1
|
Voros C, Dias J, Timperley CM, Nachon F, Brown RCD, Baati R. The risk associated with organophosphorus nerve agents: from their discovery to their unavoidable threat, current medical countermeasures and perspectives. Chem Biol Interact 2024; 395:110973. [PMID: 38574837 DOI: 10.1016/j.cbi.2024.110973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/13/2024] [Accepted: 03/21/2024] [Indexed: 04/06/2024]
Abstract
The first organophosphorus nerve agent was discovered accidently during the development of pesticides, shortly after the first use of chemical weapons (chlorine, phosgene) on the battlefield during World War I. Despite the Chemical Weapons Convention banning these substances, they have still been employed in wars, terrorist attacks or political assassinations. Characterised by their high lethality, they target the nervous system by inhibiting the acetylcholinesterase (AChE) enzyme, preventing neurotransmission, which, if not treated rapidly, inevitably leads to serious injury or the death of the person intoxicated. The limited efficacy of current antidotes, known as AChE reactivators, pushes research towards new treatments. Numerous paths have been explored, from modifying the original pyridinium oximes to developing hybrid reactivators seeking a better affinity for the inhibited AChE. Another crucial approach resides in molecules more prone to cross the blood-brain barrier: uncharged compounds, bio-conjugated reactivators or innovative formulations. Our aim is to raise awareness on the threat and toxicity of organophosphorus nerve agents and to present the main synthetic efforts deployed since the first AChE reactivator, to tackle the task of efficiently treating victims of these chemical warfare agents.
Collapse
Affiliation(s)
- Camille Voros
- Ecole de Chimie Polymère et Matériaux ECPM, Université de Strasbourg, ICPEES UMR CNRS 7515, 25 rue Becquerel, F-67087, Strasbourg, France.
| | - José Dias
- Département de Toxicologie et Risques Chimiques, Institut de Recherche Biomédicale des Armées, F-91220 Brétigny-sur-Orge, France
| | - Christopher M Timperley
- Chemical, Biological and Radiological (CBR) Division, Dstl, Porton Down, Salisbury, Wiltshire, SP4 0JQ, UK.
| | - Florian Nachon
- Département de Toxicologie et Risques Chimiques, Institut de Recherche Biomédicale des Armées, F-91220 Brétigny-sur-Orge, France
| | - Richard C D Brown
- Department of Chemistry, University of Southampton, Highfield, Southampton, SO17 1BJ, UK.
| | - Rachid Baati
- Ecole de Chimie Polymère et Matériaux ECPM, Université de Strasbourg, ICPEES UMR CNRS 7515, 25 rue Becquerel, F-67087, Strasbourg, France; OPGS Pharmaceuticals, Paris BioTech Santé, 24 rue du Faubourg Saint-Jacques, F-75014, Paris, France.
| |
Collapse
|
2
|
Gorecki L, Markova A, Hepnarova V, Zivna N, Junova L, Hrabinova M, Janousek J, Kobrlova T, Prchal L, Jun D, Soukup O, Horn G, Worek F, Marek J, Korabecny J. Uncharged mono- and bisoximes: In search of a zwitterion to countermeasure organophosphorus intoxication. Chem Biol Interact 2024; 394:110941. [PMID: 38493910 DOI: 10.1016/j.cbi.2024.110941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/27/2024] [Accepted: 03/04/2024] [Indexed: 03/19/2024]
Abstract
The current study imposes a new class of organophosphorus (OP)-inhibited cholinesterase reactivators by conceptualizing a family of asymmetric bisoximes with various reactivating scaffolds. Several novel nucleophilic warheads were investigated, putting forward 29 novel reactivating options, by evaluating their nucleophilicity and ability to directly decompose OP compounds. Adopting the so-called zwitterionic strategy, 17 mono-oxime and nine bisoxime reactivators were discovered with major emphasis on the bifunctional-moiety approach. Compounds were compared with clinically used standards and other known experimentally highlighted reactivators. Our results clearly favor the concept of asymmetric bisoximes as leading reactivators in terms of efficacy and versatility. These top-ranked compounds were characterized in detail by reactivation kinetics parameters and evaluated for potential CNS availability. The highlighted molecules 55, 57, and 58 with various reactivating warheads, surpassed the reactivating potency of pralidoxime and several notable uncharged reactivators. The versatility of lead drug candidate 55 was also inspected on OP-inhibited butyrylcholinesterase, revealing a much higher rate compared to existing clinical antidotes.
Collapse
Affiliation(s)
- Lukas Gorecki
- University of Defence, Military Faculty of Medicine, Department of Toxicology and Military Pharmacy, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic; University Hospital Hradec Kralove, Biomedical Research Centre, Sokolska 581, 500 05 Hradec Kralove, Czech Republic.
| | - Aneta Markova
- University Hospital Hradec Kralove, Biomedical Research Centre, Sokolska 581, 500 05 Hradec Kralove, Czech Republic; University Hospital Hradec Kralove, Hospital Pharmacy, Sokolska 581, 500 05 Hradec Kralove, Czech Republic
| | - Vendula Hepnarova
- University of Defence, Military Faculty of Medicine, Department of Toxicology and Military Pharmacy, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic; University Hospital Hradec Kralove, Biomedical Research Centre, Sokolska 581, 500 05 Hradec Kralove, Czech Republic
| | - Natalie Zivna
- University of Defence, Military Faculty of Medicine, Department of Toxicology and Military Pharmacy, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic; University Hospital Hradec Kralove, Biomedical Research Centre, Sokolska 581, 500 05 Hradec Kralove, Czech Republic
| | - Lucie Junova
- University of Defence, Military Faculty of Medicine, Department of Toxicology and Military Pharmacy, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic
| | - Martina Hrabinova
- University of Defence, Military Faculty of Medicine, Department of Toxicology and Military Pharmacy, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic; University Hospital Hradec Kralove, Biomedical Research Centre, Sokolska 581, 500 05 Hradec Kralove, Czech Republic
| | - Jiri Janousek
- University Hospital Hradec Kralove, Biomedical Research Centre, Sokolska 581, 500 05 Hradec Kralove, Czech Republic
| | - Tereza Kobrlova
- University Hospital Hradec Kralove, Biomedical Research Centre, Sokolska 581, 500 05 Hradec Kralove, Czech Republic
| | - Lukas Prchal
- University Hospital Hradec Kralove, Biomedical Research Centre, Sokolska 581, 500 05 Hradec Kralove, Czech Republic
| | - Daniel Jun
- University of Defence, Military Faculty of Medicine, Department of Toxicology and Military Pharmacy, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic
| | - Ondrej Soukup
- University of Defence, Military Faculty of Medicine, Department of Toxicology and Military Pharmacy, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic; University Hospital Hradec Kralove, Biomedical Research Centre, Sokolska 581, 500 05 Hradec Kralove, Czech Republic
| | - Gabriele Horn
- Bundeswehr Institute of Pharmacology and Toxicology, Neuherbergstrasse 11, 80937 Munich, Germany
| | - Franz Worek
- Bundeswehr Institute of Pharmacology and Toxicology, Neuherbergstrasse 11, 80937 Munich, Germany
| | - Jan Marek
- University Hospital Hradec Kralove, Biomedical Research Centre, Sokolska 581, 500 05 Hradec Kralove, Czech Republic; University of Defence, Military Faculty of Medicine, Department of Epidemiology, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic
| | - Jan Korabecny
- University of Defence, Military Faculty of Medicine, Department of Toxicology and Military Pharmacy, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic; University Hospital Hradec Kralove, Biomedical Research Centre, Sokolska 581, 500 05 Hradec Kralove, Czech Republic.
| |
Collapse
|
3
|
Rosenberg YJ, Garcia K, Diener J, Sullivan D, Donahue S, Mao L, Lees J, Jiang X, Urban LA, Momper JD, Ho KY, Taylor P. A single post-exposure oxime RS194B treatment rapidly reactivates acetylcholinesterase and reverses acute symptoms in macaques exposed to diethylphosphorothioate parathion and chlorpyrifos insecticides. J Neurochem 2024; 168:370-380. [PMID: 36786545 DOI: 10.1111/jnc.15777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/20/2023] [Accepted: 01/28/2023] [Indexed: 02/15/2023]
Abstract
Millions of individuals globally suffer from inadvertent, occupational or self-harm exposures from organophosphate (OP) insecticides, significantly impacting human health. Similar to nerve agents, insecticides are neurotoxins that target and inhibit acetylcholinesterase (AChE) in central and peripheral synapses in the cholinergic nervous system. Post-exposure therapeutic countermeasures generally include administration of atropine with an oxime to reactivate the OP-inhibited AChE. However, animal model studies and recent clinical trials using insecticide-poisoned individuals have shown minimal clinical benefits of the currently approved oximes and their efficacy as antidotes has been debated. Currently used oximes either reactivate poorly, do not readily cross the blood-brain barrier (BBB), or are rapidly cleared from the circulation and must be repeatedly administered. Zwitterionic oximes of unbranched and simplified structure, for example RS194B, have been developed that efficiently cross the BBB resulting in reactivation of OP-inhibited AChE and dramatic reversal of severe clinical symptoms in mice and macaques exposed to OP insecticides or nerve agents. Thus, a single IM injection of RS194B has been shown to rapidly restore blood AChE and butyrylcholinesterase (BChE) activity, reverse cholinergic symptoms, and prevent death in macaques following lethal inhaled sarin and paraoxon exposure. The present macaque studies extend these findings and assess the ability of post-exposure RS194B treatment to counteract oral poisoning by highly toxic diethylphosphorothioate insecticides such as parathion and chlorpyrifos. These OPs require conversion by P450 in the liver of the inactive thions to the active toxic oxon forms, and once again demonstrated RS194B efficacy to reactivate and alleviate clinical symptoms within 60 mins of a single IM administration. Furthermore, when delivered orally, the Tmax of RS194B at 1-2 h was in the same range as those administered IM but were maintained in the circulation for longer periods greatly facilitating the use of RS194B as a non-invasive treatment, especially in isolated rural settings.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Jeremiah D Momper
- Department of Pharmacology, Skaggs School of Pharmacy & Pharmaceutical Sciences, University of California, San Diego, La Jolla, California, USA
| | - Kwok-Yiu Ho
- Department of Pharmacology, Skaggs School of Pharmacy & Pharmaceutical Sciences, University of California, San Diego, La Jolla, California, USA
| | - Palmer Taylor
- Department of Pharmacology, Skaggs School of Pharmacy & Pharmaceutical Sciences, University of California, San Diego, La Jolla, California, USA
| |
Collapse
|
4
|
Prchalova E, Kohoutova Z, Knittelova K, Malinak D, Musilek K. Strategies for enhanced bioavailability of oxime reactivators in the central nervous system. Arch Toxicol 2023; 97:2839-2860. [PMID: 37642747 DOI: 10.1007/s00204-023-03587-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 08/10/2023] [Indexed: 08/31/2023]
Abstract
Oxime reactivators of acetylcholinesterase are commonly used to treat highly toxic organophosphate poisoning. They are effective nucleophiles that can restore the catalytic activity of acetylcholinesterase; however, their main limitation is the difficulty in crossing the blood-brain barrier (BBB) because of their strongly hydrophilic nature. Various approaches to overcome this limitation and enhance the bioavailability of oxime reactivators in the CNS have been evaluated; these include structural modifications, conjugation with molecules that have transporters in the BBB, bypassing the BBB through intranasal delivery, and inhibition of BBB efflux transporters. A promising approach is the use of nanoparticles (NPs) as the delivery systems. Studies using mesoporous silica nanomaterials, poly (L-lysine)-graft-poly(ethylene oxide) NPs, metallic organic frameworks, poly(lactic-co-glycolic acid) NPs, human serum albumin NPs, liposomes, solid lipid NPs, and cucurbiturils, have shown promising results. Some NPs are considered as nanoreactors for organophosphate detoxification; these combine bioscavengers with encapsulated oximes. This study provides an overview and critical discussion of the strategies used to enhance the bioavailability of oxime reactivators in the central nervous system.
Collapse
Affiliation(s)
- Eliska Prchalova
- Faculty of Science, Department of Chemistry, University of Hradec Kralove, Rokitanskeho 62, 500 03, Hradec Kralove, Czech Republic
| | - Zuzana Kohoutova
- Faculty of Science, Department of Chemistry, University of Hradec Kralove, Rokitanskeho 62, 500 03, Hradec Kralove, Czech Republic
| | - Karolina Knittelova
- Faculty of Science, Department of Chemistry, University of Hradec Kralove, Rokitanskeho 62, 500 03, Hradec Kralove, Czech Republic
| | - David Malinak
- Faculty of Science, Department of Chemistry, University of Hradec Kralove, Rokitanskeho 62, 500 03, Hradec Kralove, Czech Republic.
- Biomedical Research Centre, University Hospital in Hradec Kralove, Sokolska 581, 500 05, Hradec Kralove, Czech Republic.
| | - Kamil Musilek
- Faculty of Science, Department of Chemistry, University of Hradec Kralove, Rokitanskeho 62, 500 03, Hradec Kralove, Czech Republic.
- Biomedical Research Centre, University Hospital in Hradec Kralove, Sokolska 581, 500 05, Hradec Kralove, Czech Republic.
| |
Collapse
|
5
|
Rosenberg YJ, Garcia K, Diener J, Gerk W, Donahue S, Mao L, Lees J, Jiang X, Urban LA, Sullivan D. The impact of solvents on the toxicity of the banned parathion insecticide. Chem Biol Interact 2023; 382:110635. [PMID: 37453609 PMCID: PMC10574261 DOI: 10.1016/j.cbi.2023.110635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/03/2023] [Accepted: 07/12/2023] [Indexed: 07/18/2023]
Abstract
The aerial crop dusting and spraying of fields with the phosphorothioate insecticide parathion in the late 1900s, significantly improved crop yields but resulted in high levels of occupational toxicity in handlers and agricultural workers, as well as cases of intentional self-harm poisoning, culminating in its banning in many western countries by early 2000s. However because of the low solubility and volatility of parathion, most available products were formulated using organic solvents e.g. xylene, to increase the efficacy of the aerosols and dusts. In the present study, the toxicity of parathion was assessed when formulated in an aqueous solvents (ethanol/PBS (1:9)), and delivered to macaques as an aerosol. Doses of 780 μg/kg and 1.56 mg/kg were delivered one day apart, using a modified nebulizer calculated to result in lung deposition of ∼480 μg/kg with a similar or larger amount being swallowed; these doses being similar to the estimated lethal oral dose 286ug/kg - 1.43 mg/kg of formulated parathion in humans. Surprisingly, this dose (a combined amount of ∼14 mg) caused only low AChE inhibition and moderate BChE inhibition with no clinical symptoms, indicating that the use of organic solvents may have previously played a critical role in the severity of parathion toxicity following inhalation exposure. In addition, unlike constitutively toxic OPs, which are highly toxic when inhaled, these results are consistent with the idea that phosphorothioate insecticides appear to be more intoxicating following oral than inhalation exposure. However, this still remains uncertain because the presence of organic solvents in the ingested parathion studies was not always known.
Collapse
|
6
|
Countermeasures in organophosphorus intoxication: pitfalls and prospects. Trends Pharmacol Sci 2022; 43:593-606. [DOI: 10.1016/j.tips.2022.04.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/14/2022] [Accepted: 04/17/2022] [Indexed: 11/24/2022]
|
7
|
Shyong YJ, Sepulveda Y, Garcia A, Samskey NM, Radic Z, Sit RK, Sharpless KB, Momper JD, Taylor P. Enhancing Target Tissue Levels and Diminishing Plasma Clearance of Ionizing Zwitterionic Antidotes in Organophosphate Exposures. J Pharmacol Exp Ther 2021; 378:315-321. [PMID: 34145064 PMCID: PMC11046989 DOI: 10.1124/jpet.121.000715] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 06/02/2021] [Indexed: 11/22/2022] Open
Abstract
Inhibition of acetylcholinesterase (AChE) by certain organophosphates (OPs) can be life-threatening and requires reactivating antidote accessibility to the peripheral and central nervous systems to reverse symptoms and enhance survival parameters. In considering dosing requirements for oxime antidotes in OP exposures that inactivate AChE, clearance of proton ionizable, zwitterionic antidotes is rapid and proceeds with largely the parent antidotal compound being cleared by renal transporters. Such transporters may also control disposition between target tissues and plasma as well as overall elimination from the body. An ideal small-molecule antidote should access and be retained in primary target tissues-central nervous system (brain), skeletal muscle, and peripheral autonomic sites-for sufficient periods to reactivate AChE and prevent acute toxicity. We show here that we can markedly prolong the antidotal activity of zwitterionic antidotes by inhibiting P-glycoprotein (P-gp) transporters in the brain capillary and renal systems. We employ the P-gp inhibitor tariquidar as a reference compound and show that tissue and plasma levels of RS194B, a hydroxyl-imino acetamido alkylamine reactivator, are elevated and that plasma clearances are reduced. To examine the mechanism, identify the transporter, and establish the actions of a transport inhibitor, we compare the pharmacokinetic parameters in a P-glycoprotein knockout mouse strain and see dramatic enhancements of short-term plasma and tissue levels. Hence, repurposed transport inhibitors that are candidate or Food and Drug Administration-approved drugs, should enhance target tissue concentrations of the zwitterionic antidote through inhibition of both renal elimination and brain capillary extrusion. SIGNIFICANCE STATEMENT: We examine renal and brain capillary transporter inhibition as means for lowering dose and frequency of dosing of a blood-brain barrier permanent reactivating antidote, RS194B, an ionizable zwitterion. Through a small molecule, tariquidar, and gene knockout mice, CNS antidote concentrations are enhanced, and total body clearances are concomitantly diminished. RS194B with repurposed transport inhibitors should enhance reactivation of central and peripheral OP-inhibited acetylcholinesterase. Activities at both disposition sites are a desired features for replacing the antidote, pralidoxime, for acute OP exposure.
Collapse
Affiliation(s)
- Yan-Jye Shyong
- Department of Pharmacology, Skaggs School of Pharmacy & Pharmaceutical Sciences, University of California, San Diego, California (Y.-J.S., Y.S., A.G., N.M.S., Z.R., J.D.M., P.T.), and The Scripps Research Institute, Skaggs Institute for Chemical Biology (R.K.S., K.B.S.)
| | - Yadira Sepulveda
- Department of Pharmacology, Skaggs School of Pharmacy & Pharmaceutical Sciences, University of California, San Diego, California (Y.-J.S., Y.S., A.G., N.M.S., Z.R., J.D.M., P.T.), and The Scripps Research Institute, Skaggs Institute for Chemical Biology (R.K.S., K.B.S.)
| | - Arnold Garcia
- Department of Pharmacology, Skaggs School of Pharmacy & Pharmaceutical Sciences, University of California, San Diego, California (Y.-J.S., Y.S., A.G., N.M.S., Z.R., J.D.M., P.T.), and The Scripps Research Institute, Skaggs Institute for Chemical Biology (R.K.S., K.B.S.)
| | - Nathan M Samskey
- Department of Pharmacology, Skaggs School of Pharmacy & Pharmaceutical Sciences, University of California, San Diego, California (Y.-J.S., Y.S., A.G., N.M.S., Z.R., J.D.M., P.T.), and The Scripps Research Institute, Skaggs Institute for Chemical Biology (R.K.S., K.B.S.)
| | - Zoran Radic
- Department of Pharmacology, Skaggs School of Pharmacy & Pharmaceutical Sciences, University of California, San Diego, California (Y.-J.S., Y.S., A.G., N.M.S., Z.R., J.D.M., P.T.), and The Scripps Research Institute, Skaggs Institute for Chemical Biology (R.K.S., K.B.S.)
| | - Rakesh K Sit
- Department of Pharmacology, Skaggs School of Pharmacy & Pharmaceutical Sciences, University of California, San Diego, California (Y.-J.S., Y.S., A.G., N.M.S., Z.R., J.D.M., P.T.), and The Scripps Research Institute, Skaggs Institute for Chemical Biology (R.K.S., K.B.S.)
| | - K Barry Sharpless
- Department of Pharmacology, Skaggs School of Pharmacy & Pharmaceutical Sciences, University of California, San Diego, California (Y.-J.S., Y.S., A.G., N.M.S., Z.R., J.D.M., P.T.), and The Scripps Research Institute, Skaggs Institute for Chemical Biology (R.K.S., K.B.S.)
| | - Jeremiah D Momper
- Department of Pharmacology, Skaggs School of Pharmacy & Pharmaceutical Sciences, University of California, San Diego, California (Y.-J.S., Y.S., A.G., N.M.S., Z.R., J.D.M., P.T.), and The Scripps Research Institute, Skaggs Institute for Chemical Biology (R.K.S., K.B.S.)
| | - Palmer Taylor
- Department of Pharmacology, Skaggs School of Pharmacy & Pharmaceutical Sciences, University of California, San Diego, California (Y.-J.S., Y.S., A.G., N.M.S., Z.R., J.D.M., P.T.), and The Scripps Research Institute, Skaggs Institute for Chemical Biology (R.K.S., K.B.S.)
| |
Collapse
|
8
|
Bennion BJ, Malfatti MA, Be NA, Enright HA, Hok S, Cadieux CL, Carpenter TS, Lao V, Kuhn EA, McNerney MW, Lightstone FC, Nguyen TH, Valdez CA. Development of a CNS-permeable reactivator for nerve agent exposure: an iterative, multi-disciplinary approach. Sci Rep 2021; 11:15567. [PMID: 34330964 PMCID: PMC8324913 DOI: 10.1038/s41598-021-94963-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 07/19/2021] [Indexed: 11/09/2022] Open
Abstract
Nerve agents have experienced a resurgence in recent times with their use against civilian targets during the attacks in Syria (2012), the poisoning of Sergei and Yulia Skripal in the United Kingdom (2018) and Alexei Navalny in Russia (2020), strongly renewing the importance of antidote development against these lethal substances. The current standard treatment against their effects relies on the use of small molecule-based oximes that can efficiently restore acetylcholinesterase (AChE) activity. Despite their efficacy in reactivating AChE, the action of drugs like 2-pralidoxime (2-PAM) is primarily limited to the peripheral nervous system (PNS) and, thus, provides no significant protection to the central nervous system (CNS). This lack of action in the CNS stems from their ionic nature that, on one end makes them very powerful reactivators and on the other renders them ineffective at crossing the Blood Brain Barrier (BBB) to reach the CNS. In this report, we describe the use of an iterative approach composed of parallel chemical and in silico syntheses, computational modeling, and a battery of detailed in vitro and in vivo assays that resulted in the identification of a promising, novel CNS-permeable oxime reactivator. Additional experiments to determine acute and chronic toxicity are ongoing.
Collapse
Affiliation(s)
- Brian J Bennion
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA
| | - Michael A Malfatti
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA
| | - Nicholas A Be
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA
| | - Heather A Enright
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA
| | - Saphon Hok
- Nuclear and Chemical Sciences Division, Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA
- Forensic Science Center, Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA
| | - C Linn Cadieux
- United States Army Medical Research Institute of Chemical Defense, Aberdeen, MD, 21010, USA
| | - Timothy S Carpenter
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA
| | - Victoria Lao
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA
| | - Edward A Kuhn
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA
| | - M Windy McNerney
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA
- Affiliation: Mental Illness Research, Education and Clinical Center, Veterans Affairs, Palo Alto, CA, 94304, USA
- Affiliation: Department of Psychiatry, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Felice C Lightstone
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA
| | - Tuan H Nguyen
- Global Security Directorate, Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA
| | - Carlos A Valdez
- Nuclear and Chemical Sciences Division, Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA.
- Forensic Science Center, Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA.
| |
Collapse
|
9
|
Taylor P, Shyong YJ, Samskey N, Ho KY, Radic' Z, Fenical W, Sharpless KB, Kovarik Z, Camacho-Hernandez GA. Ligand design for human acetylcholinesterase and nicotinic acetylcholine receptors, extending beyond the conventional and canonical. J Neurochem 2021; 158:1217-1222. [PMID: 33638151 DOI: 10.1111/jnc.15335] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 01/22/2021] [Accepted: 02/21/2021] [Indexed: 12/31/2022]
Abstract
We detail here distinctive departures from lead classical cholinesterase re-activators, the pyridinium aldoximes, to achieve rapid CNS penetration and reactivation of AChE in the CNS (brain and spinal cord). Such reactivation is consistent with these non-canonical re-activators enhancing survival parameters in both mice and macaques following exposure to organophosphates. Thus, the ideal cholinesterase re-activator should show minimal toxicity, limited inhibitory activity in the absence of an organophosphate, and rapid CNS penetration, in addition to its nucleophilic potential at the target, the conjugated AChE active center. These are structural properties directed to reactivity profiles at the conjugated AChE active center, reinforced by the pharmacokinetic and tissue disposition properties of the re-activator leads. In the case of nicotinic acetylcholine receptor (nAChR) agonists and antagonists, with the many existing receptor subtypes in mammals, we prioritize subtype selectivity in their design. In contrast to nicotine and its analogues that react with panoply of AChR subtypes, the substituted di-2-picolyl amine pyrimidines possess distinctive ionization characteristics reflecting in selectivity for the orthosteric site at the α7 subtypes of receptor. Here, entry to the CNS should be prioritized for the therapeutic objectives of the nicotinic agent influencing aberrant CNS activity in development or in the sequence of CNS ageing (longevity) in mammals, along with general peripheral activities controlling inflammation.
Collapse
Affiliation(s)
- Palmer Taylor
- Department of Pharmacology, Skaggs School of Pharmacy & Pharmaceutical Sciences, University of California, CA, USA
| | - Yan-Jye Shyong
- Department of Pharmacology, Skaggs School of Pharmacy & Pharmaceutical Sciences, University of California, CA, USA
| | - Nathan Samskey
- Department of Pharmacology, Skaggs School of Pharmacy & Pharmaceutical Sciences, University of California, CA, USA
| | - Kwok-Yiu Ho
- Department of Pharmacology, Skaggs School of Pharmacy & Pharmaceutical Sciences, University of California, CA, USA
| | - Zoran Radic'
- Department of Pharmacology, Skaggs School of Pharmacy & Pharmaceutical Sciences, University of California, CA, USA
| | - William Fenical
- Scripps Institution of Oceanography, University of California, CA, USA
| | - K Barry Sharpless
- Skaggs Institute for Chemical Biology, The Scripps Research Institute, San Diego, CA, USA
| | - Zrinka Kovarik
- Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | | |
Collapse
|
10
|
Development of versatile and potent monoquaternary reactivators of acetylcholinesterase. Arch Toxicol 2021; 95:985-1001. [PMID: 33517499 DOI: 10.1007/s00204-021-02981-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 01/06/2021] [Indexed: 12/15/2022]
Abstract
To date, the only treatments developed for poisoning by organophosphorus compounds, the most toxic chemical weapons of mass destruction, have exhibited limited efficacy and versatility. The available causal antidotes are based on reactivation of the enzyme acetylcholinesterase (AChE), which is rapidly and pseudo-irreversibly inhibited by these agents. In this study, we developed a novel series of monoquaternary reactivators combining permanently charged moieties tethered to position 6- of 3-hydroxypyridine-2-aldoxime reactivating subunit. Highlighted representatives (21, 24, and 27; also coded as K1371, K1374, and K1375, respectively) that contained 1-phenylisoquinolinium, 7-amino-1-phenylisoquinolinium and 4-carbamoylpyridinium moieties as peripheral anionic site ligands, respectively, showed efficacy superior or comparable to that of the clinically used standards. More importantly, these reactivators exhibited wide-spectrum efficacy and were minutely investigated via determination of their reactivation kinetics in parallel with molecular dynamics simulations to study their mechanisms of reactivation of the tabun-inhibited AChE conjugate. To further confirm the potential applicability of these candidates, a mouse in vivo assay was conducted. While K1375 had the lowest acute toxicity and the most suitable pharmacokinetic profile, the oxime K1374 with delayed elimination half-life was the most effective in ameliorating the signs of tabun toxicity. Moreover, both in vitro and in vivo, the versatility of the agents was substantially superior to that of clinically used standards. Their high efficacy and broad-spectrum capability make K1374 and K1375 promising candidates that should be further investigated for their potential as nerve agents and insecticide antidotes.
Collapse
|
11
|
Abstract
Herein, I intend to capture highlights shared with my academic and research colleagues over the 60 years I devoted initially to my graduate and postdoctoral training and then to academic endeavors starting as an assistant professor in a new medical school at the University of California, San Diego (UCSD). During this period, the Department of Pharmacology emerged from a division within the Department of Medicine to become the first basic science department, solely within the School of Medicine at UCSD in 1979. As part of the school's plans to reorganize and to retain me at UCSD, I was appointed as founding chair. Some years later in 2002, faculty, led largely within the Department of Pharmacology and by practicing pharmacists within UCSD Healthcare, started the independent Skaggs School of Pharmacy and Pharmaceutical Sciences with a doctor of pharmacy (PharmD) program, where I served as the founding dean. My career pathway, from working at my family-owned pharmacy to chairing a department in a school of medicine and then becoming the dean of a school of pharmacy at a research-intensive, student-centered institution, involved some risky decisions. But the academic, curricular, and accreditation challenges posed were met by a cadre of creative faculty colleagues. I offer my experiences to individuals confronted with a multiplicity of real or imagined opportunities in academic health sciences, the related pharmaceutical industry, and government oversight agencies.
Collapse
Affiliation(s)
- Palmer Taylor
- Department of Pharmacology, Skaggs School of Pharmacy and Pharmaceutical Sciences, and School of Medicine, University of California, San Diego, La Jolla, California 92093, USA
| |
Collapse
|
12
|
Hrvat NM, Kovarik Z. Counteracting poisoning with chemical warfare nerve agents. Arh Hig Rada Toksikol 2020; 71:266-284. [PMID: 33410774 PMCID: PMC7968514 DOI: 10.2478/aiht-2020-71-3459] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/01/2020] [Accepted: 11/01/2020] [Indexed: 12/14/2022] Open
Abstract
Phosphylation of the pivotal enzyme acetylcholinesterase (AChE) by nerve agents (NAs) leads to irreversible inhibition of the enzyme and accumulation of neurotransmitter acetylcholine, which induces cholinergic crisis, that is, overstimulation of muscarinic and nicotinic membrane receptors in the central and peripheral nervous system. In severe cases, subsequent desensitisation of the receptors results in hypoxia, vasodepression, and respiratory arrest, followed by death. Prompt action is therefore critical to improve the chances of victim's survival and recovery. Standard therapy of NA poisoning generally involves administration of anticholinergic atropine and an oxime reactivator of phosphylated AChE. Anticholinesterase compounds or NA bioscavengers can also be applied to preserve native AChE from inhibition. With this review of 70 years of research we aim to present current and potential approaches to counteracting NA poisoning.
Collapse
Affiliation(s)
| | - Zrinka Kovarik
- Institute for Medical Research and Occupational Health, Zagreb, Croatia
| |
Collapse
|
13
|
Gambino A, Burnett JC, Koide K. Methyl Scanning and Revised Binding Mode of 2-Pralidoxime, an Antidote for Nerve Agent Poisoning. ACS Med Chem Lett 2020; 11:1893-1898. [PMID: 33062170 DOI: 10.1021/acsmedchemlett.9b00586] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 01/09/2020] [Indexed: 12/18/2022] Open
Abstract
Organophosphorus nerve agents (OPNAs) inhibit acetylcholinesterase (AChE) and, despite the Chemical Weapons Convention arms control treaty, continue to represent a threat to both military personnel and civilians. 2-Pralidoxime (2-PAM) is currently the only therapeutic countermeasure approved by the United States Food and Drug Administration for treating OPNA poisoning. However, 2-PAM is not centrally active due to its hydrophilicity and resulting poor blood-brain barrier permeability; hence, these deficiencies warrant the development of more hydrophobic analogs. Specifically, gaps exist in previously published structure activity relationship (SAR) studies for 2-PAM, thereby making it difficult to rationally design novel analogs that are concomitantly more permeable and more efficacious. In this study, we methodically performed a methyl scan on the core pyridinium of 2-PAM to identify ring positions that could tolerate both additional steric bulk and hydrophobicity. Subsequently, SAR-guided molecular docking was used to rationalize hydropathically feasible binding modes for 2-PAM and the reported derivatives. Overall, the data presented herein provide new insights that may facilitate the rational design of more efficacious 2-PAM analogs.
Collapse
Affiliation(s)
- Adriana Gambino
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States
| | - James C. Burnett
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States
| | - Kazunori Koide
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
14
|
Rosenberg Y, Saxena A. Acetylcholinesterase inhibition resulting from exposure to inhaled OP can be prevented by pretreatment with BChE in both macaques and minipigs. Neuropharmacology 2020; 174:108150. [PMID: 32442543 PMCID: PMC7365266 DOI: 10.1016/j.neuropharm.2020.108150] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 05/05/2020] [Accepted: 05/14/2020] [Indexed: 10/24/2022]
Abstract
More frequent and widespread nerve agent attacks highlight the need for efficacious pre- and post-exposure organophosphate (OP) counter-measures to protect military and civilian populations. Because of critical targeting of acetylcholinesterase (AChE) in the CNS by OPs, a pre-treatment candidate for preventing/reducing poisoning will be a broadly acting molecule that scavenges OPs in blood before they reach their physiological targets. Prophylactic human butyrylcholinesterase (HuBChE), the leading pretreatment candidate, has been shown to protect against multiple LD50's of nerve agents in rodents, macaques, and minipigs. This review describes the development of a HuBChE bioscavenger pretreatment from early proof-of-concept studies to pre-clinical studies with the native injectable enzyme and the development of aerosolized forms of recombinant enzyme, which can be delivered by inhalation nebulizer devices, to effect protection against inhaled OP nerve agents and insecticides. Early animal studies utilized parenteral exposure. However, lungs are the portal of entry for most volatile OP vapors and represent the major means of OP intoxication. In this regard, pretreat-ment with 7.5 mg/kg of HuBChE by IM injection protected minipigs against lethal sarin vapor and prevented AChE inhibition in the blood. This is similar to the five-day protection in macaques by an aerosolized rHuBChE using a nebulizer against aerosolized paraoxon (estimated to be an 8 mg/kg estimated human dose). Importantly, lethal inhaled doses of OP may be smaller relative to the same dose delivered by injection, thus reducing the protective HuBChE dose, while a combination of HuBChE and post-exposure oxime may prolong protection.
Collapse
Affiliation(s)
| | - Ashima Saxena
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, MD, 20910, USA
| |
Collapse
|
15
|
Pohanka M. Diagnoses of Pathological States Based on Acetylcholinesterase and Butyrylcholinesterase. Curr Med Chem 2020; 27:2994-3011. [PMID: 30706778 DOI: 10.2174/0929867326666190130161202] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 01/16/2019] [Accepted: 01/17/2019] [Indexed: 12/15/2022]
Abstract
Two cholinesterases exist: Acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). While AChE plays a crucial role in neurotransmissions, BChE has no specific function apart from the detoxification of some drugs and secondary metabolites from plants. Thus, both AChE and BChE can serve as biochemical markers of various pathologies. Poisoning by nerve agents like sarin, soman, tabun, VX, novichok and overdosing by drugs used in some neurodegenerative disorders like Alzheimer´s disease and myasthenia gravis, as well as poisoning by organophosphorus pesticides are relevant to this issue. But it appears that changes in these enzymes take place in other processes including oxidative stress, inflammation, some types of cancer and genetically conditioned diseases. In this review, the cholinesterases are introduced, the mechanism of inhibitors action is explained and the relations between the cholinesterases and pathologies are explained.
Collapse
Affiliation(s)
- Miroslav Pohanka
- Faculty of Military Health Sciences, University of Defence, Trebesska 1575, 50001 Hradec Kralove, Czech Republic
| |
Collapse
|
16
|
Worek F, Thiermann H, Wille T. Organophosphorus compounds and oximes: a critical review. Arch Toxicol 2020; 94:2275-2292. [PMID: 32506210 PMCID: PMC7367912 DOI: 10.1007/s00204-020-02797-0] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 05/28/2020] [Indexed: 12/19/2022]
Abstract
Organophosphorus (OP) pesticides and nerve agents still pose a threat to the population. Treatment of OP poisoning is an ongoing challenge and burden for medical services. Standard drug treatment consists of atropine and an oxime as reactivator of OP-inhibited acetylcholinesterase and is virtually unchanged since more than six decades. Established oximes, i.e. pralidoxime, obidoxime, TMB-4, HI-6 and MMB-4, are of insufficient effectiveness in some poisonings and often cover only a limited spectrum of the different nerve agents and pesticides. Moreover, the value of oximes in human OP pesticide poisoning is still disputed. Long-lasting research efforts resulted in the preparation of countless experimental oximes, and more recently non-oxime reactivators, intended to replace or supplement the established and licensed oximes. The progress of this development is slow and none of the novel compounds appears to be suitable for transfer into advanced development or into clinical use. This situation calls for a critical analysis of the value of oximes as mainstay of treatment as well as the potential and limitations of established and novel reactivators. Requirements for a straightforward identification of superior reactivators and their development to licensed drugs need to be addressed as well as options for interim solutions as a chance to improve the therapy of OP poisoning in a foreseeable time frame.
Collapse
Affiliation(s)
- Franz Worek
- Bundeswehr Institute of Pharmacology and Toxicology, Neuherbergstrasse 11, 80937, Munich, Germany.
| | - Horst Thiermann
- Bundeswehr Institute of Pharmacology and Toxicology, Neuherbergstrasse 11, 80937, Munich, Germany
| | - Timo Wille
- Bundeswehr Institute of Pharmacology and Toxicology, Neuherbergstrasse 11, 80937, Munich, Germany
| |
Collapse
|
17
|
Chambers JE, Dail MB, Meek EC. Oxime-mediated reactivation of organophosphate-inhibited acetylcholinesterase with emphasis on centrally-active oximes. Neuropharmacology 2020; 175:108201. [PMID: 32544483 DOI: 10.1016/j.neuropharm.2020.108201] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 06/02/2020] [Accepted: 06/11/2020] [Indexed: 01/25/2023]
Abstract
This review provides an overview of the global research leading to the large number of compounds developed as reactivators of acetylcholinesterase inhibited by a variety of organophosphate compounds, most of which are nerve agents but also some insecticides. A number of these organophosphates are highly toxic and effective therapy by reactivators contributes to saving lives. Two major challenges for more effective therapy with reactivators are identification of a broad spectrum reactivator efficacious against a variety of organophosphate structures, and a reactivator that can cross the blood-brain barrier to protect the brain. The most effective of the reactivators developed are the nucleophilic pyridinium oximes, which bear a permanent positive charge from the quaternary nitrogen in the pyridinium ring. The permanent positive charge retards the oximes from crossing the blood-brain barrier and therefore restoration of normal cholinergic function in the brain is unlikely. A number of laboratories have developed nucleophiles, mostly oximes, that are theorized to cross the blood-brain barrier by several strategies. At the present time, no reactivator is optimally broad spectrum across the wide group of organophosphate chemistries. Some oximes, including the substituted phenoxyalkyl pyridinium oximes invented by our laboratories, have the potential to provide neuroprotection in the brain and show evidence of efficacy against both nerve agent and insecticidal chemistries, so these novel oximes have promise for future development. This article is part of the special issue entitled 'Acetylcholinesterase Inhibitors: From Bench to Bedside to Battlefield'.
Collapse
Affiliation(s)
- Janice E Chambers
- Center for Environmental Health Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, 39762-6100, USA.
| | - Mary B Dail
- Center for Environmental Health Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, 39762-6100, USA
| | - Edward C Meek
- Center for Environmental Health Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, 39762-6100, USA
| |
Collapse
|
18
|
Hayes TR, Blecha JE, Chao CK, Huynh TL, VanBrocklin HF, Zinn KR, Taylor PW, Gerdes JM, Thompson CM. Positron emission tomography evaluation of oxime countermeasures in live rats using the tracer O-(2-[ 18 F]fluoroethyl)-O-(p-nitrophenyl)methylphosphonate [ 18 F]-VXS. Ann N Y Acad Sci 2020; 1479:180-195. [PMID: 32436233 DOI: 10.1111/nyas.14363] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 04/13/2020] [Accepted: 04/17/2020] [Indexed: 11/27/2022]
Abstract
Oxime antidotes regenerate organophosphate-inhibited acetylcholinesterase (AChE). Although they share a common mechanism of AChE reactivation, the rate and amount of oxime that enters the brain are critical to the efficacy, a process linked to the oxime structure and charge. Using a platform based on the organophosphate [18 F]-VXS as a positron emission tomography tracer for active AChE, the in vivo distribution of [18 F]-VXS was evaluated after an LD50 dose (250 μg/kg) of the organophosphate paraoxon (POX) and following oximes as antidotes. Rats given [18 F]-VXS tracer alone had significantly higher radioactivity (two- to threefold) in the heart and lung than rats given LD50 POX at 20 or 60 min prior to [18 F]-VXS. When rats were given LD50 POX followed by 2-PAM (cationic), RS194b (ionizable), or monoisonitrosoacetone (MINA) (neutral), central nervous system (CNS) radioactivity returned to levels at or above untreated naive rats (no POX), whereas CNS radioactivity did not increase in rats given the dication oximes HI-6 or MMB-4. MINA showed a significant, pairwise increase in CNS brain radioactivity compared with POX-treated rats. This new in vivo dynamic platform using [18 F]-VXS tracer measures and quantifies peripheral and CNS relative changes in AChE availability after POX exposure and is suitable for comparing oxime delivery and AChE reactivation in rats.
Collapse
Affiliation(s)
- Thomas R Hayes
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California
| | - Joseph E Blecha
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California
| | - Chih-Kai Chao
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, Montana
| | - Tony L Huynh
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California
| | - Henry F VanBrocklin
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California
| | - Kurt R Zinn
- Departments of Radiology, Small Animal Clinical Sciences, and Biomedical Engineering, Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, Michigan
| | - Palmer W Taylor
- Department of Pharmacology, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California at San Diego, La Jolla, California
| | - John M Gerdes
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, Montana
| | - Charles M Thompson
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, Montana
| |
Collapse
|
19
|
Chambers JE, Meek EC. Central neuroprotection demonstrated by novel oxime countermeasures to nerve agent surrogates. Ann N Y Acad Sci 2020; 1479:5-12. [PMID: 32319115 DOI: 10.1111/nyas.14352] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 03/20/2020] [Accepted: 03/26/2020] [Indexed: 01/09/2023]
Abstract
Oximes remain a long-standing element of the therapy for nerve agents, organophosphates (OPs) that poison by inhibiting the enzyme acetylcholinesterase (AChE), resulting in hypercholinergic activity both centrally and peripherally. Oximes, such as the pyridinium oxime pralidoxime (2-PAM) in the United States, can reactivate the inhibited AChE and restore cholinergic function. However, there are several drawbacks to the current oximes; one of them, the inability of these oximes to effectively enter the brain, is the subject of study by several laboratories, including ours. Our laboratory invented a platform of substituted phenoxyalkyl pyridinium oximes that were tested against highly relevant surrogates of the nerve agents, sarin and VX. Using high sublethal dosages of the OPs, the novel oximes were observed to attenuate seizure-like behavior in rats and to reduce the levels of glial fibrillary acidic protein (an indicator of glial scarring) to control levels, in contrast to levels observed with 2-PAM or no oxime therapy. Using lethal levels of surrogates, some novel oximes protected against lethality compared with 2-PAM, shortened the time to cessation of seizure-like behavior (from 8+ to 6 h), and protected the brain neurons. Therefore, some of these novel oximes are showing exceptional promise alone or in combination with 2-PAM as therapeutics against nerve agent toxicity.
Collapse
Affiliation(s)
- Janice E Chambers
- Center for Environmental Health Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi
| | - Edward C Meek
- Center for Environmental Health Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi
| |
Collapse
|
20
|
Zorbaz T, Mišetić P, Probst N, Žunec S, Zandona A, Mendaš G, Micek V, Maček Hrvat N, Katalinić M, Braïki A, Jean L, Renard PY, Gabelica Marković V, Kovarik Z. Pharmacokinetic Evaluation of Brain Penetrating Morpholine-3-hydroxy-2-pyridine Oxime as an Antidote for Nerve Agent Poisoning. ACS Chem Neurosci 2020; 11:1072-1084. [PMID: 32105443 DOI: 10.1021/acschemneuro.0c00032] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Nerve agents, the deadliest chemical warfare agents, are potent inhibitors of acetylcholinesterase (AChE) and cause rapid cholinergic crisis with serious symptoms of poisoning. Oxime reactivators of AChE are used in medical practice in the treatment of nerve agent poisoning, but the search for novel improved reactivators with central activity is an ongoing pursuit. For numerous oximes synthesized, in vitro reactivation is a standard approach in biological evaluation with little attention given to the pharmacokinetic properties of the compounds. This study reports a comprehensive physicochemical, pharmacokinetic, and safety profiling of five lipophilic 3-hydroxy-2-pyridine aldoximes, which were recently shown to be potent AChE reactivators with a potential to be centrally active. The oxime JR595 was singled out as highly metabolically stable in human liver microsomes, noncytotoxic oxime for SH-SY5Y neuroblastoma and 1321N1 astrocytoma cell lines, and its pharmacokinetic profile was determined after intramuscular administration in mice. JR595 was rapidly absorbed into blood after 15 min with simultaneous distribution to the brain at up to about 40% of its blood concentration; however, it was eliminated from both the brain and blood within an hour. In addition, the MDCKII-MDR1 cell line assay showed that oxime JR595 was not a P-glycoprotein efflux pump substrate. Finally, the preliminary antidotal study against multiple LD50 doses of VX and sarin in mice showed the potential of JR595 to provide desirable therapeutic outcomes with future improvements in its circulation time.
Collapse
Affiliation(s)
- Tamara Zorbaz
- Institute for Medical Research and Occupational Health, Ksaverska cesta 2, HR-10000 Zagreb, Croatia
| | - Petra Mišetić
- Fidelta Ltd, Prilaz baruna Filipovića 29, HR-10000 Zagreb, Croatia
| | - Nicolas Probst
- Normandie Univ, UNIROUEN, INSA Rouen, CNRS, COBRA (UMR 6014), 76000 Rouen, France
| | - Suzana Žunec
- Institute for Medical Research and Occupational Health, Ksaverska cesta 2, HR-10000 Zagreb, Croatia
| | - Antonio Zandona
- Institute for Medical Research and Occupational Health, Ksaverska cesta 2, HR-10000 Zagreb, Croatia
| | - Gordana Mendaš
- Institute for Medical Research and Occupational Health, Ksaverska cesta 2, HR-10000 Zagreb, Croatia
| | - Vedran Micek
- Institute for Medical Research and Occupational Health, Ksaverska cesta 2, HR-10000 Zagreb, Croatia
| | - Nikolina Maček Hrvat
- Institute for Medical Research and Occupational Health, Ksaverska cesta 2, HR-10000 Zagreb, Croatia
| | - Maja Katalinić
- Institute for Medical Research and Occupational Health, Ksaverska cesta 2, HR-10000 Zagreb, Croatia
| | - Anissa Braïki
- Normandie Univ, UNIROUEN, INSA Rouen, CNRS, COBRA (UMR 6014), 76000 Rouen, France
| | - Ludovic Jean
- Normandie Univ, UNIROUEN, INSA Rouen, CNRS, COBRA (UMR 6014), 76000 Rouen, France
| | - Pierre-Yves Renard
- Normandie Univ, UNIROUEN, INSA Rouen, CNRS, COBRA (UMR 6014), 76000 Rouen, France
| | - Vesna Gabelica Marković
- Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, HR-10000 Zagreb, Croatia
| | - Zrinka Kovarik
- Institute for Medical Research and Occupational Health, Ksaverska cesta 2, HR-10000 Zagreb, Croatia
| |
Collapse
|
21
|
Gorecki L, Gerlits O, Kong X, Cheng X, Blumenthal DK, Taylor P, Ballatore C, Kovalevsky A, Radić Z. Rational design, synthesis, and evaluation of uncharged, "smart" bis-oxime antidotes of organophosphate-inhibited human acetylcholinesterase. J Biol Chem 2020; 295:4079-4092. [PMID: 32019865 PMCID: PMC7105318 DOI: 10.1074/jbc.ra119.012400] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 02/03/2020] [Indexed: 01/05/2023] Open
Abstract
Organophosphate (OP) intoxications from nerve agent and OP pesticide exposures are managed with pyridinium aldoxime-based therapies whose success rates are currently limited. The pyridinium cation hampers uptake of OPs into the central nervous system (CNS). Furthermore, it frequently binds to aromatic residues of OP-inhibited acetylcholinesterase (AChE) in orientations that are nonproductive for AChE reactivation, and the structural diversity of OPs impedes efficient reactivation. Improvements of OP antidotes need to include much better access of AChE reactivators to the CNS and optimized orientation of the antidotes' nucleophile within the AChE active-center gorge. On the basis of X-ray structures of a CNS-penetrating reactivator, monoxime RS194B, reversibly bound to native and venomous agent X (VX)-inhibited human AChE, here we created seven uncharged acetamido bis-oximes as candidate antidotes. Both oxime groups in these bis-oximes were attached to the same central, saturated heterocyclic core. Diverse protonation of the heterocyclic amines and oxime groups of the bis-oximes resulted in equilibration among up to 16 distinct ionization forms, including uncharged forms capable of diffusing into the CNS and multiple zwitterionic forms optimal for reactivation reactions. Conformationally diverse zwitterions that could act as structural antidote variants significantly improved in vitro reactivation of diverse OP-human AChE conjugates. Oxime group reorientation of one of the bis-oximes, forcing it to point into the active center for reactivation, was confirmed by X-ray structural analysis. Our findings provide detailed structure-activity properties of several CNS-directed, uncharged aliphatic bis-oximes holding promise for use as protonation-dependent, conformationally adaptive, "smart" accelerated antidotes against OP toxicity.
Collapse
Affiliation(s)
- Lukas Gorecki
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California 92093-0751
| | - Oksana Gerlits
- Bredesen Center, University of Tennessee, Knoxville, Tennessee 37996
| | - Xiaotian Kong
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Ohio State University, Columbus, Ohio 43210
| | - Xiaolin Cheng
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Ohio State University, Columbus, Ohio 43210
| | - Donald K Blumenthal
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, Utah 84112
| | - Palmer Taylor
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California 92093-0751
| | - Carlo Ballatore
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California 92093-0751
| | - Andrey Kovalevsky
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
| | - Zoran Radić
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California 92093-0751.
| |
Collapse
|
22
|
Faiz Norrrahim MN, Idayu Abdul Razak MA, Ahmad Shah NA, Kasim H, Wan Yusoff WY, Halim NA, Mohd Nor SA, Jamal SH, Ong KK, Zin Wan Yunus WM, Knight VF, Mohd Kasim NA. Recent developments on oximes to improve the blood brain barrier penetration for the treatment of organophosphorus poisoning: a review. RSC Adv 2020; 10:4465-4489. [PMID: 35495228 PMCID: PMC9049292 DOI: 10.1039/c9ra08599h] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 12/16/2019] [Indexed: 11/25/2022] Open
Abstract
Organophosphorus (OP) compounds are highly toxic synthetic compounds which have been used as pesticides and developed as warfare nerve agents. They represent a threat to both military and civilian populations. OP pesticides affect the nervous system and are thought to have caused at least 5 million deaths since their discovery in the 1930s. At present the treatment of OP nerve agent poisoning commonly involves the use of parenteral oximes. However, the blood brain barrier (BBB) remains a challenge in the delivery of oximes to the central nervous system (CNS). This is because almost all macromolecule drugs (including oximes) fail to pass through the BBB to reach the CNS structures. The presence of a permanent cationic charge in oximes has made these compounds inefficient in crossing the BBB. Thus, oximes are unable to reactivate acetylcholinesterase (AChE) in the CNS. Using current structural and mechanistic understanding of the BBB under both physiological and pathological conditions, it becomes possible to design delivery systems for oximes and other drugs that are able to cross the BBB effectively. This review summarises the recent strategies in the development of oximes which are capable of crossing the BBB to treat OP poisoning. Several new developments using oximes are reviewed along with their advantages and disadvantages. This review could be beneficial for future directions in the development of oxime and other drug delivery systems into the CNS. Organophosphorus (OP) compounds are highly toxic synthetic compounds which have been used as pesticides and developed as warfare nerve agents.![]()
Collapse
|
23
|
Maček Hrvat N, Kalisiak J, Šinko G, Radić Z, Sharpless KB, Taylor P, Kovarik Z. Evaluation of high-affinity phenyltetrahydroisoquinoline aldoximes, linked through anti-triazoles, as reactivators of phosphylated cholinesterases. Toxicol Lett 2019; 321:83-89. [PMID: 31863869 DOI: 10.1016/j.toxlet.2019.12.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 12/06/2019] [Accepted: 12/13/2019] [Indexed: 01/22/2023]
Abstract
Acetylcholinesterase (AChE) is a pivotal enzyme in neurotransmission. Its inhibition leads to cholinergic crises and could ultimately result in death. A related enzyme, butyrylcholinesterase (BChE), may act in the CNS as a co-regulator in terminating nerve impulses and is a natural plasma scavenger upon exposure to organophosphate (OP) nerve agents that irreversibly inhibit both enzymes. With the aim of improving reactivation of cholinesterases phosphylated by nerve agents sarin, VX, cyclosarin, and tabun, ten phenyltetrahydroisoquinoline (PIQ) aldoximes were synthesized by Huisgen 1,3 dipolar cycloaddition between alkyne- and azide-building blocks. The PIQ moiety may serve as a peripheral site anchor positioning the aldoxime moiety at the AChE active site. In terms of evaluated dissociation inhibition constants, the aldoximes could be characterized as high-affinity ligands. Nevertheless, high binding affinity of these oximes to AChE or its phosphylated conjugates did not assure rapid and selective AChE reactivation. Rather, potential reactivators of phosphylated BChE, with its enlarged acyl pocket, were identified, especially in case of cyclosarin, where the reactivation rates of the lead reactivator was 100- and 6-times that of 2-PAM and HI-6, respectively. Nevertheless, the return of the enzyme activity was affected by the nerve agent conjugated to catalytic serine, which highlights the lack of the universality of reactivators with respect to both the target enzyme and OP structure.
Collapse
Affiliation(s)
- Nikolina Maček Hrvat
- Institute for Medical Research and Occupational Health, HR-10000 Zagreb, Croatia
| | - Jarosław Kalisiak
- Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, United States
| | - Goran Šinko
- Institute for Medical Research and Occupational Health, HR-10000 Zagreb, Croatia
| | - Zoran Radić
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California at San Diego, La Jolla, CA 92093-0650, United States
| | - K Barry Sharpless
- Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, United States
| | - Palmer Taylor
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California at San Diego, La Jolla, CA 92093-0650, United States
| | - Zrinka Kovarik
- Institute for Medical Research and Occupational Health, HR-10000 Zagreb, Croatia.
| |
Collapse
|
24
|
Tacroximes: novel unique compounds for the recovery of organophosphorus-inhibited acetylcholinesterase. Future Med Chem 2019; 11:2625-2634. [DOI: 10.4155/fmc-2019-0027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Aim: Organophosphorus compounds are irreversible inhibitors of AChE. Without immediate countermeasure, intoxication leads quickly to death. None of the clinically-used causal antidotes can ensure a good prognosis for any poisoned patient. When fallen into the wrong hands, organophosphates represent a serious threat to mankind. Results & methodology: Herein, we describe two novel compounds as unique merged molecules built on a tacrine scaffold against organophosphorus intoxication. These reactivators of AChE have balanced physicochemical properties, and should be able to cross the blood–brain barrier with a slightly lowered cytotoxicity profile compared to reference tacrine. Conclusion: Their efficiency compared with pralidoxime and obidoxime was proved against dichlorvos.
Collapse
|
25
|
Kobrlova T, Korabecny J, Soukup O. Current approaches to enhancing oxime reactivator delivery into the brain. Toxicology 2019; 423:75-83. [PMID: 31112674 DOI: 10.1016/j.tox.2019.05.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 04/17/2019] [Accepted: 05/13/2019] [Indexed: 01/21/2023]
Abstract
The misuse of organophosphate compounds still represents a current threat worldwide. Treatment of poisoning with organophosphates (OPs) remains unsatisfactorily resolved despite the extensive investment in research in academia. There are no universal, effective and centrally-active acetylcholinesterase (AChE) reactivators to countermeasure OP intoxication. One major obstacle is to overcome the blood-brain barrier (BBB). The central compartment is readily accessible by the OPs which are lipophilic bullets that can easily cross the BBB, whereas first-line therapeutics, namely oxime-based AChE reactivators and atropine, do not cross or do so rather slowly. The limitation of oxime-based AChE reactivators can be ascribed to their chemical nature, bearing a positive charge which is essential either for their AChE affinity or their reactivating potency. The aim of this article is to review the methods for targeting the brain by oxime reactivators that have been developed so far. Approaches using prodrugs, lipophilicity enhancement, or sugar-based oximes have been rather unsuccessful. However, other strategies have been more promising, such as the use of nanoparticles or co-administration of the reactivator with efflux transporter inhibitors. Encouraging results have also been associated with intranasal delivery, but research in this field is still at the beginning. Further research of auspicious approaches is inevitable.
Collapse
Affiliation(s)
- Tereza Kobrlova
- Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defence, Trebesska 1575, 500 01, Hradec Kralove, Czech Republic; Biomedical Research Centre, University Hospital, Sokolska 581, 500 05, Hradec Kralove, Czech Republic.
| | - Jan Korabecny
- Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defence, Trebesska 1575, 500 01, Hradec Kralove, Czech Republic; Biomedical Research Centre, University Hospital, Sokolska 581, 500 05, Hradec Kralove, Czech Republic.
| | - Ondrej Soukup
- Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defence, Trebesska 1575, 500 01, Hradec Kralove, Czech Republic; Biomedical Research Centre, University Hospital, Sokolska 581, 500 05, Hradec Kralove, Czech Republic.
| |
Collapse
|
26
|
Taylor P, Yan-Jye S, Momper J, Hou W, Camacho-Hernandez GA, Radic' Z, Rosenberg Y, Kovarik Z, Sit R, Sharpless KB. Assessment of ionizable, zwitterionic oximes as reactivating antidotal agents for organophosphate exposure. Chem Biol Interact 2019; 308:194-197. [PMID: 31100277 DOI: 10.1016/j.cbi.2019.05.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 05/13/2019] [Indexed: 11/29/2022]
Abstract
Since the development in the 1950's of 2-PAM (Pralidoxime), an antidote that reactivates organophosphate conjugated acetylcholinesterase in target tissues upon pesticide or nerve agent exposure, improvements in antidotal therapy have largely involved congeneric pyridinium aldoximes. Despite seminal advances in detailing the structures of the cholinesterases as the primary target site, progress with small molecule antidotes has yet to define a superior agent. Two major limitations are immediately apparent. The first is the impacted space within the active center gorge, particularly when the active center serine at its base is conjugated with an organophosphate. The reactivating nucleophile will have to negotiate the tortuous gorge terrain to access the phosphorus atom with its most nucleophilic form or ionization state, the oximate anion. A second limitation stems from the antidote crossing the blood-brain barrier sufficiently rapidly, since it is well documented that central acetylcholinesterase inhibition gives rise to cardiovascular and respiratory compromise. The associated hypoxia then leads to a sequelae of events, including poor perfusion of the brain and periphery, along with muscle fasciculation, tremors and eventually seizures. We consider both the barriers confronting and further achievements necessary to enhance efficacy of antidotes.
Collapse
Affiliation(s)
- Palmer Taylor
- Skaggs School of Pharmacy & Pharmaceutical Sciences, University of California, San Diego, Pharmacy Lane, La Jolla, CA, 92093, USA; Department of Pharmacology, University of California, San Diego, USA.
| | - Shyong Yan-Jye
- Skaggs School of Pharmacy & Pharmaceutical Sciences, University of California, San Diego, Pharmacy Lane, La Jolla, CA, 92093, USA; Department of Pharmacology, University of California, San Diego, USA
| | - Jeremiah Momper
- Skaggs School of Pharmacy & Pharmaceutical Sciences, University of California, San Diego, Pharmacy Lane, La Jolla, CA, 92093, USA
| | - William Hou
- Skaggs School of Pharmacy & Pharmaceutical Sciences, University of California, San Diego, Pharmacy Lane, La Jolla, CA, 92093, USA
| | - Gisela Andrea Camacho-Hernandez
- Skaggs School of Pharmacy & Pharmaceutical Sciences, University of California, San Diego, Pharmacy Lane, La Jolla, CA, 92093, USA; Department of Pharmacology, University of California, San Diego, USA
| | - Zoran Radic'
- Skaggs School of Pharmacy & Pharmaceutical Sciences, University of California, San Diego, Pharmacy Lane, La Jolla, CA, 92093, USA
| | | | - Zrinka Kovarik
- Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | - Rakesh Sit
- Skaggs Institute for Chemical Biology, The Scripps Research Institute, San Diego, CA, 92037, USA
| | - K Barry Sharpless
- Skaggs Institute for Chemical Biology, The Scripps Research Institute, San Diego, CA, 92037, USA
| |
Collapse
|
27
|
Kovarik Z, Kalisiak J, Hrvat NM, Katalinić M, Zorbaz T, Žunec S, Green C, Radić Z, Fokin VV, Sharpless KB, Taylor P. Reversal of Tabun Toxicity Enabled by a Triazole-Annulated Oxime Library-Reactivators of Acetylcholinesterase. Chemistry 2019; 25:4100-4114. [PMID: 30458057 DOI: 10.1002/chem.201805051] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Revised: 11/09/2018] [Indexed: 11/09/2022]
Abstract
Acetylcholinesterase (AChE), an enzyme that degrades the neurotransmitter acetylcholine, when covalently inhibited by organophosphorus compounds (OPs), such as nerve agents and pesticides, can be reactivated by oximes. However, tabun remains among the most dangerous nerve agents due to the low reactivation efficacy of standard pyridinium aldoxime antidotes. Therefore, finding an optimal reactivator for prophylaxis against tabun toxicity and for post-exposure treatment is a continued challenge. In this study, we analyzed the reactivation potency of 111 novel nucleophilic oximes mostly synthesized using the CuAAC triazole ligation between alkyne and azide building blocks. We identified several oximes with significantly improved in vitro reactivating potential for tabun-inhibited human AChE, and in vivo antidotal efficacies in tabun-exposed mice. Our findings offer a significantly improved platform for further development of antidotes and scavengers directed against tabun and related phosphoramidate exposures, such as the Novichok compounds.
Collapse
Affiliation(s)
- Zrinka Kovarik
- Institute for Medical Research and Occupational Health, HR-10000, Zagreb, Croatia
| | - Jarosław Kalisiak
- Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Nikolina Maček Hrvat
- Institute for Medical Research and Occupational Health, HR-10000, Zagreb, Croatia
| | - Maja Katalinić
- Institute for Medical Research and Occupational Health, HR-10000, Zagreb, Croatia
| | - Tamara Zorbaz
- Institute for Medical Research and Occupational Health, HR-10000, Zagreb, Croatia
| | - Suzana Žunec
- Institute for Medical Research and Occupational Health, HR-10000, Zagreb, Croatia
| | - Carol Green
- SRI International, Menlo Park, CA, 94025-3493, USA
| | - Zoran Radić
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California at San Diego, La Jolla, CA, 92093-0650, USA
| | - Valery V Fokin
- Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA.,The Bridge@USC, University of Southern California, Los Angeles, CA, 90089, USA
| | - K Barry Sharpless
- Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Palmer Taylor
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California at San Diego, La Jolla, CA, 92093-0650, USA
| |
Collapse
|
28
|
Sit RK, Kovarik Z, Maček Hrvat N, Žunec S, Green C, Fokin VV, Sharpless KB, Radić Z, Taylor P. Pharmacology, Pharmacokinetics, and Tissue Disposition of Zwitterionic Hydroxyiminoacetamido Alkylamines as Reactivating Antidotes for Organophosphate Exposure. J Pharmacol Exp Ther 2018; 367:363-372. [PMID: 30190337 PMCID: PMC6223194 DOI: 10.1124/jpet.118.249383] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 08/30/2018] [Indexed: 11/22/2022] Open
Abstract
In the development of antidotal therapy for treatment of organophosphate exposure from pesticides used in agriculture and nerve agents insidiously employed in terrorism, the alkylpyridinium aldoximes have received primary attention since their early development by I. B. Wilson in the 1950s. Yet these agents, by virtue of their quaternary structure, are limited in rates of crossing the blood-brain barrier, and they require administration parenterally to achieve full distribution in the body. Oximes lacking cationic charges or presenting a tertiary amine have been considered as alternatives. Herein, we examine the pharmacokinetic properties of a lead ionizable, zwitterionic hydroxyiminoacetamido alkylamine in mice to develop a framework for studying these agents in vivo and generate sufficient data for their consideration as appropriate antidotes for humans. Consequently, in vitro and in vivo efficacies of immediate structural congeners were explored as leads or backups for animal studies. We compared oral and parenteral dosing, and we developed an intramuscular loading and oral maintenance dosing scheme in mice. Steady-state plasma and brain levels of the antidote were achieved with sequential administrations out to 10 hours, with brain levels exceeding plasma levels shortly after administration. Moreover, the zwitterionic oxime showed substantial protection after gavage, whereas the classic methylpyridinium aldoxime (2-pyridinealdoxime methiodide) was without evident protection. Although further studies in other animal species are necessary, ionizing zwitterionic aldoximes present viable alternatives to existing antidotes for prophylaxis and treatment of large numbers of individuals in terrorist-led events with nerve agent organophosphates, such as sarin, and in organophosphate pesticide exposure.
Collapse
Affiliation(s)
- Rakesh K Sit
- Skaggs Institute for Chemical Biology, The Scripps Research Institute, San Diego, California (R.K.S., V.V.F., K.B.S.); Institute for Medical Research and Occupational Health, Zagreb, Croatia (Z.K., N.M.H., S.Ž.); SRI International, Menlo Park, California (C.G.); and Department of Pharmacology, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California (Z.R., P.T.)
| | - Zrinka Kovarik
- Skaggs Institute for Chemical Biology, The Scripps Research Institute, San Diego, California (R.K.S., V.V.F., K.B.S.); Institute for Medical Research and Occupational Health, Zagreb, Croatia (Z.K., N.M.H., S.Ž.); SRI International, Menlo Park, California (C.G.); and Department of Pharmacology, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California (Z.R., P.T.)
| | - Nikolina Maček Hrvat
- Skaggs Institute for Chemical Biology, The Scripps Research Institute, San Diego, California (R.K.S., V.V.F., K.B.S.); Institute for Medical Research and Occupational Health, Zagreb, Croatia (Z.K., N.M.H., S.Ž.); SRI International, Menlo Park, California (C.G.); and Department of Pharmacology, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California (Z.R., P.T.)
| | - Suzana Žunec
- Skaggs Institute for Chemical Biology, The Scripps Research Institute, San Diego, California (R.K.S., V.V.F., K.B.S.); Institute for Medical Research and Occupational Health, Zagreb, Croatia (Z.K., N.M.H., S.Ž.); SRI International, Menlo Park, California (C.G.); and Department of Pharmacology, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California (Z.R., P.T.)
| | - Carol Green
- Skaggs Institute for Chemical Biology, The Scripps Research Institute, San Diego, California (R.K.S., V.V.F., K.B.S.); Institute for Medical Research and Occupational Health, Zagreb, Croatia (Z.K., N.M.H., S.Ž.); SRI International, Menlo Park, California (C.G.); and Department of Pharmacology, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California (Z.R., P.T.)
| | - Valery V Fokin
- Skaggs Institute for Chemical Biology, The Scripps Research Institute, San Diego, California (R.K.S., V.V.F., K.B.S.); Institute for Medical Research and Occupational Health, Zagreb, Croatia (Z.K., N.M.H., S.Ž.); SRI International, Menlo Park, California (C.G.); and Department of Pharmacology, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California (Z.R., P.T.)
| | - K Barry Sharpless
- Skaggs Institute for Chemical Biology, The Scripps Research Institute, San Diego, California (R.K.S., V.V.F., K.B.S.); Institute for Medical Research and Occupational Health, Zagreb, Croatia (Z.K., N.M.H., S.Ž.); SRI International, Menlo Park, California (C.G.); and Department of Pharmacology, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California (Z.R., P.T.)
| | - Zoran Radić
- Skaggs Institute for Chemical Biology, The Scripps Research Institute, San Diego, California (R.K.S., V.V.F., K.B.S.); Institute for Medical Research and Occupational Health, Zagreb, Croatia (Z.K., N.M.H., S.Ž.); SRI International, Menlo Park, California (C.G.); and Department of Pharmacology, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California (Z.R., P.T.)
| | - Palmer Taylor
- Skaggs Institute for Chemical Biology, The Scripps Research Institute, San Diego, California (R.K.S., V.V.F., K.B.S.); Institute for Medical Research and Occupational Health, Zagreb, Croatia (Z.K., N.M.H., S.Ž.); SRI International, Menlo Park, California (C.G.); and Department of Pharmacology, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California (Z.R., P.T.)
| |
Collapse
|
29
|
Costanzi S, Machado JH, Mitchell M. Nerve Agents: What They Are, How They Work, How to Counter Them. ACS Chem Neurosci 2018; 9:873-885. [PMID: 29664277 DOI: 10.1021/acschemneuro.8b00148] [Citation(s) in RCA: 115] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Nerve agents are organophosphorus chemical warfare agents that exert their action through the irreversible inhibition of acetylcholinesterase, with a consequent overstimulation of cholinergic transmission followed by its shutdown. Beyond warfare, they have notoriously been employed in acts of terrorism as well as high profile assassinations. After a brief historical introduction on the development and deployment of nerve agents, this review provides a survey of their chemistry, the way they affect cholinergic transmission, the available treatment options, and the current directions for their improvement. As the review illustrates, despite their merits, the currently available treatment options present several shortcomings. Current research directions involve the search for improved antidotes, antagonists of the nicotinic receptors, small-molecule pretreatment options, as well as bioscavengers as macromolecular pretreatment options. These efforts are making good progress in many different directions and, hopefully, will lead to a lower target susceptibility, thus reducing the appeal of nerve agents as chemical weapons.
Collapse
Affiliation(s)
| | - John-Hanson Machado
- Department of Chemistry, The George Washington University, 800 22nd Street NW, Washington, DC 20052, United States
- Computational Biology Institute, The George Washington University, 45085 University Drive Suite 305, Ashburn, Virginia 20147, United States
| | | |
Collapse
|
30
|
Farizatto KLG, Bahr BA. Paraoxon: An Anticholinesterase That Triggers an Excitotoxic Cascade of Oxidative Stress, Adhesion Responses, and Synaptic Compromise. ACTA ACUST UNITED AC 2017; 13:29-37. [PMID: 29805717 DOI: 10.19044/esj.2017.c1p4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The anticholinesterase paraoxon (Pxn) is an organophosphate (OP) and the active metabolite of the insecticide parathion. It potently inhibits the enzyme acetylcholinesterase and leads to enhanced glutamate release, diminished GABA uptake, oxidative damage, and neurodegeneration. The resulting increased levels of acetylcholine can trigger seizures and cause neuronal and excitotoxic damage in the brain. The brain susceptibility related to anticholinesterase toxins extends beyond potential brain damage and death from toxic levels of the agent. Asymptomatic low-level exposure to such toxins can also leave the brain vulnerable or even cause it to exhibit neurological problems later in life. The actions of Pxn and similar neurotoxins have been studied in order to examine the events associated with anticholinesterase toxicity in the brain. A recent study demonstrated that Pxn exposure initiates a pathogenic cascade involving seizure events and subsequent signs of damage including unique presynaptic vulnerability and associated behavioral deficits. In addition, Pxn-mediated synaptotoxicity is also associated with enhanced production of oxidative stress as well as integrin adhesion responses. These findings provide a better understanding of the molecular events involved in Pxn toxicity.
Collapse
Affiliation(s)
- Karen L G Farizatto
- Biotechnology Research and Training Center, William C. Friday Laboratory, University of North Carolina - Pembroke, Pembroke, North Carolina, USA
| | - Ben A Bahr
- Biotechnology Research and Training Center, William C. Friday Laboratory, University of North Carolina - Pembroke, Pembroke, North Carolina, USA
| |
Collapse
|
31
|
Post-exposure treatment with the oxime RS194B rapidly reactivates and reverses advanced symptoms of lethal inhaled paraoxon in macaques. Toxicol Lett 2017; 293:229-234. [PMID: 29129799 DOI: 10.1016/j.toxlet.2017.10.025] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 10/18/2017] [Accepted: 10/29/2017] [Indexed: 01/02/2023]
Abstract
Fatalities from organophosphate (OP) insecticide result from both occupational and deliberate exposure; significantly impacting human health. Like nerve agents, insecticides are neurotoxins which target and inhibit acetylcholinesterases (AChE) in central and peripheral synapses in the cholinergic nervous system. Post-exposure therapeutic countermeasures generally include administration of atropine with a pyridinium aldoxime e.g. pralidoxime, to reactivate the OP-inhibited AChE. However, commonly used oximes inefficiently cross the bloodbrain barrier and are rapidly cleared and their benefit is debated. Recent findings have demonstrated the ability of a novel zwitterionic, centrally acting, brain penetrating oxime (RS194B) to reverse severe symptoms and rapidly reactivate sarin-inhibited AChE in macaques, but it has not been tested following OP pesticide poisoning. In the present study, the symptoms following a lethal dose of inhaled paraoxon (100ug/kg), were shown to mimic those in insecticide poisoned individuals and were also rapidly reversed in macaques by post-exposure IM administration of 80mg/kg of RS194B. This occurred with a concomitant reactivation of AChE to 40-100% in<1hr and BChE (40% in 8h). These findings will be used to develop a macaque model with RS194B as a post-exposure treatment for insecticide poisoning and generate efficacy data for approval under the FDA Animal rule.
Collapse
|