1
|
Guan H, Wang Q, Mei Y, Ran J, Zeng F, Cai H, Wang D, Yang S, Zhang M, Shi Y, Liao S, Li P. A multistep approach for exploring quality markers of Shengjiang Xiexin decoction by integrating plasma pharmacochemistry-pharmacokinetics-pharmacology. J Pharm Biomed Anal 2024; 241:115999. [PMID: 38306867 DOI: 10.1016/j.jpba.2024.115999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 01/08/2024] [Accepted: 01/21/2024] [Indexed: 02/04/2024]
Abstract
Shengjiang Xiexin decoction (SXD), a well-known traditional Chinese medicine (TCM), was used to alleviate delayed-onset diarrhea induced by the chemotherapeutic agent irinotecan (CPT-11). Our previous study showed that SXD regulated multidrug resistance-associated protein 2 (Mrp-2) to alter the pharmacokinetics of CPT-11 and its metabolites. However, the pharmacodynamic constituents and the related quality markers of SXD are unclear. In this study, ultra-high performance liquid chromatography coupled with quadrupole orbitrap high-resolution mass spectrometry (UHPLC-Q-Orbitrap HRMS) was utilized to identify the prototypes and metabolites in rat plasma after oral administration of SXD. The pharmacokinetic markers (PK markers) were screened through quantification and semiquantification of SXD-related xenobiotics in plasma using liquid chromatography-mass spectrometry (LC-MS) combined with statistical analysis. Computational molecular docking was performed to assess the potential binding ability of the PK markers with the target Mrp-2. The results were verified by evaluating the impact on Mrp-2 function using Caco-2 cells. The quality markers were chosen from these PK markers based on the binding affinities with Mrp-2, the specificity and the traceability. As a result, a total of 142 SXD-related exogenous components, including 77 prototypes and 65 metabolites, were detected in rat plasma. Among these, 83 xenobiotics were selected as PK markers due to their satisfactory pharmacokinetic behaviors. Based on the characteristics of quality markers, the prototype-based PK markers were considered the indices of quality control for SXD, including baicalin, baicalein, wogonoside, wogonin, liquiritigenin, isoliquiritigenin, norwogonin, oroxylin A, dihydrobaicalin, chrysin, glycyrrhizic acid, glycyrrhetinic acid, oroxylin A 7-O-glucuronide, liquiritin and isoliquiritin. This study provided an interesting strategy for screening the quality markers involved in the pharmacokinetics of SXD and its action target, which offered important information for the modernization of SXD and other TCM formulae.
Collapse
Affiliation(s)
- Huanyu Guan
- State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmacy, Guizhou Medical University, Guiyang 550025, Guizhou, China
| | - Qian Wang
- State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmacy, Guizhou Medical University, Guiyang 550025, Guizhou, China
| | - Yao Mei
- State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmacy, Guizhou Medical University, Guiyang 550025, Guizhou, China
| | - Junyan Ran
- State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmacy, Guizhou Medical University, Guiyang 550025, Guizhou, China
| | - Fanli Zeng
- State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmacy, Guizhou Medical University, Guiyang 550025, Guizhou, China
| | - Haimin Cai
- State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmacy, Guizhou Medical University, Guiyang 550025, Guizhou, China
| | - Daoping Wang
- State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmacy, Guizhou Medical University, Guiyang 550025, Guizhou, China
| | - Shenggang Yang
- State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmacy, Guizhou Medical University, Guiyang 550025, Guizhou, China
| | - Min Zhang
- State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmacy, Guizhou Medical University, Guiyang 550025, Guizhou, China
| | - Yue Shi
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China.
| | - Shanggao Liao
- State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmacy, Guizhou Medical University, Guiyang 550025, Guizhou, China.
| | - Pengfei Li
- National Institute of Drug Clinical Trial, Guizhou Provincial People's Hospital, Guiyang 550002, Guizhou, China.
| |
Collapse
|
2
|
Wang FH, Tan HX, Hu JH, Duan XY, Bai WT, Wang XB, Wang BL, Su Y, Hu JP. Inhibitory interaction of flavonoids with organic anion transporter 3 and their structure-activity relationships for predicting nephroprotective effects. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2024; 26:353-371. [PMID: 37589480 DOI: 10.1080/10286020.2023.2240722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 07/20/2023] [Indexed: 08/18/2023]
Abstract
The organic anion transporter 3 (OAT3), an important renal uptake transporter, is associated with drug-induced acute kidney injury (AKI). Screening and identifying potent OAT3 inhibitors with little toxicity in natural products, especially flavonoids, in reducing OAT3-mediated AKI is of great value. The five strongest OAT3 inhibitors from the 97 flavonoids markedly decreased aristolochic acid I-induced cytotoxicity and alleviated methotrexate-induced nephrotoxicity. The pharmacophore model clarified hydrogen bond acceptors and hydrophobic groups are the critical pharmacophores. These findings would provide valuable information in predicting the potential risks of flavonoid-containing food/herb-drug interactions and optimizing flavonoid structure to alleviate OAT3-related AKI.
Collapse
Affiliation(s)
- Feng-He Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD study, Beijing Key Laboratory of Active Substances Discovery and Drug Ability Evaluation, Department of Drug Metabolism, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Hui-Xin Tan
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD study, Beijing Key Laboratory of Active Substances Discovery and Drug Ability Evaluation, Department of Drug Metabolism, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Jia-Huan Hu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD study, Beijing Key Laboratory of Active Substances Discovery and Drug Ability Evaluation, Department of Drug Metabolism, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
- Department of Health Management and Service, Cangzhou Medical College, Cangzhou 061001, China
| | - Xiao-Yan Duan
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD study, Beijing Key Laboratory of Active Substances Discovery and Drug Ability Evaluation, Department of Drug Metabolism, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Wan-Ting Bai
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD study, Beijing Key Laboratory of Active Substances Discovery and Drug Ability Evaluation, Department of Drug Metabolism, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Xin-Bo Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD study, Beijing Key Laboratory of Active Substances Discovery and Drug Ability Evaluation, Department of Drug Metabolism, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Bao-Lian Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD study, Beijing Key Laboratory of Active Substances Discovery and Drug Ability Evaluation, Department of Drug Metabolism, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Yan Su
- Department of Health Management and Service, Cangzhou Medical College, Cangzhou 061001, China
| | - Jin-Ping Hu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD study, Beijing Key Laboratory of Active Substances Discovery and Drug Ability Evaluation, Department of Drug Metabolism, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
3
|
Yin J, Chen Z, You N, Li F, Zhang H, Xue J, Ma H, Zhao Q, Yu L, Zeng S, Zhu F. VARIDT 3.0: the phenotypic and regulatory variability of drug transporter. Nucleic Acids Res 2024; 52:D1490-D1502. [PMID: 37819041 PMCID: PMC10767864 DOI: 10.1093/nar/gkad818] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/01/2023] [Accepted: 09/27/2023] [Indexed: 10/13/2023] Open
Abstract
The phenotypic and regulatory variability of drug transporter (DT) are vital for the understanding of drug responses, drug-drug interactions, multidrug resistances, and so on. The ADME property of a drug is collectively determined by multiple types of variability, such as: microbiota influence (MBI), transcriptional regulation (TSR), epigenetics regulation (EGR), exogenous modulation (EGM) and post-translational modification (PTM). However, no database has yet been available to comprehensively describe these valuable variabilities of DTs. In this study, a major update of VARIDT was therefore conducted, which gave 2072 MBIs, 10 610 TSRs, 46 748 EGRs, 12 209 EGMs and 10 255 PTMs. These variability data were closely related to the transportation of 585 approved and 301 clinical trial drugs for treating 572 diseases. Moreover, the majority of the DTs in this database were found with multiple variabilities, which allowed a collective consideration in determining the ADME properties of a drug. All in all, VARIDT 3.0 is expected to be a popular data repository that could become an essential complement to existing pharmaceutical databases, and is freely accessible without any login requirement at: https://idrblab.org/varidt/.
Collapse
Affiliation(s)
- Jiayi Yin
- College of Pharmaceutical Sciences, Department of Clinical Pharmacy, The First Affiliated Hospital, Zhejiang University School of Medicine, National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou 330110, China
| | - Zhen Chen
- College of Pharmaceutical Sciences, Department of Clinical Pharmacy, The First Affiliated Hospital, Zhejiang University School of Medicine, National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China
| | - Nanxin You
- College of Pharmaceutical Sciences, Department of Clinical Pharmacy, The First Affiliated Hospital, Zhejiang University School of Medicine, National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China
| | - Fengcheng Li
- College of Pharmaceutical Sciences, Department of Clinical Pharmacy, The First Affiliated Hospital, Zhejiang University School of Medicine, National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China
- The Children's Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310052, China
| | - Hanyu Zhang
- College of Pharmaceutical Sciences, Department of Clinical Pharmacy, The First Affiliated Hospital, Zhejiang University School of Medicine, National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China
| | - Jia Xue
- College of Pharmaceutical Sciences, Department of Clinical Pharmacy, The First Affiliated Hospital, Zhejiang University School of Medicine, National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China
| | - Hui Ma
- College of Pharmaceutical Sciences, Department of Clinical Pharmacy, The First Affiliated Hospital, Zhejiang University School of Medicine, National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China
| | - Qingwei Zhao
- College of Pharmaceutical Sciences, Department of Clinical Pharmacy, The First Affiliated Hospital, Zhejiang University School of Medicine, National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China
| | - Lushan Yu
- College of Pharmaceutical Sciences, Department of Clinical Pharmacy, The First Affiliated Hospital, Zhejiang University School of Medicine, National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China
| | - Su Zeng
- College of Pharmaceutical Sciences, Department of Clinical Pharmacy, The First Affiliated Hospital, Zhejiang University School of Medicine, National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China
| | - Feng Zhu
- College of Pharmaceutical Sciences, Department of Clinical Pharmacy, The First Affiliated Hospital, Zhejiang University School of Medicine, National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou 330110, China
| |
Collapse
|
4
|
Bi Y, Xing Y, Gui C, Tian Y, Zhang M, Yao Y, Hu G, Han L, He F, Zhang Y. Potential Involvement of Organic Anion Transporters in Drug Interactions with Shuganning Injection, a Traditional Chinese Patent Medicine. PLANTA MEDICA 2023; 89:940-951. [PMID: 37236232 DOI: 10.1055/a-2085-2367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Traditional Chinese medicine injections have been widely used in China for the treatment of various diseases. Transporter-mediated drug-drug interactions are a major contributor to adverse drug reactions. However, the research on transporter-mediated Traditional Chinese medicine injection-drug interactions is limited. Shuganning injection is a widely used Traditional Chinese medicine injection for treating various liver diseases. In this study, we investigated the inhibitory effect of Shuganning injection and its four main ingredients (baicalin, geniposide, chlorogenic acid, and oroxylin A) on 9 drug transporters. Shuganning injection strongly inhibited organic anion transporter 1 and organic anion transporter 3 with IC50 values < 0.1% (v/v), and moderately inhibited organic anion transporter 2, organic anion transporting-polypeptide 1B1, and organic anion transporting-polypeptide 1B3 with IC50 values < 1.0%. Baicalin, the most abundant bioactive ingredient in the Shuganning injection, was identified as both an inhibitor and substrate of organic anion transporter 1, organic anion transporter 3, and organic anion transporting-polypeptide 1B3. Oroxylin A had the potential to act as both an inhibitor and substrate of organic anion transporting-polypeptide 1B1 and organic anion transporting-polypeptide 1B3. In contrast, geniposide and chlorogenic acid had no significant inhibitory effect on drug transporters. Notably, Shuganning injection markedly altered the pharmacokinetics of furosemide and atorvastatin in rats. Using Shuganning injection as an example, our findings support the implementation of transporter-mediated Traditional Chinese medicine injection-drug interactions in the development of Traditional Chinese medicine injection standards.
Collapse
Affiliation(s)
- Yajuan Bi
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, P. R. China
| | - Yanchao Xing
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, P. R. China
| | - Chunshan Gui
- College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, P. R. China
| | - Yiqing Tian
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, P. R. China
| | - Mingzhe Zhang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, P. R. China
| | - Yao Yao
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
| | - Ge Hu
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, P. R. China
| | - Lifeng Han
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
| | - Feng He
- School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, Guizhou, P. R. China
| | - Youcai Zhang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, P. R. China
| |
Collapse
|
5
|
Ye L, Fan S, Zhao P, Wu C, Liu M, Hu S, Wang P, Wang H, Bi H. Potential herb‒drug interactions between anti-COVID-19 drugs and traditional Chinese medicine. Acta Pharm Sin B 2023; 13:S2211-3835(23)00203-4. [PMID: 37360014 PMCID: PMC10239737 DOI: 10.1016/j.apsb.2023.06.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/21/2023] [Accepted: 04/20/2023] [Indexed: 06/28/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has spread worldwide. Effective treatments against COVID-19 remain urgently in need although vaccination significantly reduces the incidence, hospitalization, and mortality. At present, antiviral drugs including Nirmatrelvir/Ritonavir (PaxlovidTM), Remdesivir, and Molnupiravir have been authorized to treat COVID-19 and become more globally available. On the other hand, traditional Chinese medicine (TCM) has been used for the treatment of epidemic diseases for a long history. Currently, various TCM formulae against COVID-19 such as Qingfei Paidu decoction, Xuanfei Baidu granule, Huashi Baidu granule, Jinhua Qinggan granule, Lianhua Qingwen capsule, and Xuebijing injection have been widely used in clinical practice in China, which may cause potential herb-drug interactions (HDIs) in patients under treatment with antiviral drugs and affect the efficacy and safety of medicines. However, information on potential HDIs between the above anti-COVID-19 drugs and TCM formulae is lacking, and thus this work seeks to summarize and highlight potential HDIs between antiviral drugs and TCM formulae against COVID-19, and especially pharmacokinetic HDIs mediated by metabolizing enzymes and/or transporters. These well-characterized HDIs could provide useful information on clinical concomitant medicine use to maximize clinical outcomes and minimize adverse and toxic effects.
Collapse
Affiliation(s)
- Ling Ye
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Shicheng Fan
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Pengfei Zhao
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Chenghua Wu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Menghua Liu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Shuang Hu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Peng Wang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Hongyu Wang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Huichang Bi
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
6
|
Fu T, Li F, Zhang Y, Yin J, Qiu W, Li X, Liu X, Xin W, Wang C, Yu L, Gao J, Zheng Q, Zeng S, Zhu F. VARIDT 2.0: structural variability of drug transporter. Nucleic Acids Res 2021; 50:D1417-D1431. [PMID: 34747471 PMCID: PMC8728241 DOI: 10.1093/nar/gkab1013] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/08/2021] [Accepted: 11/04/2021] [Indexed: 12/20/2022] Open
Abstract
The structural variability data of drug transporter (DT) are key for research on precision medicine and rational drug use. However, these valuable data are not sufficiently covered by the available databases. In this study, a major update of VARIDT (a database previously constructed to provide DTs' variability data) was thus described. First, the experimentally resolved structures of all DTs reported in the original VARIDT were discovered from PubMed and Protein Data Bank. Second, the structural variability data of each DT were collected by literature review, which included: (a) mutation-induced spatial variations in folded state, (b) difference among DT structures of human and model organisms, (c) outward/inward-facing DT conformations and (d) xenobiotics-driven alterations in the 3D complexes. Third, for those DTs without experimentally resolved structural variabilities, homology modeling was further applied as well-established protocol to enrich such valuable data. As a result, 145 mutation-induced spatial variations of 42 DTs, 1622 inter-species structures originating from 292 DTs, 118 outward/inward-facing conformations belonging to 59 DTs, and 822 xenobiotics-regulated structures in complex with 57 DTs were updated to VARIDT (https://idrblab.org/varidt/ and http://varidt.idrblab.net/). All in all, the newly collected structural variabilities will be indispensable for explaining drug sensitivity/selectivity, bridging preclinical research with clinical trial, revealing the mechanism underlying drug-drug interaction, and so on.
Collapse
Affiliation(s)
- Tingting Fu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.,Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130023, China
| | - Fengcheng Li
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yang Zhang
- Department of Pharmacology, Hebei Medical University, Shijiazhuang 050017, China
| | - Jiayi Yin
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Wenqi Qiu
- Department of Surgery, HKU-SZH & Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Xuedong Li
- Department of Pharmacology, Hebei Medical University, Shijiazhuang 050017, China
| | - Xingang Liu
- Department of Pharmacology, Hebei Medical University, Shijiazhuang 050017, China
| | - Wenwen Xin
- Department of Pharmacology, Hebei Medical University, Shijiazhuang 050017, China
| | - Chengzhao Wang
- Department of Pharmacology, Hebei Medical University, Shijiazhuang 050017, China
| | - Lushan Yu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jianqing Gao
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.,Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
| | - Qingchuan Zheng
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130023, China
| | - Su Zeng
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Feng Zhu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.,Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou 330110, China
| |
Collapse
|
7
|
Cheng C, Yu X. Research Progress in Chinese Herbal Medicines for Treatment of Sepsis: Pharmacological Action, Phytochemistry, and Pharmacokinetics. Int J Mol Sci 2021; 22:11078. [PMID: 34681737 PMCID: PMC8540716 DOI: 10.3390/ijms222011078] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 10/10/2021] [Accepted: 10/13/2021] [Indexed: 12/11/2022] Open
Abstract
Sepsis is a life-threatening organ dysfunction caused by a dysregulated host response to infection; the pathophysiology of sepsis is complex. The incidence of sepsis is steadily increasing, with worldwide mortality ranging between 30% and 50%. Current treatment approaches mainly rely on the timely and appropriate administration of antimicrobials and supportive therapies, but the search for pharmacotherapies modulating the host response has been unsuccessful. Chinese herbal medicines, i.e., Chinese patent medicines, Chinese herbal prescriptions, and single Chinese herbs, play an important role in the treatment of sepsis through multicomponent, multipathway, and multitargeting abilities and have been officially recommended for the management of COVID-19. Chinese herbal medicines have therapeutic actions promising for the treatment of sepsis; basic scientific research on these medicines is increasing. However, the material bases of most Chinese herbal medicines and their underlying mechanisms of action have not yet been fully elucidated. This review summarizes the current studies of Chinese herbal medicines used for the treatment of sepsis in terms of clinical efficacy and safety, pharmacological activity, phytochemistry, bioactive constituents, mechanisms of action, and pharmacokinetics, to provide an important foundation for clarifying the pathogenesis of sepsis and developing novel antisepsis drugs based on Chinese herbal medicines.
Collapse
Affiliation(s)
- Chen Cheng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhangjiang Hi-Tech Park, Shanghai 201203, China;
| | | |
Collapse
|
8
|
Pharmaceutical Formulations with P-Glycoprotein Inhibitory Effect as Promising Approaches for Enhancing Oral Drug Absorption and Bioavailability. Pharmaceutics 2021; 13:pharmaceutics13071103. [PMID: 34371794 PMCID: PMC8309061 DOI: 10.3390/pharmaceutics13071103] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/09/2021] [Accepted: 07/19/2021] [Indexed: 02/08/2023] Open
Abstract
P-glycoprotein (P-gp) is crucial in the active transport of various substrates with diverse structures out of cells, resulting in poor intestinal permeation and limited bioavailability following oral administration. P-gp inhibitors, including small molecule drugs, natural constituents, and pharmaceutically inert excipients, have been exploited to overcome P-gp efflux and enhance the oral absorption and bioavailability of many P-gp substrates. The co-administration of small molecule P-gp inhibitors with P-gp substrates can result in drug–drug interactions and increased side effects due to the pharmacological activity of these molecules. On the other hand, pharmaceutically inert excipients, including polymers, surfactants, and lipid-based excipients, are safe, pharmaceutically acceptable, and are not absorbed from the gut. Notably, they can be incorporated in pharmaceutical formulations to enhance drug solubility, absorption, and bioavailability due to the formulation itself and the P-gp inhibitory effects of the excipients. Different formulations with inherent P-gp inhibitory activity have been developed. These include micelles, emulsions, liposomes, solid lipid nanoparticles, polymeric nanoparticles, microspheres, dendrimers, and solid dispersions. They can bypass P-gp by different mechanisms related to their properties. In this review, we briefly introduce P-gp and P-gp inhibitors, and we extensively summarize the current development of oral drug delivery systems that can bypass and inhibit P-gp to improve the oral absorption and bioavailability of P-gp substrates. Since many drugs are limited by P-gp-mediated efflux, this review is helpful for designing suitable formulations of P-gp substrates to enhance their oral absorption and bioavailability.
Collapse
|
9
|
Liu YK, Jia YJ, Liu SH, Shi HJ, Ma J. Low expression of FXYD5 reverses the cisplatin resistance of epithelial ovarian cancer cells. Histol Histopathol 2021; 36:535-545. [PMID: 33570156 DOI: 10.14670/hh-18-310] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
OBJECTIVE To investigate the effect of the downregulation of FXYD domain-containing ion transport regulator 5 (FXYD5) on the cisplatin resistance (CisR) of epithelial ovarian cancer (EOC) cells. METHODS A2780-CisR and SKOV3-CisR cells were obtained through repeated administrations of different cisplatin concentrations, and the half-maximal inhibition concentration (IC50) was calculated by MTT assays. After transfection with FXYD5 siRNA-1 and FXYD5 siRNA-2, the IC50 values of the A2780-CisR and SKOV3-CisR cells were also detected by the MTT method. Cell proliferation, migration, invasion and apoptosis were evaluated through 5-ethynyl-2'-deoxyuridine (EdU) DNA synthesis, wound healing, Transwell invasion and Annexin-V-FITC/PI dual-staining assays, respectively. qRT-PCR and Western blotting were conducted to detect mRNA and protein expression. RESULTS Compared with the sensitive parental cells, the A2780-CisR and SKOV3-CisR cells had increased IC50 and FXYD5 expression. FXYD5 siRNA reduced the IC50 value of cisplatin in the A2780-CisR and SKOV3-CisR cells and decreased the expression of ABCG2 (BCRP) and ABCB1 (MDR1). In addition, FXYD5 inhibition reduced the invasion and migration of the A2780-CisR and SKOV3-CisR cells, with upregulation of E-cadherin and downregulation of Snail and Vimentin. Both FXYD5 siRNA-1 and FXYD5 siRNA-2 inhibited the proliferation and promoted the apoptosis of the A2780-CisR and SKOV3-CisR cells with reduced Ki-67 and increased caspase-3. CONCLUSION FXYD5 downregulation may reduce the invasion, migration and EMT formation of EOC cells to increase their sensitivity to cisplatin chemotherapy by inhibiting cell proliferation and promoting cell apoptosis.
Collapse
Affiliation(s)
- Ya-Kun Liu
- Department of Gynecology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China.
| | - Ya-Jing Jia
- Department of Gynecology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Shi-Hao Liu
- Department of Gynecology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Hong-Jie Shi
- Department of Gynecology, People's Hospital of Tang County, Baoding, Hebei, China
| | - Jing Ma
- Department of Gynecology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| |
Collapse
|