1
|
Wen Y, Liu Y, Liu W, Liu W, Dong J, Liu Q, Yu Z, Ren H, Hao H. Ferroptosis: a potential target for acute lung injury. Inflamm Res 2024; 73:1615-1629. [PMID: 39152299 DOI: 10.1007/s00011-024-01919-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/09/2024] [Accepted: 07/10/2024] [Indexed: 08/19/2024] Open
Abstract
Acute lung injury (ALI) is caused by a variety of intrapulmonary and extrapulmonary factors and is associated with high morbidity and mortality. Oxidative stress is an important part of the pathological mechanism of ALI. Ferroptosis is a mode of programmed cell death distinguished from others and characterized by iron-dependent lipid peroxidation. This article reviews the metabolic regulation of ferroptosis, its role in the pathogenesis of ALI, and the use of ferroptosis as a therapeutic target regarding the pharmacological treatment of ALI.
Collapse
Affiliation(s)
- Yuqi Wen
- Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Yang Liu
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Weihong Liu
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Wenli Liu
- Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Jinyan Dong
- Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Qingkuo Liu
- Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Zhen Yu
- Jinan Family Planning Service Center, Jinan, 250014, China
| | - Hongsheng Ren
- Department of Intensive Care Unit, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250014, China.
| | - Hao Hao
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, China.
| |
Collapse
|
2
|
Vinik Y, Maimon A, Raj H, Dubey V, Geist F, Wienke D, Lev S. Computational pipeline predicting cell death suppressors as targets for cancer therapy. iScience 2024; 27:110859. [PMID: 39310772 PMCID: PMC11416655 DOI: 10.1016/j.isci.2024.110859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/24/2024] [Accepted: 08/28/2024] [Indexed: 09/25/2024] Open
Abstract
Identification of promising targets for cancer therapy is a global effort in precision medicine. Here, we describe a computational pipeline integrating transcriptomic and vulnerability responses to cell-death inducing drugs, to predict cell-death suppressors as candidate targets for cancer therapy. The prediction is based on two modules; the transcriptomic similarity module to identify genes whose targeting results in similar transcriptomic responses of the death-inducing drugs, and the correlation module to identify candidate genes whose expression correlates to the vulnerability of cancer cells to the same death-inducers. The combined predictors of these two modules were integrated into a single metric. As a proof-of-concept, we selected ferroptosis inducers as death-inducing drugs in triple negative breast cancer. The pipeline reliably predicted candidate genes as ferroptosis suppressors, as validated by computational methods and cellular assays. The described pipeline might be used to identify repressors of various cell-death pathways as potential therapeutic targets for different cancer types.
Collapse
Affiliation(s)
- Yaron Vinik
- Molecular Cell Biology Department, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Avi Maimon
- Molecular Cell Biology Department, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Harsha Raj
- Molecular Cell Biology Department, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Vinay Dubey
- Molecular Cell Biology Department, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Felix Geist
- The Healthcare Business of Merck KGaA, Darmstadt, Germany
| | - Dirk Wienke
- The Healthcare Business of Merck KGaA, Darmstadt, Germany
| | - Sima Lev
- Molecular Cell Biology Department, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
3
|
Cannon M, Toma R, Ganeshan S, de Jesus Alvarez Varela E, Vuyisich M, Banavar G. Salivary Transcriptome and Mitochondrial Analysis of Autism Spectrum Disorder Children Compared to Healthy Controls. NEUROSCI 2024; 5:276-290. [PMID: 39483288 PMCID: PMC11467968 DOI: 10.3390/neurosci5030022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/22/2024] [Accepted: 07/28/2024] [Indexed: 11/03/2024] Open
Abstract
Autism rates have been reported to be increasing rapidly in industrialized societies. The pathology most often combines neurological symptoms associated with language and social impairments with gastrointestinal symptoms. This study aimed to measure differences in oral metatranscriptome and mitochondrial health between ASD children and neurotypical USA and Colombia ("Blue Zone") children. In addition, this study aimed to determine whether using prebiotics and probiotics would change the oral microbiome and mitochondrial health of ASD children. Buccal swabs and saliva samples were obtained from 30 autistic individuals (USA) at three intervals: prior to intervention, post-prebiotic, and post-probiotic. In addition, a subject component who were neurotypical, which included individuals from the USA (30) and Colombia (30), had buccal swabbing and salivary sampling performed for metatranscriptomic and mitochondrial comparison. Significant differences were observed in the temporal data, demonstrating shifts that interventions with probiotics and polyols may have precipitated. Particular bacterial strains were significantly more prevalent in the autism group, including a strain that reduced neurotransmitter levels via enzymatic degradation. This supports the hypothesis that the microbiome may influence the occurrence and degree of autism. Verbal skills increased in six of the 30 ASD subjects following xylitol and three more after probiotic supplementation, according to both parental reports and the subjects' healthcare providers.
Collapse
Affiliation(s)
- Mark Cannon
- Ann and Robert Lurie Children’s Hospital, Northwestern University, Chicago, IL 60611, USA
| | - Ryan Toma
- Viome Research Institute, Los Alamos, NM 98011, USA (M.V.); (G.B.)
| | - Sri Ganeshan
- MITOSWAB Religen Labs, Plymouth Meeting, PA 19462, USA
| | | | | | - Guruduth Banavar
- Viome Research Institute, Los Alamos, NM 98011, USA (M.V.); (G.B.)
| |
Collapse
|
4
|
McCallum N, Najlah M. The Anticancer Activity of Monosaccharides: Perspectives and Outlooks. Cancers (Basel) 2024; 16:2775. [PMID: 39199548 PMCID: PMC11353049 DOI: 10.3390/cancers16162775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 07/27/2024] [Accepted: 07/31/2024] [Indexed: 09/01/2024] Open
Abstract
A major hallmark of cancer is the reprogramming of cellular metabolism from oxidative phosphorylation (OXPHOS) to glycolysis, a phenomenon known as the Warburg effect. To sustain high rates of glycolysis, cancer cells overexpress GLUT transporters and glycolytic enzymes, allowing for the enhanced uptake and consumption of glucose. The Warburg effect may be exploited in the treatment of cancer; certain epimers and derivatives of glucose can enter cancer cells and inhibit glycolytic enzymes, stunting metabolism and causing cell death. These include common dietary monosaccharides (ᴅ-mannose, ᴅ-galactose, ᴅ-glucosamine, ʟ-fucose), as well as some rare monosaccharides (xylitol, ᴅ-allose, ʟ-sorbose, ʟ-rhamnose). This article reviews the literature on these sugars in in vitro and in vivo models of cancer, discussing their mechanisms of cytotoxicity. In addition to this, the anticancer potential of some synthetically modified monosaccharides, such as 2-deoxy-ᴅ-glucose and its acetylated and halogenated derivatives, is reviewed. Further, this article reviews how certain monosaccharides can be used in combination with anticancer drugs to potentiate conventional chemotherapies and to help overcome chemoresistance. Finally, the limitations of administering two separate agents, a sugar and a chemotherapeutic drug, are discussed. The potential of the glycoconjugation of classical or repurposed chemotherapy drugs as a solution to these limitations is reviewed.
Collapse
Affiliation(s)
| | - Mohammad Najlah
- Pharmaceutical Research Group, School of Allied Health, Faculty of Health, Education, Medicine and Social Care, Anglia Ruskin University, Bishops Hall Lane, Chelmsford CM1 1SQ, UK;
| |
Collapse
|
5
|
Beer JH, Allemann M. Xylitol: bitter cardiovascular data for a successful sweetener. Eur Heart J 2024; 45:2453-2455. [PMID: 38842099 DOI: 10.1093/eurheartj/ehae252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/07/2024] Open
Affiliation(s)
- Juerg H Beer
- Center for Molecular Cardiology, Laboratory for Platelet Research, University of Zurich, Zurich, Switzerland
- Department of Internal Medicine, Thrombosis/Haemostasis Unit, Cantonal Hospital of Baden, CH-5404, Switzerland
| | - Meret Allemann
- Center for Molecular Cardiology, Laboratory for Platelet Research, University of Zurich, Zurich, Switzerland
| |
Collapse
|
6
|
Cannon M, Ferrer G, Tesch M, Schipma M. Whole-Genome Deep Sequencing of the Healthy Adult Nasal Microbiome. Microorganisms 2024; 12:1407. [PMID: 39065175 PMCID: PMC11279209 DOI: 10.3390/microorganisms12071407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/29/2024] [Accepted: 07/03/2024] [Indexed: 07/28/2024] Open
Abstract
This study aimed to determine shifts in microbial populations regarding richness and diversity from the daily use of a popular over-the-counter nasal spray. In addition, the finding of nasal commensal bacterial species that overlap with the oral microbiome may prove to be potential probiotics for the "gateway microbiomes". Nasal swab samples were obtained before and after using the most popular over-the-counter (OTC) nasal spray in 10 participants aged 18-48. All participants were healthy volunteers with no significant medical histories. The participants were randomly assigned a number by randomizing software and consisted of five men and five women. The sampling consisted of placing a nasal swab atraumatically into the nasal cavity. The samples were preserved and sent to Northwestern University Sequencing Center for whole-genome deep sequencing. After 21 days of OTC nasal spray use twice daily, the participants returned for further nasal microbiome sampling. The microbial analysis included all bacteria, archaea, viruses, molds, and yeasts via deep sequencing for species analysis. The Northwestern University Sequencing Center utilized artificial intelligence analysis to determine shifts in species and strains following nasal spray use that resulted in changes in diversity and richness.
Collapse
Affiliation(s)
- Mark Cannon
- Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL 60611, USA
- Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Gustavo Ferrer
- Aventura Hospital Pulmonary and Critical Care Fellowship, Aventura, FL 33180, USA; (G.F.); (M.T.)
| | - Mari Tesch
- Aventura Hospital Pulmonary and Critical Care Fellowship, Aventura, FL 33180, USA; (G.F.); (M.T.)
| | - Matthew Schipma
- QDSC, NUSeq Core, Northwestern University, Chicago, IL 60611, USA;
| |
Collapse
|
7
|
Zhang T, Yao C, Zhou X, Liu S, Qi L, Zhu S, Zhao C, Hu D, Shen W. Glutathione‑degrading enzymes in the complex landscape of tumors (Review). Int J Oncol 2024; 65:72. [PMID: 38847236 PMCID: PMC11173371 DOI: 10.3892/ijo.2024.5660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 04/24/2024] [Indexed: 06/12/2024] Open
Abstract
Glutathione (GSH)‑degrading enzymes are essential for starting the first stages of GSH degradation. These enzymes include extracellular γ‑glutamyl transpeptidase (GGT) and intracellular GSH‑specific γ‑glutamylcyclotransferase 1 (ChaC1) and 2. These enzymes are essential for cellular activities, such as immune response, differentiation, proliferation, homeostasis regulation and programmed cell death. Tumor tissue frequently exhibits abnormal expression of GSH‑degrading enzymes, which has a key impact on the development and spread of malignancies. The present review summarizes gene and protein structure, catalytic activity and regulation of GSH‑degrading enzymes, their vital roles in tumor development (including regulation of oxidative and endoplasmic reticulum stress, control of programmed cell death, promotion of inflammation and tumorigenesis and modulation of drug resistance in tumor cells) and potential role as diagnostic biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Tianyi Zhang
- Department of Acupuncture, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
- School of Acupuncture-moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Chongjie Yao
- School of Acupuncture-moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
- Department of Rehabilitation, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Xu Zhou
- School of Acupuncture-moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Shimin Liu
- School of Acupuncture-moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
- Shanghai Research Institute of Acupuncture and Meridian, Shanghai 200030, P.R. China
| | - Li Qi
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Shiguo Zhu
- School of Basic Medical Sciences, Center for Traditional Chinese Medicine and Immunology Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Chen Zhao
- School of Acupuncture-moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Dan Hu
- School of Acupuncture-moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Weidong Shen
- Department of Acupuncture, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| |
Collapse
|
8
|
Cannon M, Dempsey E, Cosantino A, Chandel N, Ghoreishi-Haack N. Cancer Cell Line Inhibition by Osmotic Pump-administered Xylitol in a Syngeneic Mouse Model. RESEARCH SQUARE 2024:rs.3.rs-3977059. [PMID: 38645111 PMCID: PMC11030531 DOI: 10.21203/rs.3.rs-3977059/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Background This study aimed to evaluate the effects of continuous administration of xylitol (a commonly used dental prebiotic) via a subcutaneous osmotic minipump in a B16F10 syngeneic mouse model. Methods The B16F10 syngeneic model consisted of 6-8-week-old C57BL/6 male mice subcutaneously injected with five × 105 B16F10 cells suspended in 100 μl PBS in the right flank. The mice were randomly assigned to two groups: Group 1 was the treatment group with 10% xylitol-loaded pumps (n=10), while Group 2 was the control group with saline-loaded pumps (n=10). Alzet minipumps were implanted subcutaneously in the left flank of B16F10-injected mice once more than 50% of all mice developed palpable tumors. After pump implantation surgery, the mice were monitored daily and weighed 2-3x/week. Tumor sizes were measured with calipers 2-3x/week, and all mice were euthanized when their tumors became too large (20 mm on any axis or 2,000 mm3). The excised tumors were weighed and cut in half, with one half sent for histology and the other for metabolomic analysis. Results The xylitol-treated group survived substantially longer than the control group. The tumor size was reduced by approximately 35% by volume. Histological sections of xylitol treat mice suggested reduced infiltration and angiogenesis, which is consistent with previous studies. The metabolomic analysis demonstrates that xylitol reduces the tumor production of histamine, NADP+, ATP, and glutathione from the tumor, thereby improving the host immune response with ROS reactive oxygen species. Conclusions The results of this study suggest that xylitol has potential as an adjunct to oncological treatment and is being further investigated in comparison to monoclonal antibody therapy (Opdualag).
Collapse
Affiliation(s)
- Mark Cannon
- Robert H Lurie Comprehensive Cancer Center -Northwestern University
| | | | | | - Navdeep Chandel
- Robert H Lurie Comprehensive Cancer Center -Northwestern University
| | | |
Collapse
|
9
|
Hou Z, Mo F, Zhou Q. Elucidating response mechanisms at the metabolic scale of Eisenia fetida in typical oil pollution sites: A native driver in influencing carbon flow. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 337:122545. [PMID: 37716696 DOI: 10.1016/j.envpol.2023.122545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 08/07/2023] [Accepted: 09/11/2023] [Indexed: 09/18/2023]
Abstract
Previous investigations on the stress response patterns of earthworms (Eisenia fetida) in practical petroleum hydrocarbon (PH) contamination systems were less focused. Therefore, this study investigated the ecotoxicological effect of PH contamination on earthworms based on metabonomics and histological observation, followed by correlation analysis between the earthworm metabolism, PH types and concentrations, soil physicochemical characteristics, and the microbial community structures (i.e., diversity and abundance) and functions. The results showed that due to the abundant PH organics, the cell metabolism of earthworms shifts under PH contamination conditions, leading them to use organic acids as alternative energy sources (i.e., gluconeogenesis pathway). Simultaneously, biomarker metabolites related to cellular uptake, stress response, and membrane disturbance were identified. In addition, when compared to the controls, considerable epicuticle and cuticle layer disruption was observed, along with PH internalization. It was demonstrated that PH pollution preferentially influences the physiological homeostasis of earthworms through indirect (i.e., microbial metabolism regulation) than direct (i.e., direct interaction with earthworms) mechanisms. Moreover, the varied CO2 releasement was verified, which highlights the potential role of earthworms in influencing carbon transformation and corresponds with the considerably enriched energy metabolism-related pathway. This study indicated that PH contamination can induce a strong stress response in earthworms through both direct and indirect mechanisms, which in turn, substantially influences carbon transformation in PH contamination sites.
Collapse
Affiliation(s)
- Zelin Hou
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Carbon Neutrality Interdisciplinary Science Centre/College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Fan Mo
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Carbon Neutrality Interdisciplinary Science Centre/College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Qixing Zhou
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Carbon Neutrality Interdisciplinary Science Centre/College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China.
| |
Collapse
|
10
|
Liu Y, Wu D, Fu Q, Hao S, Gu Y, Zhao W, Chen S, Sheng F, Xu Y, Chen Z, Yao K. CHAC1 as a Novel Contributor of Ferroptosis in Retinal Pigment Epithelial Cells with Oxidative Damage. Int J Mol Sci 2023; 24:1582. [PMID: 36675091 PMCID: PMC9861460 DOI: 10.3390/ijms24021582] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/31/2022] [Accepted: 01/10/2023] [Indexed: 01/15/2023] Open
Abstract
Age-related macular degeneration (AMD) is the leading cause of irreversible visual loss in the elderly population. With aging and the accumulated effects of environmental stress, retinal pigment epithelial (RPE) cells are particularly susceptible to oxidative damage, which can lead to retinal degeneration. However, the underlying molecular mechanisms of how RPE responds and progresses under oxidative damage are still largely unknown. Here, we reveal that exogenous oxidative stress led to ferroptosis characterized by Fe2+ accumulation and lipid peroxidation in RPE cells. Glutathione specific gamma-glutamylcyclotransferase 1 (Chac1), as a component of the unfolded protein response (UPR) pathway, plays a pivotal role in oxidative-stress-induced cell ferroptosis via the regulation of glutathione depletion. These results indicate the biological significance of Chac1 as a novel contributor of oxidative-stress-induced ferroptosis in RPE, suggesting its potential role in AMD.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Zhiqing Chen
- Zhejiang Provincial Key Lab of Ophthalmology, Eye Center of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Ke Yao
- Zhejiang Provincial Key Lab of Ophthalmology, Eye Center of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
| |
Collapse
|
11
|
Partial Substitution of Glucose with Xylitol Prolongs Survival and Suppresses Cell Proliferation and Glycolysis of Mice Bearing Orthotopic Xenograft of Oral Cancer. Nutrients 2022; 14:nu14102023. [PMID: 35631164 PMCID: PMC9148106 DOI: 10.3390/nu14102023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/07/2022] [Accepted: 05/08/2022] [Indexed: 02/04/2023] Open
Abstract
Many types of cancer have metabolic alterations with increased glycolysis. Identification of alternative sweeteners that do not fuel cancer is a novel approach to cancer control. The present study aimed to investigate the effects of xylitol on tumor growth and survival of mice bearing orthotopic xenograft of tongue cancers. The results showed that partial substitution of glucose with xylitol (glucose 0.35 g plus xylitol 2.06 g/kg body weight) non-significantly reduced tumor volume, and significantly prolonged the median survival time from 19 days in the control to 30.5 days in the xylitol group. Immunohistochemical data of the tongue tissue shows significantly lower intense-to-mild staining ratios of the proliferation marker Ki-67 in the xylitol than those of the control group (p = 0.04). Furthermore, the xylitol substitution significantly reduced the expression of the rate-limiting glycolytic enzyme, phosphofructokinase-1 (PFK-1) (p = 0.03), and showed a non-significant inhibition of PFK activity. In summary, partial substitution of glucose with xylitol at the equivalent dose to human household use of 10 g/day slows down tumor proliferation and prolongs survival of mice bearing an orthotopic oral cancer xenograft, possibly through glycolytic inhibition, with minimal adverse events. The insight warrants clinical studies to confirm xylitol as a candidate sweetener in food products for cancer survivors.
Collapse
|
12
|
Managing GSH elevation and hypoxia to overcome resistance of cancer therapies using functionalized nanocarriers. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2021.103022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
13
|
Marques Júnior JE, Rocha MVP. Development of a purification process via crystallization of xylitol produced for bioprocess using a hemicellulosic hydrolysate from the cashew apple bagasse as feedstock. Bioprocess Biosyst Eng 2021. [PMID: 33387004 DOI: 10.1007/s00449-020-02480-9/figures/9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Xylitol was biotechnologically produced by Kluyveromyces marxianus ATCC36907 using the hemicellulosic hydrolysate of the cashew apple bagasse (CABHH). Sequentially, the present study investigated the recovery and purification of xylitol evaluating different antisolvents [ethanol, isopropanol and the ionic liquid 2-hydroxyl-ethylammonium acetate (2-HEAA)], their proportion in the medium (10-90% v/v), and their cooling rate (VC 0.25-0.50 °C/min). These processes were contrasted with the crystallization process of commercial xylitol. This study is the first to assess xylitol crystallization using a protic ionic liquid. The hydrolysate obtained from a mild treatment with sulfuric acid contained mainly glucose and xylose at concentrations of 15.7 g/L and 11.9 g/L, respectively. With this bioprocess, a maximum xylitol production of 4.5 g/L was achieved. The performance of the investigated antisolvents was similar in all conditions evaluated in the crystallization process of the commercial xylitol, with no significant difference in yields. For the crystallization processes of the produced xylitol, the best conditions were: 50% (v/v) isopropanol as antisolvent, cooling rate of 0.5 °C/min, with a secondary nucleation of yield and purity of 69.7% and 84.8%, respectively. Under the same linear cooling rate, using ethanol, isopropanol or the protic ionic liquid 2-hydroxyl-ethylammonium acetate (2-HEAA), crystallization did not occur, probably due to the presence of carbohydrates not metabolized by the yeast in the broth, which influences the solubility curve of xylitol. With the results of this work, a possible economical and environmentally friendly process of recovery and purification of xylitol from CABHH could be proposed.
Collapse
Affiliation(s)
- José Edvan Marques Júnior
- Departament of Chemical Engineering, Federal University of Ceara, Campus do Pici, Bloco 709, Fortaleza, CE, 60455-760, Brazil
| | - Maria Valderez Ponte Rocha
- Departament of Chemical Engineering, Federal University of Ceara, Campus do Pici, Bloco 709, Fortaleza, CE, 60455-760, Brazil.
| |
Collapse
|
14
|
Development of a purification process via crystallization of xylitol produced for bioprocess using a hemicellulosic hydrolysate from the cashew apple bagasse as feedstock. Bioprocess Biosyst Eng 2021; 44:713-725. [PMID: 33387004 DOI: 10.1007/s00449-020-02480-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Accepted: 11/10/2020] [Indexed: 12/29/2022]
Abstract
Xylitol was biotechnologically produced by Kluyveromyces marxianus ATCC36907 using the hemicellulosic hydrolysate of the cashew apple bagasse (CABHH). Sequentially, the present study investigated the recovery and purification of xylitol evaluating different antisolvents [ethanol, isopropanol and the ionic liquid 2-hydroxyl-ethylammonium acetate (2-HEAA)], their proportion in the medium (10-90% v/v), and their cooling rate (VC 0.25-0.50 °C/min). These processes were contrasted with the crystallization process of commercial xylitol. This study is the first to assess xylitol crystallization using a protic ionic liquid. The hydrolysate obtained from a mild treatment with sulfuric acid contained mainly glucose and xylose at concentrations of 15.7 g/L and 11.9 g/L, respectively. With this bioprocess, a maximum xylitol production of 4.5 g/L was achieved. The performance of the investigated antisolvents was similar in all conditions evaluated in the crystallization process of the commercial xylitol, with no significant difference in yields. For the crystallization processes of the produced xylitol, the best conditions were: 50% (v/v) isopropanol as antisolvent, cooling rate of 0.5 °C/min, with a secondary nucleation of yield and purity of 69.7% and 84.8%, respectively. Under the same linear cooling rate, using ethanol, isopropanol or the protic ionic liquid 2-hydroxyl-ethylammonium acetate (2-HEAA), crystallization did not occur, probably due to the presence of carbohydrates not metabolized by the yeast in the broth, which influences the solubility curve of xylitol. With the results of this work, a possible economical and environmentally friendly process of recovery and purification of xylitol from CABHH could be proposed.
Collapse
|
15
|
Role of Glutathione in Cancer: From Mechanisms to Therapies. Biomolecules 2020; 10:biom10101429. [PMID: 33050144 PMCID: PMC7600400 DOI: 10.3390/biom10101429] [Citation(s) in RCA: 361] [Impact Index Per Article: 90.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 09/30/2020] [Accepted: 10/04/2020] [Indexed: 12/17/2022] Open
Abstract
Glutathione (GSH) is the most abundant non-protein thiol present at millimolar concentrations in mammalian tissues. As an important intracellular antioxidant, it acts as a regulator of cellular redox state protecting cells from damage caused by lipid peroxides, reactive oxygen and nitrogen species, and xenobiotics. Recent studies have highlighted the importance of GSH in key signal transduction reactions as a controller of cell differentiation, proliferation, apoptosis, ferroptosis and immune function. Molecular changes in the GSH antioxidant system and disturbances in GSH homeostasis have been implicated in tumor initiation, progression, and treatment response. Hence, GSH has both protective and pathogenic roles. Although in healthy cells it is crucial for the removal and detoxification of carcinogens, elevated GSH levels in tumor cells are associated with tumor progression and increased resistance to chemotherapeutic drugs. Recently, several novel therapies have been developed to target the GSH antioxidant system in tumors as a means for increased response and decreased drug resistance. In this comprehensive review we explore mechanisms of GSH functionalities and different therapeutic approaches that either target GSH directly, indirectly or use GSH-based prodrugs. Consideration is also given to the computational methods used to describe GSH related processes for in silico testing of treatment effects.
Collapse
|
16
|
Li S, Jia Y, Xue M, Hu F, Zheng Z, Zhang S, Ren S, Yang Y, Si Z, Wang L, Guan M, Xue Y. Inhibiting Rab27a in renal tubular epithelial cells attenuates the inflammation of diabetic kidney disease through the miR-26a-5p/CHAC1/NF-kB pathway. Life Sci 2020; 261:118347. [PMID: 32853650 DOI: 10.1016/j.lfs.2020.118347] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 08/13/2020] [Accepted: 08/22/2020] [Indexed: 10/23/2022]
Abstract
The effect of exosomes on receptor cells participating in intercellular communication has been extensively studied, but the effect of exosomes on donor cells remains unclear. It has been reported that exosomes secreted by renal proximal tubular epithelial cells (PTECs) under different stimuli accelerate acute and chronic kidney diseases. This study aimed to explore whether inhibiting exosomal secretion in PTECs by knocking out Rab27a, a key exosome regulatory gene, inhibits the excessive inflammatory response in PTECs and delays diabetic kidney disease (DKD). First, we proved that the bovine serum albumin (BSA)-induced inflammatory response in HK-2 cells was inhibited by knocking out Rab27a and that Rab27a, IL-6, TNF-α and COL-1 expression was markedly increased in an HFD/STZ-induced diabetic mouse model. Furthermore, miR-26a-5p expression in exosomes secreted by BSA-treated HK-2 cells was significantly increased but correspondingly decreased in the cells; after knocking out Rab27a, miR-26a-5p levels in the cells rebounded. Next, we confirmed that a miR-26a-5p mimic suppressed the inflammatory response, while a miR-26a-5p inhibitor accelerated the inflammatory response. Then, we found that miR-26a-5p targets the 3'-untranslated region (UTR) of CHAC1. Furthermore, the inflammatory response and NF-κB signalling pathway activation induction by the miR-26a-5p inhibitor were abolished by CHAC1 knockout. Therefore, we conclude that inhibiting exosome secretion by BSA-induced PTECs promotes miR-26a-5p expression in cells, thereby inhibiting the CHAC1/NF-κB pathways to prevent the inflammatory response in PTECs and delaying the development of DKD. This study provides new insight into the pathogenic mechanism of exosomes and a new therapeutic target for DKD.
Collapse
Affiliation(s)
- Shuangshuang Li
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yijie Jia
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Meng Xue
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China; Department of Endocrinology and Metabolism, Shenzhen People's Hospital, Second Affiliated Hospital of Jinan University, Shenzhen, Guangdong, China
| | - Fang Hu
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China; Department of Endocrinology and Metabolism, The Fifth Affiliated Hospital Sun Yat-Sen University, Zhuhai, Guangdong, China
| | - Zongji Zheng
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Shuting Zhang
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China; Department of Endocrinology, Guangdong Provincial People's Hospital/Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Shijing Ren
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yanlin Yang
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zekun Si
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ling Wang
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Meiping Guan
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yaoming Xue
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|