1
|
Chatonnet A, Perochon M, Velluet E, Marchot P. The ESTHER database on alpha/beta hydrolase fold proteins - An overview of recent developments. Chem Biol Interact 2023; 383:110671. [PMID: 37582413 DOI: 10.1016/j.cbi.2023.110671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/01/2023] [Accepted: 08/12/2023] [Indexed: 08/17/2023]
Abstract
The ESTHER database, dedicated to ESTerases and alpha/beta-Hydrolase Enzymes and Relatives (https://bioweb.supagro.inra.fr/ESTHER/general?what=index), offers online access to a continuously updated, sequence-based classification of proteins harboring the alpha/beta hydrolase fold into families and subfamilies. In particular, the database proposes links to the sequences, structures, ligands and huge diversity of functions of these proteins, and to the related literature and other databases. Taking advantage of the promiscuity of enzymatic function, many engineered esterases, lipases, epoxide-hydrolases, haloalkane dehalogenases are used for biotechnological applications. Finding means for detoxifying those protein members that are targeted by insecticides, herbicides, antibiotics, or for reactivating human cholinesterases when inhibited by nerve gas, are still active areas of research. Using or improving the capacity of some enzymes to breakdown plastics with the aim to recycle valuable material and reduce waste is an emerging challenge. Most hydrolases in the superfamily are water-soluble and act on or are inhibited by small organic compounds, yet in a few subfamilies some members interact with other, unrelated proteins to modulate activity or trigger functional partnerships. Recent development in 3D structure prediction brought by AI-based programs now permits analysis of enzymatic mechanisms for a variety of hydrolases with no experimental 3D structure available. Finally, mutations in as many as 34 of the 120 human genes compiled in the database are now linked to genetic diseases, a feature fueling research on early detection, metabolic pathways, pharmacological treatment or enzyme replacement therapy. Here we review those developments in the database that took place over the latest decade and discuss potential new applications and recent and future expected research in the field.
Collapse
Affiliation(s)
- Arnaud Chatonnet
- DMEM, Université de Montpellier, INRAE, 34000 Montpellier, France.
| | - Michel Perochon
- DMEM, Université de Montpellier, INRAE, 34000 Montpellier, France
| | - Eric Velluet
- INRAE-AgroM / UIC, Place Viala, 34060, Montpellier, France
| | - Pascale Marchot
- CNRS / Aix-Marseille Univ, lab Architecture et Fonction des Macromolécules Biologiques, Marseille, France
| |
Collapse
|
2
|
Zhou Q, Yan B, Sun W, Chen Q, Xiao Q, Xiao Y, Wang X, Shi D. Pig Liver Esterases Hydrolyze Endocannabinoids and Promote Inflammatory Response. Front Immunol 2021; 12:670427. [PMID: 34079552 PMCID: PMC8165269 DOI: 10.3389/fimmu.2021.670427] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 04/26/2021] [Indexed: 12/11/2022] Open
Abstract
Endocannabinoids are endogenous ligands of cannabinoid receptors and activation of these receptors has strong physiological and pathological significance. Structurally, endocannabinoids are esters (e.g., 2-arachidonoylglycerol, 2-AG) or amides (e.g., N-arachidonoylethanolamine, AEA). Hydrolysis of these compounds yields arachidonic acid (AA), a major precursor of proinflammatory mediators such as prostaglandin E2. Carboxylesterases are known to hydrolyze esters and amides with high efficiency. CES1, a human carboxylesterase, has been shown to hydrolyze 2-AG, and shares a high sequence identity with pig carboxylesterases: PLE1 and PLE6 (pig liver esterase). The present study was designed to test the hypothesis that PLE1 and PLE6 hydrolyze endocannabinoids and promote inflammatory response. Consistent with the hypothesis, purified PLE1 and PLE6 efficaciously hydrolyzed 2-AG and AEA. PLE6 was 40-fold and 3-fold as active as PLE1 towards 2-AG and AEA, respectively. In addition, both PLE1 and PLE6 were highly sensitive to bis(4-nitrophenyl) phosphate (BNPP), an aryl phosphodiester known to predominately inhibit carboxylesterases. Based on the study with BNPP, PLEs contributed to the hydrolysis of 2-AG by 53.4 to 88.4% among various organs and cells. Critically, exogenous addition or transfection of PLE6 increased the expression and secretion of proinflammatory cytokines in response to the immunostimulant lipopolysaccharide (LPS). This increase was recapitulated in cocultured alveolar macrophages and PLE6 transfected cells in transwells. Finally, BNPP reduced inflammation trigged by LPS accompanied by reduced formation of AA and proinflammatory mediators. These findings define an innovative connection: PLE-endocannabinoid-inflammation. This mechanistic connection signifies critical roles of carboxylesterases in pathophysiological processes related to the metabolism of endocannabinoids.
Collapse
Affiliation(s)
- Qiongqiong Zhou
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Bingfang Yan
- James L. Winkle College of Pharmacy University of Cincinnati, Cincinnati, OH, United States
| | - Wanying Sun
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Qi Chen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Qiling Xiao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Yuncai Xiao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Xiliang Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Deshi Shi
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
3
|
Huang G, Guo X, Guo J, Zhang P, Liang W, Bai C, Zhang Y. ABHD15 promotes cell viability, glycolysis, and inhibits apoptosis in cardiomyocytes under hypoxia. Nutr Metab Cardiovasc Dis 2021; 31:681-690. [PMID: 33257193 DOI: 10.1016/j.numecd.2020.09.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 09/15/2020] [Accepted: 09/30/2020] [Indexed: 11/18/2022]
Abstract
BACKGROUND AND AIMS Myocardial infarction (MI) has been an important heart disease affecting human health. The aim of this study was to investigate the regulatory effect of abhydrolase domain containing 15 (ABHD15) on hypoxic cardiomyocytes. METHODS AND RESULTS Hypoxic cardiomyocytes are commonly used as an vitro model for the study of MI. We found that cardiomyocyte viability was decreased under hypoxia, but cell glucose uptake, insulin receptor phosphorylation level and apoptosis were increased. Interestingly, ABHD15 expression was up-regulated in hypoxia-induced cardiomyocytes. Then, we identified the function of ABHD15 in hypoxic cardiomyocytes by using ABHD15 overexpression vector or short interfering RNA (siRNA) against ABHD15. The results showed that overexpression of ABHD15 promoted hypoxic cardiomyocyte viability, glucose uptake and IR phosphorylation (p-IR), and inhibited cell apoptosis. However, knockdown of ABHD15 attenuated hypoxic cardiomyocyte viability, glucose uptake and IR phosphorylation, and promoted apoptosis. Moreover, we found that ABHD15 promoted glucose transporter 4 (GLUT4) expression, translocation and enhance rate-limiting enzyme activation of glycolysis, thereby affecting glucose uptake. Furthermore, our study suggested that ABHD15 may affect the viability and apoptosis of hypoxic cardiomyocytes through IR/Ras/Raf/ERK/MEK and IR/PI3K/AKT/Bcl2/Bad/caspase9 signaling pathways, respectively. When the phosphorylation of IR, Raf or ERK was blocked by inhibitors, the protective effect of overexpressing ABHD15 on the viability of hypoxic cardiomyocytes was eliminated. Furthermore, inhibiting the phosphorylation of IR, AKT or Bcl2 abolished the inhibitory effect of overexpressing ABHD15 on hypoxic cardiomyocyte apoptosis. CONCLUSION ABHD15 regulated myocardial cell viability, glycolysis, and apoptosis under hypoxia, providing a novel potential therapeutic strategy for MI.
Collapse
Affiliation(s)
- Guotao Huang
- Cardiology Department, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Xiaoliang Guo
- Cardiology Department, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Junxia Guo
- Cardiology Department, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Peiyong Zhang
- Cardiology Department, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Wanqian Liang
- Cardiology Department, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Caiyan Bai
- Cardiology Department, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Yongchun Zhang
- Cardiology Department, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China.
| |
Collapse
|
4
|
Richardson RJ, Fink JK, Glynn P, Hufnagel RB, Makhaeva GF, Wijeyesakere SJ. Neuropathy target esterase (NTE/PNPLA6) and organophosphorus compound-induced delayed neurotoxicity (OPIDN). ADVANCES IN NEUROTOXICOLOGY 2020; 4:1-78. [PMID: 32518884 PMCID: PMC7271139 DOI: 10.1016/bs.ant.2020.01.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Systemic inhibition of neuropathy target esterase (NTE) with certain organophosphorus (OP) compounds produces OP compound-induced delayed neurotoxicity (OPIDN), a distal degeneration of axons in the central nervous system (CNS) and peripheral nervous system (PNS), thereby providing a powerful model for studying a spectrum of neurodegenerative diseases. Axonopathies are important medical entities in their own right, but in addition, illnesses once considered primary neuronopathies are now thought to begin with axonal degeneration. These disorders include Alzheimer's disease, Parkinson's disease, and motor neuron diseases such as amyotrophic lateral sclerosis (ALS). Moreover, conditional knockout of NTE in the mouse CNS produces vacuolation and other degenerative changes in large neurons in the hippocampus, thalamus, and cerebellum, along with degeneration and swelling of axons in ascending and descending spinal cord tracts. In humans, NTE mutations cause a variety of neurodegenerative conditions resulting in a range of deficits including spastic paraplegia and blindness. Mutations in the Drosophila NTE orthologue SwissCheese (SWS) produce neurodegeneration characterized by vacuolization that can be partially rescued by expression of wild-type human NTE, suggesting a potential therapeutic approach for certain human neurological disorders. This chapter defines NTE and OPIDN, presents an overview of OP compounds, provides a rationale for NTE research, and traces the history of discovery of NTE and its relationship to OPIDN. It then briefly describes subsequent studies of NTE, including practical applications of the assay; aspects of its domain structure, subcellular localization, and tissue expression; abnormalities associated with NTE mutations, knockdown, and conventional or conditional knockout; and hypothetical models to help guide future research on elucidating the role of NTE in OPIDN.
Collapse
Affiliation(s)
- Rudy J. Richardson
- Molecular Simulations Laboratory, Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI, United States,Department of Neurology, University of Michigan Medical School, Ann Arbor, MI, United States,Center for Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI, United States,Michigan Institute for Computational Discovery and Engineering, University of Michigan, Ann Arbor, MI, United States,Corresponding author:
| | - John K. Fink
- Department of Neurology, University of Michigan Medical School, Ann Arbor, MI, United States,Ann Arbor Veterans Affairs Medical Center, Ann Arbor, MI, United States
| | - Paul Glynn
- Department of Molecular and Cell Biology, University of Leicester, Leicester, United Kingdom
| | - Robert B. Hufnagel
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, MD, United States
| | - Galina F. Makhaeva
- Institute of Physiologically Active Compounds Russian Academy of Sciences, Chernogolovka, Russia
| | - Sanjeeva J. Wijeyesakere
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, United States
| |
Collapse
|
5
|
Baggelaar MP, den Dulk H, Florea BI, Fazio D, Bernabò N, Raspa M, Janssen APA, Scavizzi F, Barboni B, Overkleeft HS, Maccarrone M, van der Stelt M. ABHD2 Inhibitor Identified by Activity-Based Protein Profiling Reduces Acrosome Reaction. ACS Chem Biol 2019; 14:2295-2304. [PMID: 31525885 PMCID: PMC6878212 DOI: 10.1021/acschembio.9b00640] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
ABHD2 is a serine hydrolase that belongs to the subgroup of the α,β-hydrolase fold-containing proteins, which is involved in virus propagation, immune response, and fertilization. Chemical tools to selectively modulate the activity of ABHD2 in an acute setting are highly desired to investigate its biological role, but are currently lacking. Here, we report a library-versus-library screening using activity-based protein profiling (ABPP) to evaluate in parallel the selectivity and activity of a focused lipase inhibitor library against ABHD2 and a panel of closely related ABHD proteins. This screen resulted in the rapid identification of novel inhibitors for ABHD2. The selectivity of the inhibitor was further investigated in native mouse testis proteome by competitive ABPP, revealing a highly restricted off-target profile. The progesterone-induced acrosome reaction was reduced in a dose-dependent manner by the newly identified inhibitor, which provides further support for the key-role of ABHD2 in the P4-stimulated acrosome reaction. On this basis, the ABHD2 inhibitor is an excellent starting point for further optimization of ABHD2 inhibitors that can modulate sperm fertility and may lead to novel contraceptives.
Collapse
Affiliation(s)
| | | | | | - Domenico Fazio
- Unit of Basic and Applied Biosciences, University of Teramo, Via Balzarini 1, 64100 Teramo, Italy
| | - Nicola Bernabò
- Unit of Basic and Applied Biosciences, University of Teramo, Via Balzarini 1, 64100 Teramo, Italy
| | - Marcello Raspa
- National Research Council (IBCN), CNR-Campus International Development (EMMA INFRAFRONTIER-IMPC), Via E. Ramarini 32, 00015 Monterotondo Scalo, Italy
| | | | - Ferdinando Scavizzi
- National Research Council (IBCN), CNR-Campus International Development (EMMA INFRAFRONTIER-IMPC), Via E. Ramarini 32, 00015 Monterotondo Scalo, Italy
| | - Barbara Barboni
- Unit of Basic and Applied Biosciences, University of Teramo, Via Balzarini 1, 64100 Teramo, Italy
| | | | - Mauro Maccarrone
- Department of Medicine, Campus Bio-Medico University of Rome, Via Alvaro del Portillo 21, 00128 Rome, Italy
- European Centre for Brain Research/IRCCS Santa Lucia Foundation, via del Fosso del Fiorano 65, 00143 Rome, Italy
| | | |
Collapse
|
6
|
Chatonnet A, Brazzolotto X, Hotelier T, Lenfant N, Marchot P, Bourne Y. An evolutionary perspective on the first disulfide bond in members of the cholinesterase-carboxylesterase (COesterase) family: Possible outcomes for cholinesterase expression in prokaryotes. Chem Biol Interact 2019; 308:179-184. [DOI: 10.1016/j.cbi.2019.05.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 04/16/2019] [Accepted: 05/13/2019] [Indexed: 02/07/2023]
|
7
|
Stöckli J, Zadoorian A, Cooke KC, Deshpande V, Yau B, Herrmann G, Kebede MA, Humphrey SJ, James DE. ABHD15 regulates adipose tissue lipolysis and hepatic lipid accumulation. Mol Metab 2019; 25:83-94. [PMID: 31105056 PMCID: PMC6601125 DOI: 10.1016/j.molmet.2019.05.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 04/26/2019] [Accepted: 05/01/2019] [Indexed: 01/01/2023] Open
Abstract
Objective Insulin suppresses adipose tissue lipolysis after a meal, playing a key role in metabolic homeostasis. This is mediated via the kinase Akt and its substrate phosphodiesterase 3B (PDE3B). Once phosphorylated and activated, PDE3B hydrolyses cAMP leading to the inactivation of cAMP-dependent protein kinase (PKA) and suppression of lipolysis. However, several gaps have emerged in this model. Here we investigated the role of the PDE3B-interacting protein, α/β-hydrolase ABHD15 in this process. Methods Lipolysis, glucose uptake, and signaling were assessed in ABHD15 knock down and knock out adipocytes and fat explants in response to insulin and/or β-adrenergic receptor agonist. Glucose and fatty acid metabolism were determined in wild type and ABHD15−/− littermate mice. Results Deletion of ABHD15 in adipocytes resulted in a significant defect in insulin-mediated suppression of lipolysis with no effect on insulin-mediated glucose uptake. ABHD15 played a role in suppressing PKA signaling as phosphorylation of the PKA substrate Perilipin-1 remained elevated in response to insulin upon ABHD15 deletion. ABHD15−/− mice had normal glucose metabolism but defective fatty acid metabolism: plasma fatty acids were elevated upon fasting and in response to insulin, and this was accompanied by elevated liver triglycerides upon β-adrenergic receptor activation. This is likely due to hyperactive lipolysis as evident by the larger triglyceride depletion in brown adipose tissue in these mice. Finally, ABHD15 protein levels were reduced in adipocytes from mice fed a Western diet, further implicating this protein in metabolic homeostasis. Conclusions Collectively, ABHD15 regulates adipocyte lipolysis and liver lipid accumulation, providing novel therapeutic opportunities for modulating lipid homeostasis in disease. Insulin was unable to suppress lipolysis in the absence of ABHD15 in adipocytes in vitro, ex vivo and in mice in vivo. The lipolysis defect was associated with defective signalling via protein kinase A and its substrate Perilipin-1. The defect was specific for lipolysis with no impairment in insulin signalling or insulin-stimulated glucose uptake. Deletion of ABHD15 caused a significant increase in fatty acid deposition in liver in response to stress.
Collapse
Affiliation(s)
- Jacqueline Stöckli
- Charles Perkins Centre, School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, 2006, Australia
| | - Armella Zadoorian
- Charles Perkins Centre, School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, 2006, Australia
| | - Kristen C Cooke
- Charles Perkins Centre, School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, 2006, Australia
| | - Vinita Deshpande
- Charles Perkins Centre, School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, 2006, Australia
| | - Belinda Yau
- Charles Perkins Centre, School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, 2006, Australia
| | - Gaia Herrmann
- Charles Perkins Centre, School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, 2006, Australia
| | - Melkam A Kebede
- Charles Perkins Centre, School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, 2006, Australia
| | - Sean J Humphrey
- Charles Perkins Centre, School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, 2006, Australia
| | - David E James
- Charles Perkins Centre, School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, 2006, Australia; Sydney Medical School, University of Sydney, Sydney, NSW, 2006, Australia.
| |
Collapse
|
8
|
Joachimiak Ł, Błażewska KM. Phosphorus-Based Probes as Molecular Tools for Proteome Studies: Recent Advances in Probe Development and Applications. J Med Chem 2018; 61:8536-8562. [DOI: 10.1021/acs.jmedchem.8b00249] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Łukasz Joachimiak
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Żeromskiego Street 116, 90-924 Łódź, Poland
| | - Katarzyna M. Błażewska
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Żeromskiego Street 116, 90-924 Łódź, Poland
| |
Collapse
|
9
|
Zhu J, Wang Y, Li X, Han W, Zhao L. Understanding the interactions of different substrates with wild-type and mutant acylaminoacyl peptidase using molecular dynamics simulations. J Biomol Struct Dyn 2017; 36:4285-4302. [PMID: 29235404 DOI: 10.1080/07391102.2017.1414634] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Acylaminoacylpeptidase (AAP) belongs to peptidase protein family, which can degrade amyloid β-peptide forms in the brains of patients, and hence leads to Alzheimer's disease. And so, AAP is considered to be a novel target in the design of drugs against Alzheimer's disease. In this investigation, six molecular dynamics simulations were used to find that the interaction between the wild-type and R526V AAP with two different substrates (p-nitrophenylcaprylate and Ac-Leu-p-nitroanilide). Our results were as follows: firstly, Ac-Leu-p-nitroanilide bound to R526V AAP to form a more disordered loop (residues 552-562) in the α/β-hydrolase fold like of AAP, which caused an open and inactive AAP domain form, secondly, binding p-nitrophenylcaprylate and Ac-Leu-p-nitroanilide to AAP can decrease the flexibility of residues 225-250, 260-270, and 425-450, in which the ordered secondary structures may contain the suitable geometrical structure and so it is useful to serine attack. Our theoretical results showed that the binding of the two substrates can induce specific conformational changes responsible for the diverse AAP catalytic specificity. These theoretical substrate-induced structural diversities can help explain the abilities of AAPs to recognize and hydrolyze extremely different substrates.
Collapse
Affiliation(s)
- Jingxuan Zhu
- a Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences , Jilin University , 2699 Qianjin Street, Changchun 130012 , China
| | - Yan Wang
- b Department of General Surgery , China-Japan Union Hospital of Jilin University , Changchun , China
| | - Xin Li
- a Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences , Jilin University , 2699 Qianjin Street, Changchun 130012 , China
| | - Weiwei Han
- a Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences , Jilin University , 2699 Qianjin Street, Changchun 130012 , China
| | - Li Zhao
- a Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences , Jilin University , 2699 Qianjin Street, Changchun 130012 , China
| |
Collapse
|