1
|
Reza MS, Islam MB, Sharmin S, Mim F, Haque AH, Hossain MS, Juliana FM, Banik S, Uddin KR, Hasan MM, Akter S, Parvin A, Mondal MOA. Isolation, characterization, and analysis of pure compounds from Leea macrophylla leaf extract for antibacterial, antidiabetic, cytotoxicity and phytotoxicity. Biochem Biophys Rep 2024; 40:101841. [PMID: 39582752 PMCID: PMC11584754 DOI: 10.1016/j.bbrep.2024.101841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 09/28/2024] [Accepted: 10/07/2024] [Indexed: 11/26/2024] Open
Abstract
This research aims to isolate, characterize, and analyze pure compounds from Leea macrophylla leaf extract to investigate its antibacterial, antidiabetic, cytotoxic, and phytotoxic effects. Fresh leaves were collected, dried, and subjected to methanol extraction to obtain a crude extract. From the petroleum ether fraction (PEF) of this extract, three fractions-designated LM1, LM2, and LM3-were prepared using column chromatography. The fractions were tried to be characterized in search for single compound by instrumental technique like ATR-FTIR, 1H NMR and 13C NMR but the 1H NMR and 13C NMR spectra were found complex which were difficult to interpret. To dispel the doubt and get clear idea about the structure, GC-MS analysis of the compounds was carried out whose result showed that all the three extracts were decomposed to several small organic compounds that made the structure elucidation difficult. For this complication, the characterization of the extracts was not possible. Numerous compounds were identified in the methanol extract of L. macrophylla through GC-MS analysis. Among these compounds, Benzene, 1,2,3-trimethyl- and Undecane were found in higher percentages in LM1. LM2 contained Azulene and Bicyclo [4.4.1]undeca-1,3,5,7,9-pentaene, while LM3 was characterized by the presence of 9,9-Dimethoxybicyclo [3.3.1]nona-2,4-dione and 11-(2-Cyclopenten-1-yl)undecanoic acid, among others. The antibacterial activity of these fractions was evaluated against various bacterial strains, demonstrating broad-spectrum effectiveness. LM1 fraction showed the highest antibacterial activity against Proteus sp. With zone of inhibition 25 mm and weak activity against S. sonnei with zone of inhibition 5 mm. LM2 showed the highest activity to both E. cocci and P. aeruginosa with the zone of inhibition of 18 mm and comparatively lower but significant against Proteus sp. LM3 was highly active to S. sonnei with zone of inhibition 20 mm and lower but quite significant against Proteus sp. Moreover, the anti-diabetic potential was assessed, with LM1 showing the strongest α-amylase inhibitory activity, outperforming quercetin (standard). The IC50 values of LM1, LM2, LM3, and quercetin were 57.36 μg/mL, 100.66 μg/mL, 164.92 μg/mL, and 97.45 μg/mL, respectively. In addition, cytotoxicity was assessed using a brine shrimp lethality bioassay, and phytotoxicity was evaluated through seed germination and growth assays. The results suggest that L. macrophylla leaf extracts have potential applications in antimicrobial, antidiabetic, and anti-cancer contexts. This comprehensive study bridges gaps in knowledge surrounding L. macrophylla's multifaceted properties, offering insights into its therapeutic and ecological potential for healthcare and environmental management.
Collapse
Affiliation(s)
- Md. Selim Reza
- Department of Biochemistry and Molecular Biology, Jahangirnagar University, Dhaka 1342, Bangladesh
| | - Md. Badrul Islam
- Natural Products Research Division, BCSIR Laboratories Rajshahi, Bangladesh Council of Scientific and Industrial Research, Rajshahi 6205, Bangladesh
| | - Samia Sharmin
- Department of Chemistry, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - Farzana Mim
- Department of Biochemistry and Molecular Biology, Jahangirnagar University, Dhaka 1342, Bangladesh
| | | | - Md. Sabir Hossain
- Department of Biochemistry and Molecular Biology, Jahangirnagar University, Dhaka 1342, Bangladesh
| | - Farha Matin Juliana
- Department of Biochemistry and Molecular Biology, Jahangirnagar University, Dhaka 1342, Bangladesh
| | - Subrata Banik
- Department of Biochemistry and Molecular Biology, Jahangirnagar University, Dhaka 1342, Bangladesh
| | - Kazi Rasel Uddin
- Department of Biochemistry and Molecular Biology, Jahangirnagar University, Dhaka 1342, Bangladesh
| | - Md. Mahmudul Hasan
- Department of Biochemistry and Molecular Biology, Jahangirnagar University, Dhaka 1342, Bangladesh
| | - Salina Akter
- Department of Biochemistry and Molecular Biology, Jahangirnagar University, Dhaka 1342, Bangladesh
| | - Afroza Parvin
- Department of Biochemistry and Molecular Biology, Jahangirnagar University, Dhaka 1342, Bangladesh
| | | |
Collapse
|
2
|
Adamu BF, Gao J, Xiangnan Y, Tan S, Zhao H, Jhatial AK. Rhamnus prinoides leaf extract loaded polycaprolactone-cellulose acetate nanofibrous scaffold as potential wound dressing: An in vitro study. Int J Biol Macromol 2024; 279:134934. [PMID: 39179067 DOI: 10.1016/j.ijbiomac.2024.134934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 08/16/2024] [Accepted: 08/19/2024] [Indexed: 08/26/2024]
Abstract
Rhamnus prinoides leaf contains carbohydrates, saccharides, phenolic acids, and diterpenes with antibacterial, wound-healing, and anti-inflammatory properties. In this study, Rhamnus prinoides leaf extract was successfully incorporated into polycaprolactone-cellulose acetate (PCL-CA) nanofibers through electrospinning technique for the first time. The mats' morphology, diameter, chemical, and crystalline structure were characterized. The study investigated the mats' antibacterial activity, wound healing, cytotoxicity, drug release behaviour, hydrophilicity, and water absorbency properties. The results revealed that the mats exhibited continuous, smooth, without-beads, and interconnected structures, with average fiber diameters ranging from 385 ± 21 nm to 332 ± 74 nm. The antibacterial effeciency was remarkable against S. aureus and E. coli, achieving bacterial reduction percentages exceeding 99 % at concentrations of 3 % and above against S. aureus and 5 % and above against E. coli. Cytotoxic tests showed low-cytotoxicity up to an extract concentration of 7 %. The extract release increases with an increase in concentration. In vitro wound healing assay, the mats enhanced cell migration to the wound area. Additionally, the incorporation of Rhamnus prinoides significantly improved the hydrophilicity and water absorbency of the nanofibers. Overall, the study highlights the mats' broad antimicrobial and wound healing properties with less cytotoxicity, hydrophilicity, and water absorbency, making them promising for use as wound dressings.
Collapse
Affiliation(s)
- Biruk Fentahun Adamu
- Key Laboratory of Textile Science & Technology of Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China; Textile engineering department, Bahir Dar University, Bahir Dar 6000, Ethiopia
| | - Jing Gao
- Key Laboratory of Textile Science & Technology of Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China.
| | - Yuan Xiangnan
- Key Laboratory of Textile Science & Technology of Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China
| | - Shaojie Tan
- Key Laboratory of Textile Science & Technology of Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China
| | - Huihui Zhao
- Key Laboratory of Textile Science & Technology of Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China
| | - Abdul Khalique Jhatial
- Key Laboratory of Textile Science & Technology of Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China; Department of Textile Engineering, Mehran University of Engineering and Technology, Jamshoro, Sindh, Pakistan
| |
Collapse
|
3
|
Jeon S, Youn K, Jun M. Discovery of Kuraridin as a Potential Natural Anti-Melanogenic Agent: Focusing on Specific Target Genes and Multidirectional Signaling Pathways. Int J Mol Sci 2024; 25:11227. [PMID: 39457011 PMCID: PMC11509080 DOI: 10.3390/ijms252011227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/07/2024] [Accepted: 10/13/2024] [Indexed: 10/28/2024] Open
Abstract
Abnormal melanogenesis upon UV exposure causes excessive oxidative stress, leading to hyperpigmentation disorders. As a key rate-limiting enzyme in melanogenesis, tyrosinase is considered a primary target for depigmenting agents. Sophora flavescens is used as a food and in traditional medicine as a valuable source of prenylated flavonoids. The present study aimed to elucidate the anti-melanogenic effect and potential mechanism of kuraridin, one of the major prenylated flavonoids. Kuraridin showed anti-tyrosinase activity with an IC50 value in the nanomolar range, superior to that of kojic acid, a positive control. It significantly reduced tyrosinase activity with the least cytotoxicity, suppressing melanogenesis in α-MSH-induced B16F10 cells. Furthermore, kuraridin considerably reduced melanogenesis in a 3D human skin model. To elucidate the anti-melanogenic mechanism of kuraridin, target genes (KIT, MAP2K1, and PRKCA) and pathways (c-KIT and ETB-R pathways) were identified using network pharmacology. KIT and MAP2K1 are simultaneously involved in the c-KIT cascade and are considered the most important in melanogenesis. PRKCA acts directly on MITF and its downstream enzymes through another pathway. Docking simulation showed strong interactions between kuraridin and c-KIT, ERK1/2, and PKC encoded by target genes. Overall, the present study showed kuraridin to be a novel natural anti-melanogenic agent in hyperpigmentation disorders.
Collapse
Affiliation(s)
- Subin Jeon
- Department of Health Science, The Graduate School, Dong-A University, Nakdong-daero 550 beon-gil, Saha-gu, Busan 49315, Republic of Korea;
| | - Kumju Youn
- Department of Food Science and Nutrition, Dong-A University, Nakdong-daero 550 beon-gil, Saha-gu, Busan 49315, Republic of Korea;
- Center for Food & Bio Innovation, Dong-A University, Nakdong-daero 550 beon-gil, Saha-gu, Busan 49315, Republic of Korea
| | - Mira Jun
- Department of Health Science, The Graduate School, Dong-A University, Nakdong-daero 550 beon-gil, Saha-gu, Busan 49315, Republic of Korea;
- Department of Food Science and Nutrition, Dong-A University, Nakdong-daero 550 beon-gil, Saha-gu, Busan 49315, Republic of Korea;
- Center for Food & Bio Innovation, Dong-A University, Nakdong-daero 550 beon-gil, Saha-gu, Busan 49315, Republic of Korea
| |
Collapse
|
4
|
Adam SA, Barthelomai IS, S SB, Kayali A, Gopal RK. The in vitro and in silico investigations on the α-amylase inhibitor derived from Leptadenia lanceolata (Poir.) Goyder leaf extract. Nat Prod Res 2024:1-11. [PMID: 39397381 DOI: 10.1080/14786419.2024.2413036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 09/10/2024] [Accepted: 09/30/2024] [Indexed: 10/15/2024]
Abstract
An attempt has been made to assess the α-amylase inhibitory activity of a phytochemical compound extracted and purified from the leaf extract of Leptadenia lanceolata. The total yield of the crude leaf extract was 11.42% and among the different solvents involved in this study, hexane and ethyl acetate at 7:3 was effective in the separation of phytochemical compounds. Hexane and ethyl acetate at 25:75% ratios (elution S4) were found greater in inhibiting α-amylase enzyme (83%). The most abundant compound found was Phytol (3,7,11,15-tetramethyl-2-hexadecen-1-ol) and its derivatives. It resulted that the binding energy for acarbose and phytol were -8.1 kcal/mol and -5.9 kcal/mol respectively. However, the binding affinity was greater in the case of acarbose than phytol and the binding sites are different for both the ligands. Therefore, this study adds scientific evidence of the α-amylase inhibitory activity of phytol derived from the leaf extract of L. lanceolata.
Collapse
Affiliation(s)
- Salman Abubakar Adam
- Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Chennai, India
| | - Infant Santhose Barthelomai
- Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Chennai, India
| | - Subhash Bharathi S
- Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Chennai, India
| | - Alaa Kayali
- Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Chennai, India
| | - Rajesh Kanna Gopal
- Department of Microbiology, Centre for Infectious Diseases, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University (Deemed to be University), Chennai, India
| |
Collapse
|
5
|
Roider E, Lakatos AIT, McConnell AM, Wang P, Mueller A, Kawakami A, Tsoi J, Szabolcs BL, Ascsillán AA, Suita Y, Igras V, Lo JA, Hsiao JJ, Lapides R, Pál DMP, Lengyel AS, Navarini A, Okazaki A, Iliopoulos O, Németh I, Graeber TG, Zon L, Giese RW, Kemeny LV, Fisher DE. MITF regulates IDH1, NNT, and a transcriptional program protecting melanoma from reactive oxygen species. Sci Rep 2024; 14:21527. [PMID: 39277608 PMCID: PMC11401838 DOI: 10.1038/s41598-024-72031-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 09/03/2024] [Indexed: 09/17/2024] Open
Abstract
Microphthalmia-associated transcription factor (MITF) is a master regulator of melanocyte function, development and plays a significant role in melanoma pathogenesis. MITF genomic amplification promotes melanoma development, and it can facilitate resistance to multiple therapies. Here, we show that MITF regulates a global antioxidant program that increases survival of melanoma cell lines by protecting the cells from reactive oxygen species (ROS)-induced damage. In addition, this redox program is correlated with MITF expression in human melanoma cell lines and patient-derived melanoma samples. Using a zebrafish melanoma model, we show that MITF decreases ROS-mediated DNA damage in vivo. Some of the MITF target genes involved, such as IDH1 and NNT, are regulated through direct MITF binding to canonical enhancer box (E-BOX) sequences proximal to their promoters. Utilizing functional experiments, we demonstrate the role of MITF and its target genes in reducing cytosolic and mitochondrial ROS. Collectively, our data identify MITF as a significant driver of the cellular antioxidant state.
Collapse
Affiliation(s)
- Elisabeth Roider
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Boston, USA.
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, USA.
- Department of Dermatology, University Hospital of Basel, Basel, Switzerland.
| | - Alexandra I T Lakatos
- HCEMM-SU Translational Dermatology Research Group, Semmelweis University, Budapest, Hungary
- Department of Physiology, Semmelweis University, Budapest, Hungary
- Department of Dermatology, Venereology, and Dermatooncology, Semmelweis University, Budapest, Hungary
| | - Alicia M McConnell
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital and Dana-Farber Cancer Institute, Massachusetts and the Howard Hughes Medical Institute, Boston, USA
| | - Poguang Wang
- Department of Pharmaceutical Sciences, Department of Chemistry and Chemical Biology, and Barnett Institute, Bouve College, Northeastern University, Boston, MA, 02115, USA
| | - Alina Mueller
- Department of Dermatology, University Hospital of Basel, Basel, Switzerland
| | - Akinori Kawakami
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Boston, USA
| | - Jennifer Tsoi
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
- UCLA Metabolomics Center, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Botond L Szabolcs
- HCEMM-SU Translational Dermatology Research Group, Semmelweis University, Budapest, Hungary
- Department of Physiology, Semmelweis University, Budapest, Hungary
- Department of Dermatology, Venereology, and Dermatooncology, Semmelweis University, Budapest, Hungary
| | - Anna A Ascsillán
- HCEMM-SU Translational Dermatology Research Group, Semmelweis University, Budapest, Hungary
- Department of Physiology, Semmelweis University, Budapest, Hungary
- Department of Dermatology, Venereology, and Dermatooncology, Semmelweis University, Budapest, Hungary
| | - Yusuke Suita
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Boston, USA
| | - Vivien Igras
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Boston, USA
| | - Jennifer A Lo
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Boston, USA
| | - Jennifer J Hsiao
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Boston, USA
| | - Rebecca Lapides
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Boston, USA
- Robert Larner, College of Medicine at the University of Vermont, Burlington, USA
| | - Dorottya M P Pál
- HCEMM-SU Translational Dermatology Research Group, Semmelweis University, Budapest, Hungary
- Department of Physiology, Semmelweis University, Budapest, Hungary
- Department of Dermatology, Venereology, and Dermatooncology, Semmelweis University, Budapest, Hungary
| | - Anna S Lengyel
- HCEMM-SU Translational Dermatology Research Group, Semmelweis University, Budapest, Hungary
- Department of Physiology, Semmelweis University, Budapest, Hungary
- Department of Dermatology, Venereology, and Dermatooncology, Semmelweis University, Budapest, Hungary
| | - Alexander Navarini
- Department of Dermatology, University Hospital of Basel, Basel, Switzerland
| | - Arimichi Okazaki
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, USA
| | - Othon Iliopoulos
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, USA
| | - István Németh
- Department of Dermatology and Allergology, University of Szeged, Szeged, Hungary
| | - Thomas G Graeber
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
- UCLA Metabolomics Center, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
- Crump Institute for Molecular Imaging, UCLA, Los Angeles, CA, USA
| | - Leonard Zon
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital and Dana-Farber Cancer Institute, Massachusetts and the Howard Hughes Medical Institute, Boston, USA
| | - Roger W Giese
- Department of Pharmaceutical Sciences, Department of Chemistry and Chemical Biology, and Barnett Institute, Bouve College, Northeastern University, Boston, MA, 02115, USA
| | - Lajos V Kemeny
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Boston, USA.
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, USA.
- HCEMM-SU Translational Dermatology Research Group, Semmelweis University, Budapest, Hungary.
- Department of Physiology, Semmelweis University, Budapest, Hungary.
- Department of Dermatology, Venereology, and Dermatooncology, Semmelweis University, Budapest, Hungary.
| | - David E Fisher
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Boston, USA.
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, USA.
- Lancer Professorship of Dermatology, Harvard Medical School, Boston, USA.
| |
Collapse
|
6
|
Chen Y, Wang Y, He L, Wang L, Zhao J, Yang Z, Li Q, Shi R. Zein/fucoidan-coated phytol nanoliposome: preparation, characterization, physicochemical stability, in vitro release, and antioxidant activity. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:7536-7549. [PMID: 38747177 DOI: 10.1002/jsfa.13575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 04/11/2024] [Accepted: 04/30/2024] [Indexed: 08/07/2024]
Abstract
BACKGROUND To improve phytol bioavailability, a novel method of magnetic stirring and high-pressure homogenization (HPH) combination was used to prepare zein/fucoidan-coated phytol nanoliposomes (P-NL-ZF). The characterization, the simulated in vitro digestion, and the antioxidant activity of these phytol nanoliposomes from the different processes have been studied. RESULTS Based on the results of dynamic light scattering (DLS) and gas chromatography-mass spectrometer (GC-MS) analysis, P-NL-ZF prepared through the combination of magnetic stirring and HPH exhibited superior encapsulation efficiency at 76.19% and demonstrated exceptional physicochemical stability under a series of conditions, including storage, pH, and ionic in comparison to single method. It was further confirmed that P-NL-ZF by magnetic stirring and HPH displayed a uniform distribution and regular shape through transmission electron microscopy (TEM). Fourier-transform infrared (FTIR) spectroscopy and differential scanning calorimetry (DSC) analysis showed that electrostatic interactions and hydrogen bonding were the primary driving forces for the formation of composite nanoliposomes. Additionally, an in vitro digestion study revealed that multilayer composite nanoliposomes displayed significant and favorable slow-release properties (58.21%) under gastrointestinal conditions compared with traditional nanoliposomes (82.36%) and free phytol (89.73%). The assessments of chemical and cell-based antioxidant activities demonstrated that the coating of zein/fucoidan on phytol nanoliposomes resulted in enhanced effectiveness in scavenging activity of ABTS free radical and hydroxyl radical and mitigating oxidative damage to HepG2 cells. CONCLUSION Based on our studies, the promising delivery carrier of zein/fucoidan-coated nanoliposomes is contributed to the encapsulation of hydrophobic natural products and enhancement of their biological activity. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yadan Chen
- Department of Food Science and Technology, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, China
| | - Yanbin Wang
- The Key Laboratory of Biochemical Utilization of Zhejiang Province, Department of Forest Foods, Zhejiang Academy of Forestry, Hangzhou, China
| | - Liang He
- The Key Laboratory of Biochemical Utilization of Zhejiang Province, Department of Forest Foods, Zhejiang Academy of Forestry, Hangzhou, China
| | - Liling Wang
- The Key Laboratory of Biochemical Utilization of Zhejiang Province, Department of Forest Foods, Zhejiang Academy of Forestry, Hangzhou, China
| | - Jianchen Zhao
- The Key Laboratory of Biochemical Utilization of Zhejiang Province, Department of Forest Foods, Zhejiang Academy of Forestry, Hangzhou, China
| | - Zhenya Yang
- The Key Laboratory of Biochemical Utilization of Zhejiang Province, Department of Forest Foods, Zhejiang Academy of Forestry, Hangzhou, China
| | - Qin Li
- The Key Laboratory of Biochemical Utilization of Zhejiang Province, Department of Forest Foods, Zhejiang Academy of Forestry, Hangzhou, China
| | - Rui Shi
- Department of Food Science and Technology, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
7
|
Silva AP, Cordeiro MLDS, Aquino-Martins VGDQ, de Moura Melo LF, Paiva WDS, Naliato GFDS, Theodoro RC, Meneses CHSG, Rocha HAO, Scortecci KC. Prospecting of the Antioxidant Activity from Extracts Obtained from Chañar ( Geoffroea decorticans) Seeds Evaluated In Vitro and In Vivo Using the Tenebrio molitor Model. Nutrients 2024; 16:2813. [PMID: 39275132 PMCID: PMC11396818 DOI: 10.3390/nu16172813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 08/17/2024] [Accepted: 08/19/2024] [Indexed: 09/16/2024] Open
Abstract
Geoffroea decorticans, commonly known as Chañar, is a native Chilean plant widely used in folk medicine for its expectorant, pain relief, and antinociceptive properties. This study explored the antioxidant, cytotoxic, and protective effects of its ethanolic (EE) and aqueous (EA) seed extracts against oxidative stress induced by copper sulfate, using both in vitro and in vivo approaches. Phytochemical analyses revealed the presence of phenolic compounds and flavonoids in the extracts. High-Performance Liquid Chromatography (HPLC) coupled with Gas Chromatography-Mass Spectrometry/Mass Spectrometry (GC-MS/MS) identified significant components such as phytol, alpha-tocopherol, vitexin, and rutin, with the EE being particularly rich in phytol and vitexin. Antioxidant assays-measuring the total antioxidant capacity (TAC), reducing power, DPPH radical scavenging, and copper and iron chelation-confirmed their potent antioxidant capabilities. Both extracts were non-cytotoxic and provided protection against CuSO4-induced oxidative stress in the 3T3 cell line. Additionally, the use of Tenebrio molitor as an invertebrate model underscored the extracts' antioxidant and protective potentials, especially that of the EE. In conclusion, this study highlights the significant antioxidant and protective properties of Chañar seed extracts, particularly the ethanolic extract, in both in vitro and in vivo models.
Collapse
Affiliation(s)
- Ariana Pereira Silva
- Laboratório de Transformação de Plantas e Análise em Microscopia (LTPAM), Departamento de Biologia Celular e Genética, Universidade Federal do Rio Grande do Norte (UFRN), Natal 59078-970, RN, Brazil
- Programa de Pós-Graduação em Bioquímica e Biologia Molecular, Centro de Biociências, Universidade Federal do Rio Grande do Norte (UFRN), Natal 59078-970, RN, Brazil
| | - Maria Lucia da Silva Cordeiro
- Laboratório de Transformação de Plantas e Análise em Microscopia (LTPAM), Departamento de Biologia Celular e Genética, Universidade Federal do Rio Grande do Norte (UFRN), Natal 59078-970, RN, Brazil
- Programa de Pós-Graduação em Bioquímica e Biologia Molecular, Centro de Biociências, Universidade Federal do Rio Grande do Norte (UFRN), Natal 59078-970, RN, Brazil
| | - Verônica Giuliani de Queiroz Aquino-Martins
- Laboratório de Transformação de Plantas e Análise em Microscopia (LTPAM), Departamento de Biologia Celular e Genética, Universidade Federal do Rio Grande do Norte (UFRN), Natal 59078-970, RN, Brazil
- Programa de Pós-Graduação em Bioquímica e Biologia Molecular, Centro de Biociências, Universidade Federal do Rio Grande do Norte (UFRN), Natal 59078-970, RN, Brazil
| | - Luciana Fentanes de Moura Melo
- Laboratório de Transformação de Plantas e Análise em Microscopia (LTPAM), Departamento de Biologia Celular e Genética, Universidade Federal do Rio Grande do Norte (UFRN), Natal 59078-970, RN, Brazil
- Programa de Pós-Graduação em Bioquímica e Biologia Molecular, Centro de Biociências, Universidade Federal do Rio Grande do Norte (UFRN), Natal 59078-970, RN, Brazil
| | - Weslley de Souza Paiva
- Laboratório de Biotecnologia de Polímeros Naturais (BIOPOL), Departamento de Bioquímica, Universidade Federal do Rio Grande do Norte (UFRN), Natal 59078-970, RN, Brazil
| | - Georggia Fatima da Silva Naliato
- Programa de Pós-Graduação em Bioquímica e Biologia Molecular, Centro de Biociências, Universidade Federal do Rio Grande do Norte (UFRN), Natal 59078-970, RN, Brazil
- Instituto de Medicina Tropical, Universidade Federal do Rio Grande do Norte (UFRN), Natal 59077-080, RN, Brazil
| | - Raquel Cordeiro Theodoro
- Programa de Pós-Graduação em Bioquímica e Biologia Molecular, Centro de Biociências, Universidade Federal do Rio Grande do Norte (UFRN), Natal 59078-970, RN, Brazil
- Instituto de Medicina Tropical, Universidade Federal do Rio Grande do Norte (UFRN), Natal 59077-080, RN, Brazil
| | - Carlos Henrique Salvino Gadelha Meneses
- Laboratório de Biotecnologia Vegetal (LBV), Departamento de Biologia, Centro de Ciências Biológicas e da Saúde, Universidade Estadual da Paraiba (UEPB), Campina Grande 58429-500, PB, Brazil
| | - Hugo Alexandre Oliveira Rocha
- Programa de Pós-Graduação em Bioquímica e Biologia Molecular, Centro de Biociências, Universidade Federal do Rio Grande do Norte (UFRN), Natal 59078-970, RN, Brazil
- Laboratório de Biotecnologia de Polímeros Naturais (BIOPOL), Departamento de Bioquímica, Universidade Federal do Rio Grande do Norte (UFRN), Natal 59078-970, RN, Brazil
| | - Katia Castanho Scortecci
- Laboratório de Transformação de Plantas e Análise em Microscopia (LTPAM), Departamento de Biologia Celular e Genética, Universidade Federal do Rio Grande do Norte (UFRN), Natal 59078-970, RN, Brazil
- Programa de Pós-Graduação em Bioquímica e Biologia Molecular, Centro de Biociências, Universidade Federal do Rio Grande do Norte (UFRN), Natal 59078-970, RN, Brazil
| |
Collapse
|
8
|
Ouyang J, Hu N, Wang H. Petanin Potentiated JNK Phosphorylation to Negatively Regulate the ERK/CREB/MITF Signaling Pathway for Anti-Melanogenesis in Zebrafish. Int J Mol Sci 2024; 25:5939. [PMID: 38892131 PMCID: PMC11173099 DOI: 10.3390/ijms25115939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/22/2024] [Accepted: 05/24/2024] [Indexed: 06/21/2024] Open
Abstract
Petanin, an acylated anthocyanin from the Solanaceae family, shows potential in tyrosinase inhibitory activity and anti-melanogenic effects; however, its mechanism remains unclear. Therefore, to investigate the underlying mechanism of petanin's anti-melanogenic effects, the enzyme activity, protein expression and mRNA transcription of melanogenic and related signaling pathways in zebrafish using network pharmacology, molecular docking and molecular dynamics simulation were combined for analysis. The results showed that petanin could inhibit tyrosinase activity and melanogenesis, change the distribution and arrangement of melanocytes and the structure of melanosomes, reduce the activities of catalase (CAT) and peroxidase (POD) and enhance the activity of glutathione reductase (GR). It also up-regulated JNK phosphorylation, inhibited ERK/RSK phosphorylation and down-regulated CREB/MITF-related protein expression and mRNA transcription. These results were consistent with the predictions provided through network pharmacology and molecular docking. Thus, petanin could inhibit the activity of tyrosinase and the expression of tyrosinase by inhibiting and negatively regulating the tyrosinase-related signaling pathway ERK/CREB/MITF through p-JNK. In conclusion, petanin is a good tyrosinase inhibitor and anti-melanin natural compound with significant market prospects in melanogenesis-related diseases and skin whitening cosmetics.
Collapse
Affiliation(s)
- Jian Ouyang
- Qinghai Provincial Key Laboratory of Tibetan Medicine Research and CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Xining 810008, China; (J.O.); (N.H.)
- Huzhou China-Science Innovation Centre of Plateau Biology, Huzhou 313000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Na Hu
- Qinghai Provincial Key Laboratory of Tibetan Medicine Research and CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Xining 810008, China; (J.O.); (N.H.)
| | - Honglun Wang
- Qinghai Provincial Key Laboratory of Tibetan Medicine Research and CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Xining 810008, China; (J.O.); (N.H.)
- Huzhou China-Science Innovation Centre of Plateau Biology, Huzhou 313000, China
| |
Collapse
|
9
|
Duraisamy P, Angusamy A, Ravi S, Krishnan M, Martin LC, Manikandan B, Sundaram J, Ramar M. Phytol from Scoparia dulcis prevents NF-κB-mediated inflammatory responses during macrophage polarization. 3 Biotech 2024; 14:80. [PMID: 38375513 PMCID: PMC10874368 DOI: 10.1007/s13205-024-03924-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 01/07/2024] [Indexed: 02/21/2024] Open
Abstract
Macrophages are primary immune cells that mediate a wide range of inflammatory diseases through their polarization potential. In this study, phytol isolated from Scoparia dulcis has been explored against 7-ketocholesterol and bacterial lipopolysaccharide-induced macrophage polarization in IC-21 cells. Isolated phytol has been characterized using GC-MS, TLC, HPTLC, FTIR, 1H-NMR, and HPLC analyses. The immunomodulatory effects of viable concentrations of phytol were tested on oxidative stress, arginase activity, nuclear and mitochondrial membrane potentials in IC-21 cells in addition to the modulation of calcium and lipids. Further, gene and protein expression of atherogenic markers were studied. Results showed that the isolated phytol at a viable concentration of 400 µg/ml effectively reduced the production of nitric oxide, superoxide anion (ROS generation), calcium and lipid accumulation, stabilized nuclear and mitochondrial membranes, and increased arginase activity. The atherogenic markers including iNOS, COX-2, IL-6, IL-1β, MMP-9, CD36, and NF-κB were significantly downregulated at the levels of gene and protein expression, while macrophage surface and nuclear receptor markers (CD206, CD163, and PPAR-γ) were significantly upregulated by phytol pre-treatment in macrophages. Therefore, the present pharmacognostic study supports the role of phytol isolated from Scoparia dulcis in preventing M2-M1 macrophage polarization under inflammatory conditions, making it a promising compound. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-024-03924-9.
Collapse
Affiliation(s)
| | - Annapoorani Angusamy
- Department of Zoology, University of Madras, Guindy Campus, Chennai, 600025 India
| | - Sangeetha Ravi
- Department of Zoology, University of Madras, Guindy Campus, Chennai, 600025 India
| | - Mahalakshmi Krishnan
- Department of Zoology, University of Madras, Guindy Campus, Chennai, 600025 India
| | | | - Beulaja Manikandan
- Department of Biochemistry, Annai Veilankanni’s College for Women, Chennai, 600015 India
| | - Janarthanan Sundaram
- Department of Zoology, University of Madras, Guindy Campus, Chennai, 600025 India
| | - Manikandan Ramar
- Department of Zoology, University of Madras, Guindy Campus, Chennai, 600025 India
| |
Collapse
|
10
|
Adamu BF, Gao J, Xiangnan Y, Tan S, Song Z, Xuexue X. Analysis and comparison of bioactive phytochemical composition and antibacterial property of two Ethiopian indigenous medicinal plants. Chem Biodivers 2024; 21:e202301546. [PMID: 38105427 DOI: 10.1002/cbdv.202301546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 12/11/2023] [Accepted: 12/17/2023] [Indexed: 12/19/2023]
Abstract
Indigenous medicinal plants with naturally inherited antimicrobial properties are promising sources of antimicrobial agents. Two indigenous Ethiopian traditional medicinal plants (Rhamnus prinoide and Croton macrostachyus) extracted using different solvents and the yield percentage, phytochemical analysis and antimicrobial activity of the plant extracts were examined and compared. The results of this study revealed that Rhamnus prinoide leaf extract using aqueous methanol/ethanol (1 : 1) had the highest yield (15.12 %), a minimum inhibitory concentration of 0.625 mg/mL, and a minimum bactericidal concentration of 10 mg/mL against S. aureus. Croton macrostachyus leaves showed a yield of 14.7 ±0.37 %, a minimum inhibitory concentration of 40 mg/mL, and a minimum bactericidal concentration of 40 mg/mL against S. aureus and E. coli. GC-MS analysis revealed that aqueous methanol/ethanol (1 : 1) of Rhamnus prinoide and Croton macrostachyus leaf extracts were composed of bioactive carbohydrates, flavonoid acid phenols, and terpenoids, while Croton macrostachyus extract contained primarily phytol (30.08 %). The presence of bioactive compounds confirms the traditional use of these plant leaves to treat various diseases, including wounds, leading to the conclusion that they could be applied to textiles for wound dressing in future studies.
Collapse
Affiliation(s)
- Biruk Fentahun Adamu
- Shanghai Frontiers Science Center of Advanced Textiles, College of Textiles, Donghua University, Shanghai, 201620, China
- Textile engineering department, Bahir Dar University, Bahir Dar, 1037, Ethiopia
| | - Jing Gao
- Shanghai Frontiers Science Center of Advanced Textiles, College of Textiles, Donghua University, Shanghai, 201620, China
| | - Yuan Xiangnan
- Shanghai Frontiers Science Center of Advanced Textiles, College of Textiles, Donghua University, Shanghai, 201620, China
| | - Shaojie Tan
- Shanghai Frontiers Science Center of Advanced Textiles, College of Textiles, Donghua University, Shanghai, 201620, China
| | - Ziyu Song
- Shanghai Frontiers Science Center of Advanced Textiles, College of Textiles, Donghua University, Shanghai, 201620, China
| | - Xiang Xuexue
- Shanghai Frontiers Science Center of Advanced Textiles, College of Textiles, Donghua University, Shanghai, 201620, China
| |
Collapse
|
11
|
Hu S, Wang L. The potential role of ubiquitination and deubiquitination in melanogenesis. Exp Dermatol 2023; 32:2062-2071. [PMID: 37846904 DOI: 10.1111/exd.14953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/31/2023] [Accepted: 10/03/2023] [Indexed: 10/18/2023]
Abstract
Melanogenesis is a critical biochemical process in which melanocytes produce melanin, a crucial element involved in the formation of coat colour in mammals. According to several earlier studies, melanocytes' post-translational modifications of proteins primarily control melanogenesis. Among the many post-translational changes that can affect melanin production, ubiquitination and deubiquitination can keep melanin production going by changing how proteins that are related to melanin are broken down or kept stable. Ubiquitination and deubiquitination maintain ubiquitin homeostasis, which is a highly dynamic process in balance under the action of E3 ubiquitin ligase and deubiquitinating enzymes. However, the regulatory mechanisms underlying ubiquitination and deubiquitination in melanogenesis are yet to be thoroughly investigated. As a result, there has been a growing focus on exploring the potential correlation between melanogenesis, ubiquitination and deubiquitination. This study discusses the mechanisms of ubiquitination and deubiquitination in the context of melanogenesis, a crucial process for enhancing mammalian coat coloration and addressing pigment-related diseases.
Collapse
Affiliation(s)
- Shuaishuai Hu
- College of Life Science, Luoyang Normal University, Luoyang, China
| | - Lu Wang
- College of Life Science, Luoyang Normal University, Luoyang, China
| |
Collapse
|
12
|
Mahalapbutr P, Sabuakham S, Nasoontorn S, Rungrotmongkol T, Silsirivanit A, Suriya U. Discovery of amphotericin B, an antifungal drug as tyrosinase inhibitor with potent anti-melanogenic activity. Int J Biol Macromol 2023; 246:125587. [PMID: 37379954 DOI: 10.1016/j.ijbiomac.2023.125587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/05/2023] [Accepted: 06/25/2023] [Indexed: 06/30/2023]
Abstract
Tyrosinase, a rate-limiting enzyme for melanin production, has been the most efficient target for the development of depigmenting agents. Although hydroquinone, kojic acid, and arbutin are the most well-known tyrosinase inhibitors, their adverse effects are inevitable. In the present study, an in silico drug repositioning combined with experimental validation was performed to search for novel potent tyrosinase inhibitors. Docking-based virtual screening results revealed that, among the 3210 FDA-approved drugs available in the ZINC database, amphotericin B, an antifungal drug exhibited the highest binding efficiency against human tyrosinase. Results from tyrosinase inhibition assay demonstrated that amphotericin B could inhibit the activity of mushroom and cellular tyrosinases, especially from MNT-1 human melanoma cells. Molecular modeling results revealed that amphotericin B/human tyrosinase complex exhibited high stability in an aqueous environment. Melanin assay results demonstrated that amphotericin B significantly suppressed melanin production in α-MSH-induced B16F10 murine melanoma and MNT-1 human melanoma cell lines better than the known inhibitor, kojic acid. Mechanistically, amphotericin B treatment significantly activated ERK and Akt signaling pathways, resulting in the decreased expression of MITF and tyrosinase. The obtained results may pursue pre-clinical and clinical studies to examine the possibility of using amphotericin B as an alternative treatment for hyperpigmentation disorders.
Collapse
Affiliation(s)
- Panupong Mahalapbutr
- Department of Biochemistry, Center for Translational Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand.
| | - Sahachai Sabuakham
- Department of Biochemistry, Center for Translational Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Sutita Nasoontorn
- Department of Biochemistry, Center for Translational Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Thanyada Rungrotmongkol
- Program in Bioinformatics and Computational Biology, Graduate School, Chulalongkorn University, Bangkok 10330, Thailand; Center of Excellence in Biocatalyst and Sustainable Biotechnology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Atit Silsirivanit
- Department of Biochemistry, Center for Translational Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Utid Suriya
- Program in Biotechnology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
13
|
Zheng Y, Lee EH, Lee SY, Lee Y, Shin KO, Park K, Kang IJ. Morus alba L. root decreases melanin synthesis via sphingosine-1-phosphate signaling in B16F10 cells. JOURNAL OF ETHNOPHARMACOLOGY 2023; 301:115848. [PMID: 36272492 DOI: 10.1016/j.jep.2022.115848] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/13/2022] [Accepted: 10/15/2022] [Indexed: 06/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Morus alba L. has long been used for beauty in many Asian countries and regions, including anti-aging and hyperpigmentation. AIM OF THE STUDY This study aimed at the inhibitory effect of Morus alba L. root on melanogenesis in B16F10 melanoma cells and the mechanism involved. MATERIALS AND METHODS This study evaluated the anti-melanogenic effect of Morus alba L. root extract (MAR) on B16F10 melanoma cells by assessing cell viability, melanin accumulation, cellular tyrosinase activity, intra/inter-cellular S1P levels, cellular S1P-related metabolic enzyme activity, and western blot analysis. In addition, the potential S1P lyase (S1PL) inhibitory constituents in MAR were identified by LC-MS/MS. RESULTS Without affecting the viability of B16F10 melanoma cells, MAR inhibited intracellular tyrosinase activity in a dose-dependent manner, thereby reducing the accumulation of melanin. MAR also downregulated the expression level of MITF via activating the ERK signaling pathway. Furthermore, MAR increased the intra/inter-cellular S1P by inhibiting S1PL. Several compounds with inhibitory S1PL activity have been identified in MAR, such as mulberroside A and oxyresveratrol. CONCLUSIONS The anti-melanogenic effects of MAR mainly involve promoting MITF degradation mediated via S1P-S1PR3-ERK signaling through increasing cellular S1P levels by inhibiting S1PL activity.
Collapse
Affiliation(s)
- Yulong Zheng
- Department of Food Science and Nutrition & the Korean Institute of Nutrition, Hallym University, Chuncheon, 24252, Republic of Korea
| | - Eun-Hye Lee
- Department of Food Science and Nutrition & the Korean Institute of Nutrition, Hallym University, Chuncheon, 24252, Republic of Korea
| | - So-Yeon Lee
- Department of Food Science and Nutrition & the Korean Institute of Nutrition, Hallym University, Chuncheon, 24252, Republic of Korea
| | - Yeji Lee
- Department of Food Science and Nutrition & the Korean Institute of Nutrition, Hallym University, Chuncheon, 24252, Republic of Korea
| | - Kyong-Oh Shin
- Department of Food Science and Nutrition & the Korean Institute of Nutrition, Hallym University, Chuncheon, 24252, Republic of Korea
| | - Kyungho Park
- Department of Food Science and Nutrition & the Korean Institute of Nutrition, Hallym University, Chuncheon, 24252, Republic of Korea
| | - Il-Jun Kang
- Department of Food Science and Nutrition & the Korean Institute of Nutrition, Hallym University, Chuncheon, 24252, Republic of Korea.
| |
Collapse
|
14
|
Shi J, Guo Y, Wang H, Xiao Y, Liu W, Lyu L. The ubiquitin-proteasome system in melanin metabolism. J Cosmet Dermatol 2022; 21:6661-6668. [PMID: 36207998 DOI: 10.1111/jocd.15433] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/06/2022] [Accepted: 10/03/2022] [Indexed: 01/10/2023]
Abstract
BACKGROUND The ubiquitin-proteasome system (UPS) is a highly conserved way of regulating intracellular protein balance. UPS mediates proteolysis and disruption of variation or misfolding, while finely regulating proteins involved in differentiation and other biological processes. AIMS The aim of this review is to systematically introduce UPS as a key regulator of melanin metabolism. METHODS Systematic search and retrospective review were performed on the published data. RESULTS Melanocyte-inducing transcription factor (MITF) is a substrate of the ubiquitin ligase VCHL1 and acts as a transcription factor to regulate the expression of key enzymes in melanin synthesis such as tyrosinase (TYR). The rate-limiting enzyme TYR is modified by the ubiquitin ligase Hrd1 during melanosynthesis. Melanin itself is also regulated by multiple ubiquitin ligases including Fbp1 and Vhl. By regulating the ubiquitination modification to target each link of melanin synthesis, it plays an important role in correcting the disorder of melanin metabolism. A number of chemical agents have been proven to inhibit the activity of ubiquitin ligase. CONCLUSIONS Drugs targeting E3 ligase and deubiquitinating enzymes have great potential in the treatment of melanin metabolism disorders.
Collapse
Affiliation(s)
- Jingpei Shi
- Yunnan Key Laboratory of Stomatology, Department of Oral and Maxillofacial Surgery, Kunming Medical University School and Hospital of Stomatology, Kunming, China
| | - Yanfang Guo
- Science and Technology Achievement Incubation Center, Kunming Medical University, Kunming, China
| | - Hanying Wang
- Science and Technology Achievement Incubation Center, Kunming Medical University, Kunming, China
| | - Yun Xiao
- Department of Dermatology, The Third Affiliated Hospital of Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Weimin Liu
- Department of Dermatology, the Affiliated Hospital of Yunnan University, Yunnan University, Kunming, China
| | - Lechun Lyu
- Science and Technology Achievement Incubation Center, Kunming Medical University, Kunming, China
| |
Collapse
|
15
|
Fan N, Sun Y, Yan L, Chen W, Wang Y, Wang S, Song Y. Itraconazole-Induced the Activation of Adenosine 5'-Monophosphate (Amp)-Activated Protein Kinase Inhibits Tumor Growth of Melanoma via Inhibiting ERK Signaling. Cell Biochem Biophys 2022; 80:331-340. [PMID: 35094205 DOI: 10.1007/s12013-021-01048-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 11/10/2021] [Indexed: 11/25/2022]
Abstract
Itraconazole, an effective broad-spectrum antifungal drug, has been well established for its anticancer activity in cancers including melanoma. However, details concerning its underlying mechanism in melanoma are unclear. This work investigated the function of itraconazole-induced 5'-monophosphate (AMP)-activated protein kinase alpha (AMPKα) in melanoma progression through ERK signaling. The AMPKα level in melanoma tissues and cells was assessed by RT-qPCR and western blot. Survival analysis of patients with melanoma based on the AMPKα expression level was performed according to TCGA database. Melanoma cell proliferation, migration, and invasion were examined using CCK-8, colony formation, wound healing, and Transwell assays. A xenograft tumor model was established to examine the effect of itraconazole on tumor growth in vivo. The AMPKα mRNA and protein levels were reduced in melanoma tissues and cells. A low expression of AMPKα indicated a poor prognosis. Functionally, itraconazole restrained melanoma cell proliferation, migration, and invasion by upregulating AMPKα. Itraconazole activated AMPK signaling and inhibited ERK signaling in melanoma cells. Activation of ERK signaling reversed the effect of itraconazole on cellular process in melanoma. Moreover, itraconazole-induced AMPKα inhibited melanoma tumor growth in vivo by inhibiting ERK signaling. Itraconazole-induced AMPKα inhibits the progression of melanoma by inhibition of ERK signaling.
Collapse
Affiliation(s)
- Ni Fan
- Department of Dermatology, The Affiliated Zhangjiagang Hospital of Soochow University, Suzhou, 215600, Jiangsu, China
| | - Yueping Sun
- Department of Gynaecology and Obstetrics, The Affiliated Zhangjiagang Hospital of Soochow University, Suzhou, 215600, Jiangsu, China
| | - Lv Yan
- Center of Translational Medicine, The Affiliated Zhangjiagang Hospital of Soochow University, Suzhou, 215600, Jiangsu, China
| | - Weining Chen
- Department of Dermatology, The Affiliated Zhangjiagang Hospital of Soochow University, Suzhou, 215600, Jiangsu, China
| | - Yueping Wang
- Department of Dermatology, The Affiliated Zhangjiagang Hospital of Soochow University, Suzhou, 215600, Jiangsu, China
| | - Shusheng Wang
- Department of General Surgery, The Affiliated Zhangjiagang Hospital of Soochow University, Suzhou, 215600, Jiangsu, China.
| | - Yu Song
- Department of Oncology, The Affiliated Zhangjiagang Hospital of Soochow University, Suzhou, 215600, Jiangsu, China.
| |
Collapse
|
16
|
Lee HJ, An S, Bae S, Lee JH. Diarylpropionitrile inhibits melanogenesis via protein kinase A/cAMP-response element-binding protein/microphthalmia-associated transcription factor signaling pathway in α-MSH-stimulated B16F10 melanoma cells. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2022; 26:113-123. [PMID: 35203061 PMCID: PMC8890945 DOI: 10.4196/kjpp.2022.26.2.113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 01/10/2022] [Accepted: 01/24/2022] [Indexed: 02/06/2023]
Abstract
Diarylpropionitrile (DPN), a selective agonist for estrogen receptor β (ERβ), has been reported to regulate various hormonal responses through activation of ERβ in tissues including the mammary gland and brain. However, the effect of DPN on melanogenesis independent of ERβ has not been studied. The aim of this study is to examine the possibility of anti-melanogenic effect of DPN and its underlying mechanism. Melanin contents and cellular tyrosinase activity assay indicated that DPN inhibited melanin biosynthesis in alpha-melanocyte stimulating hormone-stimulated B16F10 melanoma cell line. However, DPN had no direct influence on in vitro tyrosinase catalytic activity. On the other hand, 17β-estradiol had no effect on inhibition of melanogenesis, suggesting that the DPN-mediated suppression of melanin production was not related with estrogen signaling pathway. Immunoblotting analysis showed that DPN down-regulated the expression of microphthalmia-associated transcription factor (MITF), a central transcription factor of melanogenesis and its down-stream genes including tyrosinase, tyrosinase-related protein (TRP)-1, and TRP-2. Also, DPN attenuated the phosphorylation of protein kinase A (PKA) and cAMP-response element-binding protein (CREB). Additionally, DPN suppressed the melanin synthesis in UVB-irradiated HaCaT conditioned media culture system suggesting that DPN has potential as an anti-melanogenic activity in physiological conditions. Collectively, our data show that DPN inhibits melanogenesis via down-regulation of PKA/CREB/MITF signaling pathway.
Collapse
Affiliation(s)
- Hyun Jeong Lee
- Department of Cosmetics Engineering, Konkuk University, Seoul 05029, Korea
| | - Sungkwan An
- Department of Cosmetics Engineering, Konkuk University, Seoul 05029, Korea
| | - Seunghee Bae
- Department of Cosmetics Engineering, Konkuk University, Seoul 05029, Korea
| | - Jae Ho Lee
- Department of Cosmetics Engineering, Konkuk University, Seoul 05029, Korea
| |
Collapse
|
17
|
Interferences of Waxes on Enzymatic Saccharification and Ethanol Production from Lignocellulose Biomass. Bioengineering (Basel) 2021; 8:bioengineering8110171. [PMID: 34821737 PMCID: PMC8615184 DOI: 10.3390/bioengineering8110171] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 10/26/2021] [Accepted: 10/30/2021] [Indexed: 11/17/2022] Open
Abstract
Wax is an organic compound found on the surface of lignocellulose biomass to protect plants from physical and biological stresses in nature. With its small mass fraction in biomass, wax has been neglected from inclusion in the design of the biorefinery process. This study investigated the interfering effect of wax in three types of lignocellulosic biomass, including rice straw (RS), Napier grass (NG), and sugarcane bagasse (SB). In this study, although small fractions of wax were extracted from RS, NG, and SB at 0.57%, 0.61%, and 1.69%, respectively, dewaxing causes changes in the plant compositions and their functional groups and promotes dissociations of lignocellulose fibrils. Additionally, dewaxing of biomass samples increased reducing sugar by 1.17-, 1.04-, and 1.35-fold in RS, NG, and SB, respectively. The ethanol yield increased by 1.11-, 1.05-, and 1.23-fold after wax removal from RS, NG, and SB, respectively. The chemical composition profiles of the waxes obtained from RS, NG, and SB showed FAME, alcohol, and alkane as the major groups. According to the conversion rate of the dewaxing process and ethanol fermentation, the wax outputs of RS, NG, and SB are 5.64, 17.00, and 6.00 kg/ton, respectively. The current gasoline price is around USD 0.903 per liter, making ethanol more expensive than gasoline. Therefore, in order to reduce the cost of ethanol in the biorefinery industry, other valuable products (such as wax) should be considered for commercialization. The cost of natural wax ranges from USD 2 to 22 per kilogram, depending on the source of the extracted wax. The wax yields obtained from RS, SB, and NG have the potential to increase profits in the biorefining process and could provide an opportunity for application in a wider range of downstream industries than just biofuels.
Collapse
|
18
|
Oxyresveratrol-induced Activation of Nrf2/HO-1 Signaling Pathway Enhances Ability of Resveratrol to Inhibit UVB-induced Melanin. INTERNATIONAL JOURNAL OF DERMATOLOGY AND VENEREOLOGY 2021. [DOI: 10.1097/jd9.0000000000000135] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
19
|
Schindler MSZ, Calisto JFF, Marins K, Regginato A, Mezzomo H, Zanatta AP, Radunz AL, Mariot MP, Dal Magro J, Zanatta L. Characterization of the chemical profile and the effects of ethanolic extracts of Maytenus ilicifolia Mart. ex Reissek on glucose metabolism in normal hyperglycemic rats. JOURNAL OF ETHNOPHARMACOLOGY 2021; 276:114173. [PMID: 33932519 DOI: 10.1016/j.jep.2021.114173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 04/23/2021] [Accepted: 04/25/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Maytenus ilicifolia Mart. ex Reissek, Celastraceae, is popularly known as "espinheira-santa" and used to treat pathologies related to the stomach. However, in popular culture, this species has also been used to treat other disorders such as diabetes, but without scientific evidence, requiring more phytochemical and pharmacological studies on the plant. AIM OF THE STUDY This work aims to investigate the anti-hyperglycemic potential of ethanolic extracts obtained from leaves from two different accessions of Maytenus ilicifolia (MIA and MIB) in normal hyperglycemic rats. MATERIALS AND METHODS The animals were divided into different experimental groups: normal hyperglycemic (negative control); MIA (treatment of Maytenus ilicifolia extract from access 116); MIB (treatment with Maytenus ilicifolia extract from access 122; and glipizide (positive control). At 30 min after treatment, all animals received glucose overload orally. Blood collection occurred at different periods for the assessment of blood glucose (0, 60, 90 and 210 min after treatment) and at the end of the experiment blood was collected through cardiac puncture and the liver, muscle, pancreas and intestine were dissected for further analysis. RESULTS Chromatographic analysis identified oleic and palmitic acid as the most common constituents, and both extracts of Maytenus ilicifolia caused a reduction in blood glucose levels within 60 min after administration of glucose overload when compared to the normal hyperglycemic group. No significant changes were observed in hepatic and muscular glycogen levels, plasma insulin concentration and disaccharidases activity with none of the extracts in the model employed. However, hyperglycemic rats treated with the extracts showed a marked increase in triglyceride and HDL cholesterol levels. CONCLUSIONS Our data suggest that Maytenus ilicifolia extracts from different locations showed differences in chemical composition which did not reflect significant differences in the results of biological tests. In addition, it was possible to conclude that the treatment with Maytenus ilicifolia had a discreet anti-hyperglycemic effect; however, it was not possible to identify the responsible mechanism, being necessary, therefore, new studies using different technologies in order to determine the possible mechanisms of action of the extract.
Collapse
Affiliation(s)
| | | | - Katiuska Marins
- Graduate Program in Environmental Sciences, Community University of the Region of Chapecó - Unochapecó, Brazil.
| | - Alissara Regginato
- Graduate Program in Environmental Sciences, Community University of the Region of Chapecó - Unochapecó, Brazil.
| | - Hemilli Mezzomo
- Pharmacy Course, Community University of Chapecó Region - Unochapecó, Brazil.
| | - Ana Paula Zanatta
- Pharmacy Course, Community University of Chapecó Region - Unochapecó, Brazil.
| | - Andre Luiz Radunz
- Agronomy Course - Federal University of Fronteira Sul (UFFS), Brazil.
| | - Márcio Paim Mariot
- Agronomy Course - Federal Institute of Science and Technology of Rio Grande do Sul (IFSul), Brazil.
| | - Jacir Dal Magro
- Graduate Program in Environmental Sciences, Community University of the Region of Chapecó - Unochapecó, Brazil; Chemical Engineering Course, Community University of Chapecó Region - Unochapecó, Brazil.
| | - Leila Zanatta
- Western Higher Education Center, Santa Catarina State University - UDESC, Brazil.
| |
Collapse
|
20
|
Zhao N, Su X, Li H, Li Z, Wang Y, Chen J, Zhuang W. Schisandrin B inhibits α-melanocyte-stimulating hormone-induced melanogenesis in B16F10 cells via downregulation of MAPK and CREB signaling pathways. Biosci Biotechnol Biochem 2021; 85:834-841. [PMID: 33580697 DOI: 10.1093/bbb/zbaa100] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 12/03/2020] [Indexed: 12/18/2022]
Abstract
Schisandrin B (Sch B), a lignan compound in Schisandra, possesses antioxidant, anti-inflammatory, and antiobesity activities. The effect of Sch B on melanogenesis and molecular mechanisms are still unknown. Therefore, we aimed to investigate the antimelanogenic effects of Sch B on α-melanocyte-stimulating hormone-induced B16F10 cells and elucidate the underlying molecular mechanisms. We found that Sch B significantly suppressed melanin content and mushroom tyrosinase (TYR) activity. Sch B treatment decreased the expression of TYR, melanocyte-inducing transcription factor (MITF), tyrosinase-related protein (TRP) 1, and TRP2. Moreover, Sch B modulated the phosphorylation of p38, extracellular-regulated protein kinase, c-Jun N-terminal kinase, and cAMP-response element binding protein (CREB), implying that these pathways may be involved in suppressing melanogenesis. Furthermore, we found that Sch B decreased melanogenesis by downregulating MITF and melanogenic enzymes via MAPK and CREB pathways. Overall, these findings indicate that Sch B has the potential use in whitening.
Collapse
Affiliation(s)
- Na Zhao
- Department of Molecular Biology Test Technique, College of Medical Technology, Beihua University, Jilin, China
| | - Xiaoming Su
- Department of Molecular Biology Test Technique, College of Medical Technology, Beihua University, Jilin, China
| | - He Li
- Department of Pharmacology, College of Pharmacy, Beihua University, Jilin, China
| | - Zhengyi Li
- Department of Clinical Examination Basis, Laboratory Academy, Jilin Medical University, Jilin, China
| | - Yueyang Wang
- Department of Molecular Biology Test Technique, College of Medical Technology, Beihua University, Jilin, China
| | - Jianguang Chen
- Department of Pharmacology, College of Pharmacy, Beihua University, Jilin, China
| | - Wenyue Zhuang
- Department of Molecular Biology Test Technique, College of Medical Technology, Beihua University, Jilin, China
| |
Collapse
|
21
|
Zhang W, Cao J, Li Z, Li Q, Lai X, Sun L, Chen R, Wen S, Sun S, Lai Z. HS-SPME and GC/MS volatile component analysis of Yinghong No. 9 dark tea during the pile fermentation process. Food Chem 2021; 357:129654. [PMID: 33866239 DOI: 10.1016/j.foodchem.2021.129654] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 03/14/2021] [Accepted: 03/16/2021] [Indexed: 02/06/2023]
Abstract
Each type of tea has a unique volatile profile due to its variety, processing technologies and origin. Using HS-SPME and GC/MS, we analyzed the changes of volatile components in cultivar Yinghong No. 9 during pile-fermentation every 10 days. A total of 94 compounds showed significant differences during a total of 60 days mainly including alkanes, ketones, esters, terpenes, aromatics and heterocyclic compounds. Interestingly, 13 metabolites were progressively reduced during the first 20 days and remained unchanged in subsequent procedures, while 17 metabolites remained unchanged in the early stage and progressively increased during the last 20 days of pile fermentation, indicating that they are characteristic volatile compounds of raw material sun-dried green tea and dark tea, respectively. β-ionone, phenylethyl alcohol, and a-ionone could be the top three contributed aroma compounds in the final dark tea. Our study provides a theoretical basis for process and quality improvement of Yinghong No. 9.
Collapse
Affiliation(s)
- Wenji Zhang
- Tea Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Key Laboratory of Tea Resources Innovation & Utilization, Guangzhou 510640, China
| | - Junxi Cao
- Tea Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Key Laboratory of Tea Resources Innovation & Utilization, Guangzhou 510640, China
| | - Zhigang Li
- Tea Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Key Laboratory of Tea Resources Innovation & Utilization, Guangzhou 510640, China
| | - Qiuhua Li
- Tea Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Key Laboratory of Tea Resources Innovation & Utilization, Guangzhou 510640, China
| | - Xingfei Lai
- Tea Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Key Laboratory of Tea Resources Innovation & Utilization, Guangzhou 510640, China
| | - Lingli Sun
- Tea Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Key Laboratory of Tea Resources Innovation & Utilization, Guangzhou 510640, China
| | - Ruohong Chen
- Tea Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Key Laboratory of Tea Resources Innovation & Utilization, Guangzhou 510640, China
| | - Shuai Wen
- Tea Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Key Laboratory of Tea Resources Innovation & Utilization, Guangzhou 510640, China
| | - Shili Sun
- Tea Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Key Laboratory of Tea Resources Innovation & Utilization, Guangzhou 510640, China.
| | - Zhaoxiang Lai
- Tea Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Key Laboratory of Tea Resources Innovation & Utilization, Guangzhou 510640, China
| |
Collapse
|
22
|
Ma P, He P, Xu CY, Hou BY, Qiang GF, DU GH. Recent developments in natural products for white adipose tissue browning. Chin J Nat Med 2020; 18:803-817. [PMID: 33308601 DOI: 10.1016/s1875-5364(20)60021-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Indexed: 12/29/2022]
Abstract
Excess accumulation of white adipose tissue (WAT) causes obesity which is an imbalance between energy intake and energy expenditure. Obesity is a serious concern because it has been the leading causes of death worldwide, including diabetes, stroke, heart disease and cancer. Therefore, uncovering the mechanism of obesity and discovering anti-obesity drugs are crucial to prevent obesity and its complications. Browning, inducing white adipose tissue to brown or beige (brite) fat which is brown-like fat emerging in WAT, becomes an appealing therapeutic strategy for obesity and metabolic disorders. Due to lack of efficacy or intolerable side-effects, the clinical trials that promote brown adipose tissue (BAT) thermogenesis and browning of WAT have not been successful in humans. Obviously, more specific means still need to be developed to activate browning of white adipose tissue. In this review, we summarized seven kinds of natural products (alkaloids, flavonoids, terpenoids, long chain fatty acids, phenolic acids, else and extract) promoting white adipose tissue browning which can ameliorate the metabolic disorders, including obesity, dislipidemia, insulin resistance and diabetes. Since natural products are important drug sources and the browning property plays a significant role in not only obesity treatment but also in type 2 diabetes (T2DM) improvement, natural products of inducing browning may be an irreplaceable drug discovery orientation for obesity, diabetes and even other metabolic disorders.
Collapse
Affiliation(s)
- Peng Ma
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College and Beijing Key Laboratory of Drug Target and Screening Research, Beijing 100050, China
| | - Ping He
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College and Beijing Key Laboratory of Drug Target and Screening Research, Beijing 100050, China
| | - Chun-Yang Xu
- Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing 100026, China
| | - Bi-Yu Hou
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College and Beijing Key Laboratory of Drug Target and Screening Research, Beijing 100050, China
| | - Gui-Fen Qiang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College and Beijing Key Laboratory of Drug Target and Screening Research, Beijing 100050, China.
| | - Guan-Hua DU
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College and Beijing Key Laboratory of Drug Target and Screening Research, Beijing 100050, China.
| |
Collapse
|
23
|
Sinan KI, Etienne OK, Stefanucci A, Mollica A, Mahomoodally MF, Jugreet S, Rocchetti G, Lucini L, Aktumsek A, Montesano D, Ak G, Zengin G. Chemodiversity and biological activity of essential oils from three species from the
Euphorbia
genus. FLAVOUR FRAG J 2020. [DOI: 10.1002/ffj.3624] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
| | - Ouattara Katinan Etienne
- Laboratoire de Botanique UFR Biosciences Universite Felix Houphouet‐Boigny Abidjan Côte d'Ivoire
| | - Azzurra Stefanucci
- Department of Pharmacy University 'G. d’Annunzio' of Chieti‐Pescara Chieti Italy
| | - Adriano Mollica
- Department of Pharmacy University 'G. d’Annunzio' of Chieti‐Pescara Chieti Italy
| | - Mohamad Fawzi Mahomoodally
- Department of Health Sciences Faculty of Medicines and Health Sciences University of MauritiusRéduit Mauritius
| | - Sharmeen Jugreet
- Department of Health Sciences Faculty of Medicines and Health Sciences University of MauritiusRéduit Mauritius
| | - Gabriele Rocchetti
- Department for Sustainable Food Process Università Cattolica del Sacro Cuore Piacenza Italy
| | - Luigi Lucini
- Department for Sustainable Food Process Università Cattolica del Sacro Cuore Piacenza Italy
| | | | - Domenico Montesano
- Department of Pharmaceutical Sciences Food Science and Nutrition Section University of Perugia Perugia Italy
| | - Gunes Ak
- Department of Biology Science Faculty Selcuk Universtiy Konya Turkey
| | - Gokhan Zengin
- Department of Biology Science Faculty Selcuk Universtiy Konya Turkey
| |
Collapse
|
24
|
Di Martile M, Garzoli S, Ragno R, Del Bufalo D. Essential Oils and Their Main Chemical Components: The Past 20 Years of Preclinical Studies in Melanoma. Cancers (Basel) 2020; 12:cancers12092650. [PMID: 32948083 PMCID: PMC7565555 DOI: 10.3390/cancers12092650] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/07/2020] [Accepted: 09/14/2020] [Indexed: 02/06/2023] Open
Abstract
Simple Summary In the last years, targeted therapy and immunotherapy modified the landscape for metastatic melanoma treatment. These therapeutic approaches led to an impressive improvement in patients overall survival. Unfortunately, the emergence of drug resistance and side effects occurring during therapy strongly limit the long-term efficacy of such treatments. Several preclinical studies demonstrate the efficacy of essential oils as antitumoral agents, and clinical trials support their use to reduce side effects emerging during therapy. In this review we have summarized studies describing the molecular mechanism through which essential oils induce in vitro and in vivo cell death in melanoma models. We also pointed to clinical trials investigating the use of essential oils in reducing the side effects experienced by cancer patients or those undergoing anticancer therapy. From this review emerged that further studies are necessary to validate the effectiveness of essential oils for the management of melanoma. Abstract The last two decades have seen the development of effective therapies, which have saved the lives of a large number of melanoma patients. However, therapeutic options are still limited for patients without BRAF mutations or in relapse from current treatments, and severe side effects often occur during therapy. Thus, additional insights to improve treatment efficacy with the aim to decrease the likelihood of chemoresistance, as well as reducing side effects of current therapies, are required. Natural products offer great opportunities for the discovery of antineoplastic drugs, and still represent a useful source of novel molecules. Among them, essential oils, representing the volatile fraction of aromatic plants, are always being actively investigated by several research groups and show promising biological activities for their use as complementary or alternative medicine for several diseases, including cancer. In this review, we focused on studies reporting the mechanism through which essential oils exert antitumor action in preclinical wild type or mutant BRAF melanoma models. We also discussed the latest use of essential oils in improving cancer patients’ quality of life. As evidenced by the many studies listed in this review, through their effect on apoptosis and tumor progression-associated properties, essential oils can therefore be considered as potential natural pharmaceutical resources for cancer management.
Collapse
Affiliation(s)
- Marta Di Martile
- Preclinical Models and New Therapeutic Agents Unit, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144 Rome, Italy
- Correspondence: (M.D.M.); (D.D.B.); Tel.: +39-0652666891 (M.D.M.); +39-0652662575 (D.D.B.)
| | - Stefania Garzoli
- Department of Chemistry and Technologies of Drugs, Sapienza University, Piazzale Aldo Moro 5, 00185 Rome, Italy; (S.G.); (R.R.)
| | - Rino Ragno
- Department of Chemistry and Technologies of Drugs, Sapienza University, Piazzale Aldo Moro 5, 00185 Rome, Italy; (S.G.); (R.R.)
- Rome Center for Molecular Design, Department of Drug Chemistry and Technology, Sapienza University, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Donatella Del Bufalo
- Preclinical Models and New Therapeutic Agents Unit, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144 Rome, Italy
- Correspondence: (M.D.M.); (D.D.B.); Tel.: +39-0652666891 (M.D.M.); +39-0652662575 (D.D.B.)
| |
Collapse
|
25
|
Zhao N, Su X, Wang Y, Chen J, Zhuang W. Traditional Chinese Herbal Medicine for Whitening. Nat Prod Commun 2020. [DOI: 10.1177/1934578x20905148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Melanin is the chief pigment responsible for the pigmentation of human skin. Increasing evidence indicates that traditional Chinese drugs with skin-whitening effects are attracting the attention of consumers and researchers because they are perceived to be milder, safer, and healthier than synthetic alternatives. This commentary summarizes the current research on Chinese herbal medicines that inhibit melanin and their biological activities. The findings presented in this study suggest that these traditional Chinese herbal medicines might be potential candidates for novel skin-whitening agents.
Collapse
Affiliation(s)
- Na Zhao
- Department of Molecular Biology Test Technique, College of Medical Technology, Beihua University, Jilin, China
| | - Xiaoming Su
- Department of Molecular Biology Test Technique, College of Medical Technology, Beihua University, Jilin, China
| | - Yueyang Wang
- Department of Molecular Biology Test Technique, College of Medical Technology, Beihua University, Jilin, China
| | - Jianguang Chen
- Department of Pharmacology, College of Pharmacy, Beihua University, Jilin, China
| | - Wenyue Zhuang
- Department of Molecular Biology Test Technique, College of Medical Technology, Beihua University, Jilin, China
| |
Collapse
|
26
|
Ko GA, Kang HR, Moon JY, Ediriweera MK, Eum S, Bach TT, Cho SK. Annona squamosa L. leaves inhibit alpha-melanocyte-stimulating hormone (α-MSH) stimulated melanogenesis via p38 signaling pathway in B16F10 melanoma cells. J Cosmet Dermatol 2019; 19:1785-1792. [PMID: 31763737 DOI: 10.1111/jocd.13223] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 10/21/2019] [Accepted: 10/23/2019] [Indexed: 01/26/2023]
Abstract
BACKGROUND Annona squamosa L. is a branched shrub, which is believed to be originated from the America and West Indies. Fruits of this plant are commonly known as custard apple, sugar apple, or sweetsops. A number of studies have proven a range of biological activities associated with various parts of A. squamosa. AIMS The main aim of the present investigation was to evaluate potential inhibitory effects of A. squamosa leaf extract (ALE) on melanogenesis and its underlying mechanisms in B16F10 murine melanoma cells. METHODS Inhibitory effects of A. squamosa leaf extract (ALE) on melanogenesis were primarily assessed by determining melanin contents. Effects of ALE on tyrosinase activity and the expression of proteins associated with melanogenesis were then determined. GC-MS analysis was carried out to identify the phytochemical profile of A. squamosa leaf extract. RESULTS Antimelanogenic effects of ALE were found to exert through the inhibition of melanocyte inducing transcription factor (MITF) and activation of p38. GC-MS analysis identified ent-kaur-16-en-19-ol, 18-oxokauran-17-yl acetate, and β-sitosterol as major phytochemicals. CONCLUSION To our knowledge, this is the first study on the antimelanogenic effects of A. squamosa leaves, rationalizing the use A. squamosa leaf extract as a natural depigmentation agent for the treatment of skin diseases and the development of cosmetic products with enhanced skin-lightening capabilities.
Collapse
Affiliation(s)
- Gyeong-A Ko
- Faculty of Biotechnology, College of Applied Life Sciences, SARI, Jeju National University, Jeju, Korea
| | - Hye Rim Kang
- Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju, Korea
| | - Jeong Yong Moon
- Subtropical/Tropical Organism Gene Bank, Jeju National University, Jeju, Korea
| | | | - Sangmi Eum
- International Biological Material Research Center, Korea Research Institute of Bioscience & Biotechnology, Daejeon, Korea
| | - Tran The Bach
- Institute of Ecology and Biological Resources, Vietnam Academy of Science and Technology (VAST), Ha Noi, Vietnam
| | - Somi Kim Cho
- Faculty of Biotechnology, College of Applied Life Sciences, SARI, Jeju National University, Jeju, Korea.,Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju, Korea.,Subtropical/Tropical Organism Gene Bank, Jeju National University, Jeju, Korea
| |
Collapse
|
27
|
Tobramycin Promotes Melanogenesis by Upregulating p38 MAPK Protein Phosphorylation in B16F10 Melanoma Cells. Antibiotics (Basel) 2019; 8:antibiotics8030140. [PMID: 31491963 PMCID: PMC6783951 DOI: 10.3390/antibiotics8030140] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 08/28/2019] [Accepted: 09/02/2019] [Indexed: 01/27/2023] Open
Abstract
Tobramycin is an aminoglycoside-based natural antibiotic derived from Streptomyces tenebrarius, which is primarily used for Gram-negative bacterial infection treatment. Although tobramycin has been utilized in clinical practice for a long time, it has exhibited several side effects, leading to the introduction of more effective antibiotics. Therefore, we conducted our experiments focusing on new possibilities for the clinical use of tobramycin. How tobramycin affects skin melanin formation is unknown. This study used B16F10 melanoma cells to assess the effect of tobramycin on melanin production. After cytotoxicity was assessed by MTT assay, melanin content and tyrosinase activity analyses revealed that tobramycin induces melanin synthesis in B16F10 cells. Next, Western blot analyses were performed to elucidate the mechanism by which tobramycin increases melanin production; phosphorylated p38 protein expression was upregulated. Protein inhibitors have been used to elucidate the mechanism of tobramycin. Kanamycin A and B are structurally similar to tobramycin, and 2-DOS represents the central structure of these antibiotics. The effects of these substances on melanogenesis were evaluated. Kanamycin A reduced melanin production, whereas kanamycin B and 2-DOS had no effect. Overall, our data indicated that tobramycin increases melanin production by promoting p38 protein phosphorylation in B16F10 melanoma cells.
Collapse
|
28
|
Islam MT, Ali ES, Uddin SJ, Shaw S, Islam MA, Ahmed MI, Chandra Shill M, Karmakar UK, Yarla NS, Khan IN, Billah MM, Pieczynska MD, Zengin G, Malainer C, Nicoletti F, Gulei D, Berindan-Neagoe I, Apostolov A, Banach M, Yeung AW, El-Demerdash A, Xiao J, Dey P, Yele S, Jóźwik A, Strzałkowska N, Marchewka J, Rengasamy KR, Horbańczuk J, Kamal MA, Mubarak MS, Mishra SK, Shilpi JA, Atanasov AG. Phytol: A review of biomedical activities. Food Chem Toxicol 2018; 121:82-94. [PMID: 30130593 DOI: 10.1016/j.fct.2018.08.032] [Citation(s) in RCA: 141] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 08/14/2018] [Accepted: 08/18/2018] [Indexed: 02/08/2023]
|
29
|
Ko HN, Kim JE, Jo YJ, Hong SH, Yang DW, Kim GO, Lee NH. Antimelanogenic Effects ofRaphanus sativusL. var.nigerRoots on α-MSH Stimulated B16F10 Melanoma Cells. B KOREAN CHEM SOC 2018. [DOI: 10.1002/bkcs.11583] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Ha Na Ko
- Department of Chemistry and Cosmetics; Jeju National University; Jeju 63243 Korea
| | - Jung Eun Kim
- Department of Chemistry and Cosmetics; Jeju National University; Jeju 63243 Korea
| | - Yeon Jeong Jo
- Department of Chemistry and Cosmetics; Jeju National University; Jeju 63243 Korea
| | - Seung Hyun Hong
- Biodiversity Research Institute; Jeju Technopark; Jeju 63608 Korea
| | - Da Wun Yang
- Biodiversity Research Institute; Jeju Technopark; Jeju 63608 Korea
| | - Gi Ok Kim
- Biodiversity Research Institute; Jeju Technopark; Jeju 63608 Korea
| | - Nam Ho Lee
- Department of Chemistry and Cosmetics; Jeju National University; Jeju 63243 Korea
| |
Collapse
|