1
|
Allard JL, Aguirre M, Gupta R, Chua SMH, Shields KA, Lua LHL. Effective parallel evaluation of molecular design, expression and bioactivity of novel recombinant butyrylcholinesterase medical countermeasures. Chem Biol Interact 2024; 403:111219. [PMID: 39222902 DOI: 10.1016/j.cbi.2024.111219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/12/2024] [Accepted: 08/30/2024] [Indexed: 09/04/2024]
Abstract
Current medical countermeasures (MCMs) for nerve agent poisoning have limited efficacy, and can cause serious adverse effects, prompting the requirement for new broad-spectrum therapeutics. Human plasma-derived butyrylcholinseterase (huBChE) is a promising novel bioscavenger MCM which has shown potential in animal studies, however, is economically prohibitive to manufacture at scale. This study addresses current challenges for the economical production of a bioactive and long-acting recombinant huBChE (rBChE) in mammalian cells by being the first to directly compare novel rBChE design strategies. These include co-expression of a proline rich attachment domain (PRAD) and fusion of BChE with a protein partner. Additionally, a pre-purification screening method developed in this study enables parallel comparison of the expression efficiency, activity and broad-spectrum binding to nerve agents for ten novel rBChE molecular designs. All designed rBChE demonstrated functionality to act as broad-spectrum MCMs to G, V and A series nerve agents. Expression using the ExpiCHO™ Max protocol provided greatest expression levels and activity for all constructs, with most rBChE expressing poorly in Expi293™. Fc- or hSA-fused rBChE significantly outperformed constructs designed to mimic huBChE, including PRAD-BChE, and proved an effective strategy to significantly improve enzyme activity and expression. Choice of protein partner, directionality and the addition of a linker also impacted fusion rBChE activity and expression. Overall, hSA fused rBChE provided greatest expression yield and activity, with BChE-hSA the best performing construct. The purified and characterised BChE-hSA demonstrated similar functionality to huBChE to be inhibited by GD, VX and A-234, supporting the findings of the pre-screening study and validating its capacity to assess and streamline the selection process for rBChE constructs in a cost-effective manner. Collectively, these outcomes contribute to risk mitigation in early-stage development, providing a systematic method to compare rBChE designs and a focus for future development.
Collapse
Affiliation(s)
- Joanne L Allard
- Chemical, Biological, Radiological and Nuclear Defence Branch, Defence Science and Technology Group (DSTG), Victoria, 3027, Australia; Protein Expression Facility, The University of Queensland, Brisbane, 4072, Australia.
| | - Miguel Aguirre
- Protein Expression Facility, The University of Queensland, Brisbane, 4072, Australia
| | - Ruchi Gupta
- Chemical, Biological, Radiological and Nuclear Defence Branch, Defence Science and Technology Group (DSTG), Victoria, 3027, Australia
| | - Sheena M H Chua
- Protein Expression Facility, The University of Queensland, Brisbane, 4072, Australia
| | - Katherine A Shields
- Chemical, Biological, Radiological and Nuclear Defence Branch, Defence Science and Technology Group (DSTG), Victoria, 3027, Australia
| | - Linda H L Lua
- Protein Expression Facility, The University of Queensland, Brisbane, 4072, Australia
| |
Collapse
|
2
|
Kohoutova Z, Prchalova E, Knittelova K, Musilek K, Malinak D. Reactivators of butyrylcholinesterase inhibited by organophosphorus compounds. Bioorg Chem 2024; 150:107526. [PMID: 38878749 DOI: 10.1016/j.bioorg.2024.107526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/16/2024] [Accepted: 06/02/2024] [Indexed: 07/21/2024]
Abstract
In this review, the current progress in the research and development of butyrylcholinesterase (BChE) reactivators is summarised and the advantages or disadvantages of these reactivators are critically discussed. Organophosphorus compounds such as nerve agents (sarin, tabun, VX) or pesticides (chlorpyrifos, diazinon) cause irreversible inhibition of acetylcholinesterase (AChE) and BChE in the human body. While AChE inhibition can be life threatening due to cholinergic overstimulation and crisis, selective BChE inhibition has presumably no adverse effects. Because BChE is mostly found in plasma, its activity is important for the scavenging of organophosphates before they can reach AChE in the central nervous system. Therefore, this enzyme in combination with its reactivator can be used as a pseudo-catalytic scavenger of organophosphates. Three structural types of BChE reactivators were found, i.e. bisquaternary salts, monoquaternary salts and uncharged compounds. Although the reviewed reactivators have certain limitations, the promising candidates for BChE reactivation were found in each structural group.
Collapse
Affiliation(s)
- Zuzana Kohoutova
- University of Hradec Kralove, Faculty of Science, Department of Chemistry, Rokitanskeho 62, 500 03 Hradec Kralove, Czech Republic
| | - Eliska Prchalova
- University of Hradec Kralove, Faculty of Science, Department of Chemistry, Rokitanskeho 62, 500 03 Hradec Kralove, Czech Republic
| | - Karolina Knittelova
- University of Hradec Kralove, Faculty of Science, Department of Chemistry, Rokitanskeho 62, 500 03 Hradec Kralove, Czech Republic
| | - Kamil Musilek
- University of Hradec Kralove, Faculty of Science, Department of Chemistry, Rokitanskeho 62, 500 03 Hradec Kralove, Czech Republic; University Hospital in Hradec Kralove, Biomedical Research Centre, Sokolska 581, 500 05 Hradec Kralove, Czech Republic
| | - David Malinak
- University of Hradec Kralove, Faculty of Science, Department of Chemistry, Rokitanskeho 62, 500 03 Hradec Kralove, Czech Republic; University Hospital in Hradec Kralove, Biomedical Research Centre, Sokolska 581, 500 05 Hradec Kralove, Czech Republic.
| |
Collapse
|
3
|
Mani Z, Plummer V, Kuhn L, Khorram-Manesh A, Tin D, Goniewicz K. Public Health Responses to CBRN Terrorism in the Middle East and North Africa. Disaster Med Public Health Prep 2024; 18:e87. [PMID: 38618924 DOI: 10.1017/dmp.2024.73] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
OBJECTIVE Escalating global challenges (such as disasters, conflict, and climate change) underline the importance of addressing Chemical, Biological, Radiological, and Nuclear (CBRN) terrorism for sustainable public health strategies. This study aims to provide a comprehensive epidemiological analysis of CBRN incidents in the Middle East and North Africa (MENA) region, emphasizing the necessity of sustainable responses to safeguard healthcare infrastructures. METHOD Utilizing a retrospective approach, this research analyzes data from the Global Terrorism Database (GTD) covering the period from 2003 to 2020. The study focuses on examining the frequency, characteristics, and consequences of CBRN incidents in the MENA region to identify patterns and trends that pose significant challenges to public health systems. RESULTS The analysis revealed a significant clustering of CBRN incidents in Iraq and Syria, with a predominant involvement of chemical agents. These findings indicate the extensive impact of CBRN terrorism on healthcare infrastructures, highlighting the challenges in providing immediate health responses and the necessity for long-term recovery strategies. CONCLUSIONS The study underscores the need for improved healthcare preparedness, robust emergency response systems, and the development of sustainable public health policies. Advocating for international collaboration, the research contributes to the strategic adaptation of healthcare systems to mitigate the impacts of CBRN terrorism, ensuring preparedness for future incidents in the MENA region and beyond.
Collapse
Affiliation(s)
- Zakaria Mani
- Nursing College, Jazan University, Jazan, Saudi Arabia
| | | | - Lisa Kuhn
- Australian Catholic University, Melbourne, Australia
| | - Amir Khorram-Manesh
- Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy, Gothenburg University, Sweden
- Disaster Medicine Center, Gothenburg University, Gothenburg, Sweden
| | - Derrick Tin
- Harvard Medical School, Boston, Massachusetts, USA
| | | |
Collapse
|
4
|
Lindgren C, Forsgren N, Hoster N, Akfur C, Artursson E, Edvinsson L, Svensson R, Worek F, Ekström F, Linusson A. Broad-Spectrum Antidote Discovery by Untangling the Reactivation Mechanism of Nerve-Agent-Inhibited Acetylcholinesterase. Chemistry 2022; 28:e202200678. [PMID: 35420233 PMCID: PMC9400889 DOI: 10.1002/chem.202200678] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Indexed: 11/13/2022]
Abstract
Reactivators are vital for the treatment of organophosphorus nerve agent (OPNA) intoxication but new alternatives are needed due to their limited clinical applicability. The toxicity of OPNAs stems from covalent inhibition of the essential enzyme acetylcholinesterase (AChE), which reactivators relieve via a chemical reaction with the inactivated enzyme. Here, we present new strategies and tools for developing reactivators. We discover suitable inhibitor scaffolds by using an activity-independent competition assay to study non-covalent interactions with OPNA-AChEs and transform these inhibitors into broad-spectrum reactivators. Moreover, we identify determinants of reactivation efficiency by analysing reactivation and pre-reactivation kinetics together with structural data. Our results show that new OPNA reactivators can be discovered rationally by exploiting detailed knowledge of the reactivation mechanism of OPNA-inhibited AChE.
Collapse
Affiliation(s)
| | - Nina Forsgren
- CBRN Defense and SecuritySwedish Defense Research Agency906 21UmeåSweden
| | - Norman Hoster
- Department of ChemistryUmeå University901 87UmeåSweden
| | - Christine Akfur
- CBRN Defense and SecuritySwedish Defense Research Agency906 21UmeåSweden
| | - Elisabet Artursson
- CBRN Defense and SecuritySwedish Defense Research Agency906 21UmeåSweden
| | | | | | - Franz Worek
- Bundeswehr Institute of Pharmacology and Toxicology80937MunichGermany
| | - Fredrik Ekström
- CBRN Defense and SecuritySwedish Defense Research Agency906 21UmeåSweden
| | - Anna Linusson
- Department of ChemistryUmeå University901 87UmeåSweden
| |
Collapse
|
5
|
Allard JL, Shields KA, Munro T, Lua LHL. Design and production strategies for developing a recombinant butyrylcholinesterase medical countermeasure for Organophosphorus poisoning. Chem Biol Interact 2022; 363:109996. [PMID: 35654125 DOI: 10.1016/j.cbi.2022.109996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 05/06/2022] [Accepted: 05/24/2022] [Indexed: 11/25/2022]
Abstract
Organophosphorus nerve agents represent a serious chemical threat due to their ease of production and scale of impact. The recent use of the nerve agent Novichok has re-emphasised the need for broad-spectrum medical countermeasures (MCMs) to these agents. However, current MCMs are limited. Plasma derived human butyrylcholinesterase (huBChE) is a promising novel bioscavenger MCM strategy, but is prohibitively expensive to isolate from human plasma at scale. Efforts to produce recombinant huBChE (rBChE) in various protein expression platforms have failed to achieve key critical attributes of huBChE such as circulatory half-life. These proteins often lack critical features such as tetrameric structure and requisite post-translational modifications. This review evaluates previous attempts to generate rBChE and assesses recent advances in mammalian cell expression and protein engineering strategies that could be deployed to achieve the required half-life and yield for a viable rBChE MCM. This includes the addition of a proline-rich attachment domain, fusion proteins, post translational modifications, expression system selection and optimised downstream processes. Whilst challenges remain, a combinatorial approach of these strategies demonstrates potential as a technically feasible approach to achieving a bioactive and cost effective bioscavenger MCM.
Collapse
Affiliation(s)
- Joanne L Allard
- Defence Science and Technology Group, Fishermans Bend, Victoria, 3207, Australia; The University of Queensland, Brisbane, Queensland, 4072, Australia.
| | - Katherine A Shields
- Defence Science and Technology Group, Fishermans Bend, Victoria, 3207, Australia
| | - TrentP Munro
- The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Linda H L Lua
- The University of Queensland, Brisbane, Queensland, 4072, Australia
| |
Collapse
|
6
|
Cornelissen AS, Garcia EE, Raulli RE, Laney J, Joosen MJA. A delayed treatment model for the evaluation of scopolamine for VX nerve agent intoxication. Toxicol Appl Pharmacol 2021; 427:115650. [PMID: 34273408 DOI: 10.1016/j.taap.2021.115650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 06/24/2021] [Accepted: 07/12/2021] [Indexed: 11/18/2022]
Abstract
Most research on medical countermeasures for nerve agent exposure assumes a military scenario, in which (autoinjector) treatment is envisaged to be available immediately. In a civilian setting however, treatment is delayed until arrival of first-aid responders. This may significantly affect treatment efficacy and the requirements for secondary intensive care. The aim of the current study was to develop a guinea pig model to evaluate the efficacy of delayed treatment following nerve agent exposure. We identified a trigger-to-treat based on a progressive stage of the toxidrome following VX exposure, which was associated with the subsiding of clonic movements. This paradigm resulted in treatment consistently being administered between 15 and 25 min post-exposure. Using the model, we investigated the potential for the anticholinergic scopolamine to act as a delayed treatment either as a standalone treatment, or as an adjunct to delayed treatment with Standard of Care (SOC), containing atropine, 2-PAM, and midazolam. The study provides a framework for a small animal model for evaluating the efficacy of treatment administered at a specific stage of the toxidrome, when immediate treatment is absent. As an adjunct, scopolamine treatment did not result in improved survival, but did show a beneficial effect on recovery, in terms of general posture. As a standalone treatment, scopolamine showed a significant, dose-responsive, beneficial effect on survival and recovery. These promising results warrant additional studies to investigate which observed physiological improvements are relevant for the recovery process and residual injury.
Collapse
Affiliation(s)
- Alex S Cornelissen
- TNO Defence, Safety and Security, CBRN Protection, Rijswijk, the Netherlands.
| | - Efrain E Garcia
- Biomedical Advanced Research and Development Authority (BARDA), Assistant Secretary for Preparedness and Response (ASPR), Department of Health and Human Services (HHS), United States
| | - Robert E Raulli
- Biomedical Advanced Research and Development Authority (BARDA), Assistant Secretary for Preparedness and Response (ASPR), Department of Health and Human Services (HHS), United States
| | - Judith Laney
- Biomedical Advanced Research and Development Authority (BARDA), Assistant Secretary for Preparedness and Response (ASPR), Department of Health and Human Services (HHS), United States
| | - Marloes J A Joosen
- TNO Defence, Safety and Security, CBRN Protection, Rijswijk, the Netherlands
| |
Collapse
|
7
|
Organophosphate detoxification by membrane-engineered red blood cells. Acta Biomater 2021; 124:270-281. [PMID: 33529769 DOI: 10.1016/j.actbio.2021.01.043] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 01/22/2021] [Accepted: 01/26/2021] [Indexed: 12/31/2022]
Abstract
Biotherapeutics have achieved global economic success due to their high specificity towards their drug targets, providing exceptional safety and efficiency. The ongoing shift away from small molecule drugs towards biotherapeutics heightens the need to further improve the pharmacokinetics of these biological drugs. Three pervasive obstacles that limit the therapeutic capacity of biotherapeutics are proteolytic degradation, circulating half-life, and the development of anti-drug antibodies. These challenges can culminate in limited efficiency and consequently warrant the need for higher drug doses and more frequent administration. We have explored the coupling of biotherapeutics to long-lived and biocompatible red blood cells (RBCs) to address limited pharmacokinetics. Butyrylcholinesterase (BChE), for example, provides prophylactic protection against organophosphate nerve agents (OPNAs), yet the short circulation life of the drug requires extraordinary doses. Herein, we report the rapid and tunable chemical engineering of BChE to RBC membranes to create a cell-based delivery system that retains the enzyme activity and enhances stability. In a three-step process that first pre-modifies BChE with a cell-reactive polymer chain, primes the cells for engineering, and then grafts the conjugates to the cells, we attached over 2 million BChE molecules to the surface of each RBC without diminishing the bioscavenging capacity of the enzyme. Critically, this membrane-engineering approach was cell-tolerated with minimal hemolysis observed. These results provide strong evidence for the ability of engineered RBCs to serve as an enhanced biotherapeutic delivery vehicle. STATEMENT OF SIGNIFICANCE: Organophosphate nerve agents (OPNAs) are one of the most lethal forms of chemical warfare. After exposure to OPNAs, a patient is given life-saving therapeutics, such as atropine and oxime. However, these drugs are limited, and the patient can still suffer from irreparable injuries. Given the toxicity of OPNAs, access to a prophylactic is vital. We have created an enhanced delivery system for prophylactic butyrylcholinesterase (BChE) by engineering this biotherapeutic to the red blood cell (RBC) surface. In three simple steps that first pre-modifies BChE with a cell-reactive polymer, primes the cells for engineering, and then grafts the conjugates to the cells, we attached over 2 million BChE molecules to a single RBC while retaining the enzyme's activity and enhancing its stability.
Collapse
|
8
|
Kentrop J, Savransky V, Klaassen SD, van Groningen T, Bohnert S, Cornelissen AS, Cochrane L, Barry J, Joosen MJA. Pharmacokinetics and efficacy of atropine sulfate/obidoxime chloride co-formulation against VX in a guinea pig model. Regul Toxicol Pharmacol 2020; 119:104823. [PMID: 33212192 DOI: 10.1016/j.yrtph.2020.104823] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 11/11/2020] [Indexed: 11/19/2022]
Abstract
Nerve agent exposure is generally treated by an antidote formulation composed of a muscarinic antagonist, atropine sulfate (ATR), and a reactivator of acetylcholinesterase (AChE) such as pralidoxime, obidoxime (OBI), methoxime, trimedoxime or HI-6 and an anticonvulsant. Organophosphates (OPs) irreversibly inhibit AChE, the enzyme responsible for termination of acetylcholine signal transduction. Inhibition of AChE leads to overstimulation of the central and peripheral nervous system with convulsive seizures, respiratory distress and death as result. The present study evaluated the efficacy and pharmacokinetics (PK) of ATR/OBI following exposure to two different VX dose levels. The PK of ATR and OBI administered either as a single drug, combined treatment but separately injected, or administered as the ATR/OBI co-formulation, was determined in plasma of naïve guinea pigs and found to be similar for all formulations. Following subcutaneous VX exposure, ATR/OBI-treated animals showed significant improvement in survival rate and progression of clinical signs compared to untreated animals. Moreover, AChE activity after VX exposure in both blood and brain tissue was significantly higher in ATR/OBI-treated animals compared to vehicle-treated control. In conclusion, ATR/OBI has been proven to be efficacious against exposure to VX and there were no PK interactions between ATR and OBI when administered as a co-formulation.
Collapse
Affiliation(s)
- Jiska Kentrop
- TNO Defence, Safety & Security, CBRN Protection, Lange Kleiweg 137, NL-2288, GJ Rijswijk, the Netherlands
| | - Vladimir Savransky
- Emergent BioSolutions Inc, 300 Professional Drive, Gaithersburg, MD, 20879, USA
| | - Steven D Klaassen
- TNO Defence, Safety & Security, CBRN Protection, Lange Kleiweg 137, NL-2288, GJ Rijswijk, the Netherlands
| | - Tomas van Groningen
- TNO Defence, Safety & Security, CBRN Protection, Lange Kleiweg 137, NL-2288, GJ Rijswijk, the Netherlands
| | - Sara Bohnert
- Defense Research and Development Canada - Suffield Research Centre, Casualty Management Section, PO Box 4000 Station Main, Medicine Hat, Alberta, T1A 8K6, Canada
| | - Alex S Cornelissen
- TNO Defence, Safety & Security, CBRN Protection, Lange Kleiweg 137, NL-2288, GJ Rijswijk, the Netherlands
| | - Laura Cochrane
- Emergent BioSolutions Inc, 300 Professional Drive, Gaithersburg, MD, 20879, USA
| | - John Barry
- Emergent BioSolutions Inc, 300 Professional Drive, Gaithersburg, MD, 20879, USA
| | - Marloes J A Joosen
- TNO Defence, Safety & Security, CBRN Protection, Lange Kleiweg 137, NL-2288, GJ Rijswijk, the Netherlands.
| |
Collapse
|
9
|
Kassa J, Timperley CM, Bird M, Green AC, Tattersall JEH. Influence of experimental end point on the therapeutic efficacy of the antinicotinic compounds MB408, MB442 and MB444 in treating nerve agent poisoned mice - a comparison with oxime-based treatment. Toxicol Mech Methods 2020; 30:703-710. [PMID: 32878547 DOI: 10.1080/15376516.2020.1817218] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Therapeutic efficacy of antidotal treatment of acute poisoning by nerve agents is generally assessed by the evaluation of LD50 values of nerve agents over 24 h following poisoning without or with a single administration of antidotal treatment. In this study, LD50 values of four nerve agents (sarin, soman, tabun and cyclosarin) for non-treated and treated poisoning were evaluated in mice for two experimental end points - 6 h and 24 h. While the efficacy of atropine or oxime-based antidotal treatment was the same regardless of the experimental end point, the therapeutic efficacy of all three newly developed bispyridinium non-oxime compounds (MB408, MB442, and MB444) was mostly slightly higher at the 6 h end point compared to the 24 h end point, although the therapeutic efficacy of MB compounds was not superior to oxime-based antidotal treatment. These results contrast with a study in guinea-pigs using a structurally-related compound, MB327, which showed a striking increase in protection at 6 h compared to 24 h. It is suggested that the disparity may be due to pharmacokinetic differences between the two animal species.
Collapse
Affiliation(s)
- Jiri Kassa
- Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defence, Hradec Kralove, Czech Republic
| | - Christopher M Timperley
- Chemical, Biological and Radiological Division, Defence Science and Technology Laboratory (DSTL), Salisbury, United Kingdom
| | - Mike Bird
- Chemical, Biological and Radiological Division, Defence Science and Technology Laboratory (DSTL), Salisbury, United Kingdom
| | - A Christopher Green
- Chemical, Biological and Radiological Division, Defence Science and Technology Laboratory (DSTL), Salisbury, United Kingdom
| | - John E H Tattersall
- Chemical, Biological and Radiological Division, Defence Science and Technology Laboratory (DSTL), Salisbury, United Kingdom
| |
Collapse
|
10
|
Cavalcante SFDA, Simas ABC, Barcellos MC, de Oliveira VGM, Sousa RB, Cabral PADM, Kuča K, França TCC. Acetylcholinesterase: The "Hub" for Neurodegenerative Diseases and Chemical Weapons Convention. Biomolecules 2020; 10:E414. [PMID: 32155996 PMCID: PMC7175162 DOI: 10.3390/biom10030414] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 03/02/2020] [Accepted: 03/03/2020] [Indexed: 12/12/2022] Open
Abstract
This article describes acetylcholinesterase (AChE), an enzyme involved in parasympathetic neurotransmission, its activity, and how its inhibition can be pharmacologically useful for treating dementia, caused by Alzheimer's disease, or as a warfare method due to the action of nerve agents. The chemical concepts related to the irreversible inhibition of AChE, its reactivation, and aging are discussed, along with a relationship to the current international legislation on chemical weapons.
Collapse
Affiliation(s)
- Samir F. de A. Cavalcante
- Institute of Chemical, Biological, Radiological and Nuclear Defense (IDQBRN), Brazilian Army Technological Center (CTEx), Avenida das Américas 28705, Rio de Janeiro 23020-470, Brazil; (M.C.B.); (V.G.M.d.O.); (R.B.S.); (P.A.d.M.C.)
- Walter Mors Institute of Research on Natural Products (IPPN), Federal University of Rio de Janeiro (UFRJ), CCS, Bloco H, Rio de Janeiro 21941-902, Brazil
- Department of Chemistry, Faculty of Science, University of Hradec Králové, Rokitanskeho 62, 50003 Hradec Králové, Czech Republic
| | - Alessandro B. C. Simas
- Walter Mors Institute of Research on Natural Products (IPPN), Federal University of Rio de Janeiro (UFRJ), CCS, Bloco H, Rio de Janeiro 21941-902, Brazil
| | - Marcos C. Barcellos
- Institute of Chemical, Biological, Radiological and Nuclear Defense (IDQBRN), Brazilian Army Technological Center (CTEx), Avenida das Américas 28705, Rio de Janeiro 23020-470, Brazil; (M.C.B.); (V.G.M.d.O.); (R.B.S.); (P.A.d.M.C.)
| | - Victor G. M. de Oliveira
- Institute of Chemical, Biological, Radiological and Nuclear Defense (IDQBRN), Brazilian Army Technological Center (CTEx), Avenida das Américas 28705, Rio de Janeiro 23020-470, Brazil; (M.C.B.); (V.G.M.d.O.); (R.B.S.); (P.A.d.M.C.)
| | - Roberto B. Sousa
- Institute of Chemical, Biological, Radiological and Nuclear Defense (IDQBRN), Brazilian Army Technological Center (CTEx), Avenida das Américas 28705, Rio de Janeiro 23020-470, Brazil; (M.C.B.); (V.G.M.d.O.); (R.B.S.); (P.A.d.M.C.)
| | - Paulo A. de M. Cabral
- Institute of Chemical, Biological, Radiological and Nuclear Defense (IDQBRN), Brazilian Army Technological Center (CTEx), Avenida das Américas 28705, Rio de Janeiro 23020-470, Brazil; (M.C.B.); (V.G.M.d.O.); (R.B.S.); (P.A.d.M.C.)
| | - Kamil Kuča
- Department of Chemistry, Faculty of Science, University of Hradec Králové, Rokitanskeho 62, 50003 Hradec Králové, Czech Republic
| | - Tanos C. C. França
- Department of Chemistry, Faculty of Science, University of Hradec Králové, Rokitanskeho 62, 50003 Hradec Králové, Czech Republic
- Laboratory of Molecular Modelling Applied to Chemical and Biological Defense (LMACBD), Military Institute of Engineering (IME), Praça General Tibúrcio 80, Rio de Janeiro 22290-270, Brazil
| |
Collapse
|
11
|
McGarry KG, Lalisse RF, Moyer RA, Johnson KM, Tallan AM, Winters TP, Taris JE, McElroy CA, Lemmon EE, Shafaat HS, Fan Y, Deal A, Marguet SC, Harvilchuck JA, Hadad CM, Wood DW. A Novel, Modified Human Butyrylcholinesterase Catalytically Degrades the Chemical Warfare Nerve Agent, Sarin. Toxicol Sci 2019; 174:133-146. [DOI: 10.1093/toxsci/kfz251] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Abstract
Chemical warfare nerve agents (CWNAs) present a global threat to both military and civilian populations. The acute toxicity of CWNAs stems from their ability to effectively inhibit acetylcholinesterase (AChE). This inhibition can lead to uncontrolled cholinergic cellular signaling, resulting in cholinergic crisis and, ultimately, death. Although the current FDA-approved standard of care is moderately effective when administered early, development of novel treatment strategies is necessary. Butyrylcholinesterase (BChE) is an enzyme which displays a high degree of structural homology to AChE. Unlike AChE, the roles of BChE are uncertain and possibilities are still being explored. However, BChE appears to primarily serve as a bioscavenger of toxic esters due to its ability to accommodate a wide variety of substrates within its active site. Like AChE, BChE is also readily inhibited by CWNAs. Due to its high affinity for binding CWNAs, and that null-BChE yields no apparent health effects, exogenous BChE has been explored as a candidate therapeutic for CWNA intoxication. Despite years of research, minimal strides have been made to develop a catalytic bioscavenger. Furthermore, BChE is only in early clinical trials as a stoichiometric bioscavenger of CWNAs, and large quantities must be administered to treat CWNA toxicity. Here, we describe previously unidentified mutations to residues within and adjacent to the acyl binding pocket (positions 282–285 were mutagenized from YGTP to NHML) of BChE that confer catalytic degradation of the CWNA, sarin. These mutations, along with corresponding future efforts, may finally lead to a novel therapeutic to combat CWNA intoxication.
Collapse
Affiliation(s)
- Kevin G McGarry
- Battelle Memorial Institute, Columbus, Ohio
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio
| | - Remy F Lalisse
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio
| | | | | | - Alexi M Tallan
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio
| | | | - Joeseph E Taris
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio
| | - Craig A McElroy
- College of Pharmacy, The Ohio State University, Columbus, Ohio
| | | | - Hannah S Shafaat
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio
| | - Yamin Fan
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio
| | - Aniliese Deal
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio
| | - Sean C Marguet
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio
| | | | - Christopher M Hadad
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio
| | - David W Wood
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio
| |
Collapse
|
12
|
|
13
|
Bajgar J, Kassa J, Kucera T, Musilek K, Jun D, Kuca K. Some Possibilities to Study New Prophylactics against Nerve Agents. Mini Rev Med Chem 2019; 19:970-979. [PMID: 30827238 DOI: 10.2174/1389557519666190301112530] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Revised: 04/10/2017] [Accepted: 04/26/2017] [Indexed: 11/22/2022]
Abstract
Nerve agents belong to the most dangerous chemical warfare agents and can be/were misused by terrorists. Effective prophylaxis and treatment is necessary to diminish their effect. General principles of prophylaxis are summarized (protection against acetylcholinesterase inhibition, detoxification, treatment "in advance" and use of different drugs). They are based on the knowledge of mechanism of action of nerve agents. Among different examinations, it is necessary to test prophylactic effectivity in vivo and compare the results with protection in vitro. Chemical and biological approaches to the development of new prophylactics would be applied simultaneously during this research. Though the number of possible prophylactics is relatively high, the only four drugs were introduced into military medical practice. At present, pyridostigmine seems to be common prophylactic antidote; prophylactics panpal (tablets with pyridostigmine, trihexyphenidyl and benactyzine), transant (transdermal patch containing HI-6) are other means introduced into different armies as prophylactics. Scavenger commercionally available is Protexia®. Future development will be focused on scavengers, and on other drugs either reversible cholinesterase inhibitors (e.g., huperzine A, gallantamine, physostigmine, acridine derivatives) or other compounds.
Collapse
Affiliation(s)
- J Bajgar
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic.,Biomedical Research Centre, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic.,Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defence, Hradec Kralove, Czech Republic
| | - J Kassa
- Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defence, Hradec Kralove, Czech Republic
| | - T Kucera
- Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defence, Hradec Kralove, Czech Republic
| | - K Musilek
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic.,Biomedical Research Centre, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - D Jun
- Biomedical Research Centre, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic.,Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defence, Hradec Kralove, Czech Republic
| | - K Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic.,Biomedical Research Centre, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| |
Collapse
|
14
|
Kobrlova T, Korabecny J, Soukup O. Current approaches to enhancing oxime reactivator delivery into the brain. Toxicology 2019; 423:75-83. [PMID: 31112674 DOI: 10.1016/j.tox.2019.05.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 04/17/2019] [Accepted: 05/13/2019] [Indexed: 01/21/2023]
Abstract
The misuse of organophosphate compounds still represents a current threat worldwide. Treatment of poisoning with organophosphates (OPs) remains unsatisfactorily resolved despite the extensive investment in research in academia. There are no universal, effective and centrally-active acetylcholinesterase (AChE) reactivators to countermeasure OP intoxication. One major obstacle is to overcome the blood-brain barrier (BBB). The central compartment is readily accessible by the OPs which are lipophilic bullets that can easily cross the BBB, whereas first-line therapeutics, namely oxime-based AChE reactivators and atropine, do not cross or do so rather slowly. The limitation of oxime-based AChE reactivators can be ascribed to their chemical nature, bearing a positive charge which is essential either for their AChE affinity or their reactivating potency. The aim of this article is to review the methods for targeting the brain by oxime reactivators that have been developed so far. Approaches using prodrugs, lipophilicity enhancement, or sugar-based oximes have been rather unsuccessful. However, other strategies have been more promising, such as the use of nanoparticles or co-administration of the reactivator with efflux transporter inhibitors. Encouraging results have also been associated with intranasal delivery, but research in this field is still at the beginning. Further research of auspicious approaches is inevitable.
Collapse
Affiliation(s)
- Tereza Kobrlova
- Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defence, Trebesska 1575, 500 01, Hradec Kralove, Czech Republic; Biomedical Research Centre, University Hospital, Sokolska 581, 500 05, Hradec Kralove, Czech Republic.
| | - Jan Korabecny
- Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defence, Trebesska 1575, 500 01, Hradec Kralove, Czech Republic; Biomedical Research Centre, University Hospital, Sokolska 581, 500 05, Hradec Kralove, Czech Republic.
| | - Ondrej Soukup
- Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defence, Trebesska 1575, 500 01, Hradec Kralove, Czech Republic; Biomedical Research Centre, University Hospital, Sokolska 581, 500 05, Hradec Kralove, Czech Republic.
| |
Collapse
|
15
|
Timperley CM, Abdollahi M, Al-Amri AS, Baulig A, Benachour D, Borrett V, Cariño FA, Geist M, Gonzalez D, Kane W, Kovarik Z, Martínez-Álvarez R, Fusaro Mourão NM, Neffe S, Raza SK, Rubaylo V, Suárez AG, Takeuchi K, Tang C, Trifirò F, van Straten FM, Vanninen PS, Vučinić S, Zaitsev V, Zafar-Uz-Zaman M, Zina MS, Holen S, Forman JE, Alwan WS, Suri V. Advice on assistance and protection by the Scientific Advisory Board of the Organisation for the Prohibition of Chemical Weapons: Part 2. On preventing and treating health effects from acute, prolonged, and repeated nerve agent exposure, and the identification of medical countermeasures able to reduce or eliminate the longer term health effects of nerve agents. Toxicology 2019; 413:13-23. [DOI: 10.1016/j.tox.2018.11.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 11/18/2018] [Accepted: 11/26/2018] [Indexed: 01/08/2023]
|
16
|
Price M, Whitmore C, Tattersall J, Green A, Rice H. Efficacy of the antinicotinic compound MB327 against soman poisoning – Importance of experimental end point. Toxicol Lett 2018; 293:167-171. [DOI: 10.1016/j.toxlet.2017.11.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 11/01/2017] [Accepted: 11/06/2017] [Indexed: 10/18/2022]
|
17
|
|
18
|
Lushchekina SV, Schopfer LM, Grigorenko BL, Nemukhin AV, Varfolomeev SD, Lockridge O, Masson P. Optimization of Cholinesterase-Based Catalytic Bioscavengers Against Organophosphorus Agents. Front Pharmacol 2018; 9:211. [PMID: 29593539 PMCID: PMC5859046 DOI: 10.3389/fphar.2018.00211] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Accepted: 02/26/2018] [Indexed: 11/13/2022] Open
Abstract
Organophosphorus agents (OPs) are irreversible inhibitors of acetylcholinesterase (AChE). OP poisoning causes major cholinergic syndrome. Current medical counter-measures mitigate the acute effects but have limited action against OP-induced brain damage. Bioscavengers are appealing alternative therapeutic approach because they neutralize OPs in bloodstream before they reach physiological targets. First generation bioscavengers are stoichiometric bioscavengers. However, stoichiometric neutralization requires administration of huge doses of enzyme. Second generation bioscavengers are catalytic bioscavengers capable of detoxifying OPs with a turnover. High bimolecular rate constants (kcat/Km > 106 M−1min−1) are required, so that low enzyme doses can be administered. Cholinesterases (ChE) are attractive candidates because OPs are hemi-substrates. Moderate OP hydrolase (OPase) activity has been observed for certain natural ChEs and for G117H-based human BChE mutants made by site-directed mutagenesis. However, before mutated ChEs can become operational catalytic bioscavengers their dephosphylation rate constant must be increased by several orders of magnitude. New strategies for converting ChEs into fast OPase are based either on combinational approaches or on computer redesign of enzyme. The keystone for rational conversion of ChEs into OPases is to understand the reaction mechanisms with OPs. In the present work we propose that efficient OP hydrolysis can be achieved by re-designing the configuration of enzyme active center residues and by creating specific routes for attack of water molecules and proton transfer. Four directions for nucleophilic attack of water on phosphorus atom were defined. Changes must lead to a novel enzyme, wherein OP hydrolysis wins over competing aging reactions. Kinetic, crystallographic, and computational data have been accumulated that describe mechanisms of reactions involving ChEs. From these studies, it appears that introducing new groups that create a stable H-bonded network susceptible to activate and orient water molecule, stabilize transition states (TS), and intermediates may determine whether dephosphylation is favored over aging. Mutations on key residues (L286, F329, F398) were considered. QM/MM calculations suggest that mutation L286H combined to other mutations favors water attack from apical position. However, the aging reaction is competing. Axial direction of water attack is not favorable to aging. QM/MM calculation shows that F329H+F398H-based multiple mutants display favorable energy barrier for fast reactivation without aging.
Collapse
Affiliation(s)
- Sofya V Lushchekina
- Laboratory of Computer Modeling of Bimolecular Systems and Nanomaterials, N. M. Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, Moscow, Russia
| | - Lawrence M Schopfer
- Department of Biochemistry and Molecular Biology, Eppley Institute, University of Nebraska Medical Center, Omaha, NE, United States
| | - Bella L Grigorenko
- Laboratory of Computer Modeling of Bimolecular Systems and Nanomaterials, N. M. Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, Moscow, Russia.,Chemistry Department, Lomonosov State University, Moscow, Russia
| | - Alexander V Nemukhin
- Laboratory of Computer Modeling of Bimolecular Systems and Nanomaterials, N. M. Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, Moscow, Russia.,Chemistry Department, Lomonosov State University, Moscow, Russia
| | - Sergei D Varfolomeev
- Laboratory of Computer Modeling of Bimolecular Systems and Nanomaterials, N. M. Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, Moscow, Russia.,Chemistry Department, Lomonosov State University, Moscow, Russia
| | - Oksana Lockridge
- Department of Biochemistry and Molecular Biology, Eppley Institute, University of Nebraska Medical Center, Omaha, NE, United States
| | - Patrick Masson
- Neuropharmacology Laboratory, Kazan Federal University, Kazan, Russia
| |
Collapse
|
19
|
Brooks J, Erickson TB, Kayden S, Ruiz R, Wilkinson S, Burkle FM. Responding to chemical weapons violations in Syria: legal, health, and humanitarian recommendations. Confl Health 2018; 12:12. [PMID: 29479374 PMCID: PMC5817898 DOI: 10.1186/s13031-018-0143-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 01/12/2018] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND The repeated use of prohibited chemical weapons in the Syrian conflict poses serious health, humanitarian, and security threats to civilians, healthcare personnel, and first responders. Moreover, the use of chemical weapons constitutes a clear and egregious violation of international law-likely amounting to a war crime-for which continued impunity is setting a dangerous precedent in relation to current and future conflicts. This debate article calls upon concerned states, organizations, and individuals to respond urgently and unequivocally to this serious breach of international legal and humanitarian norms. MAIN BODY Based on health, humanitarian, and legal findings, this article calls for concrete action to: 1) reduce the risk of chemical weapons being used in current and future conflicts; 2) review and support the preparedness equipment and antidote supplies of first responders, humanitarian organizations, and military forces operating in Syria; 3) support international mechanisms for monitoring and enforcing the prohibition on chemical weapons, including through criminal accountability; 4) support civilian victims of chemical weapons attacks, including refugees; and 5) re-commit to the complete elimination of chemical weapons in compliance with the Chemical Weapons Convention (1993), a comprehensive treaty that bans chemical weapons and requires their complete destruction. CONCLUSION All involved states and organizations should take urgent steps to ensure the protection of the most vulnerable victims of conflict, including victims of chemical weapons attacks in Syria, and to reinforce international law in the face of such serious violations.
Collapse
Affiliation(s)
- Julia Brooks
- Harvard Humanitarian Initiative, Cambridge, MA USA
| | - Timothy B. Erickson
- Department of Emergency Medicine, Brigham and Women’s Hospital; Harvard Medical School, Harvard Humanitarian Initiative, Cambridge, MA USA
| | - Stephanie Kayden
- Department of Emergency Medicine, Brigham and Women’s Hospital, Harvard Medical School; and Core Faculty, Harvard Humanitarian Initiative, Cambridge, MA USA
| | - Raul Ruiz
- U.S. House of Representatives for California’s 36th congressional district, Washington, D.C. USA
| | | | | |
Collapse
|
20
|
Mann TM, Price ME, Whitmore CL, Perrott RL, Laws TR, McColm RR, Emery ER, Tattersall JEH, Green AC, Rice H. Bioscavenger is effective as a delayed therapeutic intervention following percutaneous VX poisoning in the guinea-pig. Toxicol Lett 2017; 293:198-206. [PMID: 29183815 DOI: 10.1016/j.toxlet.2017.11.029] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 11/22/2017] [Accepted: 11/24/2017] [Indexed: 11/28/2022]
Abstract
The prolonged systemic exposure that follows skin contamination with low volatility nerve agents, such as VX, requires treatment to be given over a long time due to the relatively short half-lives of the therapeutic compounds used. Bioscavengers, such as butyrylcholinesterase (BChE), have been shown to provide effective post-exposure protection against percutaneous nerve agent when given immediately on signs of poisoning and to reduce reliance on additional treatments. In order to assess the benefits of administration of bioscavenger at later times, its effectiveness was assessed when administration was delayed for 2h after the appearance of signs of poisoning in guinea-pigs challenged with VX (4×LD50). VX-challenged animals received atropine, HI-6 and avizafone on signs of poisoning and 2h later the same combination with or without bioscavenger. Five out of 6 animals which received BChE 2h after the appearance of signs of poisoning survived to the end of the study at 48h, compared with 6 out of 6 which received BChE immediately on signs. All the animals (n=6+6) that received only MedCM, without the addition of BChE, died within 10h of poisoning. The toxicokinetics of a sub-lethal challenge of percutaneous VX were determined in untreated animals. Blood VX concentration peaked at approximately 4h after percutaneous dosing with 0.4×LD50; VX was still detectable at 36h and had declined to levels below the lower limit of quantification (10pg/mL) by 48h in 7 of 8 animals, with the remaining animal having a concentration of 12pg/mL. These studies confirm the persistent systemic exposure to nerve agent following percutaneous poisoning and demonstrate that bioscavenger can be an effective component of treatment even if its administration is delayed.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - H Rice
- CBR, Dstl Porton Down, UK
| |
Collapse
|
21
|
Chai PR, Boyer EW, Al-Nahhas H, Erickson TB. Toxic chemical weapons of assassination and warfare: nerve agents VX and sarin. TOXICOLOGY COMMUNICATIONS 2017; 1:21-23. [PMID: 29974075 PMCID: PMC6027656 DOI: 10.1080/24734306.2017.1373503] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The use of VX and sarin as weapons of assassination and warfare raises important considerations for healthcare professionals who may encounter victims, bystanders, and responders who require prompt assessment and treatment. Chemical warfare agents such as VX and sarin constitute a considerable threat to the health of the civilian population, military personnel, and peacekeeping forces. Healthcare providers should recognize symptoms of nerve agent exposure, understand regional and international notification procedures for potential attacks, as well as the indications for and available supply of antidotal therapy.
Collapse
Affiliation(s)
- Peter R. Chai
- Department of Emergency Medicine, Division of Medical Toxicology, Brigham & Women’s Hospital, Harvard Medical School, Boston, MA, U.S.A
| | - Edward W. Boyer
- Department of Emergency Medicine, Division of Medical Toxicology, Brigham & Women’s Hospital, Harvard Medical School, Boston, MA, U.S.A
| | - Houssam Al-Nahhas
- UOSSM International, Union of Medical Care and Relief Organizations, Syria
- Cerrahpasa Medical School, Istanbul University, Turkey
| | - Timothy B. Erickson
- Department of Emergency Medicine, Division of Medical Toxicology, Brigham & Women’s Hospital, Harvard Medical School, Boston, MA, U.S.A
- Harvard Humanitarian Initiative, Harvard University, Cambridge, MA, U.S.A
| |
Collapse
|
22
|
Masson P, Nachon F. Cholinesterase reactivators and bioscavengers for pre- and post-exposure treatments of organophosphorus poisoning. J Neurochem 2017; 142 Suppl 2:26-40. [PMID: 28542985 DOI: 10.1111/jnc.14026] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 03/02/2017] [Accepted: 03/10/2017] [Indexed: 12/11/2022]
Abstract
Organophosphorus agents (OPs) irreversibly inhibit acetylcholinesterase (AChE) causing a major cholinergic syndrome. The medical counter-measures of OP poisoning have not evolved for the last 30 years with carbamates for pretreatment, pyridinium oximes-based AChE reactivators, antimuscarinic drugs and neuroprotective benzodiazepines for post-exposure treatment. These drugs ensure protection of peripheral nervous system and mitigate acute effects of OP lethal doses. However, they have significant limitations. Pyridostigmine and oximes do not protect/reactivate central AChE. Oximes poorly reactivate AChE inhibited by phosphoramidates. In addition, current neuroprotectants do not protect the central nervous system shortly after the onset of seizures when brain damage becomes irreversible. New therapeutic approaches for pre- and post-exposure treatments involve detoxification of OP molecules before they reach their molecular targets by administrating catalytic bioscavengers, among them phosphotriesterases are the most promising. Novel generation of broad spectrum reactivators are designed for crossing the blood-brain barrier and reactivate central AChE. This is an article for the special issue XVth International Symposium on Cholinergic Mechanisms.
Collapse
Affiliation(s)
- Patrick Masson
- Neuropharmacology Laboratory, Kazan Federal University, Kazan, Russia
| | - Florian Nachon
- Institut de Recherche Biomédicale des Armées, Brétigny-sur-Orge, Cédex, France
| |
Collapse
|