1
|
Clark-Montoya I, Terán-Figueroa Y, de Loera D, Gaytán-Hernández D, Alegría-Torres JA, Milán-Segovia RDC. Anticoagulant Effect of Snow mountain garlic: In Vitro Evaluation of Aqueous Extract. Molecules 2024; 29:4958. [PMID: 39459326 PMCID: PMC11510279 DOI: 10.3390/molecules29204958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/09/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024] Open
Abstract
Snow mountain garlic is traditionally eaten by Himalayan locals for its medicinal properties. Although different species of the genus Allium are known to have other biological effects, such as antiplatelet and antithrombotic activities, little is known about the anticoagulant effect of Snow mountain garlic, a member of the genus Allium. Therefore, the present study examined the in vitro anticoagulant effect of the aqueous extract, the lyophilized aqueous extract, and the isoflavone extract from the lyophilized aqueous extract of Snow mountain garlic in samples from 50 human blood donors. Compared to the control, concentrations of 25, 12.5, and 6.25 mg/100 µL lengthened the clotting times of prothrombin, and concentrations of 25 and 12.5 mg/100 µL lengthened the activated partial thromboplastin time (p ˂ 0.05). The isoflavone extract from the lyophilized aqueous extract containing isoflavones, organosulfur compounds, a polyphenol, and a steroid glycoside showed a significant effect (p ˂ 0.05) on the prothrombin time and the activated partial thromboplastin time at a dose of 20 µL (volume) compared to the control. The results regarding the use of Snow mountain garlic as a preventive measure and aid in treating thromboembolic disease are promising.
Collapse
Affiliation(s)
- Isabel Clark-Montoya
- Faculty of Chemical Sciences, Autonomous University of San Luis Potosi, Dr. Manuel Nava Martínez Avenue #6, University Zone, San Luis Potosi 78210, Mexico; (I.C.-M.); (D.d.L.)
| | - Yolanda Terán-Figueroa
- Faculty of Nursing and Nutrition, Autonomous University of San Luis Potosi, Niño Artillero Avenue #130, University Zone, San Luis Potosi 78240, Mexico; (Y.T.-F.); (D.G.-H.)
| | - Denisse de Loera
- Faculty of Chemical Sciences, Autonomous University of San Luis Potosi, Dr. Manuel Nava Martínez Avenue #6, University Zone, San Luis Potosi 78210, Mexico; (I.C.-M.); (D.d.L.)
| | - Darío Gaytán-Hernández
- Faculty of Nursing and Nutrition, Autonomous University of San Luis Potosi, Niño Artillero Avenue #130, University Zone, San Luis Potosi 78240, Mexico; (Y.T.-F.); (D.G.-H.)
| | | | - Rosa del Carmen Milán-Segovia
- Faculty of Chemical Sciences, Autonomous University of San Luis Potosi, Dr. Manuel Nava Martínez Avenue #6, University Zone, San Luis Potosi 78210, Mexico; (I.C.-M.); (D.d.L.)
| |
Collapse
|
2
|
Yu Y, Yang M, Zhao H, Zhang C, Liu K, Liu J, Li C, Cai B, Guan F, Yao M. Natural blackcurrant extract contained gelatin hydrogel with photothermal and antioxidant properties for infected burn wound healing. Mater Today Bio 2024; 26:101113. [PMID: 38933414 PMCID: PMC11201118 DOI: 10.1016/j.mtbio.2024.101113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/31/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024] Open
Abstract
Burns represent a prevalent global health concern and are particularly susceptible to bacterial infections. Severe infections may lead to serious complications, posing a life-threatening risk. Near-infrared (NIR)-assisted photothermal antibacterial combined with antioxidant hydrogel has shown significant potential in the healing of infected wounds. However, existing photothermal agents are typically metal-based, complicated to synthesize, or pose biosafety hazards. In this study, we utilized plant-derived blackcurrant extract (B) as a natural source for both photothermal and antioxidant properties. By incorporating B into a G-O hydrogel crosslinked through Schiff base reaction between gelatin (G) and oxidized pullulan (O), the resulting G-O-B hydrogel exhibited good injectability and biocompatibility along with robust photothermal and antioxidant activities. Upon NIR irradiation, the controlled temperature (around 45-50 °C) generated by the G-O-B hydrogel resulted in rapid (10 min) and efficient killing of Staphylococcus aureus (99 %), Escherichia coli (98 %), and Pseudomonas aeruginosa (82 %). Furthermore, the G-O-B0.5 hydrogel containing 0.5 % blackcurrant extract promoted collagen deposition, angiogenesis, and accelerated burn wound closure conclusively, demonstrating that this well-designed and extract-contained hydrogel dressing holds immense potential for enhancing the healing process of bacterial-infected burn wounds.
Collapse
Affiliation(s)
- Yachao Yu
- School of Life Science, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, China
| | - Mengyu Yang
- School of Life Science, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, China
| | - Hua Zhao
- School of Life Science, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, China
| | - Chen Zhang
- School of Life Science, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, China
| | - Kaiyue Liu
- School of Life Science, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, China
| | - Jingmei Liu
- School of Life Science, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, China
| | - Chenghao Li
- School of Life Science, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, China
| | - Bingjie Cai
- Department of Dermatology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Fangxia Guan
- School of Life Science, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, China
| | - Minghao Yao
- School of Life Science, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, China
| |
Collapse
|
3
|
Quintal Martínez JP, Segura Campos MR. Flavonoids as a therapeutical option for the treatment of thrombotic complications associated with COVID-19. Phytother Res 2023; 37:1092-1114. [PMID: 36480428 PMCID: PMC9878134 DOI: 10.1002/ptr.7700] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 10/18/2022] [Accepted: 11/19/2022] [Indexed: 12/13/2022]
Abstract
The SARS-CoV-2 outbreak has been one of the largest public health crises globally, while thrombotic complications have emerged as an important factor contributing to mortality. Therefore, compounds that regulate the processes involved in thrombosis could represent a dietary strategy to prevent thrombotic complications involved in COVID-19. In August 2022, various databases were consulted using the keywords "flavonoids", "antiplatelet", "anticoagulant", "fibrinolytic", and "nitric oxide". Studies conducted between 2019 and 2022 were chosen. Flavonoids, at concentrations mainly between 2 and 300 μM, are capable of regulating platelet aggregation, blood coagulation, fibrinolysis, and nitric oxide production due to their action on multiple receptors and enzymes. Most of the studies have been carried out through in vitro and in silico models, and limited studies have reported the in vivo and clinical effect of flavonoids. Currently, quercetin has been the only flavonoid evaluated clinically in patients with COVID-19 for its effect on D-dimer levels. Therefore, clinical studies in COVID-19 patients analyzing the effect on platelet, coagulant, fibrinolytic, and nitric oxide parameters are required. In addition, further high-quality studies that consider cytotoxic safety and bioavailability are required to firmly propose flavonoids as a treatment for the thrombotic complications implicated in COVID-19.
Collapse
|
4
|
Mohammadipoor N, Shafiee F, Rostami A, Kahrizi MS, Soleimanpour H, Ghodsi M, Ansari MJ, Bokov DO, Jannat B, Mosharkesh E, Pour Abbasi MS. Resveratrol supplementation efficiently improves endothelial health: A systematic review and meta-analysis of randomized controlled trials. Phytother Res 2022; 36:3529-3539. [PMID: 35833325 DOI: 10.1002/ptr.7562] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 06/23/2022] [Accepted: 06/30/2022] [Indexed: 11/08/2022]
Abstract
We perform a systematic review and meta-analysis of randomized controlled trials (RCTs) to quantify the effect of resveratrol supplementation on endothelial function. A comprehensive search was performed in electronic databases including PubMed, Scopus, Web of Science, and Cochrane Library up to February 2021 with no limitation in time and language. A meta-analysis of eligible studies was performed using a random-effects model to estimate the pooled effect size of flow-mediated dilation (FMD), intracellular adhesion molecule-1 (ICAM-1), vascular adhesion molecule-1 (VCAM-1), fibrinogen, and plasminogen activator inhibitor-1 (PAI-1). In total, 21 arms from 17 studies were included. The meta-analysis results showed that resveratrol significantly change the concentrations of FMD (WMD: 1.43%; 95% CI: 0.98 to 1.88, p < .001) and ICAM-1 (WMD: -7.09 ng/ml, 95% CI: -7.45 to -6.73, p < .001). However, VCAM-1, fibrinogen, and PAI-1 did not change significantly after resveratrol supplementation. In conclusion, the results of this study suggest that resveratrol supplementation can improve endothelial function which could be important, especially in patients with cardiovascular diseases.
Collapse
Affiliation(s)
- Nazanin Mohammadipoor
- Nutrition Research Center, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Shafiee
- Nutrition Research Center, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amirabbas Rostami
- Department of Internal Medicine, Faculty of General Medicine, Yerevan State Medical University after Mkhitar Heratsi, Yerevan, Armenia
| | | | - Hamidreza Soleimanpour
- Department of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Majid Ghodsi
- Assistant Professor of Cardiovascular Surgery, Department of Surgery, School of Medicine, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Mohammad Javed Ansari
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Dmitry Olegovich Bokov
- Institute of Pharmacy, Sechenov First Moscow State Medical University, Moscow, Russian Federation.,Laboratory of Food Chemistry, Federal Research Center of Nutrition, Biotechnology and Food Safety, Moscow, Russian Federation
| | - Behrooz Jannat
- Halal Research Center of IRI, Food and Drug Administration, Ministry of Health and Medical Education, Tehran, Iran
| | - Erfan Mosharkesh
- Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | | |
Collapse
|
5
|
Feng Y, Wang Q, Zhi L, Sun S, Zhao C. Anticoagulant biomimetic consecutive gas exchange network for advanced artificial lung membrane. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120502] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
6
|
Membranes for extracorporeal membrane oxygenator (ECMO): history, preparation, modification and mass transfer. Chin J Chem Eng 2022. [DOI: 10.1016/j.cjche.2022.05.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
7
|
Lamponi S. Bioactive Natural Compounds with Antiplatelet and Anticoagulant Activity and Their Potential Role in the Treatment of Thrombotic Disorders. Life (Basel) 2021; 11:1095. [PMID: 34685464 PMCID: PMC8540276 DOI: 10.3390/life11101095] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/08/2021] [Accepted: 10/13/2021] [Indexed: 12/19/2022] Open
Abstract
Natural anticoagulant drugs can be obtained from plants, rich in secondary bioactive metabolites which, in addition to being effective antioxidants, also possess anticoagulant and antiplatelet properties and, for this reason, can be excellent candidates for the treatment of thrombotic diseases. This review reports an overview of the hemostatic process and thrombotic disorders together with data on plants, more and less common from around the world, containing bioactive compounds characterized by antiplatelet and anticoagulant activity. The reported literature was obtained from Medline, PubMed, Elsevier, Web of Science, Google Scholar considering only articles in the English language, published in peer-reviewed journals. The number of citations of the articles and the impact factor of the journals were other parameters used to select the scientific papers to be included in the review. The analysis of the literature data selected demonstrates that many plants' bioactive compounds show antiplatelet and anticoagulant activity that make them potential candidates to be used as new natural compounds able to interfere with both primary and secondary hemostasis. Moreover, they could be used together with anticoagulants currently administered in clinical practice to increase their efficacy and to reduce complications in the treatment of thrombotic disorders.
Collapse
Affiliation(s)
- Stefania Lamponi
- Department of Biotechnologies, Chemistry and Pharmacy and SienabioACTIVE, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| |
Collapse
|
8
|
Leite PM, Martins MAP, Carvalho MDG, Castilho RO. Mechanisms and interactions in concomitant use of herbs and warfarin therapy: An updated review. Biomed Pharmacother 2021; 143:112103. [PMID: 34474338 DOI: 10.1016/j.biopha.2021.112103] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/19/2021] [Accepted: 08/23/2021] [Indexed: 12/19/2022] Open
Abstract
This review is an updated and expanded version published in this journal in 2016. Warfarin pharmacotherapy is extremely complex, since in addition to being a low therapeutic index drug, it does not follow the dose-response pattern and has characteristics that predispose the occurrence of interactions, such as high binding rate to plasma proteins, metabolization by cytochrome P450 enzymes, further to acting in the complex process of blood coagulation, platelet activation, and inflammation. For these reasons, warfarin has great potential for interaction with drugs, foods, and herbal medicines. Herb-warfarin interactions, however, are still not very well studied; thus, the objective of this update is to present new information on the subject aiming to provide a scientific basis to help health professionals in the clinical management of these interactions. A literature review was performed from May to June 2021 in multiple databases and articles published in 2016 to 2021 were included. A total of 59 articles describing 114 herbal medicines were reported to interact with warfarin. Of the plants mentioned, 84% had the potential to increase warfarin effect and the risk of bleeding. Targets possibly involved in these interactions include the processes of blood coagulation, platelet activation, and inflammation, in addition to the pharmacokinetics and pharmacodynamics of warfarin. Despite these alarming numbers, however, the clinical management of interactions is known to be effective. Thus, it is important that the use of these herbal medicines be done with caution in anticoagulated patients and that studies of herb-drug interactions be encouraged in order to generate information to support the clinical management of patients.
Collapse
Affiliation(s)
- Paula Mendonça Leite
- Department of Pharmaceutical Products, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Av. Antônio Carlos 6627, Belo Horizonte, Minas Gerais, Brazil.
| | - Maria Auxiliadora Parreiras Martins
- Department of Pharmaceutical Products, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Av. Antônio Carlos 6627, Belo Horizonte, Minas Gerais, Brazil
| | - Maria das Graças Carvalho
- Department of Pharmaceutical Products, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Av. Antônio Carlos 6627, Belo Horizonte, Minas Gerais, Brazil
| | - Rachel Oliveira Castilho
- Department of Pharmaceutical Products, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Av. Antônio Carlos 6627, Belo Horizonte, Minas Gerais, Brazil; Consórcio Acadêmico Brasileiro de Saúde Integrativa, CABSIN, Brazil.
| |
Collapse
|
9
|
Huang Q, Tang J, Chai X, Ren W, Wang J, Gan Q, Shi J, Wang M, Yang S, Liu J, Ma L. Affinity ultrafiltration and UPLC-HR-Orbitrap-MS based screening of thrombin-targeted small molecules with anticoagulation activity from Poecilobdella manillensis. J Chromatogr B Analyt Technol Biomed Life Sci 2021; 1178:122822. [PMID: 34147951 DOI: 10.1016/j.jchromb.2021.122822] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 05/06/2021] [Accepted: 05/31/2021] [Indexed: 01/19/2023]
Abstract
This study aims to screen potential anticoagulant components from leeches, a representative animal-sourced traditional Chinese medicine using thrombin (THR)-targeted ultrafiltration combined with ultrahigh performance liquid chromatography and high-resolution Orbitrap mass spectrometry (UPLC-HR-Orbitrap-MS). As a result, five small molecules in leech extract were discovered to interact with THR for the first time. Among them, two new compounds were isolated and their structures were identified by IR, HR-MS and NMR data. Furthermore, their THR inhibitory activity was confirmed with IC50 values of 4.74 and 8.31 μM, respectively. In addition, molecular docking analysis showed that the active (catalytic) site of THR might be the possible binding site of the two hits. Finally, reverse screening analysis indicated that LTA4-H, ACE and ALOX5AP were potential anticoagulant targets of the two new compounds. This study will broaden our understanding of the medicinal substance basis in leeches and further contribute to the discovery and development of clinical anticoagulant drugs from leeches.
Collapse
Affiliation(s)
- Qiuyang Huang
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China
| | - Jianyuan Tang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
| | - Xiaoxin Chai
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China
| | - Wei Ren
- Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou 646000, China
| | - JiaBo Wang
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China
| | - Qichao Gan
- Chongqing Duoputai Pharmaceutical Co., Ltd, Chongqing 400800, China
| | - Jingyan Shi
- Chongqing Duoputai Pharmaceutical Co., Ltd, Chongqing 400800, China
| | - Manyuan Wang
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China
| | - Sijin Yang
- Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou 646000, China
| | - Jingfang Liu
- Public Technology Service Center, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Li Ma
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
10
|
Effects of Curcumin and Ferulic Acid on the Folding of Amyloid-β Peptide. Molecules 2021; 26:molecules26092815. [PMID: 34068636 PMCID: PMC8126156 DOI: 10.3390/molecules26092815] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/06/2021] [Accepted: 05/08/2021] [Indexed: 11/17/2022] Open
Abstract
The polyphenols curcumin (CU) and ferulic acid (FA) are able to inhibit the aggregation of amyloid-β (Aβ) peptide with different strengths. CU is a strong inhibitor while FA is a weaker one. In the present study, we examine the effects of CU and FA on the folding process of an Aβ monomer by 1 µs molecular dynamics (MD) simulations. We found that both inhibitors increase the helical propensity and decrease the non-helical propensity of Aβ peptide. They prevent the formation of a dense bulk core and shorten the average lifetime of intramolecular hydrogen bonds in Aβ. CU makes more and longer-lived hydrogen bonds, hydrophobic, π–π, and cation–π interactions with Aβ peptide than FA does, which is in a good agreement with the observed stronger inhibitory activity of CU on Aβ aggregation.
Collapse
|
11
|
He T, He J, Wang Z, Cui Z. Modification strategies to improve the membrane hemocompatibility in extracorporeal membrane oxygenator (ECMO). ADVANCED COMPOSITES AND HYBRID MATERIALS 2021; 4:847-864. [PMID: 33969267 PMCID: PMC8091652 DOI: 10.1007/s42114-021-00244-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 02/26/2021] [Accepted: 03/16/2021] [Indexed: 05/26/2023]
Abstract
ABSTRACT Since extracorporeal membrane oxygenator (ECMO) has been utilized to save countless lives by providing continuous extracorporeal breathing and circulation to patients with severe cardiopulmonary failure. In particular, it has played an important role during the COVID-19 epidemic. One of the important composites of ECMO is membrane oxygenator, and the core composite of the membrane oxygenator is hollow fiber membrane, which is not only a place for blood oxygenation, but also is a barrier between the blood and gas side. However, the formation of blood clots in the oxygenator is a key problem in the using process. According to the study of the mechanism of thrombosis generation, it was found that improving the hemocompatibility is an efficient approach to reduce thrombus formation by modifying the surface of materials. In this review, the corresponding modification methods (surface property regulation, anticoagulant grafting, and bio-interface design) of hollow fiber membranes in ECMO are classified and discussed, and then, the research status and development prospects are summarized.
Collapse
Affiliation(s)
- Ting He
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemistry and Chemical Engineering, Nanjing Tech University, 210009 Nanjing, China
| | - Jinhui He
- National Engineering Research Center for Special Separation Membrane, Nanjing Tech University, 210009 Nanjing, China
| | - Zhaohui Wang
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, 210009 Nanjing, China
| | - Zhaoliang Cui
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemistry and Chemical Engineering, Nanjing Tech University, 210009 Nanjing, China
| |
Collapse
|
12
|
Vaez M, Javad Davarpanah S. New Insights into the Biological Activity of Lichens: Bioavailable Secondary Metabolites of Umbilicaria decussata as Potential Anticoagulants. Chem Biodivers 2021; 18:e2100080. [PMID: 33773025 DOI: 10.1002/cbdv.202100080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 03/26/2021] [Indexed: 11/09/2022]
Abstract
This study reports the in vitro anticoagulation activity of acetonic extract (AE) of 42 lichen species and the identification of potential bioavailable anticoagulant compounds from Umbilicaria decussata as a competent anticoagulant lichen species. Lichens' AEs were evaluated for their anticoagulant activity by monitoring activated partial thromboplastin time (APTT) and prothrombin time (PT) assays. A strong, positive correlation was observed between total phenolics concentration (TPC) of species and blood coagulation parameters. U. decussata was the only species with the longest clotting time in both APTT and PT assays. The research was moved forward by performing in vivo assays using rats. The results corroborated the dose-dependent impact of U. decussata's AE on rats' clotting time. Major secondary metabolites of U. decussata and their plasma-related bioavailability were also investigated using LC-ESI-MS/MS. Atranol, orsellinic acid, D-mannitol, lecanoric acid, and evernic acid were detected as possible bioavailable anticoagulants of U. decussata. Our findings suggest that U. decussata might be a potential anticoagulant lichen species that can be used for the prevention or treatment of coagulation-related issues such as cardiovascular diseases (CVDs).
Collapse
Affiliation(s)
- Mohsen Vaez
- Department of Biotechnology, Iranian Research Organization for Science and Technology, Tehran, Iran, 3313193685
| | - Seyed Javad Davarpanah
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran, 1435917341
| |
Collapse
|
13
|
Ibrahim RS, Mahrous RSR, Abu El-Khair RM, Ross SA, Omar AA, Fathy HM. Biologically guided isolation and ADMET profile of new factor Xa inhibitors from Glycyrrhiza glabra roots using in vitro and in silico approaches. RSC Adv 2021; 11:9995-10001. [PMID: 35423517 PMCID: PMC8695410 DOI: 10.1039/d1ra00359c] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 02/26/2021] [Indexed: 12/18/2022] Open
Abstract
Selective factor Xa inhibitors effectively block coagulation cascade with a broader therapeutic window than multitargeted anticoagulants. They have evolved as a crucial part of prevention and treatment of thromboembolic diseases and in therapeutic protocols involved in many clinical trials in coronavirus disease 2019 (COVID-19) patients. Biologically-guided isolation of specific FXa inhibitors from licorice (Glycyrrhiza glabra) root extract furnished ten flavonoids. By detailed analysis of their 1H, 13C NMR and MS data, the structures of these flavonoids were established as 7,4'-dihydroxyflavone (1), formononetin (2), 3-R-glabridin (3), isoliquiritigenin (4), liquiritin (5), naringenin 5-O-glucoside (6), 3,3',4,4'-tetrahydroxy-2-methoxychalcone (7), liquiritinapioside (8) and the two isomers isoliquiritigenin-4'-O-β-d-apiosylglucoside (9) and isoliquiritigenin-4-O-β-d-apiosylglucoside (10). All the isolated compounds were assessed for their FXa inhibitory activity using in vitro chromogenic assay for the first time. Liquirtin (5) showed the most potent inhibitory effects with an IC50 of 5.15 μM. The QikProp module was implemented to perform ADMET predictions for the screened compounds.
Collapse
Affiliation(s)
- Reham S Ibrahim
- Department of Pharmacognosy, Faculty of Pharmacy Alexandria Egypt
| | | | | | - Samir A Ross
- National Center for Natural Products Research, University of Mississippi, Thad Cochran Research Center Oxford MS USA
- BioMolecular Sciences, Division of Pharmacognosy, School of Pharmacy, University of Mississippi University MS USA
| | - Abdallah A Omar
- Department of Pharmacognosy, Faculty of Pharmacy Alexandria Egypt
| | - Hoda M Fathy
- Department of Pharmacognosy, Faculty of Pharmacy Alexandria Egypt
| |
Collapse
|
14
|
Phytochemical analysis and bioactivity evaluation of Moroccan Thymus atlanticus (Ball) fractions. SCIENTIFIC AFRICAN 2021. [DOI: 10.1016/j.sciaf.2021.e00716] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
15
|
Wang X, Chen X, Li J, Evans OB, Wang H, Yang X, He J, Gao XM, Chang YX. Thrombin-based discovery strategy of bioactive-chemical quality marker combination for pollen of Typha orientalis by metabolomics coupled with chemometrics. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2020; 75:153246. [PMID: 32510336 DOI: 10.1016/j.phymed.2020.153246] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 05/06/2020] [Accepted: 05/14/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND It is of utmost significance to choose the bioactive components as quality markers for ensuring the effectiveness of traditional Chinese medicine (TCM). Nonetheless, some markers are able to assess effectively the quality of TCM without considering the pharmacological mechanisms and intrinsic chemical complexities. OBJECTIVE This underscores the need to discover new and efficient markers which can assess both quality and mechanism of action. Herein, a strategy of bioactive-chemical quality marker combination was proposed to improve the level of the quality control of TCM by metabolomics coupled with chemometrics. METHODS A four-step plan was followed. Firstly, acquisition of metabolic features and component characterization of different batches of pollen of Typha orientalis C.Presl were performed using UHPLC-Q-TOF/MS. Secondly, the direct inhibitory effects of pollen of T. orientalis on thrombin was assessed by using chromogenic substrate method together with HPLC. Thereafter, bioactive-chemical marker combination associated with anti-thrombin segregation was screened using supervised classifiers. Finally, quantitative assay and prediction-model of selected markers were established for guarantying the quality of pollen of T. orientalis. RESULTS A total of 22 compounds were annotated based on comparison with previous work from pollen of T. orientalis by UHPLC-Q-TOF/MS. Citric acid and linolenic acid inhibited the thrombin activity with IC50 values, 0.52 ± 0.02 and 0.51 ± 0.02 mg/mL, respectively. A bioactive-chemical marker combination including citric acid, linolenic acid, typhaneoside, and isorhamnetin-3-O-neohesperidoside were discovered and selected as quality markers for evaluation of pollen of T. orientalis according to their capacity for inhibiting thrombin. CONCLUSION The thrombin-based discovery strategy of bioactive-chemical marker combination was a powerful tool for screening the quality markers for evaluation of pollen of T. orientalis.
Collapse
Affiliation(s)
- Xiaoyan Wang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China; Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Xuanhao Chen
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China; Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Jin Li
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China; Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Owusu Boadi Evans
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China; Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Hui Wang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China; College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Xuejing Yang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China; School of Pharmacy, Harbin University of Commerce, Harbin, 150076, China
| | - Jun He
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China; Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Xiu-Mei Gao
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China; Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Yan-Xu Chang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China; Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China.
| |
Collapse
|
16
|
Huang Q, Gao Q, Chai X, Ren W, Zhang G, Kong Y, Zhang Y, Gao J, Lei X, Ma L. A novel thrombin inhibitory peptide discovered from leech using affinity chromatography combined with ultra-high performance liquid chromatography-high resolution mass spectroscopy. J Chromatogr B Analyt Technol Biomed Life Sci 2020; 1151:122153. [PMID: 32512533 DOI: 10.1016/j.jchromb.2020.122153] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/21/2020] [Accepted: 05/09/2020] [Indexed: 02/08/2023]
Abstract
Thrombin (THR) inhibitors play an important role in the treatment of thrombotic diseases. This study established a THR-based bio-specific extraction coupled with affinity chromatography and ultra-high performance liquid chromatography-high resolution mass spectroscopy (UPLC-HR-MS) analysis method to screen and identify THR ligands in Leech. After evaluating the reliability of the screening method using positive control drug (hirudin), it was successfully used to screen the potential active constituents in leech. And a comprehensive analysis of the peptides in leech elution was performed by UPLC-HR-MS, a total of 34 peptides were identified. At the same time, anti-THR activity was explored and inferred by searching databases and published literature. As a result, six peptides were discovered to be potential active compounds in leech. Further, the six peptides were synthesized and in vitro enzymatic activity assay was performed. Finally, SYELPDGQVITIGNER was screened as an anti-THR peptide with an IC50 value of 255.75 µM and it was discovered for the first time from Whitmania pigra Whitman and Hirudo nipponica Whitman. The molecular docking study showed that THR inhibitory activity of the polypeptide was mainly attributed to the hydrogen bond interactions, van der Waals forces and electrostatic interactions interaction between polypeptide and THR. These results suggest that the polypeptide is a potential natural THR inhibitor that can be used as anticoagulant.
Collapse
Affiliation(s)
- Qiuyang Huang
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China
| | - Qian Gao
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China
| | - Xiaoxin Chai
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China
| | - Wei Ren
- Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou 646000, China
| | - Guifeng Zhang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Yingjun Kong
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Yan Zhang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Jianping Gao
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Xiongxin Lei
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Li Ma
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
17
|
Maddila SN, Maddila S, Kerru N, Bhaskaruni SVHS, Jonnalagadda SB. Facile One‐pot Synthesis of Arylsulfonyl‐4H‐pyrans Catalyzed by Ru Loaded Fluorapatite. ChemistrySelect 2020. [DOI: 10.1002/slct.201901867] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Surya N Maddila
- School of Chemistry & PhysicsUniversity of KwaZulu-Natal Westville Campus, Chilten Hills Private Bag 54001 Durban-4000 South Africa
| | - Suresh Maddila
- School of Chemistry & PhysicsUniversity of KwaZulu-Natal Westville Campus, Chilten Hills Private Bag 54001 Durban-4000 South Africa
| | - Nagaraju Kerru
- School of Chemistry & PhysicsUniversity of KwaZulu-Natal Westville Campus, Chilten Hills Private Bag 54001 Durban-4000 South Africa
| | - Sandeep V. H. S. Bhaskaruni
- School of Chemistry & PhysicsUniversity of KwaZulu-Natal Westville Campus, Chilten Hills Private Bag 54001 Durban-4000 South Africa
| | - Sreekantha B Jonnalagadda
- School of Chemistry & PhysicsUniversity of KwaZulu-Natal Westville Campus, Chilten Hills Private Bag 54001 Durban-4000 South Africa
| |
Collapse
|
18
|
Study on Structure Activity Relationship of Natural Flavonoids against Thrombin by Molecular Docking Virtual Screening Combined with Activity Evaluation In Vitro. Molecules 2020; 25:molecules25020422. [PMID: 31968628 PMCID: PMC7024217 DOI: 10.3390/molecules25020422] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/17/2020] [Accepted: 01/18/2020] [Indexed: 12/24/2022] Open
Abstract
Thrombin, a key enzyme of the serine protease superfamily, plays an integral role in the blood coagulation cascade and thrombotic diseases. In view of this, it is worthwhile to establish a method to screen thrombin inhibitors (such as natural flavonoid-type inhibitors) as well as investigate their structure activity relationships. Virtual screening using molecular docking technique was used to screen 103 flavonoids. Out of this number, 42 target compounds were selected, and their inhibitory effects on thrombin assayed by chromogenic substrate method. The results indicated that the carbon-carbon double bond group at the C2, C3 sites and the carbonyl group at the C4 sites of flavones were essential for thrombin inhibition, whereas the methoxy and O-glycosyl groups reduced thrombin inhibition. Noteworthy, introduction of OH groups at different positions on flavonoids either decreased or increased anti-thrombin potential. Myricetin exhibited the highest inhibitory potential against thrombin with an IC50 value of 56 μM. Purposively, the established molecular docking virtual screening method is not limited to exploring flavonoid structure activity relationships to anti-thrombin activity but also usefully discovering other natural active constituents.
Collapse
|
19
|
Sinegre T, Teissandier D, Milenkovic D, Morand C, Lebreton A. Epicatechin influences primary hemostasis, coagulation and fibrinolysis. Food Funct 2019; 10:7291-7298. [PMID: 31621731 DOI: 10.1039/c9fo00816k] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The different stages of hemostasis (i.e., primary hemostasis, coagulation and fibrinolysis) are involved in the early atherothrombosis steps. The aim of this study was to investigate the effect of epicatechin, a major flavonoid compound, on the hemostasis phenotype using clinically relevant in vitro global assays that mimic the complexity of the in vivo hemostasis systems. Plasma samples from 10 healthy volunteers were spiked with increasing concentrations of epicatechin (1 to 100 μM). Epicatechin effect on primary hemostasis, coagulation and fibrinolysis was assessed by measuring platelet aggregation using light transmission aggregometry, thrombin generation and clot lysis time (CLT), respectively. Epicatechin (100 μM) significantly decreased the maximal platelet aggregation induced by adenosine diphosphate (-39%), thrombin receptor activating peptide (-48%), epinephrine (-30%), and collagen (-30%). The endogenous thrombin potential was significantly reduced starting from 1 μM epicatechin (1332 ± 230 versus 1548 ± 241 nM min for control) (p < 0.01). Fibrinolysis was promoted by epicatechin, as indicated by CLT decrease by 16 and 33% with 10 and 100 μM epicatechin respectively, compared with control (1271 ± 775 s). These findings show that epicatechin reduces platelet function and leads to an anticoagulant and pro-fibrinolytic profile, providing new evidence of its interest for cardiovascular disease prevention.
Collapse
Affiliation(s)
- Thomas Sinegre
- Université Clermont Auvergne, INRA, UNH, Unité de Nutrition Humaine, CRNH Auvergne, Clermont-Ferrand, France. and CHU Clermont-Ferrand, service d'hématologie biologique, Clermont-Ferrand, France
| | - Dorian Teissandier
- Université Clermont Auvergne, INRA, UNH, Unité de Nutrition Humaine, CRNH Auvergne, Clermont-Ferrand, France.
| | - Dragan Milenkovic
- Université Clermont Auvergne, INRA, UNH, Unité de Nutrition Humaine, CRNH Auvergne, Clermont-Ferrand, France.
| | - Christine Morand
- Université Clermont Auvergne, INRA, UNH, Unité de Nutrition Humaine, CRNH Auvergne, Clermont-Ferrand, France.
| | - Aurélien Lebreton
- Université Clermont Auvergne, INRA, UNH, Unité de Nutrition Humaine, CRNH Auvergne, Clermont-Ferrand, France. and CHU Clermont-Ferrand, service d'hématologie biologique, Clermont-Ferrand, France
| |
Collapse
|
20
|
Kim E, Han SY, Hwang K, Kim D, Kim EM, Hossain MA, Kim JH, Cho JY. Antioxidant and Cytoprotective Effects of (-)-Epigallocatechin-3-(3″- O-methyl) Gallate. Int J Mol Sci 2019; 20:ijms20163993. [PMID: 31426336 PMCID: PMC6719974 DOI: 10.3390/ijms20163993] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 08/12/2019] [Accepted: 08/14/2019] [Indexed: 01/23/2023] Open
Abstract
Reactive oxygen species (ROS) are generated from diverse cellular processes or external sources such as chemicals, pollutants, or ultraviolet (UV) irradiation. Accumulation of radicals causes cell damage that can result in degenerative diseases. Antioxidants remove radicals by eliminating unpaired electrons from other molecules. In skin health, antioxidants are essential to protect cells from the environment and prevent skin aging. (-)-Epigallocatechin-3-(3″-O-methyl) gallate (3″Me-EGCG) has been found in limited oolong teas or green teas with distinctive methylated form, but its precise activities have not been fully elucidated. In this study, we examined the antioxidant roles of 3″Me-EGCG in keratinocytes (HaCaT cells). 3″Me-EGCG showed scavenging effects in cell and cell-free systems. Under H2O2 exposure, 3″Me-EGCG recovered cell viability and increased the expression of heme oxygenase 1 (HO-1). Under ultraviolet B (UVB) and sodium nitroprusside (SNP) exposure, 3″Me-EGCG protected keratinocytes and regulated the survival protein AKT1. By regulating the AKT1/NF-κB pathway, 3″Me-EGCG augmented cell survival and proliferation in HaCaT cells. These results indicate that 3″Me-EGCG exhibits antioxidant properties, resulting in cytoprotection against various external stimuli. In conclusion, our findings suggest that 3″Me-EGCG can be used as an ingredient of cosmetic products or health supplements.
Collapse
Affiliation(s)
- Eunji Kim
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Korea
| | - Sang Yun Han
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Korea
- Daewoong Pharmaceutical Co., Yongin 17028, Korea
| | - Kyeonghwan Hwang
- Basic Research & Innovation vision, R&D Center, AmorePacific Corporation, Yongin 17074, Korea
| | - Donghyun Kim
- Basic Research & Innovation vision, R&D Center, AmorePacific Corporation, Yongin 17074, Korea
| | - Eun-Mi Kim
- Basic Research & Innovation vision, R&D Center, AmorePacific Corporation, Yongin 17074, Korea
| | | | - Jong-Hoon Kim
- College of Veterinary Medicine, Chonbuk National University, Iksan 54596, Korea.
| | - Jae Youl Cho
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Korea.
| |
Collapse
|
21
|
Lamponi S, Aloisi AM, Bonechi C, Consumi M, Donati A, Leone G, Rossi C, Tamasi G, Ghiandai L, Ferrini E, Fiorenzani P, Ceccarelli I, Magnani A. Evaluation of in vitro cell and blood compatibility and in vivo analgesic activity of plant-derived dietary supplements. JOURNAL OF INTEGRATIVE MEDICINE-JIM 2019; 17:213-220. [DOI: 10.1016/j.joim.2019.02.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 12/29/2018] [Indexed: 12/21/2022]
|
22
|
Design and synthesis of novel 3,4-diaminobenzoyl derivatives as antithrombotic agents with improved solubility. CHEMICAL PAPERS 2018. [DOI: 10.1007/s11696-018-0645-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
23
|
Wu NH, Ke ZQ, Wu S, Yang XS, Chen QJ, Huang ST, Liu C. Evaluation of the antioxidant and endothelial protective effects of Lysimachia christinae Hance (Jin Qian Cao) extract fractions. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 18:128. [PMID: 29636055 PMCID: PMC5894240 DOI: 10.1186/s12906-018-2157-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 03/06/2018] [Indexed: 01/05/2023]
Abstract
Background Lysimachia christinae Hance is a traditional Chinese medicine with diuretic, detumescent, and detoxifying effects. Our aimed to optimize the extraction protocol to maximize the yield of flavonoids from Lysimachia christinae Hance, and evaluate the pharmacological activities of four fractions, namely, petroleum ether (PE), ethyl acetate (EA), n-butanol (NB), and aqueous (AQ) fractions, of the ethanolic extract of Lysimachia christinae Hance. Methods The flavonoid monomers in the crude extract were characterized via high performance liquid chromatography (HPLC), were used as markers for extract quality control and standardization. The total flavonoid, total phenolic, and total polysaccharide contents of each fraction were determined by spectrophotometry. Further, the in vitro free radical (diphenylpicrylhydrazyl, 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid), superoxide, and hydroxyl radicals) scavenging activities, and antioxidant capacity in endothelial cells were evaluated for each fraction. Results After optimizing the extraction protocol to maximize the total flavonoid yield from L. christinae Hance, the NB fractions had the highest total flavonoid (39.4 ± 4.55 mg RE/g), total phenolic (41.1 ± 3.07 mg GAE/g) and total polysaccharide (168.1 ± 7.07 mg GE/g); In addition, the NB fraction of the ethanolic extract of L. christinae Hance reveal the strongest radical-scavenging activity, antioxidant activity and protective effects against H2O2-induced injury in HUVECs. Conclusions Among the four fractions of L. christinae Hance, the NB fraction showed the most potent antioxidant and endothelial protective effects, which may be attributed to its high flavonoid, phenolic contents and optimal portfolio of different active ingredients of NB fractions of the ethanolic extract of L. christinae Hance. This study might improve our understanding of the pharmacological activities of L. christinae Hance, thereby facilitating its use in disease prevention and treatment.
Collapse
|