1
|
Bashir MA, Abdalla M, Shao CS, Wang H, Bondzie-Quaye P, Almahi WA, Swallah MS, Huang Q. Dual inhibitory potential of ganoderic acid A on GLUT1/3: computational and in vitro insights into targeting glucose metabolism in human lung cancer. RSC Adv 2024; 14:28569-28584. [PMID: 39247503 PMCID: PMC11378701 DOI: 10.1039/d4ra04454a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 08/07/2024] [Indexed: 09/10/2024] Open
Abstract
Human glucose transporters (GLUTs) facilitate the uptake of hexoses into cells. In cancer, the increased proliferation necessitates higher expression of GLUTs, with particular emphasis on GLUT1 and GLUT3. Thus, inhibiting GLUTs holds promise as an anticancer therapy by starving these cells of fuel. Ganoderic acid A (GAA), a triterpene found in Ganoderma lucidum, has anticancer and antidiabetic properties. Recent studies show that GAA reduces glucose uptake in cancer cells, which indicates that GAA may affect GLUT1/GLUT3 by inhibiting glucose uptake. Therefore, this study aimed to inspect whether GAA could target GLUT1/GLUT3 and play an inhibitory role in changing their endofacial and exofacial conformations. To this end, AlphaFold2 was employed to model the endofacial and exofacial conformations of GLUT3 and GLUT1, respectively. Molecular docking, molecular dynamics simulation, cell viability, cellular thermal shift assays (CETSA), glucose uptake, qPCR, and western blotting were harnessed. In comparison to the endofacial (cytochalasin B) and exofacial (phloretin) GLUT1/3 inhibitors, the computational findings unveiled GAA's capacity to bind and stabilize GLUT1/3 in their two conformational states, with a preference for binding the endofacial conformation. A low, non-cytotoxic dose of GAA thermally stabilized both transporters and inhibited glucose uptake in human lung cancer cells, similar to cytochalasin B and phloretin. In conclusion, this study has unearthed novel functionalities of GAA, suggesting its potential utility in cancer therapy by targeting glucose metabolism.
Collapse
Affiliation(s)
- Mona Alrasheed Bashir
- CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences Hefei 230031 China
- Science Island Branch of Graduate School, University of Science and Technology of China Hefei 230026 China
- Department of Biotechnology, Faculty of Science and Technology, Omdurman Islamic University P.O. Box 382 Omdurman Sudan
| | - Mohnad Abdalla
- Pediatric Research Institute, Children's Hospital Affiliated to Shandong University Jinan Shandong 250022 China
- Shandong Provincial Clinical Research Center for Children's Health and Disease Jinan Shandong 250022 China
| | - Chang-Sheng Shao
- CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences Hefei 230031 China
- Science Island Branch of Graduate School, University of Science and Technology of China Hefei 230026 China
| | - Han Wang
- CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences Hefei 230031 China
- Science Island Branch of Graduate School, University of Science and Technology of China Hefei 230026 China
| | - Precious Bondzie-Quaye
- CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences Hefei 230031 China
- Science Island Branch of Graduate School, University of Science and Technology of China Hefei 230026 China
| | - Waleed Abdelbagi Almahi
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences Hefei 230031 China
| | - Mohammed Sharif Swallah
- CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences Hefei 230031 China
- Science Island Branch of Graduate School, University of Science and Technology of China Hefei 230026 China
| | - Qing Huang
- CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences Hefei 230031 China
- Science Island Branch of Graduate School, University of Science and Technology of China Hefei 230026 China
| |
Collapse
|
2
|
Du Y, Tian L, Wang Y, Li Z, Xu Z. Chemodiversity, pharmacological activity, and biosynthesis of specialized metabolites from medicinal model fungi Ganoderma lucidum. Chin Med 2024; 19:51. [PMID: 38519991 PMCID: PMC10958966 DOI: 10.1186/s13020-024-00922-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 03/12/2024] [Indexed: 03/25/2024] Open
Abstract
Ganoderma lucidum is a precious fungus, particularly valued for its dual use as both medicine and food. Ganoderic acids (GAs), the distinctive triterpenoids found in the Ganoderma genus, exhibit a wide range of pharmacological activities. However, the limited resources of GAs restrict their clinic usage and drug discovery. In this review, we presented a comprehensive summary focusing on the diverse structures and pharmacological activity of GAs in G. lucidum. Additionally, we discussed the latest advancements in the elucidation of GA biosynthesis, as well as the progress in heterosynthesis and liquid fermentation methods aimed at further increasing GA production. Furthermore, we summarized the omics data, genetic transformation system, and cultivation techniques of G. lucidum, described as medicinal model fungi. The understanding of Ganoderic acids chemodiversity and biosynthesis in medicinal model fungi Ganoderma lucidum will provide important insights into the exploration and utilization of natural products in medicinal fungi.
Collapse
Affiliation(s)
- Yupeng Du
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, 150040, China
- College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Lixia Tian
- School of Pharmaceutical Sciences, Guizhou University, Guiyang, 550025, China
| | - Yu Wang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China.
| | - Zhenhao Li
- ShouXianGu Botanical Drug Institute, Hangzhou, 311100, China.
| | - Zhichao Xu
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, 150040, China.
- College of Life Science, Northeast Forestry University, Harbin, 150040, China.
| |
Collapse
|
3
|
Huang L, Tan L, Lv Z, Chen W, Wu J. Pharmacology of bioactive compounds from plant extracts for improving non-alcoholic fatty liver disease through endoplasmic reticulum stress modulation: A comprehensive review. Heliyon 2024; 10:e25053. [PMID: 38322838 PMCID: PMC10844061 DOI: 10.1016/j.heliyon.2024.e25053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/18/2024] [Accepted: 01/18/2024] [Indexed: 02/08/2024] Open
Abstract
Background Non-alcoholic fatty liver disease (NAFLD) is a prevalent chronic liver condition with significant clinical implications. Emerging research indicates endoplasmic reticulum (ER) stress as a critical pathogenic factor governing inflammatory responses, lipid metabolism and insulin signal transduction in patients with NAFLD. ER stress-associated activation of multiple signal transduction pathways, including the unfolded protein response, disrupts lipid homeostasis and substantially contributes to NAFLD development and progression. Targeting ER stress for liver function enhancement presents an innovative therapeutic strategy. Notably, the natural bioactive compounds of plant extracts have shown potential for treating NAFLD by reducing the level of ER stress marker proteins and mitigating inflammation, stress responses, and de novo lipogenesis. However, owing to limited comprehensive reviews, the effectiveness and pharmacology of these bioactive compounds remain uncertain. Objectives To address the abovementioned challenges, the current review categorizes the bioactive compounds of plant extracts by chemical structures and properties into flavonoids, phenols, terpenoids, glycosides, lipids and quinones and examines their ameliorative potential for NAFLD under ER stress. Methods This review systematically analyses the literature on the interactions of bioactive compounds from plant extracts with molecular targets under ER stress, providing a holistic view of NAFLD therapy. Results Bioactive compounds from plant extracts may improve NAFLD by alleviating ER stress; reducing lipid synthesis, inflammation, oxidative stress and apoptosis and enhancing fatty acid metabolism. This provides a multifaceted approach for treating NAFLD. Conclusion This review underscores the role of ER stress in NAFLD and the potential of plant bioactive compounds in treating this condition. The molecular mechanisms by which plant bioactive compounds interact with their ER stress targets provide a basis for further exploration in NAFLD management.
Collapse
Affiliation(s)
- Liying Huang
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Yunnan, Kunming, China
- Key Laboratory of Microcosmic Syndrome Differentiation, Yunnan University of Chinese Medicine, Yunnan, Kunming, China
| | - Liping Tan
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Yunnan, Kunming, China
- Key Laboratory of Microcosmic Syndrome Differentiation, Yunnan University of Chinese Medicine, Yunnan, Kunming, China
| | - Zhuo Lv
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Yunnan, Kunming, China
- Key Laboratory of Microcosmic Syndrome Differentiation, Yunnan University of Chinese Medicine, Yunnan, Kunming, China
| | - Wenhui Chen
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Yunnan, Kunming, China
- Key Laboratory of Microcosmic Syndrome Differentiation, Yunnan University of Chinese Medicine, Yunnan, Kunming, China
| | - Junzi Wu
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Yunnan, Kunming, China
- Key Laboratory of Microcosmic Syndrome Differentiation, Yunnan University of Chinese Medicine, Yunnan, Kunming, China
| |
Collapse
|
4
|
Cheng M, Zhang L, Wang J, Sun X, Qi Y, Chen L, Han C. The Artist's Conk Medicinal Mushroom Ganoderma applanatum (Agaricomycetes): Mycological, Mycochemical, and Pharmacological Properties: A Review. Int J Med Mushrooms 2024; 26:13-66. [PMID: 38884263 DOI: 10.1615/intjmedmushrooms.2024053900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
As a commonly used Chinese herbal medicine, Ganoderma applanatum (Pers.) Pat., also known as flat-ling Ganoderma (Chinese name bianlingzhi), old mother fungus (laomujun), and old ox liver (laoniugan), has high medicinal value. It is used as an anti-cancer drug in China and Japan. Besides, it can treat rheumatic tuberculosis and has the effect of relieving pain, clearing away heat, eliminating accumulation, stopping bleeding and eliminating phlegm. The purpose of this review is to analyze the research progress systematically and comprehensively in mycology, mycochemistry and pharmacological activities of G. applanatum, and discuss the prospect of prospective research and implementation of this medicinal material. A comprehensive literature search was performed on G. applanatum using scientific databases including Web of Science, PubMed, Google Scholar, CNKI, Elsevier. Collected data from different sources was comprehensively summarized for mycology, mycochemistry and pharmacology of G. applanatum. A total of 324 compounds were recorded, the main components of which were triterpenoids, meroterpenoids, steroids, and polysaccharides. G. applanatum and its active ingredients have a variety of pharmacological effects, including anti-tumor, liver protection, hypoglycemic, anti-fat, anti-oxidation, antibacterial and other activities. Although G. applanatum is widely used in traditional medicine and has diverse chemical constituents, more studies should be carried out in animals and humans to evaluate the cellular and molecular mechanisms involved in its biological activity.
Collapse
Affiliation(s)
- Mengtao Cheng
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, P.R. China
| | - Liying Zhang
- Pharmacy Intravenous Admixture Services, Jinan Zhangqiu District Hospital of TCM, Jinan, 250299, People's Republic of China
| | - Jing Wang
- Research and Development Center, Shandong Phoenix Biotechnology Co. Ltd., Taian, Shandong, 271000, P.R. China
| | - Xiaomei Sun
- Shandong University of Traditional Chinese Medicine
| | - Yitong Qi
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, P.R. China
| | - Lijing Chen
- Department of Pharmacy, The Second Affiliated Hospital of Shandong University of TCM, Jinan 250000, P.R. China
| | - Chunchao Han
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, People's Republic of China; Shandong Provincial Collaborative Innovation Center for Quality Control and Construction of the Whole Industrial Chain of Traditional Chinese Medicine, Jinan, Shandong, 250355, People's Republic of China
| |
Collapse
|
5
|
Shi L, Hu M, Lai W, Yi W, Liu Z, Sun H, Li F, Yan S. Detection of genomic variations and selection signatures in Wagyu using whole-genome sequencing data. Anim Genet 2023; 54:808-812. [PMID: 37792466 DOI: 10.1111/age.13364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/28/2023] [Accepted: 09/21/2023] [Indexed: 10/05/2023]
Abstract
Wagyu is recognized for producing marbled beef with high nutritional value and flavor. Reportedly, Wagyu has been widely used to improve the meat quality of local breeds around the world. However, studies on the genetic mechanism of meat quality in Wagyu at the whole-genome level are rarely reported. Here, whole-genome sequencing data of 11 Wagyu and 115 other individuals were used to explore the genomic variations and genes under selection pressure in Wagyu. A total of 31 349 non-synonymous variants and 53 102 synonymous variants were identified in Wagyu. The population structure analysis showed that Wagyu had the closest genetic relationship with Mishima-Ushi cattle and was apparently separated from other cattle breeds. Then, composite likelihood ratio (CLR), integrated haplotype score, fixation index and cross-population composite likelihood ratio (XP-CLR) tests were performed to identify the candidate genes under positive selection in Wagyu. In total, 770 regions containing 312 genes were identified by at least three methods. Among them, 97 regions containing 27 genes were detected by all four methods. We specifically illustrate a list of interesting genes, including LRP2BP, GAA, CACNG6, CXADR, GPCPD1, KLF2, KLF13, SOX5, MYBPC1, SLC25A10, ATP8A1 and MYH15, which are associated with lipid metabolism, fat deposition, muscle development, bone development, feed intake and growth traits in Wagyu. This is the first study to explore the genomic variations and selection signatures of Wagyu at the whole-genome level. These results will provide significant help to beef cattle improvement and breeding.
Collapse
Affiliation(s)
- Lulu Shi
- College of Animal Science, Jilin University, Changchun, China
| | - Mingyue Hu
- College of Animal Science, Jilin University, Changchun, China
| | - Weining Lai
- College of Animal Science, Jilin University, Changchun, China
| | - Wenfeng Yi
- College of Animal Science, Jilin University, Changchun, China
| | - Zhengxi Liu
- College of Animal Science, Jilin University, Changchun, China
| | - Hao Sun
- College of Animal Science, Jilin University, Changchun, China
| | - Feng Li
- Shandong Binzhou Animal Science and Veterinary Medicine Academy, Binzhou, China
| | - Shouqing Yan
- College of Animal Science, Jilin University, Changchun, China
| |
Collapse
|
6
|
Jia Y, Li Y, Shang H, Luo Y, Tian Y. Ganoderic Acid A and Its Amide Derivatives as Potential Anti-Cancer Agents by Regulating the p53-MDM2 Pathway: Synthesis and Biological Evaluation. Molecules 2023; 28:molecules28052374. [PMID: 36903622 PMCID: PMC10004777 DOI: 10.3390/molecules28052374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/01/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
The mechanisms of action of natural products and the identification of their targets have long been a research hotspot. Ganoderic acid A (GAA) is the earliest and most abundant triterpenoids discovered in Ganoderma lucidum. The multi-therapeutic potential of GAA, in particular its anti-tumor activity, has been extensively studied. However, the unknown targets and associated pathways of GAA, together with its low activity, limit in-depth research compared to other small molecule anti-cancer drugs. In this study, GAA was modified at the carboxyl group to synthesize a series of amide compounds, and the in vitro anti-tumor activities of the derivatives were investigated. Finally, compound A2 was selected to study its mechanism of action because of its high activity in three different types of tumor cell lines and low toxicity to normal cells. The results showed that A2 could induce apoptosis by regulating the p53 signaling pathway and may be involved in inhibiting the interaction of MDM2 and p53 by binding to MDM2 (KD = 1.68 µM). This study provides some inspiration for the research into the anti-tumor targets and mechanisms of GAA and its derivatives, as well as for the discovery of active candidates based on this series.
Collapse
|
7
|
Sułkowska-Ziaja K, Galanty A, Szewczyk A, Paśko P, Kała K, Apola A, Podolak I, Muszyńska B. Effect of Methyl Jasmonate Elicitation on Triterpene Production and Evaluation of Cytotoxic Activity of Mycelial Culture Extracts of Ganoderma applanatum (Pers.) Pat. PLANTS (BASEL, SWITZERLAND) 2023; 12:294. [PMID: 36679006 PMCID: PMC9867392 DOI: 10.3390/plants12020294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 12/28/2022] [Accepted: 01/06/2023] [Indexed: 06/17/2023]
Abstract
Abiotic elicitation, a well-known strategy in mushroom biotechnology, promotes increased accumulation of secondary metabolites in mycelial cultures. The study aimed the effects of methyl jasmonate (MeJA) on the production of triterpenes in submerged cultures of Ganoderma applanatum. Further, the study evaluated the cytotoxic activity of the extract corresponding to the optimal elicitation variant in selected human cancer cell lines as well as the selectivity against normal cells. MeJA was added on days 1, 4, 6, and 8 in the 10-day growth cycle at concentrations of 10, 50, 100, 150, and 200 µM MeJA. The HPLC-DAD was used to analyze the triterpenes. The cytotoxic activity was tested using the MTTFc assay in grouped panels of skin, prostate, and gastrointestinal cancer cells. The results of the quantitative analyses confirmed the stimulating effect of MeJA on the production of ganoderic acid A and ganoderic acid C. The greatest increase in total triterpenes was found on day 6 of the culture cycle compared to the control group-with the concentration of MeJA-150 µM. Compared to the control samples, mycelial culture extract after the most productive elicitation variant showed significant cytotoxic activity against prostate cancer cells and moderate effects on melanoma cells. Ganoderma applanatum mycelial cultures can be proposed as a model to study the dynamics of the accumulation of compounds with therapeutic values through abiotic elicitation.
Collapse
Affiliation(s)
- Katarzyna Sułkowska-Ziaja
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Agnieszka Galanty
- Department of Pharmacognosy, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Agnieszka Szewczyk
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Paweł Paśko
- Department of Food Chemistry and Nutrition, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Katarzyna Kała
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Anna Apola
- Department of Inorganic and Analytical Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Irma Podolak
- Department of Pharmacognosy, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Bożena Muszyńska
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| |
Collapse
|
8
|
Huang JH, Li Y, Zhang S, Zou Y, Zheng QW, Lin JF, Guo LQ. Amelioration effect of water extract from Ganoderma resinaceum FQ23 solid-state fermentation fungal substance with high-yield ergothioneine on anxiety-like insomnia mice. Food Funct 2022; 13:12925-12937. [PMID: 36445290 DOI: 10.1039/d2fo01847k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Herein, a solid-state fermentation (SSF) system of Ganoderma resinaceum FQ23 with high-yield ergothioneine (EGT) was established, and the amelioration effect of the water extract from its fungal substance on anxiety-like insomnia mice was studied. The content of EGT in the G. resinaceum FQ23 SSF fungal substance increased to 1.146 ± 0.066 mg g-1 DW in the optimization tests. Besides EGT, the common functional components of the water extract from the G. resinaceum FQ23 SSF fungal substance (GSW) were determined, including triterpenoids, polysaccharides, phenols, proteins and amino acids. The animal experiments showed that GSW could alleviate the anxiety-like behavior, improve the antioxidant capacity and protect the organ structure of the anxiety-like insomnia mice. With an increase in the dose of GSW given to the anxiety-like insomnia mice, their serum 5-HT and GABA levels increased, HPA axis hormone levels significantly decreased, BDNF level notably increased, and the response level of the BDNF/CREB signaling pathway was significantly enhanced, indicating that GSW may improve neuroendocrine regulation and neuroprotection in anxiety-like insomnia mice. A 30-times dose of GSW had no acute toxicity in the normal mice. Therefore, the SSF fungal substance of G. resinaceum FQ23 is a potential dietary source for improving sleep. It can be used as a solid drink to help people who are poor sleepers and as a substitute for tea or coffee to help people who are like to drink tea or coffee and cannot sleep.
Collapse
Affiliation(s)
- Jia-Hua Huang
- College of Food Science & Institute of Food Biotechnology, South China Agricultural University, Guangzhou 510640, China. .,Guangzhou Alchemy Biotechnology Co., Guangzhou 510760, China
| | - Yong Li
- College of Food Science & Institute of Food Biotechnology, South China Agricultural University, Guangzhou 510640, China. .,Guangzhou Alchemy Biotechnology Co., Guangzhou 510760, China
| | - Shan Zhang
- College of Food Science & Institute of Food Biotechnology, South China Agricultural University, Guangzhou 510640, China. .,Guangzhou Alchemy Biotechnology Co., Guangzhou 510760, China
| | - Yuan Zou
- College of Food Science & Institute of Food Biotechnology, South China Agricultural University, Guangzhou 510640, China. .,Guangzhou Alchemy Biotechnology Co., Guangzhou 510760, China
| | - Qian-Wang Zheng
- College of Food Science & Institute of Food Biotechnology, South China Agricultural University, Guangzhou 510640, China. .,Guangzhou Alchemy Biotechnology Co., Guangzhou 510760, China
| | - Jun-Fang Lin
- College of Food Science & Institute of Food Biotechnology, South China Agricultural University, Guangzhou 510640, China. .,Guangzhou Alchemy Biotechnology Co., Guangzhou 510760, China
| | - Li-Qiong Guo
- College of Food Science & Institute of Food Biotechnology, South China Agricultural University, Guangzhou 510640, China. .,Guangzhou Alchemy Biotechnology Co., Guangzhou 510760, China
| |
Collapse
|
9
|
Wang J, Wu B, Zhu Y, Jin G, Fan X. Ganoderic Acid A Inhibits High Glucose-Induced Oxidative Stress and Extracellular Matrix Accumulation in Rat Glomerular Mesangial Cells. DISEASE MARKERS 2022; 2022:5249910. [PMID: 36277981 PMCID: PMC9584714 DOI: 10.1155/2022/5249910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/29/2022] [Accepted: 08/30/2022] [Indexed: 11/17/2022]
Abstract
Objective We aimed to investigate the role of ganoderic acid A (GAA) in glomerular mesangial cells (GMCs) under high glucose (HG). Methods GMCs were pretreated with GAA and then cultured under HG condition for 24 h. Cell proliferation was measured by CCK-8 assay. The production of intracellular ROS was determined using DCFH-DA. The activities of SOD and CAT were measured using ELISA kits. The expressions of NOX2, NOX4, fibronectin (FN), collagen IV (col IV), p38, and p-p38 were detected by western blot. Results GAA suppressed GMC proliferation in response to HG stimulation. GAA significantly attenuated HG-caused increase in ROS production and decreases in SOD and CAT activities in GMCs. In addition, the increased expressions of NOX2 and NOX4 and NOX activity in HG-induced GMCs were significantly decreased by GAA. Furthermore, GAA greatly inhibited the levels of FN and col IV in HG-stimulated GMCs. Mechanistic investigations showed that HG caused activation of p38 MAPK pathway, whereas the induction was mitigated by GAA. Notably, the specific agonist of p38 MAPK pathway (P79350) reversed the effects of GAA on GMCs. Conclusion GAA protected GMCs from HG-induced oxidative stress and ECM production, which was mediated by the inhibition of the p38 MAPK pathway.
Collapse
Affiliation(s)
- Jing Wang
- Center of Kidney Dialysis, The Shaanxi Provincial People's Hospital, Xi'an 710068, China
| | - Bing Wu
- Center of Kidney Dialysis, The Shaanxi Provincial People's Hospital, Xi'an 710068, China
| | - Yanting Zhu
- Center of Kidney Dialysis, The Shaanxi Provincial People's Hospital, Xi'an 710068, China
| | - Gang Jin
- Center of Kidney Dialysis, The Shaanxi Provincial People's Hospital, Xi'an 710068, China
| | - Xiaobao Fan
- Center of Kidney Dialysis, The Shaanxi Provincial People's Hospital, Xi'an 710068, China
| |
Collapse
|
10
|
Investigation into Antiepileptic Effect of Ganoderic Acid A and Its Mechanism in Seizure Rats Induced by Pentylenetetrazole. BIOMED RESEARCH INTERNATIONAL 2022; 2022:5940372. [PMID: 36093409 PMCID: PMC9458365 DOI: 10.1155/2022/5940372] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 06/07/2022] [Accepted: 06/14/2022] [Indexed: 11/24/2022]
Abstract
Ganoderic acid A (GAA) exhibited neuron protection in in vitro epilepsy study, but no study has been done in vivo. Rats were administered (i.p.) pentylenetetrazole daily for 28 days to induce seizure. Rats with grade II or above of epileptic score were divided into three groups and given placebo, sodium valproate, or GAA treatment, respectively, for 7 days. The electrical signals of brain were monitored with electroencephalography (EGG); epileptic behavior was assessed using the Racine scale; morphological changes and apoptosis rate of cortical neurons were assessed with H&E staining and TUNEL staining, respectively. Protein expression of calcium-sensing receptor, p-ERK, p-JNK, and p-p38 in hippocampal tissue and Bcl-2, cleaved caspase-3, and Bax in cortical tissues was observed by Western blot and immunohistochemistry assay, respectively. After GAA treatment, apparent seizure-like EEG with significant arrhythmic disorder and spike waves was reduced or disappeared, and wave amplitude of EEG was reduced significantly. GAA showed similar effect with sodium valproate treatments on epilepsy. There were an apparent improvement of the epileptic behavior and a significant increase in the epileptic latency and shortening of the epileptic duration in the treatment group compared to control. GAA treatment ameliorated the nuclear pyknosis of neurons which appeared seriously in the epilepsy group. GAA treatment significantly reduced the cortical neuron apoptosis of epilepsy and the expression of calcium-sensing receptor, p-P38, p-JNK, cleaved caspase-3, and Bax but increased the expression of both p-ERK and Bcl-2. In conclusion, GAA treatment showed strong antiepileptic effect by decreasing apoptosis in cortical neuron and the expression of calcium-sensing receptor and stimulating the MAPK pathway.
Collapse
|
11
|
Ganoderma lucidum protease hydrolyzate on lipid metabolism and gut microbiota in high-fat diet fed rats. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2021.101460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
12
|
Chang YH, Hung HY. Recent advances in natural anti-obesity compounds and derivatives based on in vivo evidence: A mini-review. Eur J Med Chem 2022; 237:114405. [PMID: 35489224 DOI: 10.1016/j.ejmech.2022.114405] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/11/2022] [Accepted: 04/19/2022] [Indexed: 12/25/2022]
Abstract
Obesity is not only viewed as a chronic aggressive disorder but is also associated with an increased risk for various diseases. Nonetheless, new anti-obesity drugs are an urgent need since few pharmacological choices are available on the market. Natural compounds have served as templates for drug discovery, whereas modified molecules from the leads identified based on in vitro models often reveal noncorresponding bioactivity between in vitro and in vivo studies. Therefore, to provide inspiration for the exploration of innovative anti-obesity agents, recent discoveries of natural anti-obesity compounds with in vivo evidence have been summarized according to their chemical structures, and the comparable efficacy of these compounds is categorized using animal models. In addition, several synthetic derivatives optimized from the phytochemicals are also provided to discuss medicinal chemistry achievements guided by natural sources.
Collapse
Affiliation(s)
- Yi-Han Chang
- School of Pharmacy, College of Medicine, National Cheng Kung University, Tainan, 701, Taiwan, ROC
| | - Hsin-Yi Hung
- School of Pharmacy, College of Medicine, National Cheng Kung University, Tainan, 701, Taiwan, ROC.
| |
Collapse
|
13
|
Zhu J, Ding J, Li S, Jin J. Ganoderic acid A ameliorates non‑alcoholic streatohepatitis (NASH) induced by high‑fat high‑cholesterol diet in mice. Exp Ther Med 2022; 23:308. [PMID: 35340879 PMCID: PMC8931630 DOI: 10.3892/etm.2022.11237] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 12/02/2021] [Indexed: 11/23/2022] Open
Abstract
Non-alcoholic steatohepatitis (NASH) is becoming a huge global health problem. Previous studies have revealed that ganoderic acids have hepatoprotective and hypocholesterolemic effects. In the present study, to evaluate the anti-NASH activity of ganoderic acid A (GAA), male 6-week-old C57BL/6J mice were divided into the following four groups, which were administered different diets: Normal diet (ND group), high-fat high-cholesterol diet (HFHC group), HFHC diet supplemented with 25 mg/kg/day (GAAL group) or 50 mg/kg/day of GAA (GAAH group). After 12 weeks of GAA treatment, histopathological results revealed that compared with that of the HFHC group, GAA significantly inhibited fat accumulation, steatosis, inflammation and fibrosis in the liver. GAA effectively reduced serum aspartate transaminase and alanine transaminase levels compared with the HFHC model. Furthermore, the endoplasmic reticulum (ER) stress-responsive proteins, including glucose-regulated protein 78, phosphorylated (p)-eukaryotic initiation factor-2α and p-JNK, were significantly suppressed by GAA, while ERp57, p-MAPK and p-AKT were significantly increased after GAA treatment. Taken together, it was concluded that GAA could resist HFHC diet-induced NASH. In terms of its underlying mechanism, GAA could improve liver inflammation and fibrosis by inhibiting hepatic oxidative stress and the ER stress response induced by HFHC.
Collapse
Affiliation(s)
- Jing Zhu
- Department of Infectious Diseases, The Fourth Clinical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310006, P.R. China
| | - Jiexia Ding
- Department of Infectious Diseases, The Fourth Clinical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310006, P.R. China
| | - Siying Li
- Department of Infectious Diseases, The Fourth Clinical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310006, P.R. China
| | - Jie Jin
- Department of Infectious Diseases, The Fourth Clinical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310006, P.R. China
| |
Collapse
|
14
|
Guo WL, Cao YJ, You SZ, Wu Q, Zhang F, Han JZ, Lv XC, Rao PF, Ai LZ, Ni L. Ganoderic acids-rich ethanol extract from Ganoderma lucidum protects against alcoholic liver injury and modulates intestinal microbiota in mice with excessive alcohol intake. Curr Res Food Sci 2022; 5:515-530. [PMID: 35281335 PMCID: PMC8913248 DOI: 10.1016/j.crfs.2022.02.013] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 02/12/2022] [Accepted: 02/20/2022] [Indexed: 12/13/2022] Open
Abstract
Alcoholic liver injury is mainly caused by excessive alcohol consumption and has become a global public health problem threatening human health. It is well known that Ganoderma lucidum possesses various excellent beneficial effects on liver function and lipid metabolism. The purpose of this study was to evaluate the underlying protective effect and action mechanism of ganoderic acids-rich G. lucidum ethanol extract (GLE) on alcohol-induced liver injury in mice with excessive alcohol intake. Results showed that oral administration of GLE could obviously inhibit the abnormal increases of serum triglyceride (TG), total cholesterol (TC), low density lipoprotein cholesterol (LDL-C), aspartate aminotransferase (AST) and alanine aminotransferase (ALT), and also significantly protect the liver against alcohol-induced excessive hepatic lipid accumulation and pathological changes. In addition, alcohol-induced oxidative stress in liver was significantly ameliorated by the dietary intervention of GLE through reducing the hepatic levels of maleic dialdehyde (MDA) and lactate dehydrogenase (LDH), and increasing the hepatic levels of glutathione (GSH), catalase (CAT), superoxide dismutase (SOD) and alcohol dehydrogenase (ADH). Compared with the model group, GLE intervention significantly ameliorated the intestinal microbial disorder by elevating the relative abundance of Ruminiclostridium_9, Prevotellaceae_UCG-001, Oscillibacter, [Eubacterium]_xylanophilum_group, norank_f_Clostridiates_vadinBB60_group, GCA-900066225, Bilophila, Ruminococcaceae_UCG-009, norank_f_Desulfovibrionaceae and Hydrogenoanaerobacterium, but decreasing the proportion of Clostridium_sensu_stricto_1. Furthermore, liver metabolomic profiling suggested that GLE intervention had a significant regulatory effect on the composition of liver metabolites in mice with excessive alcohol intake, especially the levels of some biomarkers involved in primary bile acid biosynthesis, riboflavin metabolism, tryptophan metabolism, biosynthesis of unsaturated fatty acids, fructose and mannose metabolism, glycolysis/gluconeogenesis. Additionally, dietary supplementation with GLE significantly regulated the mRNA levels of key genes related to fatty acids metabolism, ethanol catabolism and inflammatory response in liver. Conclusively, these findings indicate that GLE has a potentially beneficial effect on alleviating alcohol-induced liver injury and may be developed as a promising functional food ingredient. Phytochemical analysis revealed that ethanol extract of Gaoderma lucidum (GLE) is rich in ganoderic acids. GLE ameliorated lipid metabolism, antioxidant function and inflammatory response in mice with excessive alcohol intake. Liver metabolomics based on UPLC-QTOF/MS was performed to reveal the underlying hepatoprotective effect of GLE. GLE intervention alleviated alcoholic liver injury partly through regulating the “gut-liver-metabolite”axis. Hepatic gene transcriptions related to lipid metabolism and inflammation were remarkablyinfluenced by GLE intervention.
Collapse
|
15
|
Dias BV, Gomes SV, da Cruz Castro ML, Carvalho LCF, Breguez GS, de Souza DMS, de Oliveira Ramos C, Sant'Ana MR, Nakandakari SCBR, Araujo CM, Grabe-Guimarães A, Talvani A, Carneiro CM, Cintra DEC, Costa DC. EPA/DHA AND LINSEED OIL HAVE DIFFERENT EFFECTS ON LIVER AND ADIPOSE TISSUE IN RATS FED WITH A HIGH-FAT DIET. Prostaglandins Other Lipid Mediat 2022; 159:106622. [DOI: 10.1016/j.prostaglandins.2022.106622] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 12/20/2021] [Accepted: 01/21/2022] [Indexed: 02/07/2023]
|
16
|
Ahmad R, Riaz M, Khan A, Aljamea A, Algheryafi M, Sewaket D, Alqathama A. Ganoderma lucidum (Reishi) an edible mushroom; a comprehensive and critical review of its nutritional, cosmeceutical, mycochemical, pharmacological, clinical, and toxicological properties. Phytother Res 2021; 35:6030-6062. [PMID: 34411377 DOI: 10.1002/ptr.7215] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 06/19/2021] [Accepted: 06/22/2021] [Indexed: 12/15/2022]
Abstract
Reishi owes an exceptional value in nutritional, cosmeceutical, and medical treatments; however, none of the studies has provided its future-driven critical assessment. This study documents an up-to-date review (2015-2020, wherever applicable) and provide valuable insights (preclinical and clinical evidence-based) with comprehensive and critical assessments. Various databases 'Google scholar', 'Web of Science', 'ScienceDirect', 'PubMed', 'Springer Link', books, theses, and library resources were used. The taxonomic chaos of G. lucidum and its related species was discussed in detail with solution-oriented emphasis. Reishi contains polysaccharides (α/β-D-glucans), alkaloids, triterpenoids (ganoderic acids, ganoderenic acids, ganoderol, ganoderiol, lucidenic acids), sterols/ergosterol, proteins (LZ-8, LZ-9), nucleosides (adenosine, inosine, uridine), and nucleotides (guanine, adenine). Some active drugs are explored at an optimum level to make them potential drug candidates. The pharmacological potential was observed in diabetes, inflammation, epilepsy, neurodegeneration, cancer, anxiety, sedation, cardiac diseases, depression, hepatic diseases, and immune disorders; however, most of the studies are preclinical with a number of drawbacks. In particular, quality clinical data are intensely needed to support pharmacological activities for human use. The presence of numerous micro-, macro, and trace elements imparts an essential nutritional and cosmeceutical value to Reishi, and various marketed products are available already, but the clinical studies regarding safety and efficacy, interactions with foods/drinks, chronic use, teratogenicity, mutagenicity, and genotoxicity are missing for Reishi. Reishi possesses many valuable pharmacological activities, and the number of patents and clinical trials is increasing for Reishi. Yet, a gap in research exists for Reishi, which is discussed in detail in the forthcoming sections.
Collapse
Affiliation(s)
- Rizwan Ahmad
- Department of Natural Products and Alternative Medicines, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Muhammad Riaz
- Department of Pharmacy, Shaheed Benazir, Bhutto University, Sheringal Dir (U), Pakistan
| | - Aslam Khan
- Basic Sciences Department, College of Science and Health Professions, Ministry of National Guard Health Affairs, King Saud bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
| | - Ahmed Aljamea
- College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Mohammad Algheryafi
- College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Deya Sewaket
- College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Aljawharah Alqathama
- Department of Pharmacognosy, Pharmacy College, Umm Al-Qura University, Makkah, Saudi Arabia
| |
Collapse
|
17
|
Fu J, Zhang LL, Li W, Zhang Y, Zhang Y, Liu F, Zou L. Application of metabolomics for revealing the interventional effects of functional foods on metabolic diseases. Food Chem 2021; 367:130697. [PMID: 34365248 DOI: 10.1016/j.foodchem.2021.130697] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 07/23/2021] [Accepted: 07/24/2021] [Indexed: 12/12/2022]
Abstract
Metabolomics is an important branch of systems biology, which can detect changes in the body's metabolism before and after the intervention of functional foods, identify effective metabolites, and predict the interventional effects and the mechanism. This review summarizes the latest research outcomes regarding interventional effects of functional foods on metabolic diseases via metabolomics analysis. Since metabolomics approaches are powerful strategies for revealing the changes in bioactive compounds of functional foods during processing and storage, we also discussed the effects of these parameters on functional food metabolites using metabolomics approaches. To date, a number of endogenous metabolites related to the metabolic diseases after functional foods intervention have been discovered. Unfortunately, the mechanisms of metabolic disease-related molecules are still unclear and require further studies. The combination of metabolomics with other omics technologies could further promote its ability to fully understand the precise biological processes of functional food intervention on metabolic diseases.
Collapse
Affiliation(s)
- Jia Fu
- School of Basic Medical Sciences, Chengdu University, Chengdu 610106, China
| | - Le-Le Zhang
- School of Basic Medical Sciences, Chengdu University, Chengdu 610106, China
| | - Wei Li
- School of Basic Medical Sciences, Chengdu University, Chengdu 610106, China
| | - Yan Zhang
- School of Basic Medical Sciences, Chengdu University, Chengdu 610106, China
| | - Yamei Zhang
- Clinical Genetics Laboratory, Affiliated Hospital & Clinical Medical College of Chengdu University, Chengdu 610081, China
| | - Fang Liu
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, Shanghai Institute of Materia Medica, Chinese Academy of Science, Shanghai 201203, China.
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China.
| |
Collapse
|
18
|
Qi LFR, Liu S, Liu YC, Li P, Xu X. Ganoderic Acid A Promotes Amyloid-β Clearance (In Vitro) and Ameliorates Cognitive Deficiency in Alzheimer's Disease (Mouse Model) through Autophagy Induced by Activating Axl. Int J Mol Sci 2021; 22:ijms22115559. [PMID: 34074054 PMCID: PMC8197357 DOI: 10.3390/ijms22115559] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/17/2021] [Accepted: 05/18/2021] [Indexed: 11/16/2022] Open
Abstract
Alzheimer's disease (AD) is thought to be caused by amyloid-β (Aβ) accumulation in the central nervous system due to deficient clearance. The aim of the present study was to investigate the effect of ganoderic acid A (GAA) on Aβ clearance in microglia and its anti-AD activity. Aβ degradation in BV2 microglial cells was determined using an intracellular Aβ clearance assay. GAA stimulated autophagosome formation via the Axl receptor tyrosine kinase (Axl)/RAC/CDC42-activated kinase 1 (Pak1) pathway was determined by Western blot analyses, and fluorescence-labeled Aβ42 was localized in lysosomes in confocal laser microscopy images. The in vivo anti-AD activity of GAA was evaluated by object recognition and Morris water maze (MWM) tests in an AD mouse model following intracerebroventricular injection of aggregated Aβ42. The autophagy level in the hippocampus was assayed by immunohistochemical assessment against microtubule-associated proteins 1A/1B light-chain 3B (LC3B). Intracellular Aβ42 levels were significantly reduced by GAA treatment in microglial cells. Additionally, GAA activated autophagy according to increased LC3B-II levels, with this increased autophagy stimulated by upregulating Axl and Pak1 phosphorylation. The effect of eliminating Aβ by GAA through autophagy was reversed by R428, an Axl inhibitor, or IPA-3, a Pak1 inhibitor. Consistent with the cell-based assay, GAA ameliorated cognitive deficiency and reduced Aβ42 levels in an AD mouse model. Furthermore, LC3B expression in the hippocampus was up-regulated by GAA treatment, with these GAA-specific effects abolished by R428. GAA promoted Aβ clearance by enhancing autophagy via the Axl/Pak1 signaling pathway in microglial cells and ameliorated cognitive deficiency in an AD mouse model.
Collapse
Affiliation(s)
- Li-Feng-Rong Qi
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China; (L.-F.-R.Q.); (S.L.); (Y.-C.L.); (P.L.)
| | - Shuai Liu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China; (L.-F.-R.Q.); (S.L.); (Y.-C.L.); (P.L.)
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, China Pharmaceutical University, Nanjing 210009, China
| | - Yu-Ci Liu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China; (L.-F.-R.Q.); (S.L.); (Y.-C.L.); (P.L.)
| | - Ping Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China; (L.-F.-R.Q.); (S.L.); (Y.-C.L.); (P.L.)
| | - Xiaojun Xu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China; (L.-F.-R.Q.); (S.L.); (Y.-C.L.); (P.L.)
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, China Pharmaceutical University, Nanjing 210009, China
- Correspondence: ; Tel.: +86-2583271203
| |
Collapse
|
19
|
Functional triterpenoids from medicinal fungi Ganoderma applanatum: A continuous search for antiadipogenic agents. Bioorg Chem 2021; 112:104977. [PMID: 34020237 DOI: 10.1016/j.bioorg.2021.104977] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 04/23/2021] [Accepted: 05/03/2021] [Indexed: 11/22/2022]
Abstract
Previously, we have demonstrated the antiadipogenic benefits of Ganoderma triterpenoids (GTs), which indicated GTs have potential therapeutic implications for obesity. In this study, the EtOAc extract of Ganoderma applanatum was further phytochemically investigated for searching new antiadipogenic agents, which led to the isolation of a total of 15 highly oxygenated lanostane triterpenoids, including 9 new compounds (1-9) and 6 known analogues (10-15). Structurally, ganodapplanoic acids A and B (1, 2) are two rearranged 6/6/5/6-fused lanostane-type triterpenoids with an unusual C-13/C-15 oxygen bridge moiety. In addition, the EtOAc extract (GAE) and isolates (1-4,6-15) were assayed for their antiadipogenic effects in 3T3-L1 adipocytes. The results revealed that compound 9 effectively repressed adipogenesis through down-regulating the expression of major proteins (PPARγ, CEBPβ and FAS) involving differentiation and adipogenesis in 3T3-L1 adipocytes. Thus, the present study further demonstrated the antiadipogenic potential of GTs and provided a possible perspective for obesity treatment.
Collapse
|
20
|
Funes AK, Simón L, Colombo R, Avena MV, Monclús M, Crescitelli J, Cabrillana ME, Conte MI, Cayado N, Boarelli P, Fornés MW, Saez Lancellotti TE. Impact of high fat diet on the sterol regulatory element-binding protein 2 cholesterol pathway in the testicle. Mol Hum Reprod 2021; 27:6206393. [PMID: 33787903 DOI: 10.1093/molehr/gaab023] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 03/18/2021] [Indexed: 12/30/2022] Open
Abstract
Male fertility has been shown to be dependent on cholesterol homeostasis. This lipid is essential for testosterone synthesis and spermatogenesis, but its levels must be maintained in an optimal range for proper testicular function. In particular, sperm cells' development is very sensitive to high cholesterol levels, noticeably during acrosomal formation. The aim of this work was to study whether the molecular pathway that regulates intracellular cholesterol, the sterol regulatory element-binding protein (SREBP) pathway, is affected in the testicles of animals under a fat diet. To investigate this, we took advantage of the non-obese hypercholesterolemia (HC) model in New Zealand rabbits that displays poor sperm and seminal quality. The testicular expression of SREBP isoform 2 (SREBP2) and its target molecules 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase (HMGCR) and low-density lipoprotein receptor (LDLR) were studied under acute (6 months) and chronic (more than 12 months) fat intake by RT-PCR, western blot and immunofluorescence. Our findings showed that fat consumption promoted down-regulation of the SREBP2 pathway in the testicle at 6 months, but upregulation after a chronic period. This was consistent with load of testicular cholesterol, assessed by filipin staining. In conclusion, the intracellular pathway that regulates cholesterol levels in the testicle is sensitive to dietary fats, and behaves differently depending on the duration of consumption: it has a short-term protective effect, but became deregulated in the long term, ultimately leading to a detrimental situation. These results will contribute to the understanding of the basic mechanisms of the effect of fat consumption in humans with idiopathic infertility.
Collapse
Affiliation(s)
- Abi K Funes
- Laboratorio de Investigaciones Andrológicas de Mendoza (LIAM) †. Instituto de Histología y Embriología (IHEM), Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Centro Científico y Tecnológico (CCT), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mendoza, Argentina.,Laboratorio de Biología Molecular del Metabolismo & Nutrición (bMeNu)†, Instituto de Histología y Embriología (IHEM), Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Centro Científico y Tecnológico (CCT), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mendoza, Argentina
| | - Layla Simón
- Laboratorio de Investigaciones Andrológicas de Mendoza (LIAM) †. Instituto de Histología y Embriología (IHEM), Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Centro Científico y Tecnológico (CCT), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mendoza, Argentina
| | - Regina Colombo
- Laboratorio de Investigaciones Andrológicas de Mendoza (LIAM) †. Instituto de Histología y Embriología (IHEM), Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Centro Científico y Tecnológico (CCT), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mendoza, Argentina.,Laboratorio de Biología Molecular del Metabolismo & Nutrición (bMeNu)†, Instituto de Histología y Embriología (IHEM), Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Centro Científico y Tecnológico (CCT), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mendoza, Argentina
| | - María Virginia Avena
- Laboratorio de Investigaciones Andrológicas de Mendoza (LIAM) †. Instituto de Histología y Embriología (IHEM), Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Centro Científico y Tecnológico (CCT), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mendoza, Argentina.,Laboratorio de Biología Molecular del Metabolismo & Nutrición (bMeNu)†, Instituto de Histología y Embriología (IHEM), Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Centro Científico y Tecnológico (CCT), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mendoza, Argentina
| | - María Monclús
- Laboratorio de Investigaciones Andrológicas de Mendoza (LIAM) †. Instituto de Histología y Embriología (IHEM), Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Centro Científico y Tecnológico (CCT), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mendoza, Argentina.,Instituto de Investigaciones. Facultad de Ciencias Médicas. Universidad del Aconcagua. Mendoza, Argentina
| | - Julieta Crescitelli
- Laboratorio de Biología Molecular del Metabolismo & Nutrición (bMeNu)†, Instituto de Histología y Embriología (IHEM), Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Centro Científico y Tecnológico (CCT), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mendoza, Argentina.,Instituto de Investigaciones. Facultad de Ciencias Médicas. Universidad del Aconcagua. Mendoza, Argentina
| | - María E Cabrillana
- Laboratorio de Investigaciones Andrológicas de Mendoza (LIAM) †. Instituto de Histología y Embriología (IHEM), Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Centro Científico y Tecnológico (CCT), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mendoza, Argentina
| | - María Inés Conte
- Laboratorio de Investigaciones Andrológicas de Mendoza (LIAM) †. Instituto de Histología y Embriología (IHEM), Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Centro Científico y Tecnológico (CCT), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mendoza, Argentina
| | - Niubys Cayado
- Instituto de Investigaciones. Facultad de Ciencias Médicas. Universidad del Aconcagua. Mendoza, Argentina.,Laboratorio de Oncología, Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), Centro Científico y Tecnológico (CCT), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mendoza, Argentina
| | - Paola Boarelli
- Laboratorio de Enfermedades Metabólicas (LEM), Universidad Juan Agustín Maza, Mendoza, Argentina
| | - Miguel W Fornés
- Laboratorio de Investigaciones Andrológicas de Mendoza (LIAM) †. Instituto de Histología y Embriología (IHEM), Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Centro Científico y Tecnológico (CCT), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mendoza, Argentina
| | - Tania E Saez Lancellotti
- Laboratorio de Investigaciones Andrológicas de Mendoza (LIAM) †. Instituto de Histología y Embriología (IHEM), Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Centro Científico y Tecnológico (CCT), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mendoza, Argentina.,Laboratorio de Biología Molecular del Metabolismo & Nutrición (bMeNu)†, Instituto de Histología y Embriología (IHEM), Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Centro Científico y Tecnológico (CCT), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mendoza, Argentina.,Instituto de Investigaciones. Facultad de Ciencias Médicas. Universidad del Aconcagua. Mendoza, Argentina
| |
Collapse
|
21
|
Xu S, Zhang F, Chen D, Su K, Zhang L, Jiang R. In vitro inhibitory effects of ganoderic acid A on human liver cytochrome P450 enzymes. PHARMACEUTICAL BIOLOGY 2020; 58:308-313. [PMID: 32285742 PMCID: PMC7178866 DOI: 10.1080/13880209.2020.1747500] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Context: Ganoderic acid A (GAA) is usually used to prevent cancers or other diseases, which make it likely to be used with other drugs metabolized by cytochromes P450.Objective: This study investigates the effect of GAA on eight major cytochrome P450 isoforms in human liver microsomes.Material and method: The effects of GAA (100 μM) on eight human liver CYP isoforms (i.e., 1A2, 3A4, 2A6, 2E1, 2D6, 2C9, 2C19, and 2C8) were investigated in vitro using human liver microsomes (HLMs) with specific substrates for the CYPs, and the enzyme kinetic parameters were calculated.Results: The results showed that GAA inhibited the activity of CYP3A4, 2D6, and 2E1, but did not affect other isoforms. The inhibition of CYP3A4, 2D6, and 2E1 was concentration-dependent with IC50 values of 15.05, 21.83, and 28.35 μM, respectively. Additionally, GAA was not only a non-competitive inhibitor of CYP3A4, but also a competitive inhibitor of CYP2D6 and 2E1, with Ki values of 7.16, 10.07, and 13.45 μM. Meanwhile, the inhibition of CYP3A4 was time-dependent, with the KI/Kinact value of 7.91/0.048 μM/min.Discussion and conclusion: The in vitro study indicated that GAA has the potential to result in drug-drug interactions with other drugs metabolized by CYP3A4, 2D6, and 2E1. Further clinical studies are needed for the identification of this interaction.
Collapse
Affiliation(s)
- Shangchen Xu
- Department of Neurosurgery, Shandong Provincial Hospital, Jinan, Shandong, China
| | - Fengqing Zhang
- Department of Tumor Intervention, Municipal Official Hospital of WeiFang, Weifang, Shandong, China
| | - Dali Chen
- Department of Laboratory, Yidu Central Hospital of Weifang, Weifang, Shandong, China
| | - Keren Su
- Department of Pharmacy, Shanxian Central Hospital (Affiliated Huxi Hospital of Jining Medical University), Heze, Shandong, China
| | - Li Zhang
- Department of Pharmacy, Shanxian Central Hospital (Affiliated Huxi Hospital of Jining Medical University), Heze, Shandong, China
| | - Rui Jiang
- Department of Minimally Invasive Tumor, Shandong Provincial Hospital, Jinan, Shandong, China
- CONTACT Rui Jiang Department of Minimally Invasive Tumor, Shandong Provincial Hospital, No. 324, Jingweuweiqi Road, Jinan, Shandong250000, China
| |
Collapse
|
22
|
Su HG, Wang Q, Zhou L, Peng XR, Xiong WY, Qiu MH. Highly oxygenated lanostane triterpenoids from Ganoderma applanatum as a class of agents for inhibiting lipid accumulation in adipocytes. Bioorg Chem 2020; 104:104263. [DOI: 10.1016/j.bioorg.2020.104263] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 08/27/2020] [Accepted: 08/31/2020] [Indexed: 12/11/2022]
|
23
|
Wang J, Ling R, Zhou Y, Gao X, Yang Y, Mao C, Chen D. SREBP1 silencing inhibits the proliferation and motility of human esophageal squamous carcinoma cells via the Wnt/β-catenin signaling pathway. Oncol Lett 2020; 20:2855-2869. [PMID: 32765792 PMCID: PMC7403634 DOI: 10.3892/ol.2020.11853] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 05/22/2020] [Indexed: 12/24/2022] Open
Abstract
Sterol regulatory element-binding protein 1 (SREBP1) is dysregulated in a variety of types of human cancer. However, the functional roles of SREBP1 in esophageal squamous cell carcinoma (ESCC) remain poorly understood. The present study investigated the function of SREBP1 in cell proliferation and motility. Microarray datasets in Oncomine, reverse transcription-quantitative PCR and western blot analysis revealed that SREBP1 was overexpressed in ESCC tumors when compared with normal tissues. In addition, SREBP1 overexpression was significantly associated with tumor differentiation, lymphatic metastasis and Ki67 expression. Results suggested that silencing SREBP1 inhibited the proliferation, migration and invasion of ESCC cells, whereas overexpression of SREBP1 had opposite effects on proliferation and metastasis. In addition, loss of SREBP1 significantly increased E-cadherin and decreased N-cadherin, Vimentin, Snail, matrix metalloproteinase 9 and vascular endothelial growth factor C expression levels, which were restored via SREBP1-overexpression. Mechanistically, loss of SREBP1 suppressed T-cell factor 1/lymphoid enhancer factor 1 (TCF1/LEF1) activity and downregulated TCF1/LEF1 target proteins, including CD44 and cyclin D1. Moreover, knockdown of SREBP1 downregulated the expression levels of stearoyl-CoA desaturase 1 (SCD1), phosphorylated glycogen synthase kinase-3β and nuclear β-catenin. Furthermore, the inhibitors of SREBP1 and/or SCD1 and small interfering RNA-SCD1 efficiently inhibited the activation of the Wnt/β-catenin pathway driven by constitutively active SREBP1. Finally, in vivo results indicated that SREBP1-knockdown suppressed the proliferation and metastasis of ESCC. Taken together, these findings demonstrated that SREBP1 exerts oncogenic effects in ESCC by promoting proliferation and inducing epithelial-mesenchymal transition via the SCD1-induced activation of the Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Jingzhi Wang
- Institute of Oncology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| | - Rui Ling
- Institute of Oncology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| | - Yuepeng Zhou
- Institute of Oncology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| | - Xingyu Gao
- Institute of Oncology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| | - Yun Yang
- Institute of Oncology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| | - Chaoming Mao
- Institute of Oncology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China.,Department of Nuclear Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| | - Deyu Chen
- Institute of Oncology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| |
Collapse
|
24
|
Ganoderic acid A attenuates high-fat-diet-induced liver injury in rats by regulating the lipid oxidation and liver inflammation. Arch Pharm Res 2020; 43:744-754. [PMID: 32715385 DOI: 10.1007/s12272-020-01256-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 07/24/2020] [Indexed: 01/04/2023]
Abstract
Ganoderic Acid A (GA) has many pharmacological effects such as anti-tumor, antibacterial, anti-inflammatory, and immunosuppressive effects. However, the protective effect of GA on liver injury has not been reported. This study aimed to investigate the action of GA on insufficient methionine and choline combined with high-fat diet (HFD)-induced non-alcoholic fatty liver disease (NAFLD) in rats. NAFLD model was established by insufficient methionine and choline combined with high fat feeding to rats. The levels of Acetyl-CoA carboxylase, fatty acid synthase, sterol regulatory element binding protein, liver X receptors, AMP-activated protein kinase, peroxisome proliferator-activated receptor α, PPARg coactivator 1α and NF-κB pathway in the liver were detected by western blot. The results of this study demonstrated that the expression of GA can not only significantly decrease the live weight and liver weight per body weight of HFD mice, but also restore the alanine aminotransferase, aspartate aminotransferase, total bilirubin levels, triglyceride and cholesterol in serum. In addition, the expression of GA increased the levels of high-density lipoprotein cholesterol in serum, ameliorated pathological changes and decreased NAS score of mice's liver. In conclusion, the treatment with GA could improve NAFLD in rats by regulating the levels of signaling events involved in free fatty acid production, lipid oxidation and liver inflammation.
Collapse
|
25
|
Guo WL, Guo JB, Liu BY, Lu JQ, Chen M, Liu B, Bai WD, Rao PF, Ni L, Lv XC. Ganoderic acid A from Ganoderma lucidum ameliorates lipid metabolism and alters gut microbiota composition in hyperlipidemic mice fed a high-fat diet. Food Funct 2020; 11:6818-6833. [PMID: 32686808 DOI: 10.1039/d0fo00436g] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Ganoderic acid A (GA) is one of the most abundant triterpenoids in Ganoderma lucidum, and has been proved to possess a wide range of beneficial health effects. The aim of the current study is to investigate the amelioration effects and mechanism of GA on improving hyperlipidemia in mice fed a high-fat diet (HFD). The results showed that GA intervention significantly inhibited the abnormal growth of body weight and epididymal white adipose tissue (eWAT), prevented the hypertrophy of epididymal adipocytes, and ameliorated the biochemical parameters of serum and liver related to lipid metabolism in HFD-fed mice. Histological analysis also showed that the excessive accumulation of lipid droplets in the liver induced by HFD-feeding was greatly alleviated by GA intervention. In addition, GA intervention also increased the level of short chain fatty acids (SCFAs) in the intestine and promoted the excretion of bile acids (BAs) through feces. High-throughput sequencing of bacterial full-length 16S rDNA revealed that daily supplementation with GA made significant structural changes in the gut microbial population of mice fed with HFD, in particular modulating the relative abundance of some function related microbial phylotypes. The relationships between lipid metabolic parameters and gut microbial phylotypes were also revealed by correlation analysis based on a heatmap and network. The result showed that 46 key gut microbial phylotypes (OTUs) were markedly correlated with at least one lipid metabolic parameter. Moreover, UPLC-QTOF/MS-based liver metabolomics showed that 111 biomarkers (47 up-regulated metabolites and 64 down-regulated metabolites) were significantly changed after high-dose GA intervention (75 mg kg-1 day-1), compared with the HFD-fed hyperlipidemic mice. Metabolic pathway enrichment analysis of the differential hepatic metabolites demonstrated that GA intervention had significant regulatory effects on primary bile acid biosynthesis, fatty acid biosynthesis, amino sugar and nucleotide sugar metabolism, inositol phosphate metabolism, and so on. In addition, GA intervention regulated the mRNA levels of hepatic genes involved in fatty acid metabolism and bile acid homeostasis. These findings present new evidence supporting that GA from G. lucidum has the potential to alleviate lipid metabolic disorders and ameliorate the imbalance of gut microflora in a positive way.
Collapse
Affiliation(s)
- Wei-Ling Guo
- Institute of Food Science and Technology, College of Biological Science and Technology, Fuzhou University, Fuzhou, Fujian 350108, P. R. China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Cai J, Wang D, Liang S, Peng J, Zhao F, Liu J. Excessive supply of glucose elicits an NF-κB2-dependent glycolysis in lactating goat mammary glands. FASEB J 2020; 34:8671-8685. [PMID: 32359096 DOI: 10.1096/fj.201903088r] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 03/30/2020] [Accepted: 04/18/2020] [Indexed: 11/11/2022]
Abstract
During lactation, an improper glucose supply often threatens mammary gland (MG) health. However, information is limited on the metabolic trajectories and molecules that regulate lactating MGs with an excessive glucose supply. Based on the network analysis of transcriptome and microRNAs, we found that the oversupply of glucose-induced severe glucose metabolic disorders in MGs of lactating goats, shifting lactose synthesis to acute fermentative glycolysis which caused increased flux of glucose metabolism into lactate. Moreover, NF-κB2 played a key role in regulating glycolysis, exhibiting a metabolic shift when MGs had an excessive supply of glucose. In primary mammary epithelial cells, fermentative glycolysis, and intracellular concentration of reactive oxygen species (ROS) were reduced by ganoderic acid A through blocking NF-κB2, while activation of NF-κB2 with phorbol myristate acetate (PMA) upregulated fermentative glycolysis and increased cellular ROS accumulation under excessive glucose. Thus, we established an NF-κB2-targeting method to reform the metabolic shift toward glycolysis caused by glucose oversupply by integrating NF-κB2 blockade and intracellular ROS scavenging.
Collapse
Affiliation(s)
- Jie Cai
- Ministry of Education Key Laboratory of Molecular Animal Nutrition, Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Diming Wang
- Ministry of Education Key Laboratory of Molecular Animal Nutrition, Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Shulin Liang
- Ministry of Education Key Laboratory of Molecular Animal Nutrition, Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jinrong Peng
- Ministry of Education Key Laboratory of Molecular Animal Nutrition, Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Fengqi Zhao
- Ministry of Education Key Laboratory of Molecular Animal Nutrition, Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China.,Department of Animal and Veterinary Sciences, University of Vermont, Burlington, VT, USA
| | - Jianxin Liu
- Ministry of Education Key Laboratory of Molecular Animal Nutrition, Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
27
|
Ganoderic acid A alleviates myocardial ischemia-reperfusion injury in rats by regulating JAK2/STAT3/NF-κB pathway. Int Immunopharmacol 2020; 84:106543. [PMID: 32353688 DOI: 10.1016/j.intimp.2020.106543] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 04/21/2020] [Accepted: 04/23/2020] [Indexed: 12/28/2022]
Abstract
This study aimed to investigate the protective effect of GanodericacidA (GA) on myocardial ischemia-reperfusion (MIR) injury. The myocardial injury model in rats was established by ligating left anterior descending coronary artery. We measured cardiac hemodynamic, antioxidant enzyme activity, and various biochemical indexes of myocardial tissue, and evaluated myocardial infarction and damage. Further, the expression of JAK2/STAT3/NF-κB signaling pathway-related proteins in myocardial tissue was measured by western blot. The results showed that the myocardial infarction extention was obviously reduced upon GA treatment. Compared with the control group, ischemia-reperfusion rats showed significant increase in lactate dehydrogenase (LDH) and creatine Kinase (CK), which were significantly decreased in GA group. Besides, GA pretreatment effectively decreased the levels of inflammatory cytokines in serum. The phosphorylation of Janus Kinase 2 (JAK2), signal transducer and activator of transcription (STAT3)and Nuclear factor-κB (NF-κB) in reperfusion group were significantly higher than that in control group, which were reversed upon GA treatment. In conclusion, GA may reduce myocardial injury by regulating JAK2/STAT3/NF-κB pathway.
Collapse
|
28
|
Li H, Lou B, Zhang Y, Zhang C. Retracted: Ganoderic Acid A exerts the cytoprotection against hypoxia‐triggered impairment in PC12 cells via elevating microRNA‐153. Phytother Res 2019; 34:640-648. [PMID: 31742778 DOI: 10.1002/ptr.6556] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 10/23/2019] [Accepted: 10/28/2019] [Indexed: 12/15/2022]
Affiliation(s)
- Hong Li
- Department of NeurologyThe Affiliated Hospital of Qingdao University Qingdao Shandong China
| | - Bo Lou
- Department of Rehabilitation MedicineThe Third People's Hospital of Liaocheng Liaocheng Shandong China
| | - Yingying Zhang
- Department of NeurologyThe Affiliated Hospital of Qingdao University Qingdao Shandong China
| | - Changyuan Zhang
- Department of PharmacyJining No.1 People's Hospital Jining Shandong China
| |
Collapse
|
29
|
Markov AV, Kel AE, Salomatina OV, Salakhutdinov NF, Zenkova MA, Logashenko EB. Deep insights into the response of human cervical carcinoma cells to a new cyano enone-bearing triterpenoid soloxolone methyl: a transcriptome analysis. Oncotarget 2019; 10:5267-5297. [PMID: 31523389 PMCID: PMC6731101 DOI: 10.18632/oncotarget.27085] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 06/19/2019] [Indexed: 02/07/2023] Open
Abstract
Semisynthetic triterpenoids, bearing cyano enone functionality in ring A, are considered now as novel promising anti-tumor agents. However, despite the large-scale studies, their effects on cervical carcinoma cells and, moreover, mechanisms underlying cell death activation by such compounds in this cell type have not been fully elucidated. In this work, we attempted to reconstitute the key pathways and master regulators involved in the response of human cervical carcinoma KB-3-1 cells to the novel glycyrrhetinic acid derivative soloxolone methyl (SM) by a transcriptomic approach. Functional annotation of differentially expressed genes, analysis of their cis- regulatory sequences and protein-protein interaction network clearly indicated that stress of endoplasmic reticulum (ER) is the central event triggered by SM in the cells. A range of key ER stress sensors and transcription factor AP-1 were identified as upstream transcriptional regulators, controlling the response of the cells to SM. Additionally, by using Gene Expression Omnibus data, we showed the ability of SM to modulate the expression of key genes involved in regulation of the high proliferative rate of cervical carcinoma cells. Further Connectivity Map analysis revealed similarity of SM's effects with known ER stress inducers thapsigargin and geldanamycin, targeting SERCA and Grp94, respectively. According to the molecular docking study, SM could snugly fit into the active sites of these proteins in the positions very close to that of both inhibitors. Taken together, our findings provide a basis for the better understanding of the intracellular processes in tumor cells switched on in response to cyano enone-bearing triterpenoids.
Collapse
Affiliation(s)
- Andrey V Markov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russian Federation
| | - Alexander E Kel
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russian Federation.,geneXplain GmbH, Wolfenbüttel 38302, Germany
| | - Oksana V Salomatina
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russian Federation.,N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russian Federation
| | - Nariman F Salakhutdinov
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russian Federation
| | - Marina A Zenkova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russian Federation
| | - Evgeniya B Logashenko
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russian Federation
| |
Collapse
|
30
|
Zhang TT, Xu J, Wang YM, Xue CH. Health benefits of dietary marine DHA/EPA-enriched glycerophospholipids. Prog Lipid Res 2019; 75:100997. [DOI: 10.1016/j.plipres.2019.100997] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 07/04/2019] [Accepted: 07/04/2019] [Indexed: 02/07/2023]
|
31
|
Yao G, Ma Y, Muhammad M, Huang Q. Understanding the infrared and Raman spectra of ganoderic acid A: An experimental and DFT study. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 210:372-380. [PMID: 30502725 DOI: 10.1016/j.saa.2018.11.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Revised: 10/18/2018] [Accepted: 11/12/2018] [Indexed: 06/09/2023]
Abstract
Ganoderic Acids (GAs) are the major medicinal compounds in Ganoderma lucidum used as traditional Chinese medicine since ancient times. Ganoderic acid A (GAA) is the first discovered ganoderic acids reported in the literature, which is also one of most abundant triterpenoids of Ganoderma lucidum. Especially, GAA has been extensively investigated in recent decades for its positive medicinal activities. However, the vibrational properties of GAs have rarely been studied or reported. In this work, we focused on the typical GAA and studied the infrared (IR) and Raman spectra based on both experiments and DFT calculations. As such, we could not only achieve the assignments of the vibrational modes, but also from the IR and Raman spectra, we found that the spectral region from 1500 cm-1 to 1800 cm-1 is particularly useful for distinguishing different types of GAs. In addition, its dehydrogenated derivative ganoderenic acid A (GOA) was also studied, which could be identified due to its spectral feature of strong IR and Raman bands around 1620 cm-1. This work therefore may facilitate the application of IR and Raman spectroscopies in the inspection and quality control of Ganoderma lucidum.
Collapse
Affiliation(s)
- Guohua Yao
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Institute of Technical Biology and Agriculture Engineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Yuhan Ma
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Institute of Technical Biology and Agriculture Engineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China; University of Science & Technology of China, Hefei 230026, China; College of Life Science, Anhui Science and Technology University, Fengyang 233100, China
| | - Muhammad Muhammad
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Institute of Technical Biology and Agriculture Engineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China; University of Science & Technology of China, Hefei 230026, China
| | - Qing Huang
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Institute of Technical Biology and Agriculture Engineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China; University of Science & Technology of China, Hefei 230026, China; College of Life Science, Anhui Science and Technology University, Fengyang 233100, China.
| |
Collapse
|