthermore, a well-structured epithelial layer showing a normal differentiation pattern and a decrease in Ki-67 immunopositive basal cells was developed by DEAB incubation, suggesting a slower turnover rate efficient to maintain undifferentiated cells. Histological findings of a regenerated oral epithelium by ALDH1A3 siRNA were similar to those when treated with DEAB while ALDH3A1 siRNA eradicated the epithelial regenerative capacity. These observations suggest the effects of phenotypic and morphological alterations by DEAB on oral keratinocytes are mainly consequent to the inhibition of ALDH1A3 activity.
Collapse
Affiliation(s)
- Hiroko Kato
- Division of Reconstructive Surgery for Oral and Maxillofacial Region, Department of Tissue Regeneration and Reconstruction, Niigata University Graduate School of Medical and Dental Sciences, 2-5274, Gakkocho-dori, Chuo-ku, Niigata 951-8514, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Fang CY, Huang SY, Wu CC, Hsu HY, Chou SP, Tsai CH, Chang Y, Takada K, Chen JY. The synergistic effect of chemical carcinogens enhances Epstein-Barr virus reactivation and tumor progression of nasopharyngeal carcinoma cells. PLoS One 2012; 7:e44810. [PMID: 23024765 PMCID: PMC3443098 DOI: 10.1371/journal.pone.0044810] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Accepted: 08/07/2012] [Indexed: 12/04/2022] Open
Abstract
Seroepidemiological studies imply a correlation between Epstein-Barr virus (EBV) reactivation and the development of nasopharyngeal carcinoma (NPC). N-nitroso compounds, phorbols, and butyrates are chemicals found in food and herb samples collected from NPC high-risk areas. These chemicals have been reported to be risk factors contributing to the development of NPC, however, the underlying mechanism is not fully understood. We have demonstrated previously that low dose N-methyl-N’-nitro-N-nitrosoguanidine (MNNG, 0.1 µg/ml) had a synergistic effect with 12-O-tetradecanoylphorbol-13-acetate (TPA) and sodium butyrate (SB) in enhancing EBV reactivation and genome instability in NPC cells harboring EBV. Considering that residents in NPC high-risk areas may contact regularly with these chemical carcinogens, it is vital to elucidate the relation between chemicals and EBV and their contributions to the carcinogenesis of NPC. In this study, we constructed a cell culture model to show that genome instability, alterations of cancer hallmark gene expression, and tumorigenicity were increased after recurrent EBV reactivation in NPC cells following combined treatment of TPA/SB and MNNG. NPC cells latently infected with EBV, NA, and the corresponding EBV-negative cell, NPC-TW01, were periodically treated with MNNG, TPA/SB, or TPA/SB combined with MNNG. With chemically-induced recurrent reactivation of EBV, the degree of genome instability was significantly enhanced in NA cells treated with a combination of TPA/SB and MNNG than those treated individually. The Matrigel invasiveness, as well as the tumorigenicity in mouse, was also enhanced in NA cells after recurrent EBV reactivation. Expression profile analysis by microarray indicates that many carcinogenesis-related genes were altered after recurrent EBV reactivation, and several aberrations observed in cell lines correspond to alterations in NPC lesions. These results indicate that cooperation between chemical carcinogens can enhance the reactivation of EBV and, over recurrent reactivations, lead to alteration of cancer hallmark gene expression with resultant enhancement of tumorigenesis in NPC.
Collapse
Affiliation(s)
- Chih-Yeu Fang
- National Institute of Cancer Research, National Health Research Institutes, Zhunan Town, Miaoli County, Taiwan
| | - Sheng-Yen Huang
- Graduate Program of Biotechnology in Medicine of National Tsing Hua University and National Health Research Institutes, Hsinchu, Taiwan
- Institute of Biotechnology, Department of Life Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Chung-Chun Wu
- National Institute of Cancer Research, National Health Research Institutes, Zhunan Town, Miaoli County, Taiwan
| | - Hui-Yu Hsu
- Institute of Biotechnology, Department of Life Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Sheng-Ping Chou
- National Institute of Cancer Research, National Health Research Institutes, Zhunan Town, Miaoli County, Taiwan
| | - Ching-Hwa Tsai
- Department of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yao Chang
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Tainan, Taiwan
| | - Kenzo Takada
- Department of Tumor Virology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| | - Jen-Yang Chen
- National Institute of Cancer Research, National Health Research Institutes, Zhunan Town, Miaoli County, Taiwan
- Department of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
11
|
Muzio G, Maggiora M, Paiuzzi E, Oraldi M, Canuto RA. Aldehyde dehydrogenases and cell proliferation. Free Radic Biol Med 2012; 52:735-46. [PMID: 22206977 DOI: 10.1016/j.freeradbiomed.2011.11.033] [Citation(s) in RCA: 202] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Revised: 11/17/2011] [Accepted: 11/21/2011] [Indexed: 01/16/2023]
Abstract
Aldehyde dehydrogenases (ALDHs) oxidize aldehydes to the corresponding carboxylic acids using either NAD or NADP as a coenzyme. Aldehydes are highly reactive aliphatic or aromatic molecules that play an important role in numerous physiological, pathological, and pharmacological processes. ALDHs have been discovered in practically all organisms and there are multiple isoforms, with multiple subcellular localizations. More than 160 ALDH cDNAs or genes have been isolated and sequenced to date from various sources, including bacteria, yeast, fungi, plants, and animals. The eukaryote ALDH genes can be subdivided into several families; the human genome contains 19 known ALDH genes, as well as many pseudogenes. Noteworthy is the fact that elevated activity of various ALDHs, namely ALDH1A2, ALDH1A3, ALDH1A7, ALDH2*2, ALDH3A1, ALDH4A1, ALDH5A1, ALDH6, and ALDH9A1, has been observed in normal and cancer stem cells. Consequently, ALDHs not only may be considered markers of these cells, but also may well play a functional role in terms of self-protection, differentiation, and/or expansion of stem cell populations. The ALDH3 family includes enzymes able to oxidize medium-chain aliphatic and aromatic aldehydes, such as peroxidic and fatty aldehydes. Moreover, these enzymes also have noncatalytic functions, including antioxidant functions and some structural roles. The gene of the cytosolic form, ALDH3A1, is localized on chromosome 17 in human beings and on the 11th and 10th chromosome in the mouse and rat, respectively. ALDH3A1 belongs to the phase II group of drug-metabolizing enzymes and is highly expressed in the stomach, lung, keratinocytes, and cornea, but poorly, if at all, in normal liver. Cytosolic ALDH3 is induced by polycyclic aromatic hydrocarbons or chlorinated compounds, such as 2,3,7,8-tetrachlorodibenzo-p-dioxin, in rat liver cells and increases during carcinogenesis. It has been observed that this increased activity is directly correlated with the degree of deviation in hepatoma and lung cancer cell lines, as is the case in chemically induced hepatoma in rats. High ALDH3A1 expression and activity have been correlated with cell proliferation, resistance against aldehydes derived from lipid peroxidation, and resistance against drug toxicity, such as oxazaphosphorines. Indeed, cells with a high ALDH3A1 content are more resistant to the cytostatic and cytotoxic effects of lipidic aldehydes than are those with a low content. A reduction in cell proliferation can be observed when the enzyme is directly inhibited by the administration of synthetic specific inhibitors, antisense oligonucleotides, or siRNA or indirectly inhibited by the induction of peroxisome proliferator-activated receptor γ (PPARγ) with polyunsaturated fatty acids or PPARγ transfection. Conversely, cell proliferation is stimulated by the activation of ALDH3A1, whether by inhibiting PPARγ with a specific antagonist, antisense oligonucleotides, siRNA, or a medical device (i.e., composite polypropylene prosthesis for hernia repair) used to induce cell proliferation. To date, the mechanisms underlying the effects of ALDHs on cell proliferation are not yet fully clear. A likely hypothesis is that the regulatory effect is mediated by the catabolism of some endogenous substrates deriving from normal cell metabolism, such as 4-hydroxynonenal, which have the capacity to either stimulate or inhibit the expression of genes involved in regulating proliferation.
Collapse
Affiliation(s)
- G Muzio
- Dipartimento di Medicina ed Oncologia Sperimentale, Università di Torino, 10125 Torino, Italy
| | | | | | | | | |
Collapse
|
12
|
Post-natal cardiomyocytes can generate iPS cells with an enhanced capacity toward cardiomyogenic re-differentation. Cell Death Differ 2012; 19:1162-74. [PMID: 22261617 PMCID: PMC3374080 DOI: 10.1038/cdd.2011.205] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Adult mammalian cells can be reprogrammed to a pluripotent state by forcing the expression of a few embryonic transcription factors. The resulting induced pluripotent stem (iPS) cells can differentiate into cells of all three germ layers. It is well known that post-natal cardiomyocytes (CMs) lack the capacity to proliferate. Here, we report that neonatal CMs can be reprogrammed to generate iPS cells that express embryonic-specific markers and feature gene-expression profiles similar to those of mouse embryonic stem (mES) cell and cardiac fibroblast (CF)-derived iPS cell populations. CM-derived iPS cells are able to generate chimeric mice and, moreover, re-differentiate toward CMs more efficiently then either CF-derived iPS cells or mES cells. The increased differentiation capacity is possibly related to CM-derived iPS cells retaining an epigenetic memory of the phenotype of their founder cell. CM-derived iPS cells may thus lead to new information on differentiation processes underlying cardiac differentiation and proliferation.
Collapse
|