1
|
Yu Y, Li X, Ying Q, Zhang Z, Liu W, Su J. Synergistic Effects of Shed-Derived Exosomes, Cu 2+, and an Injectable Hyaluronic Acid Hydrogel on Antibacterial, Anti-inflammatory, and Osteogenic Activity for Periodontal Bone Regeneration. ACS APPLIED MATERIALS & INTERFACES 2024; 16:33053-33069. [PMID: 38899855 DOI: 10.1021/acsami.4c05062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
The primary pathology of periodontitis involves the gradual deterioration of periodontal tissues resulting from the inflammatory reaction triggered by bacterial infection. In this study, a novel drug for periodontal pocket injection, known as the Shed-Cu-HA hydrogel, was developed by incorporating copper ions (Cu2+) and Shed-derived exosomes (Shed-exo) inside the hyaluronic acid (HA) hydrogel. Suitable concentrations of Cu2+ and Shed-exo released from Shed-Cu-HA enhanced cell viability and cell proliferation of human periodontal ligament stem cells. Additionally, the Shed-Cu-HA demonstrated remarkable antibacterial effects against the key periodontal pathogen (Aa) owing to the synergistic effect of Cu2+ and HA. Furthermore, the material effectively suppressed macrophage inflammatory response via the IL-6/JAK2/STAT3 pathway. Moreover, the Shed-Cu-HA, combining the inflammation-regulating properties of HA with the synergistic osteogenic activity of Shed-exo and Cu2+, effectively upregulated the expression of genes and proteins associated with osteogenic differentiation. The experimental findings from a mouse periodontitis model demonstrated that the administration of Shed-Cu-HA effectively reduced the extent of inflammatory cell infiltration and bacterial infections in gingival tissues and facilitated the regeneration of periodontal bone tissues and collagen after 2 and 4 weeks of injection. Consequently, it holds significant prospects for future applications in periodontitis treatment.
Collapse
Affiliation(s)
- Yiqiang Yu
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration & Tongji Research Institute of Stomatology & Department of Prosthodontics, Stomatological Hospital and Dental School, Tongji University, Shanghai 200072, China
| | - Xuejing Li
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration & Tongji Research Institute of Stomatology & Department of Prosthodontics, Stomatological Hospital and Dental School, Tongji University, Shanghai 200072, China
| | - Qiao Ying
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration & Tongji Research Institute of Stomatology & Department of Prosthodontics, Stomatological Hospital and Dental School, Tongji University, Shanghai 200072, China
| | - Zhanwei Zhang
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration & Tongji Research Institute of Stomatology & Department of Prosthodontics, Stomatological Hospital and Dental School, Tongji University, Shanghai 200072, China
| | - Weicai Liu
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration & Tongji Research Institute of Stomatology & Department of Prosthodontics, Stomatological Hospital and Dental School, Tongji University, Shanghai 200072, China
| | - Jiansheng Su
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration & Tongji Research Institute of Stomatology & Department of Prosthodontics, Stomatological Hospital and Dental School, Tongji University, Shanghai 200072, China
| |
Collapse
|
2
|
Mohanty A, Patro S, Jha E, Patel P, Nandi A, Sinha A, Naser SS, Das A, Panda PK, Rout PK, Mishra R, Kaushik NK, Singh D, Suar M, Verma SK. Molecular insights to in vitro biocompatibility of endodontic Pulpotec with macrophages determined by oxidative stress and apoptosis. Biomed Pharmacother 2024; 176:116921. [PMID: 38870628 DOI: 10.1016/j.biopha.2024.116921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/30/2024] [Accepted: 06/09/2024] [Indexed: 06/15/2024] Open
Abstract
Pulp therapy has been emerged as a one of the efficient therapies in the field of endodontics. Among different types of new endodontic materials, pulpotec has been materialized as a recognized material for vital pulp therapy. However, its efficacy has been challenged due to lack of information about its cellular biocompatibility. This study evaluates the mechanistic biocompatibility of pulpotec cement with macrophage cells (RAW 264.7) at cellular and molecular level. The biocompatibility was evaluated using experimental and computational techniques like MTT assay, oxidative stress analysis and apoptosis analysis through flow cytometry and fluorescent microscopy. The results showed concentration-dependent cytotoxicity of pulpotec cement extract to RAW 264.7 cells with an LC 50 of X/10-X/20. The computational analysis depicted the molecular interaction of pulpotec cement extract components with metabolic proteins like Sod1 and p53. The study revealed the effects of Pulpotec cement's extract, showing a concentration-dependent induction of oxidative stress and apoptosis. These effects were due to influential structural and functional abnormalities in the Sod1 and p53 proteins, caused by their molecular interaction with internalized components of Pulpotec cement. The study provided a detailed view on the utility of Pulpotec in endodontic applications, highlighting its biomedical aspects.
Collapse
Affiliation(s)
- Ankita Mohanty
- KIIT School of Dental Science, KIIT-DU, Bhubaneswar, Odisha 751024, India
| | - Swadheena Patro
- KIIT School of Dental Science, KIIT-DU, Bhubaneswar, Odisha 751024, India
| | - Ealisha Jha
- School of Biotechnology, KIIT-DU, Bhubaneswar, Odisha 751024, India
| | - Paritosh Patel
- School of Biotechnology, KIIT-DU, Bhubaneswar, Odisha 751024, India; Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, Seoul 01897, South Korea
| | - Aditya Nandi
- School of Biotechnology, KIIT-DU, Bhubaneswar, Odisha 751024, India
| | - Adrija Sinha
- School of Biotechnology, KIIT-DU, Bhubaneswar, Odisha 751024, India
| | | | - Antarikshya Das
- KIIT School of Dental Science, KIIT-DU, Bhubaneswar, Odisha 751024, India
| | - Pritam Kumar Panda
- Condensed Matter Theory Group, Materials Theory Division, Department of Physics and Astronomy, Uppsala University, Uppsala 75120, Sweden
| | | | - Richa Mishra
- Parul University, Vadodara, Gujarat 391760, India
| | - Nagendra Kumar Kaushik
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, Seoul 01897, South Korea.
| | - Deobrat Singh
- Condensed Matter Theory Group, Materials Theory Division, Department of Physics and Astronomy, Uppsala University, Uppsala 75120, Sweden.
| | - Mrutyunjay Suar
- School of Biotechnology, KIIT-DU, Bhubaneswar, Odisha 751024, India.
| | - Suresh K Verma
- School of Biotechnology, KIIT-DU, Bhubaneswar, Odisha 751024, India.
| |
Collapse
|
3
|
Imraish A, Zihlif M, Abu Thiab T, Al-Awaida W, Al-Ameer HJ, Abu-Irmaileh B, Al-Hunaiti A. Anti-Inflammatory and Antioxidant Effects of Rosmarinic Acid Trimetallic (Cu 0.5Zn 0.5Fe 2O 4) Nanoparticles. Chem Biodivers 2024; 21:e202301739. [PMID: 38243670 DOI: 10.1002/cbdv.202301739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/12/2024] [Accepted: 01/19/2024] [Indexed: 01/21/2024]
Abstract
Newly, green metallic-nanoparticles (NPs) have received scientists' interest due to their wide variable medicinal applications owned to their economical synthesis and biologically compatible nature. In this study, we used rosmarinic acid (RosA) to prepare Cu0.5Zn0.5FeO4 NPs and later encapsulated them using PEG polymer. Characterization of NPs was done using the XRD method and SEM imaging. Further, we explored the encapsulated NPs for anti-inflammatory properties by downregulating the expression of pro-inflammatory cytokines mRNA in LPS-stimulated Raw 264.7 cells. Besides, employing DPPH, NO and ABTS radical scavenging assays to examine the antioxidant activity of the synthesized Cu0.5Zn0.5FeO4 NPs. Cu0.5Zn0.5FeO4 NPs revealed moderate antioxidant activity by scavenging DPPH and nitric oxide. We demonstrated that the NPs showed high potential anti-inflammatory activity by suppressing the mRNA and protein levels of pro-inflammatory cytokines in a dose-dependent manner, in LPS-induced Raw 264.7 cells. To our best knowledge, this is the first report where RosA was found to be a suitable phyto source for the green synthesis of Cu0.5Zn0.5FeO4 NPs and their in vitro anti-inflammatory and antioxidant effects. Taken together, our findings suggest that the RosA is a green resource for the eco-friendly synthesis of Cu0.5Zn0.5FeO4/PEG NPs, which further can be employed as a novel anti-inflammatory therapeutic agent.
Collapse
Affiliation(s)
- Amer Imraish
- Department of Biological Sciences, School of Science, The University of Jordan, Queen Rania Al-Abdullah Street, Amman, 11942, Jordan
| | - Malek Zihlif
- Department of Pharmacology, School of Medicine, The University of Jordan, Queen Rania Al-Abdullah Street, Amman, 11942, Jordan
| | - Tuqa Abu Thiab
- Department of Biological Sciences, School of Science, The University of Jordan, Queen Rania Al-Abdullah Street, Amman, 11942, Jordan
| | - Wajdy Al-Awaida
- Department of Biology and Biotechnology, Faculty of Science, American University of Madaba, P.O. Box: 99, Madaba, 17110, Jordan
| | - Hamzeh J Al-Ameer
- Department of Biotechnology, Faculty of Allied Medical Sciences, Al-Ahliyya Amman University (AAU), Amman, 19328, Jordan
| | - Basha'er Abu-Irmaileh
- Hamdi Mango Centre for Scientific Research, The University of Jordan, Queen Rania Al-Abdullah Street, Amman, 11942, Jordan
| | - Afnan Al-Hunaiti
- Department of Chemistry, School of Science, The University of Jordan, Queen Rania Al-Abdullah Street, Amman, 11942, Jordan
| |
Collapse
|
4
|
Al-Garawi ZS, Ismail AH, Hillo DH, Öztürkkan FE, Necefoğlu H, Mohamed GG, Abdallah AM. Experimental and density functional theory studies on some metal oxides and the derived nanoclusters: a comparative effects on human ferritin. DISCOVER NANO 2024; 19:12. [PMID: 38224391 PMCID: PMC10789706 DOI: 10.1186/s11671-023-03922-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 11/05/2023] [Indexed: 01/16/2024]
Abstract
A comprehensive investigation into the green synthesis of metal oxide nanoparticles (NPs) has garnered significant attention due to its commendable reliability, sustainability, and environmentally friendly attributes. Green synthesis methods play a crucial role in mitigating the adverse effects associated with conventional approaches employed for nanostructure preparation. This research endeavors to examine the impact of ginger plant extract-assisted green synthesis of metal oxides NPs on the serum ferritin levels of anemic diabetic patients in vitro, focusing specifically on α-Fe2O3 and ZnO NPs. Sixty diabetic volunteers with anemia (35-50 years) and thirty healthy volunteers were enrolled as controls. The assessment was conducted using the VIDAS Ferritin (FER) assay. Photoluminescence (PL) spectroscopy measurements were performed to elucidate the intrinsic and extrinsic transitions of these NPs, affirming the successful formation of α-structured iron oxide. Density functional theory (DFT) calculations were carried out at the B3LYP/6-311++G(d,2p) level of theory to investigate the geometry optimization and molecular electrostatic potential maps of the NPs. Furthermore, TD-DFT calculations were employed to explore their frontier molecular orbitals and various quantum chemical parameters. The binding affinity and interaction types of ZnO and α-Fe2O3 NPs to the active site of the human H-Chain Ferritin (PDB ID: 2FHA) target were determined with the help of molecular docking. Results unveiled the crystalline structure of ZnO and the α-structure of α-Fe2O3. Analysis of the frontier molecular orbitals and dipole moment values demonstrated that ZnO (total dipole moment (D) = 5.80 µ) exhibited superior chemical reactivity, biological activity, and stronger molecular interactions with diverse force fields compared to α-Fe2O3 (D = 2.65 µ). Molecular docking of the metal oxides NPs with human H-chain ferritin provided evidence of robust hydrogen bond interactions and metal-acceptor bonds between the metal oxides and the target protein. This finding could have a great impact on using metal oxides NPs-ferritin as a therapeutic protein, however, further studies on their toxicity are required.
Collapse
Affiliation(s)
- Zahraa S Al-Garawi
- Department of Chemistry, College of Sciences, Mustansiriyah University, Baghdad, 10001, Iraq.
| | - Ahmad H Ismail
- Department of Chemistry, College of Sciences, Mustansiriyah University, Baghdad, 10001, Iraq
| | - Duaa H Hillo
- Department of Chemistry, College of Sciences, Mustansiriyah University, Baghdad, 10001, Iraq
| | | | - Hacali Necefoğlu
- Department of Chemistry, Kafkas University, 36100, Kars, Turkey
- International Scientific Research Centre, Baku State University, 1148, Baku, Azerbaijan
| | - Gehad G Mohamed
- Chemistry Department, Faculty of Science, Cairo University, Giza, 12613, Egypt
- Nanoscience Department, Basic and Applied Sciences Institute, Egypt-Japan University of Science and Technology, New Borg El Arab, Alexandria, 21934, Egypt
| | - Abanoub Mosaad Abdallah
- Narcotic Research Department, National Center for Social and Criminological Research (NCSCR), Giza, 11561, Egypt.
| |
Collapse
|
5
|
Lu B, Zhang J, Zhu G, Liu T, Chen J, Liang X. Highly hydrophilic and dispersed TiO 2 nano-system with enhanced photocatalytic antibacterial activities and accelerated tissue regeneration under visible light. J Nanobiotechnology 2023; 21:491. [PMID: 38115054 PMCID: PMC10731761 DOI: 10.1186/s12951-023-02241-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 12/03/2023] [Indexed: 12/21/2023] Open
Abstract
Titanium dioxide (TiO2)-based photodynamic antibacterial (PDA) agents present a novel approach for addressing drug-resistant bacterial infections and the associated tissue damage. However, the suboptimal dispersibility, negative charge, and weak photocatalytic activity under visible light of TiO2 hinder its practical applications. This study aimed to address these limitations by developing a highly hydrophilic and dispersed Zn-TiO2/reduced graphene oxide (rGO) (HTGZ) nano-system with exceptional visible light catalytic activity and tissue repair ability. HTGZ produced an antibacterial ratio over 98% within a short time, likely due to the enhanced production of reactive oxygen species under visible light. After being co-cultured for 4 days, L929 cells and BMSCs maintained over 90% activity, indicating that HTGZ had no significant cytotoxicity. Furthermore, the transcriptomic and metabolic analyses revealed that the antibacterial mechanism mainly came from the destruction of cell membranes and the disruption of various metabolic processes, such as purine metabolism and fatty acid biosynthesis. Critically, results of in vivo experiments had authenticated that HTGZ significantly promoted infected tissue regeneration by slaughtering bacteria and release Zn2+. After 14 days, the wound area was only one-third that of the control group. Overall, the enhanced antibacterial efficacy and wound-healing potential position HTGZ as a promising nano-antibacterial medication for the clinical treatment of infectious bacterial diseases.
Collapse
Affiliation(s)
- Boyao Lu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, Department of Prosthodontics II of West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jie Zhang
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Guixin Zhu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, Department of Prosthodontics II of West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Tiqian Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, Department of Prosthodontics II of West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jinwei Chen
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, China.
- Engineering Research Center of Alternative Energy Materials & Devices, Ministry of Education, Sichuan University, Chengdu, 610065, China.
| | - Xing Liang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, Department of Prosthodontics II of West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
6
|
Ogunyemi SO, Abdallah Y, Ibrahim E, Zhang Y, Bi J, Wang F, Ahmed T, Alkhalifah DHM, Hozzein WN, Yan C, Li B, Xu L. Bacteriophage-mediated biosynthesis of MnO 2NPs and MgONPs and their role in the protection of plants from bacterial pathogens. Front Microbiol 2023; 14:1193206. [PMID: 37396367 PMCID: PMC10308383 DOI: 10.3389/fmicb.2023.1193206] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 05/17/2023] [Indexed: 07/04/2023] Open
Abstract
Introduction Xanthomonas oryzae pv. oryzae (Xoo) is the plant pathogen of Bacterial Leaf Blight (BLB), which causes yield loss in rice. Methods In this study, the lysate of Xoo bacteriophage X3 was used to mediate the bio-synthesis of MgO and MnO2. The physiochemical features of MgONPs and MnO2NPs were observed via Ultraviolet - Visible spectroscopy (UV-Vis), X-ray diffraction (XRD), Transmission/Scanning electron microscopy (TEM/SEM), Energy dispersive spectrum (EDS), and Fourier-transform infrared spectrum (FTIR). The impact of nanoparticles on plant growth and bacterial leaf blight disease were evaluated. Chlorophyll fluorescence was used to determine whether the nanoparticles application were toxic to the plants. Results An absorption peak of 215 and 230 nm for MgO and MnO2, respectively, confirmed nanoparticle formation via UV-Vis. The crystalline nature of the nanoparticles was detected by the analysis of XRD. Bacteriological tests indicated that MgONPs and MnO2NPs sized 12.5 and 9.8 nm, respectively, had strong in vitro antibacterial effects on rice bacterial blight pathogen, Xoo. MnO2NPs were found to have the most significant antagonist effect on nutrient agar plates, while MgONPs had the most significant impact on bacterial growth in nutrient broth and on cellular efflux. Furthermore, no toxicity to plants was observed for MgONPs and MnO2NPs, indeed, MgONPs at 200 μg/mL significantly increased the quantum efficiency of PSII photochemistry on the model plant, Arabidopsis, in light (ΦPSII) compared to other interactions. Additionally, significant suppression of BLB was noted in rice seedlings amended with the synthesized MgONPs and MnO2NPs. MnO2NPs showed promotion of plant growth in the presence of Xoo compared to MgONPs. Conclusion An effective alternative for the biological production of MgONPs and MnO2NPs was reported, which serves as an effective substitute to control plant bacterial disease with no phytotoxic effect.
Collapse
Affiliation(s)
- Solabomi Olaitan Ogunyemi
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Yasmine Abdallah
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, China
- Plant Pathology Department, Faculty of Agriculture, Minia University, Elminya, Egypt
| | - Ezzeldin Ibrahim
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Yang Zhang
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Ji’an Bi
- Institute of Biotechnology, Ningbo Academy of Agricultural Sciences, Ningbo, China
| | - Fang Wang
- Institute of Biotechnology, Ningbo Academy of Agricultural Sciences, Ningbo, China
| | - Temoor Ahmed
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Dalal Hussien M. Alkhalifah
- Department of Biology, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Wael N. Hozzein
- Botany and Microbiology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Chengqi Yan
- Institute of Biotechnology, Ningbo Academy of Agricultural Sciences, Ningbo, China
| | - Bin Li
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Lihui Xu
- Institute of Eco-Environmental Protection, Shanghai Academy of Agricultural Sciences, Shanghai, China
| |
Collapse
|
7
|
Riyad YM, Elmorsi TM, Alam MG, Abel B. Surface Functionalization of Bioactive Hybrid Adsorbents for Enhanced Adsorption of Organic Dyes. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:ijerph20095750. [PMID: 37174267 PMCID: PMC10177766 DOI: 10.3390/ijerph20095750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 04/17/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023]
Abstract
In this study, a valuable adsorbent was functionalized using commercial ZnO and a mango seed extract (MS-Ext) as a green approach for synthesis. Fourier-transform infrared spectroscopy, transmission electron microscopy, scanning electron microscopy, and energy-dispersive X-ray analysis spectraconfirmed the presence of bioactive phenolic compounds and Cu2+ ions on the surface of ZnO. Functionalized Cu-doped ZnO/MS-Ext exhibits high efficacy in acidic, neutral, and alkaline medium, as indicated by 98.3% and 93.7% removal of methylene blue (MB) and crystal violet (CV) dyes, respectively. Cu-doped ZnO/MS-Ext has a zeta potential significantly lower than pristine zinc oxide (p-ZnO), which results in enhanced adsorption of cationic MB and CV dyes. In binary systems, both MB and CV were significantly removed in acidic and alkaline media, with 92% and 87% being removed for CV in acidic and alkaline media, respectively. In contrast, the removal efficiency of methyl orange dye (MO) was 16.4%, 6.6% and 11.2% for p-ZnO, ZnO/Ext and Cu-doped ZnO/Ext, respectively. In general, the adsorption kinetics of MB on Cu-doped ZnO/MS-Ext follow this order: linear pseudo-second-order (PSO) > nonlinear pseudo-second-order (PSO) > nonlinear Elovich model > linear Elovich model. The Langmuir isotherm represents the adsorption process and indicates that MB, CV, and MO are chemisorbed onto the surface of the adsorbent at localized active centers of the MS-extract functional groups. In a binary system consisting of MB and CV, the maximum adsorption capacity (qm) was 72.49 mg/g and 46.61 mg/g, respectively. The adsorption mechanism is governed by electrostatic attraction and repulsion, coordination bonds, and π-π interactions between cationic and anionic dyes upon Cu-doped ZnO/Ext surfaces.
Collapse
Affiliation(s)
- Yasser M Riyad
- Department of Chemistry, Faculty of Science, Islamic University of Madinah, Madinah 42351, Saudi Arabia
| | - Taha M Elmorsi
- Department of Chemistry, Faculty of Science, Al-Azhar University, Cairo 11884, Egypt
| | - Mohd Gulfam Alam
- Department of Chemistry, Faculty of Science, Islamic University of Madinah, Madinah 42351, Saudi Arabia
| | - Bernd Abel
- Institute of Chemical Technology, Leipzig University, Linne´-Strasse 3, 04103 Leipzig, Germany
| |
Collapse
|
8
|
Ogunyemi SO, Xu X, Xu L, Abdallah Y, Rizwan M, Lv L, Ahmed T, Ali HM, Khan F, Yan C, Chen J, Li B. Cobalt oxide nanoparticles: An effective growth promoter of Arabidopsis plants and nano-pesticide against bacterial leaf blight pathogen in rice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 257:114935. [PMID: 37086623 DOI: 10.1016/j.ecoenv.2023.114935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/15/2023] [Accepted: 04/18/2023] [Indexed: 05/03/2023]
Abstract
Recently, the application of cobalt oxide nanoparticles (Co3O4NPs) has gained popularity owing to its magnetic, catalytic, optical, antimicrobial, and biomedical properties. However, studies on its use as a crop protection agent and its effect on photosynthetic apparatus are yet to be reported. Here, Co3O4NPs were first green synthesized using Hibiscus rosa-sinensis flower extract and were characterized using UV-Vis spectroscopy, Fourier transform infrared spectroscopy, X-ray diffraction (XRD), transmission/scanning electron microscopy methods. Formation of the Co3O4NPs was attested based on surface plasmon resonance at 210 nm. XRD assay showed that the samples were crystalline having a mean size of 34.9 nm. The Co3O4NPs at 200 µg/ml inhibited the growth (OD600 = 1.28) and biofilm formation (OD570 = 1.37) of Xanthomonas oryzae pv. oryzae (Xoo) respectively, by 72.87% and 79.65%. Rice plants inoculated with Xoo had disease leaf area percentage (DLA %) of 57.25% which was significantly reduced to 11.09% on infected plants treated with 200 µg/ml Co3O4NPs. Also, plants treated with 200 µg/ml Co3O4NPs only had significant increment in shoot length, root length, fresh weight, and dry weight in comparison to plants treated with double distilled water. The application of 200 µg/ml Co3O4NPs on the Arabidopsis plant significantly increased the photochemical efficacy of PSII (ΦPSII) and photochemical quenching (qP) respectively, by 149.10% and 125.00% compared to the control while the non-photochemical energy dissipation (ΦNPQ) was significantly lowered in comparison to control. In summary, it can be inferred that Co3O4NPs can be a useful agent in the management of bacterial phytopathogen diseases.
Collapse
Affiliation(s)
- Solabomi Olaitan Ogunyemi
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Xinyan Xu
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Lihui Xu
- Institute of Eco-Environmental Protection, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China.
| | - Yasmine Abdallah
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou, China; Plant Pathology Department, Faculty of Agriculture, Minia University, 61519, Elminya, Egypt
| | - Muhammad Rizwan
- Department of Environmental Sciences, Government College University, Faisalabad 38000, Pakistan
| | - Luqiong Lv
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Temoor Ahmed
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Hayssam M Ali
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Fahad Khan
- Tasmanian Institute of Agriculture, University of Tasmania, Prospect, TAS 7250, Australia
| | - Chengqi Yan
- Institute of Biotechnology, Ningbo Academy of Agricultural Sciences, Ningbo 315040, China
| | - Jianping Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Bin Li
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou, China.
| |
Collapse
|
9
|
Kumari K, Behera HT, Nayak PP, Sinha A, Nandi A, Ghosh A, Saha U, Suar M, Panda PK, Verma SK, Raina V. Amelioration of lipopeptide biosurfactants for enhanced antibacterial and biocompatibility through molecular antioxidant property by methoxy and carboxyl moieties. Biomed Pharmacother 2023; 161:114493. [PMID: 36906974 DOI: 10.1016/j.biopha.2023.114493] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/27/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023] Open
Abstract
Biosurfactants having surface-active biomolecules have been the cynosure in environment research due to their vast application. However, the lack of information about their low-cost production and detailed mechanistic biocompatibility limits the applicability. The study explores techniques for the production and design of low-cost, biodegradable, and non-toxic biosurfactants from Brevibacterium casei strain LS14 and excavates the mechanistic details of their biomedical properties like antibacterial effects and biocompatibility. Taguchi's design of experiment was used to optimize for enhancing biosurfactant production by optimal factor combinations like Waste glycerol (1%v/v), peptone (1%w/v), NaCl 0.4% (w/v), and pH 6. Under optimal conditions, the purified biosurfactant reduced the surface tension to 35 mN/m from 72.8 mN/m (MSM) and a critical micelle concentration of 25 mg/ml was achieved. Spectroscopic analyses of the purified biosurfactant using Nuclear Magnetic Resonance suggested it as a lipopeptide biosurfactant. The evaluation of mechanistic antibacterial, antiradical, antiproliferative, and cellular effects indicated the efficient antibacterial activity (against Pseudomonas aeruginosa) of biosurfactants due to free radical scavenging activity and oxidative stress. Moreover, the cellular cytotoxicity was estimated by MTT and other cellular assays revealing the phenomenon as the dose-dependent induction of apoptosis due to free radical scavenging with an LC50 of 55.6 ± 2.3 mg/ml.
Collapse
Affiliation(s)
- Khushbu Kumari
- School of Biotechnology, KIIT-DU, Bhubaneswar 751024, India
| | | | | | - Adrija Sinha
- School of Biotechnology, KIIT-DU, Bhubaneswar 751024, India
| | - Aditya Nandi
- School of Biotechnology, KIIT-DU, Bhubaneswar 751024, India
| | - Aishee Ghosh
- School of Biotechnology, KIIT-DU, Bhubaneswar 751024, India
| | - Utsa Saha
- School of Biotechnology, KIIT-DU, Bhubaneswar 751024, India
| | | | - Pritam Kumar Panda
- Department of Physics and Astronomy (Materials Theory), Uppsala University, 75121, Sweden.
| | - Suresh K Verma
- School of Biotechnology, KIIT-DU, Bhubaneswar 751024, India.
| | - Vishakha Raina
- School of Biotechnology, KIIT-DU, Bhubaneswar 751024, India.
| |
Collapse
|
10
|
Sinha A, Simnani FZ, Singh D, Nandi A, Choudhury A, Patel P, Jha E, chouhan RS, Kaushik NK, Mishra YK, Panda PK, Suar M, Verma SK. The translational paradigm of nanobiomaterials: Biological chemistry to modern applications. Mater Today Bio 2022; 17:100463. [PMID: 36310541 PMCID: PMC9615318 DOI: 10.1016/j.mtbio.2022.100463] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 10/11/2022] [Accepted: 10/12/2022] [Indexed: 11/11/2022] Open
Abstract
Recently nanotechnology has evolved as one of the most revolutionary technologies in the world. It has now become a multi-trillion-dollar business that covers the production of physical, chemical, and biological systems at scales ranging from atomic and molecular levels to a wide range of industrial applications, such as electronics, medicine, and cosmetics. Nanobiomaterials synthesis are promising approaches produced from various biological elements be it plants, bacteria, peptides, nucleic acids, etc. Owing to the better biocompatibility and biological approach of synthesis, they have gained immense attention in the biomedical field. Moreover, due to their scaled-down sized property, nanobiomaterials exhibit remarkable features which make them the potential candidate for different domains of tissue engineering, materials science, pharmacology, biosensors, etc. Miscellaneous characterization techniques have been utilized for the characterization of nanobiomaterials. Currently, the commercial transition of nanotechnology from the research level to the industrial level in the form of nano-scaffolds, implants, and biosensors is stimulating the whole biomedical field starting from bio-mimetic nacres to 3D printing, multiple nanofibers like silk fibers functionalizing as drug delivery systems and in cancer therapy. The contribution of single quantum dot nanoparticles in biological tagging typically in the discipline of genomics and proteomics is noteworthy. This review focuses on the diverse emerging applications of Nanobiomaterials and their mechanistic advancements owing to their physiochemical properties leading to the growth of industries on different biomedical measures. Alongside the implementation of such nanobiomaterials in several drug and gene delivery approaches, optical coding, photodynamic cancer therapy, and vapor sensing have been elaborately discussed in this review. Different parameters based on current challenges and future perspectives are also discussed here.
Collapse
Affiliation(s)
- Adrija Sinha
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, 751024, Odisha, India
| | | | - Dibyangshee Singh
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, 751024, Odisha, India
| | - Aditya Nandi
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, 751024, Odisha, India
| | - Anmol Choudhury
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, 751024, Odisha, India
| | - Paritosh Patel
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, 751024, Odisha, India
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, 01897, Seoul, South Korea
| | - Ealisha Jha
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, 751024, Odisha, India
| | - Raghuraj Singh chouhan
- Department of Environmental Sciences, Jožef Stefan Institute, Jamova 39, 1000, Ljubljana, Slovenia
| | - Nagendra Kumar Kaushik
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, 01897, Seoul, South Korea
| | - Yogendra Kumar Mishra
- Mads Clausen Institute, NanoSYD, University of Southern Denmark, Alsion 2, 6400, Sønderborg, Denmark
| | - Pritam Kumar Panda
- Condensed Matter Theory Group, Materials Theory Division, Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala, Sweden
| | - Mrutyunjay Suar
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, 751024, Odisha, India
| | - Suresh K. Verma
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, 751024, Odisha, India
| |
Collapse
|
11
|
Mohanty S, Patel P, Jha E, Panda PK, Kumari P, Singh S, Sinha A, Saha AK, Kaushik NK, Raina V, Verma SK, Suar M. In vivo intrinsic atomic interaction infer molecular eco-toxicity of industrial TiO 2 nanoparticles via oxidative stress channelized steatosis and apoptosis in Paramecium caudatum. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 241:113708. [PMID: 35667312 DOI: 10.1016/j.ecoenv.2022.113708] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 05/22/2022] [Accepted: 05/24/2022] [Indexed: 06/15/2023]
Abstract
The ecotoxicological effect of after-usage released TiO2 nanoparticles in aquatic resources has been a major concern owing to their production and utilization in different applications. Addressing the issue, this study investigates the detailed in vivo molecular toxicity of TiO2 nanoparticles with Paramecium caudatum. TiO2 nanoparticles were synthesized at a lab scale using high energy ball milling technique; characterized for their physicochemical properties and investigated for their ecotoxicological impact on oxidative stress, steatosis, and apoptosis of cells through different biochemical analysis, flow cytometry, and fluorescent microscopy. TiO2 nanoparticles; TiO2 (N15); of size 36 ± 12 nm were synthesized with a zeta potential of - 20.2 ± 8.8 mV and bandgap of 4.6 ± 0.3 eV and exhibited a blue shift in UV-spectrum. Compared to the Bulk TiO2, the TiO2 (N15) exhibited higher cytotoxicity with a 24 h LC50 of 202.4 µg/ml with P. Caudatum. The mechanism was elucidated as the size and charge-dependent internalization of nanoparticles leading to abnormal physiological metabolism in oxidative stress, steatosis, and apoptosis because of their influential effect on the activity of metabolic proteins like SOD, GSH, MDA, and catalase. The study emphasized the controlled usage TiO2 nanoparticles in daily activity with a concern for ecological and biomedical aspects.
Collapse
Affiliation(s)
- Swabhiman Mohanty
- School of Biotechnology, KIIT University, Bhubaneswar 751024, Odisha, India
| | - Paritosh Patel
- School of Biotechnology, KIIT University, Bhubaneswar 751024, Odisha, India; Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, 01897 Seoul, South Korea
| | - Ealisha Jha
- School of Biotechnology, KIIT University, Bhubaneswar 751024, Odisha, India
| | - Pritam Kumar Panda
- School of Biotechnology, KIIT University, Bhubaneswar 751024, Odisha, India; Condensed Matter Theory Group, Materials Theory Division, Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala, Sweden.
| | - Puja Kumari
- RECETOX, Faculty of Science, Masaryk University, Brno 60300, Czech Republic; Advanced Science and Technology Research Centre, Vinoba Bhave University, Hazaribagh 825301, Jharkhand, India
| | - Sonal Singh
- Advanced Science and Technology Research Centre, Vinoba Bhave University, Hazaribagh 825301, Jharkhand, India
| | - Adrija Sinha
- School of Biotechnology, KIIT University, Bhubaneswar 751024, Odisha, India
| | - Ashish Kumar Saha
- Advanced Science and Technology Research Centre, Vinoba Bhave University, Hazaribagh 825301, Jharkhand, India
| | - Nagendra Kumar Kaushik
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, 01897 Seoul, South Korea
| | - Vishakha Raina
- School of Biotechnology, KIIT University, Bhubaneswar 751024, Odisha, India
| | - Suresh K Verma
- School of Biotechnology, KIIT University, Bhubaneswar 751024, Odisha, India; Condensed Matter Theory Group, Materials Theory Division, Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala, Sweden.
| | - Mrutyunjay Suar
- School of Biotechnology, KIIT University, Bhubaneswar 751024, Odisha, India.
| |
Collapse
|
12
|
Bhattacharjee R, Nandi A, Mitra P, Saha K, Patel P, Jha E, Panda PK, Singh SK, Dutt A, Mishra YK, Verma SK, Suar M. Theragnostic application of nanoparticle and CRISPR against food-borne multi-drug resistant pathogens. Mater Today Bio 2022; 15:100291. [PMID: 35711292 PMCID: PMC9194658 DOI: 10.1016/j.mtbio.2022.100291] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 05/10/2022] [Accepted: 05/11/2022] [Indexed: 12/25/2022] Open
Abstract
Foodborne infection is one of the leading sources of infections spreading across the world. Foodborne pathogens are recognized as multidrug-resistant (MDR) pathogens posing a significant problem in the food industry and healthy consumers resulting in enhanced economic burden, and nosocomial infections. The continued search for enhanced microbial detection tools has piqued the interest of the CRISPR-Cas system and Nanoparticles. CRISPR-Cas system is present in the bacterial genome of some prokaryotes and is repurposed as a theragnostic tool against MDR pathogens. Nanoparticles and composites have also emerged as an efficient tool in theragnostic applications against MDR pathogens. The diagnostic limitations of the CRISPR-Cas system are believed to be overcome by a synergistic combination of the nanoparticles system and CRISPR-Cas using nanoparticles as vehicles. In this review, we have discussed the diagnostic application of CRISPR-Cas technologies along with their potential usage in applications like phage resistance, phage vaccination, strain typing, genome editing, and antimicrobial. we have also elucidated the antimicrobial and detection role of nanoparticles against foodborne MDR pathogens. Moreover, the novel combinatorial approach of CRISPR-Cas and nanoparticles for their synergistic effects in pathogen clearance and drug delivery vehicles has also been discussed.
Collapse
Affiliation(s)
- Rahul Bhattacharjee
- KIIT School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT-DU), Bhubaneswar, Odisha, India
| | - Aditya Nandi
- KIIT School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT-DU), Bhubaneswar, Odisha, India
| | - Priya Mitra
- KIIT School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT-DU), Bhubaneswar, Odisha, India
| | - Koustav Saha
- KIIT School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT-DU), Bhubaneswar, Odisha, India
| | - Paritosh Patel
- KIIT School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT-DU), Bhubaneswar, Odisha, India
| | - Ealisha Jha
- KIIT School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT-DU), Bhubaneswar, Odisha, India
| | - Pritam Kumar Panda
- Condensed Matter Theory Group, Materials Theory Division, Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20, Uppsala, Sweden
| | - Sushil Kumar Singh
- DBT- NECAB, Department of Agricultural Biotechnology, Assam Agriculture University, Jorhat, 785013, Assam, India
| | - Ateet Dutt
- Instituto de Investigaciones en Materiales, UNAM, CDMX, Mexico
| | - Yogendra Kumar Mishra
- Mads Clausen Institute, NanoSYD, University of Southern Denmark, Alsion 2, DK-6400, Sønderborg, Denmark
| | - Suresh K. Verma
- KIIT School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT-DU), Bhubaneswar, Odisha, India
- Condensed Matter Theory Group, Materials Theory Division, Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20, Uppsala, Sweden
| | - Mrutyunjay Suar
- KIIT School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT-DU), Bhubaneswar, Odisha, India
| |
Collapse
|
13
|
Berehu HM, S A, Khan MI, Chakraborty R, Lavudi K, Penchalaneni J, Mohapatra B, Mishra A, Patnaik S. Cytotoxic Potential of Biogenic Zinc Oxide Nanoparticles Synthesized From Swertia chirayita Leaf Extract on Colorectal Cancer Cells. Front Bioeng Biotechnol 2022; 9:788527. [PMID: 34976976 PMCID: PMC8714927 DOI: 10.3389/fbioe.2021.788527] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 11/23/2021] [Indexed: 12/24/2022] Open
Abstract
Chemotherapy side effects, medication resistance, and tumor metastasis impede the advancement of cancer treatments, resulting in a poor prognosis for cancer patients. In the last decade, nanoparticles (NPs) have emerged as a promising drug delivery system. Swertia chirayita has long been used as a treatment option to treat a variety of ailments. Zinc oxide nanoparticles (ZnO-NPs) were synthesized from ethanolic and methanolic extract of S. chirayita leaves. ZnO-NPs were characterized using UV-visible spectroscopy, Fourier transform infrared spectroscopy (FTIR), scanning electron Microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), and X-ray diffraction (XRD). Its anti-cancer activities were analyzed using cytotoxicity assays [MTT assay and acridine orange (AO) staining] and quantitative real-time PCR (qRT-PCR) using colorectal cancer (CRC) cells (HCT-116 and Caco-2) and control cells (HEK-293). The ZnO-NPs synthesized from the ethanolic extract of S. chirayita have an average size of 24.67 nm, whereas those from methanolic extract have an average size of 22.95 nm with a spherical shape. MTT assay showed NPs’ cytotoxic potential on cancer cells (HCT-116 and Caco-2) when compared to control cells (HEK-293). The IC50 values of ethanolic and methanolic extract ZnO-NPs for HCT-116, Caco-2, and HEK-293 were 34.356 ± 2.71 and 32.856 ± 2.99 μg/ml, 52.15 ± 8.23 and 63.1 ± 12.09 μg/ml, and 582.84 ± 5.26 and 615.35 ± 4.74 μg/ml, respectively. Acridine orange staining confirmed the ability of ZnO-NPs to induce apoptosis. qRT-PCR analysis revealed significantly enhanced expression of E-cadherin whereas a reduced expression of vimentin and CDK-1. Altogether, these results suggested anti-cancer properties of synthesized ZnO-NPs in CRC.
Collapse
Affiliation(s)
- Hadgu Mendefro Berehu
- Disease Biology Laboratory, School of Biotechnology KIIT Deemed to Be University, Odisha, India
| | - Anupriya S
- Disease Biology Laboratory, School of Biotechnology KIIT Deemed to Be University, Odisha, India
| | - Md Imran Khan
- Disease Biology Laboratory, School of Biotechnology KIIT Deemed to Be University, Odisha, India
| | - Rajasree Chakraborty
- Disease Biology Laboratory, School of Biotechnology KIIT Deemed to Be University, Odisha, India
| | - Kousalya Lavudi
- Disease Biology Laboratory, School of Biotechnology KIIT Deemed to Be University, Odisha, India
| | - Josthna Penchalaneni
- Department of Biotechnology, Sri Padmavati Mahila Visvavidyalam, Tirupati, India
| | - Bibhashee Mohapatra
- Disease Biology Laboratory, School of Biotechnology KIIT Deemed to Be University, Odisha, India
| | - Amrita Mishra
- Disease Biology Laboratory, School of Biotechnology KIIT Deemed to Be University, Odisha, India
| | - Srinivas Patnaik
- Disease Biology Laboratory, School of Biotechnology KIIT Deemed to Be University, Odisha, India
| |
Collapse
|
14
|
Yuan K, Liu X, Shi J, Liu W, Liu K, Lu H, Wu D, Chen Z, Lu C. Antibacterial Properties and Mechanism of Lysozyme-Modified ZnO Nanoparticles. Front Chem 2021; 9:762255. [PMID: 34900934 PMCID: PMC8660975 DOI: 10.3389/fchem.2021.762255] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 10/25/2021] [Indexed: 11/25/2022] Open
Abstract
The lysozyme-modified nanoparticles (LY@ZnO NPs) were synthesized by the reduction-oxidation method, and the morphology and structure of LY@ZnO were analyzed by Fourier transform infrared (FTIR) spectroscopy, powder X-ray diffraction (XRD), scanning electron microsclope (SEM), and particle size analysis. The antibacterial effects of LY@ZnO against Escherichia coli (E. coli, Gram-negative bacteria) and Staphylococcus aureus (S. aureus, Gram-positive bacteria) were discussed by measuring the zone of inhibition (ZOI) and growth inhibition. The antimicrobial experiments showed that the LY@ZnO NPs possessed better antibacterial activity than ZnO. Besides, the antibacterial mechanism of LY@ZnO was also investigated, which was attributed to the generation of reactive oxygen species (ROS). Furthermore, the toxicities of LY@ZnO in vivo and in vitro were discussed by the cell counting kit-8 method and animal experiments, showing that LY@ZnO possessed excellent biocompatibility. Finally, the therapeutic effect of LY@ZnO on a rat skin infection model caused by methicillin-resistant Staphylococcus aureus (MRSA) was also studied, which exhibited good anti-infective activity. Our findings showed that LY@ZnO possessed remarkable antibacterial ability due to its excellent membrane permeability and small particle size. Besides, LY@ZnO also exhibited certain stability and great safety, which showed tremendous prospects for microbial infection in patients. It would also be helpful for a better understanding of the enzyme-modified nanomaterials against bacteria.
Collapse
Affiliation(s)
- Kangrui Yuan
- School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Xiaoliu Liu
- Medical Laboratory of Shenzhen Luohu People’s Hospital, Shenzhen, China
| | - Jianxin Shi
- School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Wei Liu
- School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Kun Liu
- School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Hongmei Lu
- The First Dongguan Affiliated Hospital of Guangdong Medical University, Dongguan, China
| | - Dudu Wu
- School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Zhi Chen
- School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Chengyu Lu
- School of Pharmacy, Guangdong Medical University, Dongguan, China
| |
Collapse
|
15
|
Panda PK, Verma SK, Suar M. Nanoparticle-biological interactions: the renaissance of bionomics in the myriad nanomedical technologies. Nanomedicine (Lond) 2021; 16:2249-2254. [PMID: 34544260 DOI: 10.2217/nnm-2021-0174] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Pritam Kumar Panda
- Condensed Matter Theory Group, Materials Theory Division, Department of Physics & Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala, Sweden
| | - Suresh K Verma
- Condensed Matter Theory Group, Materials Theory Division, Department of Physics & Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala, Sweden.,School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneswar, 751024, India
| | - Mrutyunjay Suar
- School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneswar, 751024, India
| |
Collapse
|
16
|
Bai Q, Wang Y, Duan L, Xu X, Hu Y, Yang Y, Zhang L, Liu Z, Bao H, Liu T. Cu-Doped-ZnO Nanocrystals Induce Hepatocyte Autophagy by Oxidative Stress Pathway. NANOMATERIALS 2021; 11:nano11082081. [PMID: 34443912 PMCID: PMC8399041 DOI: 10.3390/nano11082081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/08/2021] [Accepted: 08/09/2021] [Indexed: 11/17/2022]
Abstract
As a novel nanomaterial for cancer therapy and antibacterial agent, Cu-doped-ZnO nanocrystals (CZON) has aroused concern recently, but the toxicity of CZON has received little attention. Results of hematology analysis and blood biochemical assay showed that a 50 mg/kg dosage induced the increase in white blood cells count and that the concentration of alanine aminotransferase (ALT), superoxide dismutase (SOD), catalase (CAT), and Malonaldehyde (MDA) in the serum, liver, and lungs of the CZON group varied significantly from the control mice. Histopathological examinations results showed inflammation and congestion in the liver and lung after a single injection of CZON at 50 mg/kg. A transmission electron microscope (TEM) result manifested the autolysosome of hepatocyte of mice which received CZON at 50 mg/kg. The significant increase in LC3-II and decrease in p62 of hepatocyte in vivo could be seen in Western blot. These results indicated that CZON had the ability to induce autophagy of hepatocyte. The further researches of mechanism of autophagy revealed that CZON could produce hydroxyl radicals measured by erythrocyte sedimentation rate (ESR). The result of bio-distribution of CZON in vivo, investigated by ICP-OES, indicated that CZON mainly accumulated in the liver and two spleen organs. These results suggested that CZON can induce dose-dependent toxicity and autophagy by inducing oxidative stress in major organs. In summary, we investigated the acute toxicity and biological distribution after the intravenous administration of CZON. The results of body weight, histomorphology, hematology, and blood biochemical tests showed that CZON had a dose-dependent effect on the health of mice after a single injection. These results indicated that CZON could induce oxidative damage of the liver and lung by producing hydroxyl radicals at the higher dose.
Collapse
Affiliation(s)
- Qianyu Bai
- College of Veterinary Medicine, China Agricultural University, No.2 West Road Yuanmingyuan, Beijing 100193, China; (Q.B.); (L.D.); (X.X.); (Y.H.); (Y.Y.)
| | - Yeru Wang
- Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, No.37 Guangqu Road, Chaoyang District, Beijing 100022, China; (Y.W.); (L.Z.); (Z.L.)
| | - Luoyan Duan
- College of Veterinary Medicine, China Agricultural University, No.2 West Road Yuanmingyuan, Beijing 100193, China; (Q.B.); (L.D.); (X.X.); (Y.H.); (Y.Y.)
| | - Xiaomu Xu
- College of Veterinary Medicine, China Agricultural University, No.2 West Road Yuanmingyuan, Beijing 100193, China; (Q.B.); (L.D.); (X.X.); (Y.H.); (Y.Y.)
| | - Yusheng Hu
- College of Veterinary Medicine, China Agricultural University, No.2 West Road Yuanmingyuan, Beijing 100193, China; (Q.B.); (L.D.); (X.X.); (Y.H.); (Y.Y.)
| | - Yue Yang
- College of Veterinary Medicine, China Agricultural University, No.2 West Road Yuanmingyuan, Beijing 100193, China; (Q.B.); (L.D.); (X.X.); (Y.H.); (Y.Y.)
| | - Lei Zhang
- Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, No.37 Guangqu Road, Chaoyang District, Beijing 100022, China; (Y.W.); (L.Z.); (Z.L.)
| | - Zhaoping Liu
- Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, No.37 Guangqu Road, Chaoyang District, Beijing 100022, China; (Y.W.); (L.Z.); (Z.L.)
| | - Huihui Bao
- Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, No.37 Guangqu Road, Chaoyang District, Beijing 100022, China; (Y.W.); (L.Z.); (Z.L.)
- Correspondence: (H.B.); (T.L.); Tel.: +86-010-62733398 (T.L.)
| | - Tianlong Liu
- College of Veterinary Medicine, China Agricultural University, No.2 West Road Yuanmingyuan, Beijing 100193, China; (Q.B.); (L.D.); (X.X.); (Y.H.); (Y.Y.)
- Correspondence: (H.B.); (T.L.); Tel.: +86-010-62733398 (T.L.)
| |
Collapse
|
17
|
Khan AA, Alanazi AM, Alsaif N, Al-anazi M, Sayed AY, Bhat MA. Potential cytotoxicity of silver nanoparticles: Stimulation of autophagy and mitochondrial dysfunction in cardiac cells. Saudi J Biol Sci 2021; 28:2762-2771. [PMID: 34025162 PMCID: PMC8117033 DOI: 10.1016/j.sjbs.2021.03.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/06/2021] [Accepted: 03/07/2021] [Indexed: 12/20/2022] Open
Abstract
In the present study, we elucidated the potential cytotoxicity of AgNPs in H9c2 rat cardiomyoblasts and assessed the underlying toxicological manifestations responsible for their toxicity thereof. The results indicated that the exposure of AgNPs to H9c2 cardiac cells decreased cell viability in a dose-dependent manner and caused cell cycle arrest followed by induction of apoptosis. The AgNPs treated cardiac cells showed a generation of reactive oxygen species (ROS) and mitochondrial dysfunction where mitochondrial ATP was reduced and the expression of AMPK1α increased. AgNPs also induced ROS-mediated autophagy in H9c2 cells. There was a significant time-dependent increase in intracellular levels of Atg5, Beclin1, and LC3BII after exposure to AgNPs, signifying the autophagic response in H9c2 cells. More importantly, the addition of N-acetyl-L-cysteine (NAC) inhibited autophagy and significantly reduced the cytotoxicity of AgNPs in H9c2 cells. The study highlights the prospective toxicity of AgNPs on cardiac cells, collectively signifying a potential health risk.
Collapse
Affiliation(s)
- Azmat Ali Khan
- Pharmaceutical Biotechnology Laboratory, Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Amer M. Alanazi
- Pharmaceutical Biotechnology Laboratory, Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Nawaf Alsaif
- Pharmaceutical Biotechnology Laboratory, Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammad Al-anazi
- Pharmaceutical Biotechnology Laboratory, Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ahmed Y.A. Sayed
- Pharmaceutical Biotechnology Laboratory, Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mashooq Ahmad Bhat
- Pharmaceutical Biotechnology Laboratory, Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
18
|
Wankar JN, Chaturvedi VK, Bohara C, Singh MP, Bohara RA. Role of Nanomedicine in Management and Prevention of COVID-19. FRONTIERS IN NANOTECHNOLOGY 2020. [DOI: 10.3389/fnano.2020.589541] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
COVID-19, or the Coronavirus disease 2019, caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has become a pandemic. At the time of writing this (July 28, 2020), more than 17 million people have become affected and 0.7 million people have died across the world. Remdesivir has shown glimpses of insight into how to fight the virus, but as of yet remain far from victory. Nanotechnology has proven its role in medicine to deliver the drug at the target site with minimal side effects, particularly in the anticancer domain. Most specifically, a range of nanotechnology-based products, such as nanosilver, are currently on the market because they have demonstrated the potential to combat viruses. This article provides an overview of the role of nanomedicine, including polymeric and inorganic materials, and its future capabilities in the management of the disease outbreak. Taking all this into account, an attempt has been made to educate readers in the simplest way of the role of nanomedicine, which can play a pivotal role in the management of diseases.
Collapse
|
19
|
Mathew EN, Hurst MN, Wang B, Murthy V, Zhang Y, DeLong RK. Interaction of Ras Binding Domain (RBD) by chemotherapeutic zinc oxide nanoparticles: Progress towards RAS pathway protein interference. PLoS One 2020; 15:e0243802. [PMID: 33326476 PMCID: PMC7744048 DOI: 10.1371/journal.pone.0243802] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 11/24/2020] [Indexed: 11/29/2022] Open
Abstract
Zinc oxide (ZnO) NP is considered as a nanoscale chemotherapeutic. Thus, the drug delivery of this inorganic NP is of considerable importance. Ras mutations are common in cancer and the activation of this signaling pathway is a hallmark in carcinoma, melanoma and many other aggressive malignancies. Thus, here we examined the binding and delivery of Ras binding domain (RBD), a model cancer-relevant protein and effector of Ras by ZnO NP. Shifts in zeta potential in water, PBS, DMEM and DMEM supplemented with FBS supported NP interaction to RBD. Fluorescence quenching of the NP was concentration-dependent for RBD, Stern-Volmer analysis of this data was used to estimate binding strength which was significant for ZnO-RBD (Kd < 10-5). ZnO NP interaction to RBD was further confirmed by pull-down assay demonstrated by SDS-PAGE analysis. The ability of ZnO NP to inhibit 3-D tumor spheroid was demonstrated in HeLa cell spheroids-the ZnO NP breaking apart these structures revealing a significant (>50%) zone of killing as shown by light and fluorescence microscopy after intra-vital staining. ZnO 100 nm was superior to ZnO 14 nm in terms of anticancer activity. When bound to ZnO NP, the anticancer activity of RBD was enhanced. These data indicate the potential diagnostic application or therapeutic activity of RBD-NP complexes in vivo which demands further investigation.
Collapse
Affiliation(s)
- Elza Neelima Mathew
- Department of Anatomy and Physiology, College of Veterinary Medicine, Nanotechnology Innovation Center of Kansas State, Kansas State University, Manhattan, Kansas, United States of America
| | - Miranda N. Hurst
- Molecular Biophysics, Kreiger School of Arts and Sciences, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Baolin Wang
- Department of Anatomy and Physiology, College of Veterinary Medicine, Nanotechnology Innovation Center of Kansas State, Kansas State University, Manhattan, Kansas, United States of America
| | - Vaibhav Murthy
- Center for Retrovirus Research, College of Veterinary Medicine, Ohio State University, Columbus, Ohio, United States of America
| | - Yuntao Zhang
- Department of Anatomy and Physiology, College of Veterinary Medicine, Nanotechnology Innovation Center of Kansas State, Kansas State University, Manhattan, Kansas, United States of America
| | - Robert K. DeLong
- Department of Anatomy and Physiology, College of Veterinary Medicine, Nanotechnology Innovation Center of Kansas State, Kansas State University, Manhattan, Kansas, United States of America
| |
Collapse
|
20
|
Janer G, Landsiedel R, Wohlleben W. Rationale and decision rules behind the ECETOC NanoApp to support registration of sets of similar nanoforms within REACH. Nanotoxicology 2020; 15:145-166. [PMID: 33320695 DOI: 10.1080/17435390.2020.1842933] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
New registration requirements for nanomaterials under REACH consider the possibility to form 'sets of similar nanoforms' for a joined human health and environmental hazard, exposure and risk assessment. We developed a tool to create and justify sets of similar nanoforms and to ensure that each of the nanoforms is sufficiently similar to all other nanoforms. The decision logic is following the ECHA guidance in a transparent and evidence-based manner. For each two nanoforms the properties under consideration are compared and corresponding thresholds for maximal differences are proposed. In tier1, similarity is assessed based on intrinsic properties that mostly correspond to those required for nanoform identification under REACH: composition, impurities/additives, size, crystallinity, shape and surface treatment. Moreover, potential differences in the agglomeration/aggregation state resulting from different production processes are considered. If nanoforms were not sufficiently similar based on tier1 criteria, additional data from functional assays are required in tier2. In rare cases, additional short-term in vivo rodent data could be required in a third tier. Data required by tier 2 are triggered by the intrinsic properties in the first tier that did not match the similarity criteria. Most often this will be data on dissolution and surface reactivity followed by in vitro toxicity, dispersion stability, dustiness. Out of several nanoforms given by the user, the tool concludes which nanoforms could be justified to be in the same set and which nanoforms are outside. It defines the boundaries of sets of similar nanoforms and generates a justification for the REACH registration.
Collapse
Affiliation(s)
- Gemma Janer
- Leitat Technological Center, Barcelona, Spain
| | - Robert Landsiedel
- Department of Experimental Toxicology and Ecology, BASF SE, Ludwigshafen am Rhein, Germany
| | - Wendel Wohlleben
- Department of Material Physics and Analytics, BASF SE, Ludwigshafen am Rhein, Germany
| |
Collapse
|
21
|
Husain S, Verma SK, Yasin D, Hemlata, A Rizvi MM, Fatma T. Facile green bio-fabricated silver nanoparticles from Microchaete infer dose-dependent antioxidant and anti-proliferative activity to mediate cellular apoptosis. Bioorg Chem 2020; 107:104535. [PMID: 33341280 DOI: 10.1016/j.bioorg.2020.104535] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 12/03/2020] [Accepted: 12/04/2020] [Indexed: 12/16/2022]
Abstract
With the rapid development of nanotechnology, much has been anticipated with silver nanoparticles (AgNPs) due to their extensive industrial and commercial applications. However, it has raised concerns over environmental safety and human health effects. In this study, AgNPs were bio-fabricated using aqueous extract of Microchaete and their medical applications like antioxidant, anti-proliferative, and apoptosis were done. The biosynthesis of AgNPs was continuously followed by UV-vis spectrophotometric analysis. The physiochemical properties like shape, size, crystallinity, and polydispersity of the nanoparticles were determined by Scanning Electron Microscopy (SEM) along with EDX, Transmission Electron Microscope (TEM), Atomic Force Microscope (AFM), dynamic light scattering (DLS), and X-Ray Diffraction (XRD). Biosynthesized 7.0 nm sized AgNPs with the crystalline structure (crystalline size 4.8 nm) having a hydrodynamic diameter of 38.74 ± 2.6 nm was achieved due to the involvement of reducing agents present in the cyanobacterial extract. The IC50 values of the AgNPs were evaluated as 75 µg/ml and 79.41 µg/ml with HepG2 and MCF-7 cell lines. Different in-vitro cellular assays investigated in the present study exhibited antioxidant, anti-proliferative, and apoptotic activities. Probably delayed apoptosis in HepG2 and MCF-7 is due to better antioxidant activities of Microchaete based AgNPs.
Collapse
Affiliation(s)
- Shaheen Husain
- Cyanobacterial Biotechnology Lab, Jamia Millia Islamia University, New Delhi 110025, India.
| | - Suresh K Verma
- School of Biotechnology, KIIT University, Bhubaneswar, India
| | - Durdana Yasin
- Cyanobacterial Biotechnology Lab, Jamia Millia Islamia University, New Delhi 110025, India
| | - Hemlata
- Cyanobacterial Biotechnology Lab, Jamia Millia Islamia University, New Delhi 110025, India
| | - M Moshahid A Rizvi
- Department of Biosciences, Jamia Millia Islmia, New Delhi 110025, India.
| | - Tasneem Fatma
- Cyanobacterial Biotechnology Lab, Jamia Millia Islamia University, New Delhi 110025, India.
| |
Collapse
|
22
|
de Souza GL, Moura CCG, Silva ACA, Marinho JZ, Silva TR, Dantas NO, Bonvicini JFS, Turrioni AP. Effects of zinc oxide and calcium-doped zinc oxide nanocrystals on cytotoxicity and reactive oxygen species production in different cell culture models. Restor Dent Endod 2020; 45:e54. [PMID: 33294419 PMCID: PMC7691257 DOI: 10.5395/rde.2020.45.e54] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 04/28/2020] [Accepted: 05/04/2020] [Indexed: 11/11/2022] Open
Abstract
Objectives This study aimed to synthesize nanocrystals (NCs) of zinc oxide (ZnO) and calcium ion (Ca2+)-doped ZnO with different percentages of calcium oxide (CaO), to evaluate cytotoxicity and to assess the effects of the most promising NCs on cytotoxicity depending on lipopolysaccharide (LPS) stimulation. Materials and Methods Nanomaterials were synthesized (ZnO and ZnO:xCa, x = 0.7; 1.0; 5.0; 9.0) and characterized using X-ray diffractometry, scanning electron microscopy, and methylene blue degradation. SAOS-2 and RAW 264.7 were treated with NCs, and evaluated for viability using the MTT assay. NCs with lower cytotoxicity were maintained in contact with LPS-stimulated (+LPS) and nonstimulated (−LPS) human dental pulp cells (hDPCs). Cell viability, nitric oxide (NO), and reactive oxygen species (ROS) production were evaluated. Cells kept in culture medium or LPS served as negative and positive controls, respectively. One-way analysis of variance and the Dunnett test (α = 0.05) were used for statistical testing. Results ZnO:0.7Ca and ZnO:1.0Ca at 10 µg/mL were not cytotoxic to SAOS-2 and RAW 264.7. +LPS and −LPS hDPCs treated with ZnO, ZnO:0.7Ca, and ZnO:1.0Ca presented similar NO production to negative control (p > 0.05) and lower production compared to positive control (p < 0.05). All NCs showed reduced ROS production compared with the positive control group both in +LPS and −LPS cells (p < 0.05). Conclusions NCs were successfully synthesized. ZnO, ZnO:0.7Ca and ZnO:1.0Ca presented the highest percentages of cell viability, decreased ROS and NO production in +LPS cells, and maintenance of NO production at basal levels.
Collapse
Affiliation(s)
- Gabriela Leite de Souza
- Department of Endodontics, School of Dentistry, Federal University of Uberlândia, Uberlândia, MG, Brazil
| | | | - Anielle Christine Almeida Silva
- Functional and New Nanostructured Materials Laboratory, Physics Institute, Federal University of Alagoas, Maceió, AL, Brazil
| | | | - Thaynara Rodrigues Silva
- Department of Endodontics, School of Dentistry, Federal University of Uberlândia, Uberlândia, MG, Brazil.,Functional and New Nanostructured Materials Laboratory, Physics Institute, Federal University of Alagoas, Maceió, AL, Brazil
| | - Noelio Oliveira Dantas
- Functional and New Nanostructured Materials Laboratory, Physics Institute, Federal University of Alagoas, Maceió, AL, Brazil
| | | | - Ana Paula Turrioni
- Department of Pediatric Dentistry, School of Dentistry, Federal University of Uberlândia, Uberlândia, MG, Brazil
| |
Collapse
|
23
|
Saxena V, Pandey LM. Bimetallic assembly of Fe(III) doped ZnO as an effective nanoantibiotic and its ROS independent antibacterial mechanism. J Trace Elem Med Biol 2020; 57:126416. [PMID: 31629630 DOI: 10.1016/j.jtemb.2019.126416] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 07/30/2019] [Accepted: 10/05/2019] [Indexed: 11/17/2022]
Affiliation(s)
- Varun Saxena
- Bio-Interface & Environmental Engineering Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India.
| | - Lalit M Pandey
- Bio-Interface & Environmental Engineering Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India.
| |
Collapse
|
24
|
Dukhinova MS, Prilepskii AY, Shtil AA, Vinogradov VV. Metal Oxide Nanoparticles in Therapeutic Regulation of Macrophage Functions. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E1631. [PMID: 31744137 PMCID: PMC6915518 DOI: 10.3390/nano9111631] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 11/13/2019] [Accepted: 11/13/2019] [Indexed: 12/11/2022]
Abstract
Macrophages are components of the innate immune system that control a plethora of biological processes. Macrophages can be activated towards pro-inflammatory (M1) or anti-inflammatory (M2) phenotypes depending on the cue; however, polarization may be altered in bacterial and viral infections, cancer, or autoimmune diseases. Metal (zinc, iron, titanium, copper, etc.) oxide nanoparticles are widely used in therapeutic applications as drugs, nanocarriers, and diagnostic tools. Macrophages can recognize and engulf nanoparticles, while the influence of macrophage-nanoparticle interaction on cell polarization remains unclear. In this review, we summarize the molecular mechanisms that drive macrophage activation phenotypes and functions upon interaction with nanoparticles in an inflammatory microenvironment. The manifold effects of metal oxide nanoparticles on macrophages depend on the type of metal and the route of synthesis. While largely considered as drug transporters, metal oxide nanoparticles nevertheless have an immunotherapeutic potential, as they can evoke pro- or anti-inflammatory effects on macrophages and become essential for macrophage profiling in cancer, wound healing, infections, and autoimmunity.
Collapse
Affiliation(s)
- Marina S. Dukhinova
- ITMO University, Saint-Petersburg 197101, Russia; (M.S.D.); (A.Y.P.); (A.A.S.)
| | | | - Alexander A. Shtil
- ITMO University, Saint-Petersburg 197101, Russia; (M.S.D.); (A.Y.P.); (A.A.S.)
- Blokhin National Medical Center of Oncology, Moscow 115478, Russia
| | | |
Collapse
|