1
|
Scott BR. A Revised System of Radiological Protection Is Needed. HEALTH PHYSICS 2024; 126:419-423. [PMID: 38568174 DOI: 10.1097/hp.0000000000001791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
ABSTRACT The system of radiological protection has been based on linear no-threshold theory and related dose-response models for health detriment (in part related to cancer induction) by ionizing radiation exposure for almost 70 y. The indicated system unintentionally promotes radiation phobia, which has harmed many in relationship to the Fukushima nuclear accident evacuations and led to some abortions following the Chernobyl nuclear accident. Linear no-threshold model users (mainly epidemiologists) imply that they can reliably assess the cancer excess relative risk (likely none) associated with tens or hundreds of nanogray (nGy) radiation doses to an organ (e.g., bone marrow); for 1,000 nGy, the excess relative risk is 1,000 times larger than that for 1 nGy. They are currently permitted this unscientific view (ignoring evolution-related natural defenses) because of the misinforming procedures used in data analyses of which many radiation experts are not aware. One such procedure is the intentional and unscientific vanishing of the excess relative risk uncertainty as radiation dose decreases toward assigned dose zero (for natural background radiation exposure). The main focus of this forum article is on correcting the serious error of discarding risk uncertainty and the impact of the correction. The result is that the last defense of the current system of radiological protection relying on linear no-threshold theory (i.e., epidemiologic studies implied findings of harm from very low doses) goes away. A revised system is therefore needed.
Collapse
Affiliation(s)
- Bobby R Scott
- Lovelace Biomedical Research Institute, Albuquerque, NM (retired)
| |
Collapse
|
2
|
Scott BR. Cancer Risk Assessment Concern Regarding the Publication "Assessing the Risk of Secondary Cancer Induction in Radiosensitive Organs During Trigeminal Neuralgia Treatment With Gamma Knife Radiosurgery: Impact of Extracranial Dose": A Letter to the Editor. Dose Response 2024; 22:15593258241259677. [PMID: 38826867 PMCID: PMC11143822 DOI: 10.1177/15593258241259677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 05/19/2024] [Indexed: 06/04/2024] Open
Affiliation(s)
- Bobby R. Scott
- Lovelace Biomedical Research Institute, Albuquerque, NM, USA
| |
Collapse
|
3
|
Scott BR. Evaluating thyroid cancer risks for nuclear workers related to the Fukushima Daiichi Nuclear Power Plant accident based on LNT theory is problematic. JOURNAL OF RADIATION RESEARCH 2024; 65:259-261. [PMID: 38321603 PMCID: PMC10959441 DOI: 10.1093/jrr/rrae002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/28/2023] [Indexed: 02/08/2024]
Affiliation(s)
- Bobby R Scott
- Lovelace Biomedical Research Institute, 2425 Ridgecrest Drive SE, Albuquerque, NM 87108, USA
| |
Collapse
|
4
|
Hu M, Miao M, Li K, Luan Q, Sun G, Zhang T. Human milk oligosaccharide lacto-N-tetraose: Physiological functions and synthesis methods. Carbohydr Polym 2023; 316:121067. [PMID: 37321746 DOI: 10.1016/j.carbpol.2023.121067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 06/17/2023]
Abstract
Human milk oligosaccharides (HMOs) have attracted considerable attention due to their unique role in boosting infant health. Among the HMOs, lacto-N-tetraose (LNT) is a significant constituent associated with various health benefits, such as prebiotic effects, antiadhesive antimicrobials, antiviral protection, and immune modulators. LNT has received a "Generally Recognized as Safe" status by the American Food and Drug Administration and was approved as a food ingredient for infant formula. However, the limited availability of LNT poses a major challenge for its application in food and medicine. In this review, we first explored the physiological functions of LNT. Next, we describe several synthesis methods for production of LNT, including chemical, enzymatic, and cell factory approaches, and summarize the pivotal research results. Finally, challenges and opportunities for the large-scale synthesis of LNT were discussed.
Collapse
Affiliation(s)
- Miaomiao Hu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Ming Miao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Kewen Li
- Baolingbao Biology Co., Ltd., Yucheng, Shandong 251200, China
| | - Qingmin Luan
- Baolingbao Biology Co., Ltd., Yucheng, Shandong 251200, China
| | - Guilian Sun
- Baolingbao Biology Co., Ltd., Yucheng, Shandong 251200, China
| | - Tao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
5
|
Averbeck D. Low-Dose Non-Targeted Effects and Mitochondrial Control. Int J Mol Sci 2023; 24:11460. [PMID: 37511215 PMCID: PMC10380638 DOI: 10.3390/ijms241411460] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/26/2023] [Accepted: 06/29/2023] [Indexed: 07/30/2023] Open
Abstract
Non-targeted effects (NTE) have been generally regarded as a low-dose ionizing radiation (IR) phenomenon. Recently, regarding long distant abscopal effects have also been observed at high doses of IR) relevant to antitumor radiation therapy. IR is inducing NTE involving intracellular and extracellular signaling, which may lead to short-ranging bystander effects and distant long-ranging extracellular signaling abscopal effects. Internal and "spontaneous" cellular stress is mostly due to metabolic oxidative stress involving mitochondrial energy production (ATP) through oxidative phosphorylation and/or anaerobic pathways accompanied by the leakage of O2- and other radicals from mitochondria during normal or increased cellular energy requirements or to mitochondrial dysfunction. Among external stressors, ionizing radiation (IR) has been shown to very rapidly perturb mitochondrial functions, leading to increased energy supply demands and to ROS/NOS production. Depending on the dose, this affects all types of cell constituents, including DNA, RNA, amino acids, proteins, and membranes, perturbing normal inner cell organization and function, and forcing cells to reorganize the intracellular metabolism and the network of organelles. The reorganization implies intracellular cytoplasmic-nuclear shuttling of important proteins, activation of autophagy, and mitophagy, as well as induction of cell cycle arrest, DNA repair, apoptosis, and senescence. It also includes reprogramming of mitochondrial metabolism as well as genetic and epigenetic control of the expression of genes and proteins in order to ensure cell and tissue survival. At low doses of IR, directly irradiated cells may already exert non-targeted effects (NTE) involving the release of molecular mediators, such as radicals, cytokines, DNA fragments, small RNAs, and proteins (sometimes in the form of extracellular vehicles or exosomes), which can induce damage of unirradiated neighboring bystander or distant (abscopal) cells as well as immune responses. Such non-targeted effects (NTE) are contributing to low-dose phenomena, such as hormesis, adaptive responses, low-dose hypersensitivity, and genomic instability, and they are also promoting suppression and/or activation of immune cells. All of these are parts of the main defense systems of cells and tissues, including IR-induced innate and adaptive immune responses. The present review is focused on the prominent role of mitochondria in these processes, which are determinants of cell survival and anti-tumor RT.
Collapse
Affiliation(s)
- Dietrich Averbeck
- Laboratory of Cellular and Molecular Radiobiology, PRISME, UMR CNRS 5822/IN2P3, IP2I, Lyon-Sud Medical School, University Lyon 1, 69921 Oullins, France
| |
Collapse
|
6
|
Boesenecker SJ, Mathies V, Buentzel J, Huebner J. How can counselling by family physicians on nutrition and physical activity be improved: trends from a survey in Germany. J Cancer Res Clin Oncol 2023; 149:3335-3347. [PMID: 35932301 PMCID: PMC10314832 DOI: 10.1007/s00432-022-04233-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 07/19/2022] [Indexed: 10/15/2022]
Abstract
PURPOSE Cancer and its therapy causes severe symptoms, most of which are amendable to nutrition and physical activity (PA). Counselling on nutrition and PA empowers patients to take part more actively in their treatment. Many cancer patients are yet in need of information on these topics. In this study, we investigate the perception of family physicians (FP) on nutrition and PA in cancer patient care and assess barriers and steps to improve their involvement in counselling on these topics. METHODS Based on qualitative content analysis of 5 semi-structured interviews with FP, a questionnaire was developed and completed by 61 German FP. RESULTS Most of the FP acknowledged the importance of nutrition and PA during (91.4%) and after (100%) cancer therapy. While many participants were involved in cancer patient care, 65.6% of FP viewed themselves as primary reference person to address these topics. However, a third (32.8%) of FP were unfamiliar with information thereof. Some were unsatisfied regarding timely updates on their patient's treatment course via discharge letters (25.0%) or phone calls (36.2%). FP would like to dedicate more consultation time addressing nutrition and PA than they currently do (p < 0.001). CONCLUSION Communication btween healthcare practitioners about mutual cancer patient's treatment must be improved, e.g. utilising electronic communication to quicken correspondence. Acquisition of information on nutrition and PA in cancer patient care needs to be facilitated for FP, approachable by compiling reliable information and their sources. Involvement of FP in structured treatment programs could benefit cancer patient care. TRIAL REGISTRATION NUMBER (May 7, 2021): 2021-2149-Bef.
Collapse
Affiliation(s)
- S J Boesenecker
- Clinic for Internal Medicine II, University Hospital, Bachstraße 18, 07743, Jena, Germany.
| | - V Mathies
- University Tumor Center, University Hospital, Jena, Germany
| | - J Buentzel
- Clinic for Otorhinolaryngology, Head Neck Surgery, Suedharz Klinikum, Nordhausen, Germany
| | - J Huebner
- Clinic for Internal Medicine II, University Hospital, Bachstraße 18, 07743, Jena, Germany
| |
Collapse
|
7
|
Boretti A. There is no reason to persist in the linear no-threshold (LNT) assumption. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2023; 266-267:107239. [PMID: 37393723 DOI: 10.1016/j.jenvrad.2023.107239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 06/21/2023] [Accepted: 06/27/2023] [Indexed: 07/04/2023]
Affiliation(s)
- Alberto Boretti
- Johnsonville Road, Johnsonville, Wellington, 6037, New Zealand.
| |
Collapse
|
8
|
Laurier D, Billarand Y, Klokov D, Leuraud K. The scientific basis for the use of the linear no-threshold (LNT) model at low doses and dose rates in radiological protection. JOURNAL OF RADIOLOGICAL PROTECTION : OFFICIAL JOURNAL OF THE SOCIETY FOR RADIOLOGICAL PROTECTION 2023; 43:024003. [PMID: 37339605 DOI: 10.1088/1361-6498/acdfd7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 06/20/2023] [Indexed: 06/22/2023]
Abstract
The linear no-threshold (LNT) model was introduced into the radiological protection system about 60 years ago, but this model and its use in radiation protection are still debated today. This article presents an overview of results on effects of exposure to low linear-energy-transfer radiation in radiobiology and epidemiology accumulated over the last decade and discusses their impact on the use of the LNT model in the assessment of radiation-related cancer risks at low doses. The knowledge acquired over the past 10 years, both in radiobiology and epidemiology, has reinforced scientific knowledge about cancer risks at low doses. In radiobiology, although certain mechanisms do not support linearity, the early stages of carcinogenesis comprised of mutational events, which are assumed to play a key role in carcinogenesis, show linear responses to doses from as low as 10 mGy. The impact of non-mutational mechanisms on the risk of radiation-related cancer at low doses is currently difficult to assess. In epidemiology, the results show excess cancer risks at dose levels of 100 mGy or less. While some recent results indicate non-linear dose relationships for some cancers, overall, the LNT model does not substantially overestimate the risks at low doses. Recent results, in radiobiology or in epidemiology, suggest that a dose threshold, if any, could not be greater than a few tens of mGy. The scientific knowledge currently available does not contradict the use of the LNT model for the assessment of radiation-related cancer risks within the radiological protection system, and no other dose-risk relationship seems more appropriate for radiological protection purposes.
Collapse
Affiliation(s)
- Dominique Laurier
- Institute for Radiological Protection and Nuclear Safety (IRSN), Fontenay-aux-Roses, France
| | - Yann Billarand
- Institute for Radiological Protection and Nuclear Safety (IRSN), Fontenay-aux-Roses, France
| | - Dmitry Klokov
- Institute for Radiological Protection and Nuclear Safety (IRSN), Fontenay-aux-Roses, France
| | - Klervi Leuraud
- Institute for Radiological Protection and Nuclear Safety (IRSN), Fontenay-aux-Roses, France
| |
Collapse
|
9
|
Radiation Exposure and Lifetime Attributable Risk of Cancer Incidence and Mortality from Low- and Standard-Dose CT Chest: Implications for COVID-19 Pneumonia Subjects. Diagnostics (Basel) 2022; 12:diagnostics12123043. [PMID: 36553050 PMCID: PMC9777015 DOI: 10.3390/diagnostics12123043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/25/2022] [Accepted: 11/29/2022] [Indexed: 12/07/2022] Open
Abstract
Since the novel coronavirus disease 2019 (COVID-19) outbreak, there has been an unprecedented increase in the acquisition of chest computed tomography (CT) scans. Nearly 616 million people have been infected by COVID-19 worldwide to date, of whom many were subjected to CT scanning. CT exposes the patients to hazardous ionizing radiation, which can damage the genetic material in the cells, leading to stochastic health effects in the form of heritable genetic mutations and increased cancer risk. These probabilistic, long-term carcinogenic effects of radiation can be seen over a lifetime and may sometimes take several decades to manifest. This review briefly describes what is known about the health effects of radiation, the lowest dose for which there exists compelling evidence about increased radiation-induced cancer risk and the evidence regarding this risk at typical CT doses. The lifetime attributable risk (LAR) of cancer from low- and standard-dose chest CT scans performed in COVID-19 subjects is also discussed along with the projected number of future cancers that could be related to chest CT scans performed during the COVID-19 pandemic. The LAR of cancer Incidence from chest CT has also been compared with those from other radiation sources, daily life risks and lifetime baseline risk.
Collapse
|
10
|
Okonkwo UC, Ohagwu CC, Aronu ME, Okafor CE, Idumah CI, Okokpujie IP, Chukwu NN, Chukwunyelu CE. Ionizing radiation protection and the linear No-threshold controversy: Extent of support or counter to the prevailing paradigm. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2022; 253-254:106984. [PMID: 36057228 DOI: 10.1016/j.jenvrad.2022.106984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 08/07/2022] [Indexed: 06/15/2023]
Abstract
This study has developed a relationship that categorized radiation protection and allows for a proper, clear, and concise review of the different classifications in terms of principles of protection, dose criteria, categories, fundamental tools, exposure situations, applications and control measures. With the groundwork laid, advances of the linear no-threshold (LNT) model which has attracted attention in the field of radiobiology and epidemiology were examined in detail. Various plausible dose-response relationship scenarios were x-rayed under low-dose extrapolation. Intensive review of factors opposing the LNT model involving radiophobia (including misdiagnosis, alternative surgery/imaging, suppression of ionizing radiation (IR) research); radiobiology (including DNA damage repair, apoptosis/necrosis, senescence protection) and cost issues (including-high operating cost of LNT, incorrect prioritization, exaggeration of LNT impact, risk-to-benefit analysis) were performed. On the other hand, factors supporting the use of LNT were equally examined, they include regulatory bodies' endorsement, insufficient statistical significance, partial DNA repair, variability of irradiated bodies, different latency periods for cancer, dynamic nature of threshold and conflicting interests. After considering the gaps in the scientific investigations that either support or counter the scientific paradigm on the use of LNT model, further research and advocacy is recommended that will ultimately lead to the acceptance of an alternative paradigm by the international regulators.
Collapse
Affiliation(s)
- Ugochukwu C Okonkwo
- Department of Mechanical Engineering, Nnamdi Azikiwe University, Awka, Nigeria.
| | - Christopher C Ohagwu
- Department of Radiography and Radiological Sciences, Nnamdi Azikiwe University, Awka, Nigeria
| | - Michael E Aronu
- Department of Radiology, Nnamdi Azikiwe University, Awka, Nigeria
| | - Christian E Okafor
- Department of Mechanical Engineering, Nnamdi Azikiwe University, Awka, Nigeria
| | - Christopher I Idumah
- Department of Polymer and Textile Engineering, Nnamdi Azikiwe University, Awka, Nigeria
| | - Imhade P Okokpujie
- Department of Mechanical and Mechatronic Engineering, Afe-Babalola University, Ado-Ekiti, Nigeria
| | - Nelson N Chukwu
- National Engineering Design Development Institute, Nnewi, Anambra State, Nigeria
| | | |
Collapse
|
11
|
Nutrition and physical activity in cancer patients: a survey on their information sources. J Cancer Res Clin Oncol 2022:10.1007/s00432-022-04282-w. [PMID: 35994117 DOI: 10.1007/s00432-022-04282-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 08/11/2022] [Indexed: 10/15/2022]
Abstract
BACKGROUND Many cancer patients suffer from problems concerning nutrition and physical activity (PA) during and after their treatment. Forwarding reliable health information could help to alleviate severe symptoms. The present study aimed to examine cancer patients' commonly used information sources on nutrition and PA. METHODS An anonymous questionnaire was developed and distributed to German cancer patients in different settings. In total, 90 questionnaires have been completed between October 2021 and March 2022. For analysis, descriptive statistics were used and associations between information sources and patients' lifestyle behaviour explored utilising Spearman's Rho, Mann-Whitney U, and Pearson's Chi Square tests. RESULTS The cancer patients received information on nutrition and PA most frequently from physicians (70.9%), family and friends (68%) and browsing the internet (61.3%). Half of the patients (51.1%) had questions concerning these topics during the time of their disease. The majority of those patients (81.8%) reported that their questions were answered. The topics were addressed primarily with outpatient oncologists (60.0%) and in rehabilitation clinics (53.3%). Just about half of the patients (55.3%) felt satisfactorily informed on nutrition and PA in their cancer disease, more so if they talked to their oncologist or family physician (Z = - 2.450, p = 0.014 and Z = - 3.425, p = 0.001 resp.). CONCLUSION Cancer patients receive information on nutrition and PA predominantly after their initial treatment. Since they might be missing significant information to alleviate severe symptoms during their treatment, the importance of nutrition and PA should be emphasised by clinicians early on in treatment. TRIAL REGISTRATION Trial Registration Number (May 7, 2021): 2021-2149-Bef.
Collapse
|
12
|
Linear non-threshold (LNT) fails numerous toxicological stress tests: Implications for continued policy use. Chem Biol Interact 2022; 365:110064. [DOI: 10.1016/j.cbi.2022.110064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 06/24/2022] [Accepted: 07/18/2022] [Indexed: 11/16/2022]
|
13
|
David E, Bitan R, Atlas S, Wolfson M, Fraifeld VE. Correlative links between natural radiation and life expectancy in the US population. Biogerontology 2022; 23:425-430. [PMID: 35727470 DOI: 10.1007/s10522-022-09971-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 05/31/2022] [Indexed: 11/30/2022]
Abstract
The linear no-threshold (LNT) hypothesis is still the ruling concept which dictates the radiation protection health policy and regulations. However, more and more studies show that not only that low dose radiation pose no danger to our health, but also exhibits clear beneficial health effects. Here, we evaluated the correlative links of the natural sources of radiation-terrestrial radiation (TR), cosmic radiation (CR), and Radon-222, with life expectancy, the most integrative index of population health. The results of this study show that the different sources of natural radiation display positive correlative links to life expectancy, which is in line with the hypothesis of radiation hormesis.
Collapse
Affiliation(s)
- Elroei David
- Nuclear Research Center Negev (NRCN), P.O. Box 9001, 8419001, Beer-Sheva, Israel.
| | - Roy Bitan
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Center for Multidisciplinary Research on Aging, Ben-Gurion University of the Negev, 8410501, Beer Sheva, Israel
| | - Sharona Atlas
- Nuclear Research Center Negev (NRCN), P.O. Box 9001, 8419001, Beer-Sheva, Israel.,The Department of Chemistry, Ben-Gurion University of the Negev, 8410501, Beer Sheva, Israel
| | - Marina Wolfson
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Center for Multidisciplinary Research on Aging, Ben-Gurion University of the Negev, 8410501, Beer Sheva, Israel
| | - Vadim E Fraifeld
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Center for Multidisciplinary Research on Aging, Ben-Gurion University of the Negev, 8410501, Beer Sheva, Israel
| |
Collapse
|
14
|
Ricci PF, Calabrese EJ. Resolving an Open Science-policy question: Should the LNT still be an omnibus regulatory assumption? THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 825:153917. [PMID: 35189226 DOI: 10.1016/j.scitotenv.2022.153917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/11/2022] [Accepted: 02/12/2022] [Indexed: 06/14/2023]
Abstract
Regulatory analyses, modeling the carcinogenic effect of ionizing radiations (IR) (e.g., alpha and beta particles, x-, and gamma rays, neutrons) and chemicals continue to use the linear no-threshold (LNT) model from zero to some low dose. The LNT is an omnibus causal default in regulatory occupational and health risk analysis. Its use raises four issues that make this default an open question. The first is that the LNT applied to study a single agent excludes co-exposure to other known risk factors: physical, dietary, socio-economic, and other. Causation is inappropriately specified because cancer incidence is imputed to the single agent's doses, although most cancers are multifactorial diseases. The second, linear interpolation from high to zero dose and response, is incorrect because biological and epidemiological evidence identify different mechanisms and modes of action at those doses. Third, additivity of exposure effect to background effect is questionable and certainly variable. Fourth, the default overestimates the probabilities and consequences at low doses, supplanting rational decision-making in which alternative models may be more or less likely to be correct. Recent converging scientific evidence against the LNT hypothesis answers the open question. The LNT use in regulation conflates science with administrative ease and risk aversion by policymakers. It should be replaced by models that are based on biologically motivated mechanistic understandings within an evolutionary biology framework that integrates adaptive strategies/processes in their formulation.
Collapse
Affiliation(s)
- Paolo F Ricci
- University of Bologna, Environmental Management, Ravenna Campus, Scienze Ambientali, Via Sant'Alberto 163, 48123, Ravenna, Italy.
| | - Edward J Calabrese
- Environmental Health Sciences, Morrill I, N344, University of Massachusetts, Amherst, MA 01003, USA.
| |
Collapse
|
15
|
Scott BR. Potential Radiological Problems in the Ukrainian War Zone and Challenges for Related Health Risks Assessments. Dose Response 2022; 20:15593258221090091. [PMID: 35431694 PMCID: PMC9008853 DOI: 10.1177/15593258221090091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 03/04/2022] [Indexed: 11/16/2022] Open
Affiliation(s)
- Bobby R. Scott
- Lovelace Biomedical Research Institute, Albuquerque, NM, USA
| |
Collapse
|
16
|
Scott BR. Vanishing by Design of Cancer Risk Uncertainty for Low Radiation Doses Is Misleading and Unscientific. Dose Response 2022; 20:15593258221078387. [PMID: 35173565 PMCID: PMC8841926 DOI: 10.1177/15593258221078387] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 02/01/2023]
Affiliation(s)
- Bobby R. Scott
- Lovelace Biomedical Research Institute, Albuquerque, NM, USA
| |
Collapse
|
17
|
Vigneux G, Pirkkanen J, Laframboise T, Prescott H, Tharmalingam S, Thome C. Radiation-Induced Alterations in Proliferation, Migration, and Adhesion in Lens Epithelial Cells and Implications for Cataract Development. Bioengineering (Basel) 2022; 9:29. [PMID: 35049738 PMCID: PMC8772889 DOI: 10.3390/bioengineering9010029] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/07/2022] [Accepted: 01/10/2022] [Indexed: 12/21/2022] Open
Abstract
The lens of the eye is one of the most radiosensitive tissues. Although the exact mechanism of radiation-induced cataract development remains unknown, altered proliferation, migration, and adhesion have been proposed as factors. Lens epithelial cells were exposed to X-rays (0.1-2 Gy) and radiation effects were examined after 12 h and 7 day. Proliferation was quantified using an MTT assay, migration was measured using a Boyden chamber and wound-healing assay, and adhesion was assessed on three extracellular matrices. Transcriptional changes were also examined using RT-qPCR for a panel of genes related to these processes. In general, a nonlinear radiation response was observed, with the greatest effects occurring at a dose of 0.25 Gy. At this dose, a reduction in proliferation occurred 12 h post irradiation (82.06 ± 2.66%), followed by an increase at 7 day (116.16 ± 3.64%). Cell migration was increased at 0.25 Gy, with rates 121.66 ± 6.49% and 232.78 ± 22.22% greater than controls at 12 h and 7 day respectively. Cell adhesion was consistently reduced above doses of 0.25 Gy. Transcriptional alterations were identified at these same doses in multiple genes related to proliferation, migration, and adhesion. Overall, this research began to elucidate the functional changes that occur in lens cells following radiation exposure, thereby providing a better mechanistic understanding of radiation-induced cataract development.
Collapse
Affiliation(s)
- Graysen Vigneux
- Biomolecular Sciences Program, Laurentian University, 935 Ramsey Lake Road, Sudbury, ON P3E 2C6, Canada; (G.V.); (S.T.)
| | - Jake Pirkkanen
- Department of Biology, Laurentian University, 935 Ramsey Lake Road, Sudbury, ON P3E 2C6, Canada; (J.P.); (T.L.); (H.P.)
- Northern Ontario School of Medicine, Laurentian University, 935 Ramsey Lake Road, Sudbury, ON P3E 2C6, Canada
| | - Taylor Laframboise
- Department of Biology, Laurentian University, 935 Ramsey Lake Road, Sudbury, ON P3E 2C6, Canada; (J.P.); (T.L.); (H.P.)
- Northern Ontario School of Medicine, Laurentian University, 935 Ramsey Lake Road, Sudbury, ON P3E 2C6, Canada
| | - Hallie Prescott
- Department of Biology, Laurentian University, 935 Ramsey Lake Road, Sudbury, ON P3E 2C6, Canada; (J.P.); (T.L.); (H.P.)
| | - Sujeenthar Tharmalingam
- Biomolecular Sciences Program, Laurentian University, 935 Ramsey Lake Road, Sudbury, ON P3E 2C6, Canada; (G.V.); (S.T.)
- Department of Biology, Laurentian University, 935 Ramsey Lake Road, Sudbury, ON P3E 2C6, Canada; (J.P.); (T.L.); (H.P.)
- Northern Ontario School of Medicine, Laurentian University, 935 Ramsey Lake Road, Sudbury, ON P3E 2C6, Canada
- Nuclear Innovation Institute, 620 Tomlinson Drive, Port Elgin, ON N0H 2C0, Canada
| | - Christopher Thome
- Biomolecular Sciences Program, Laurentian University, 935 Ramsey Lake Road, Sudbury, ON P3E 2C6, Canada; (G.V.); (S.T.)
- Department of Biology, Laurentian University, 935 Ramsey Lake Road, Sudbury, ON P3E 2C6, Canada; (J.P.); (T.L.); (H.P.)
- Northern Ontario School of Medicine, Laurentian University, 935 Ramsey Lake Road, Sudbury, ON P3E 2C6, Canada
- Nuclear Innovation Institute, 620 Tomlinson Drive, Port Elgin, ON N0H 2C0, Canada
| |
Collapse
|
18
|
Scott BR. The Linear-No-Threshold Line for Cancer Excess Relative Risk Based on Lagging Low Radiation Doses is Misleading. Dose Response 2022; 19:15593258211063982. [PMID: 34987338 PMCID: PMC8669886 DOI: 10.1177/15593258211063982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 11/15/2021] [Indexed: 11/29/2022]
Affiliation(s)
- Bobby R Scott
- Lovelace Biomedical Research Institute, Albuquerque, NM, USA
| |
Collapse
|
19
|
Narasimhamurthy RK, Mumbrekar KD, Satish Rao BS. Effects of low dose ionizing radiation on the brain- a functional, cellular, and molecular perspective. Toxicology 2021; 465:153030. [PMID: 34774978 DOI: 10.1016/j.tox.2021.153030] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/16/2021] [Accepted: 11/08/2021] [Indexed: 02/08/2023]
Abstract
Over the years, the advancement of radio diagnostic imaging tools and techniques has radically improved the diagnosis of different pathophysiological conditions, accompanied by increased exposure to low-dose ionizing radiation. Though the consequences of high dose radiation exposure on humans are very well comprehended, the more publicly relevant effects of low dose radiation (LDR) (≤100 mGy) exposure on the biological system remain ambiguous. The central nervous system, predominantly the developing brain with more neuronal precursor cells, is exceptionally radiosensitive and thus more liable to neurological insult even at low doses, as shown through several rodent studies. Further molecular studies have unraveled the various inflammatory and signaling mechanisms involved in cellular damage and repair that drive these physiological alterations that lead to functional alterations. Interestingly, few studies also claim that LDR exerts therapeutic effects on the brain by initiating an adaptive response. The present review summarizes the current understanding of the effects of low dose radiation at functional, cellular, and molecular levels and the various risks and benefits associated with it based on the evidence available from in vitro, in vivo, and clinical studies. Although the consensus indicates minimum consequences, the overall evidence suggests that LDR can bring about considerable neurological effects in the exposed individual, and hence a re-evaluation of the LDR usage levels and frequency of exposure is required.
Collapse
Affiliation(s)
- Rekha K Narasimhamurthy
- Department of Radiation Biology and Toxicology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| | - Kamalesh D Mumbrekar
- Department of Radiation Biology and Toxicology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| | - B S Satish Rao
- Research Directorate Office, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| |
Collapse
|
20
|
Averbeck D, Rodriguez-Lafrasse C. Role of Mitochondria in Radiation Responses: Epigenetic, Metabolic, and Signaling Impacts. Int J Mol Sci 2021; 22:ijms222011047. [PMID: 34681703 PMCID: PMC8541263 DOI: 10.3390/ijms222011047] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/24/2021] [Accepted: 10/08/2021] [Indexed: 12/15/2022] Open
Abstract
Until recently, radiation effects have been considered to be mainly due to nuclear DNA damage and their management by repair mechanisms. However, molecular biology studies reveal that the outcomes of exposures to ionizing radiation (IR) highly depend on activation and regulation through other molecular components of organelles that determine cell survival and proliferation capacities. As typical epigenetic-regulated organelles and central power stations of cells, mitochondria play an important pivotal role in those responses. They direct cellular metabolism, energy supply and homeostasis as well as radiation-induced signaling, cell death, and immunological responses. This review is focused on how energy, dose and quality of IR affect mitochondria-dependent epigenetic and functional control at the cellular and tissue level. Low-dose radiation effects on mitochondria appear to be associated with epigenetic and non-targeted effects involved in genomic instability and adaptive responses, whereas high-dose radiation effects (>1 Gy) concern therapeutic effects of radiation and long-term outcomes involving mitochondria-mediated innate and adaptive immune responses. Both effects depend on radiation quality. For example, the increased efficacy of high linear energy transfer particle radiotherapy, e.g., C-ion radiotherapy, relies on the reduction of anastasis, enhanced mitochondria-mediated apoptosis and immunogenic (antitumor) responses.
Collapse
Affiliation(s)
- Dietrich Averbeck
- Laboratory of Cellular and Molecular Radiobiology, PRISME, UMR CNRS 5822/IN2P3, IP2I, Lyon-Sud Medical School, University Lyon 1, 69921 Oullins, France;
- Correspondence:
| | - Claire Rodriguez-Lafrasse
- Laboratory of Cellular and Molecular Radiobiology, PRISME, UMR CNRS 5822/IN2P3, IP2I, Lyon-Sud Medical School, University Lyon 1, 69921 Oullins, France;
- Department of Biochemistry and Molecular Biology, Lyon-Sud Hospital, Hospices Civils de Lyon, 69310 Pierre-Bénite, France
| |
Collapse
|
21
|
Scott BR. Health-Risk-Model Idolization Is Unscientific. Dose Response 2021; 19:15593258211035962. [PMID: 34413712 PMCID: PMC8369855 DOI: 10.1177/15593258211035962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 07/09/2021] [Indexed: 11/29/2022] Open
Affiliation(s)
- Bobby R Scott
- Lovelace Biomedical Research Institute, Albuquerque, NM, USA
| |
Collapse
|
22
|
Scott BR. Major Challenges in Improving the System of Radiological Protection. Dose Response 2021; 19:15593258211027755. [PMID: 34377109 PMCID: PMC8327029 DOI: 10.1177/15593258211027755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Bobby R Scott
- Lovelace Biomedical Research Institute, Albuquerque, NM, USA
| |
Collapse
|
23
|
Scott BR. Some Epidemiologic Studies of Low-Dose-Radiation Cancer Risks Are Misinforming. Dose Response 2021; 19:15593258211024499. [PMID: 34262411 PMCID: PMC8246514 DOI: 10.1177/15593258211024499] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 05/20/2021] [Indexed: 11/25/2022] Open
|
24
|
Scott BR. Does the Current System of Radiological Protection Sometimes Lead to Unintended Unethical Actions? Dose Response 2021; 19:15593258211022521. [PMID: 34121964 PMCID: PMC8173998 DOI: 10.1177/15593258211022521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 05/13/2021] [Indexed: 12/02/2022] Open
Affiliation(s)
- Bobby R Scott
- Lovelace Biomedical Research Institute, Albuquerque, NM, USA
| |
Collapse
|
25
|
Puukila S, Tharmalingam S, Al-Khayyat W, Peterson J, Hooker AM, Muise S, Boreham DR, Dixon DL. Transcriptomic Response in the Spleen after Whole-Body Low-Dose X-Ray Irradiation. Radiat Res 2021; 196:66-73. [PMID: 33956160 DOI: 10.1667/rade-20-00267.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 04/02/2021] [Indexed: 11/03/2022]
Abstract
As the use of medical radiation procedures continues to rise, it is imperative to further our understanding of the effects of this exposure. The spleen is not known as a particularly radiosensitive organ, although its tolerance to radiation is not well understood. Low-dose radiation exposure has been implicated in beneficial responses, particularly in cell death and DNA damage repair. In this study, adult male rats received 2, 20, 200 mGy or 4 Gy whole-body X-ray irradiation and the transcriptional response in the spleen was analyzed at 0.5, 4 and 24 h postirradiation. We analyzed expression of genes involved in apoptosis, cell cycle progression and DNA damage repair. As expected, 4 Gy irradiated animals demonstrated elevated expression of genes related to apoptosis at 0.5, 4 and 24 h postirradiation in the spleen. These animals also showed upregulation of DNA damage repair genes at 24 h postirradiation. Interestingly, the spleens of 20 mGy irradiated animals showed reduced apoptosis and cell cycle arrest compared to the spleens of sham-irradiated animals. These results further reveal that the cellular response in the spleen to whole-body irradiation differs between low- and high-dose irradiation.
Collapse
Affiliation(s)
- S Puukila
- College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia.,Laurentian University, Sudbury, Canada
| | - S Tharmalingam
- Laurentian University, Sudbury, Canada.,Northern Ontario School of Medicine, Sudbury/Thunder Bay, Canada.,Health Sciences North Research Institute, Sudbury, Canada
| | | | | | - A M Hooker
- College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia.,Centre for Radiation Research Education and Innovation, University of Adelaide, Adelaide, Australia
| | - S Muise
- McMaster University, Hamilton, Canada
| | - D R Boreham
- Northern Ontario School of Medicine, Sudbury/Thunder Bay, Canada
| | - D-L Dixon
- College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia.,Northern Ontario School of Medicine, Sudbury/Thunder Bay, Canada
| |
Collapse
|
26
|
Vaiserman A, Cuttler JM, Socol Y. Low-dose ionizing radiation as a hormetin: experimental observations and therapeutic perspective for age-related disorders. Biogerontology 2021; 22:145-164. [PMID: 33420860 PMCID: PMC7794644 DOI: 10.1007/s10522-020-09908-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 11/24/2020] [Indexed: 01/31/2023]
Abstract
Hormesis is any kind of biphasic dose-response when low doses of some agents are beneficial while higher doses are detrimental. Radiation hormesis is the most thoroughly investigated among all hormesis-like phenomena, in particular in biogerontology. In this review, we aimed to summarize research evidence supporting hormesis through exposure to low-dose ionizing radiation (LDIR). Radiation-induced longevity hormesis has been repeatedly reported in invertebrate models such as C. elegans, Drosophila and flour beetles and in vertebrate models including guinea pigs, mice and rabbits. On the contrary, suppressing natural background radiation was repeatedly found to cause detrimental effects in protozoa, bacteria and flies. We also discussed here the possibility of clinical use of LDIR, predominantly for age-related disorders, e.g., Alzheimer's disease, for which no remedies are available. There is accumulating evidence that LDIR, such as those commonly used in X-ray imaging including computer tomography, might act as a hormetin. Of course, caution should be exercised when introducing new medical practices, and LDIR therapy is no exception. However, due to the low average residual life expectancy in old patients, the short-term benefits of such interventions (e.g., potential therapeutic effect against dementia) may outweigh their hypothetical delayed risks (e.g., cancer). We argue here that assessment and clinical trials of LDIR treatments should be given priority bearing in mind the enormous economic, social and ethical implications of potentially-treatable, age-related disorders.
Collapse
|
27
|
Coutinho JVDS, Ferreira PS, Soares J, Passamai JL, D'Azeredo Orlando MT, Gouvea SA. Evaluation of induced biological effects in rats by continuous and natural gamma radiation using a physical simulator. Int J Radiat Biol 2020; 96:1473-1485. [PMID: 32845812 DOI: 10.1080/09553002.2020.1812760] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
PURPOSE The effects of radioactivity on human health have been debated for many years but there are still important gaps that need to be addressed especially related to the effects of high natural background radiation on the local population. The beach of Meaípe, in the city of Guarapari (Brazil), emits natural gamma radiation due to the presence of monazite sands. We aimed to investigate the effects of gamma radiation doses on the biological system of wistar rats using a physical simulator of gamma radiation designed using Meaípe monazite sands. METHODS Female Wistar rats were divided into three groups, submitted to no radiation (control group) and to continuous radiation levels, one of very high level (20 μSv h-1) and another of high level (3.6 μSv h-1). The three group of animals were monitored weekly for 3 months and at the end of the study the animals were sacrificed, and the organs were extracted and weighed for anthropometric, oxidative stress and histological evaluations. RESULTS Exposure to radiation released by the monazite sands did not cause anthropometric alterations or blood pressure change in the animals. Similarly, there was no change in the quantification of ovarian follicles between the radiation groups and the control group. There was no difference in the oxidative stress quantification by the thiobarbituric acid reactive substance and advanced oxidation protein product methods in the ovaries. There were no evidenced damages in the structure of the renal tissue. It was observed the presence of granulomas in the hepatic tissue and alterations in the nuclei of the hepatocytes. CONCLUSIONS Our results suggest that the continuous exposure of females rats to 3.6 and 20 μSv h-1 doses of gamma radiation slightly affected the hepatic tissue, but did not alter the histological parameters in the kidneys and ovaries and oxidative stress.
Collapse
Affiliation(s)
| | - Priscila Santos Ferreira
- Postgraduate Program in Physiological Sciences, Federal University of Espirito Santo, Vitoria, Brazil
| | - Jacyra Soares
- Department of Atmospheric Science, IAG, University of Sao Paulo, Sao Paulo, Brazil
| | - José Luis Passamai
- Department of Physics, Federal University of Espirito Santo, Vitoria, Brazil
| | | | - Sonia Alves Gouvea
- Department of Physiological Sciences, Federal University of Espirito Santo, Vitoria, Brazil
| |
Collapse
|
28
|
Sykes PJ. Until There Is a Resolution of the Pro-LNT/Anti-LNT Debate, We Should Head Toward a More Sensible Graded Approach for Protection From Low-Dose Ionizing Radiation. Dose Response 2020; 18:1559325820921651. [PMID: 32425725 PMCID: PMC7218310 DOI: 10.1177/1559325820921651] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 04/01/2020] [Accepted: 04/03/2020] [Indexed: 01/19/2023] Open
Abstract
Current regulation of ionizing radiation is based on the linear no-threshold (LNT) model where any radiation dose increases cancer risk and is independent of dose rate, resulting in large amounts of time and money being spent protecting from extremely small radiation exposures and hence extremely small risk. There are animal studies which demonstrate that LNT is incorrect at low doses, supporting a threshold or hormesis model and thus indicating that there is no need to protect from very low doses. This has led to a sometimes bitter debate between pro-LNT and anti-LNT camps, and the debate has been at a stalemate for some time. This commentary is not aimed at taking either side of the debate. It is likely that the public, workers, and the environment are adequately protected under current regulation, which is the most important outcome. Until those on one side of the debate can convince the other, it would be sensible to move forward toward a graded (risk-based) approach to regulation, where the stringency of control is commensurate with the risk, resulting hopefully in more sensible practical thresholds. This approach is gradually being put forward by international radiation protection advisory bodies.
Collapse
Affiliation(s)
- Pamela J Sykes
- Flinders Centre for Innovation in Cancer, College of Medicine and Public Health, Flinders University. Adelaide, South Australia, Australia
| |
Collapse
|