1
|
Niu X, Sun W, Tang X, Chen J, Zheng H, Yang G, Yao G. Bufalin alleviates inflammatory response and oxidative stress in experimental severe acute pancreatitis through activating Keap1-Nrf2/HO-1 and inhibiting NF-κB pathways. Int Immunopharmacol 2024; 142:113113. [PMID: 39276459 DOI: 10.1016/j.intimp.2024.113113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 08/02/2024] [Accepted: 09/05/2024] [Indexed: 09/17/2024]
Abstract
Severe acute pancreatitis (SAP) is a prevalent acute inflammatory disease that is clinically manifested by systemic inflammation dysregulation, resulting in a significantly elevated mortality rate. Bufalin has been verified to have potent pharmacological properties, including analgesic, anti-tumor and anti-inflammatory effects. However, it remains unclear whether bufalin inhibits SAP. Thus, we aim to explore the impact of bufalin in SAP rats and to evaluate the potential mechanisms of action. In addition to analyzing serum biochemistry and pancreatic tissue pathology, we elucidated its mechanisms of action through enzyme-linked immunosorbent assay (ELISA), immunohistochemical analysis, Western blot, and quantitative real-time PCR. The results demonstrated that bufalin dose-dependently reversed the elevation of serum Amylase (Amy) and Lipase (LPS) levels in SAP rats, alleviating pancreatic tissue pathological damage. Bufalin exhibited potent antioxidant effects by reducing malondialdehyde (MDA) levels, decreasing Superoxide dismutase (SOD) and glutathione(GSH) consumption, inhibiting the interaction of Keap1-Nrf2, and increasing HO-1 expression. Furthermore, bufalin inhibited TNF-α, IL-6, IL-1β, p-NF-κB-p65, p-IκBα, and NF-κB-p65 expression, while enhancing IκBα expression, ultimately confirming its anti-inflammatory effects on SAP. In summary, our findings suggest that bufalin exerts anti-inflammatory and antioxidant actions in NaT-SAP rats by inhibiting NF-κB and activating the Keap1-Nrf2/HO-1 pathway. This study represents the inaugural application of bufalin in NaT-induced SAP rats, indicating its potential as an effective therapeutic agent for SAP patients.
Collapse
Affiliation(s)
- Xiaolong Niu
- Shanghai University of Traditional Chinese Medicine, Shanghai, China; Shanghai Innovation Center of TCM Health Service, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wei Sun
- Shanghai University of Traditional Chinese Medicine, Shanghai, China; Center for Drug Safety Evaluation and Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaohang Tang
- Shanghai University of Traditional Chinese Medicine, Shanghai, China; Center for Drug Safety Evaluation and Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jialiang Chen
- Shanghai University of Traditional Chinese Medicine, Shanghai, China; Shanghai Innovation Center of TCM Health Service, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Huaqun Zheng
- Shanghai University of Traditional Chinese Medicine, Shanghai, China; Shanghai Innovation Center of TCM Health Service, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Guimei Yang
- Shanghai University of Traditional Chinese Medicine, Shanghai, China; Shanghai Innovation Center of TCM Health Service, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Guangtao Yao
- Shanghai University of Traditional Chinese Medicine, Shanghai, China; Shanghai Innovation Center of TCM Health Service, Shanghai University of Traditional Chinese Medicine, Shanghai, China; Center for Drug Safety Evaluation and Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
2
|
Cai Y, Yang F, Huang X. Oxidative stress and acute pancreatitis (Review). Biomed Rep 2024; 21:124. [PMID: 39006508 PMCID: PMC11240254 DOI: 10.3892/br.2024.1812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 06/06/2024] [Indexed: 07/16/2024] Open
Abstract
Acute pancreatitis (AP) is a common inflammatory disorder of the exocrine pancreas that causes severe morbidity and mortality. Although the pathophysiology of AP is poorly understood, a substantial body of evidence suggests some critical events for this disease, such as dysregulation of digestive enzyme production, cytoplasmic vacuolization, acinar cell death, edema formation, and inflammatory cell infiltration into the pancreas. Oxidative stress plays a role in the acute inflammatory response. The present review clarified the role of oxidative stress in the occurrence and development of AP by introducing oxidative stress to disrupt cellular Ca2+ balance and stimulating transcription factor activation and excessive release of inflammatory mediators for the application of antioxidant adjuvant therapy in the treatment of AP.
Collapse
Affiliation(s)
- Yongxia Cai
- Department of Emergency Medicine, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, P.R. China
| | - Feng Yang
- Department of Emergency Medicine, The First People's Hospital of Wuyi County, Jinhua, Zhejiang 321200, P.R. China
| | - Xizhu Huang
- Department of Emergency Medicine, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, P.R. China
| |
Collapse
|
3
|
Ali BM, Al-Mokaddem AK, Selim HMRM, Alherz FA, Saleh A, Hamdan AME, Ousman MS, El-Emam SZ. Pinocembrin's protective effect against acute pancreatitis in a rat model: The correlation between TLR4/NF-κB/NLRP3 and miR-34a-5p/SIRT1/Nrf2/HO-1 pathways. Biomed Pharmacother 2024; 176:116854. [PMID: 38824834 DOI: 10.1016/j.biopha.2024.116854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/28/2024] [Accepted: 05/30/2024] [Indexed: 06/04/2024] Open
Abstract
BACKGROUND Acute pancreatitis (APS) is a prevalent acute pancreatic inflammation, where oxidative stress, inflammatory signaling pathways, and apoptosis activation contribute to pancreatic injury. METHODS Pinocembrin, the predominant flavonoid in propolis, was explored for its likely shielding effect against APS provoked by two intraperitoneal doses of L-arginine (250 mg / 100 g) in a rat model. RESULTS Pinocembrin ameliorated the histological and immunohistochemical changes in pancreatic tissues and lowered the activities of pancreatic amylase and lipase that were markedly elevated with L-arginine administration. Moreover, pinocembrin reinstated the oxidant/antioxidant equilibrium, which was perturbed by L-arginine, and boosted the pancreatic levels of nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1). Pinocembrin markedly reduced the elevation in serum C-reactive protein (CRP) level induced by L-arginine. Additionally, it decreased the expression of high motility group box protein 1 (HMGB1), toll-like receptor 4 (TLR4), nuclear factor kappa B (NF-κB), tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and NOD-like receptor (NLR) Family Pyrin Domain Containing 3 (NLRP3) inflammasome in the pancreas. Furthermore, it also reduced myeloperoxidase (MPO) activity. Pinocembrin markedly downregulated miR-34a-5p expression and upregulated the protein levels of peroxisome proliferator-activated receptor alpha (PPAR-α) and Sirtuin 1 (SIRT1) and the gene expression level of the inhibitor protein of NF-κB (IκB-α), along with normalizing the Bax/Bcl-2 ratio. CONCLUSIONS Pinocembrin notably improved L-arginine-induced APS by its antioxidant, anti-inflammatory, and anti-apoptotic activities. Pinocembrin exhibited a protective role in APS by suppressing inflammatory signaling via the TLR4/NF-κB/NLRP3 pathway and enhancing cytoprotective signaling via the miR-34a-5p/SIRT1/Nrf2/HO-1 pathway.
Collapse
Affiliation(s)
- Bassam Mohamed Ali
- Department of Biochemistry, Faculty of Pharmacy, October 6 University, Giza 12585, Egypt
| | - Asmaa K Al-Mokaddem
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Heba Mohammed Refat M Selim
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Almaarefa University, P.O.Box 71666, Diriyah, Riyadh 13713, Saudi Arabia
| | - Fatemah A Alherz
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Asmaa Saleh
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | | | - Mona S Ousman
- Emergency medical services, College of Applied Sciences, Almaarefa University, Diriyah, Riyadh 13713, Saudi Arabia
| | - Soad Z El-Emam
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, October 6 University, Giza 12585, Egypt.
| |
Collapse
|
4
|
Rahimi K, Ezzati Givi M, Rezaie A, Hekmatmanesh M, Shaker Ardakani Y. The protective effects of Gamma-linolenic acid against indomethacin-induced gastric ulcer in rats. Br J Nutr 2024; 131:1844-1851. [PMID: 38443203 DOI: 10.1017/s0007114524000382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
The primary goal of the investigation was to analyse the anti-inflammatory and antioxidant properties of Gamma-linolenic acid (GLA) on rats with indomethacin (IND)-induced gastric ulcers. Thirty rats were divided into five groups: Control, IND (50 mg/kg, p.o.), IND pretreated with GLA 100 mg/kg (p.o. for 14 d), IND pretreated with GLA 150 mg/kg (p.o. for 14 d) and IND pretreated with omeprazole (20 mg/kg, p.o. for 14 d). The stomach tissues were examined to calculate the ulcer index and pH and analyse biochemical markers (prostaglandin E2 (PGE2), cyclooxygenase 1 (COX1), TNF-1, IL-6 and intercellular adhesion molecule-1 (ICAM1)) and oxidative stress parameters (malondialdehyde: (MDA), superoxide dismutase (SOD), glutathione (GSH) and CAT (catalase)) as well as undergo histopathological assessment. GLA 100 and 150 mg/kg showed a protective effect against IND-induced gastric damage. It reduced levels of COX1, TNF-1, IL-6 and ICAM and increased PGE2 levels. GLA also normalised antioxidant function by modulating MDA, SOD, GSH and CAT. GLA intervention protects against IND-induced gastric ulcers by restoring oxidant/antioxidant balance and reducing inflammation.
Collapse
Affiliation(s)
- Kaveh Rahimi
- Department of Basic Sciences, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Masoumeh Ezzati Givi
- Department of Basic Sciences, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Anahita Rezaie
- Department of Pathobiology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Mohammad Hekmatmanesh
- Department of Basic Sciences, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Yasamin Shaker Ardakani
- Department of Basic Sciences, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| |
Collapse
|
5
|
Abu-Baih RH, Abu-Baih DH, Abdel-Hafez SMN, Fathy M. Activation of SIRT1/Nrf2/HO-1 and Beclin-1/AMPK/mTOR autophagy pathways by eprosartan ameliorates testicular dysfunction induced by testicular torsion in rats. Sci Rep 2024; 14:12566. [PMID: 38822026 PMCID: PMC11143266 DOI: 10.1038/s41598-024-62740-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 05/21/2024] [Indexed: 06/02/2024] Open
Abstract
Testicular torsion carries the ominous prospect of inducing acute scrotal distress and the perilous consequence of testicular atrophy, necessitating immediate surgical intervention to reinstate vital testicular perfusion, notwithstanding the paradoxical detrimental impact of reperfusion. Although no drugs have secured approval for this urgent circumstance, antioxidants emerge as promising candidates. This study aspires to illustrate the influence of eprosartan, an AT1R antagonist, on testicular torsion in rats. Wistar albino rats were meticulously separated into five groups, (n = 6): sham group, eprosartan group, testicular torsion-detorsion (T/D) group, and two groups of T/D treated with two oral doses of eprosartan (30 or 60 mg/kg). Serum testosterone, sperm analysis and histopathological examination were done to evaluate spermatogenesis. Oxidative stress markers were assessed. Bax, BCL-2, SIRT1, Nrf2, HO-1 besides cleaved caspase-3 testicular contents were estimated using ELISA or qRT-PCR. As autophagy markers, SQSTM-1/p62, Beclin-1, mTOR and AMPK were investigated. Our findings highlight that eprosartan effectively improved serum testosterone levels, testicular weight, and sperm count/motility/viability, while mitigating histological irregularities and sperm abnormalities induced by T/D. This recovery in testicular function was underpinned by the activation of the cytoprotective SIRT1/Nrf2/HO-1 axis, which curtailed testicular oxidative stress, indicated by lowering the MDA content and increasing GSH content. In terms of apoptosis, eprosartan effectively countered apoptotic processes by decreasing cleaved caspase-3 content, suppressing Bax and stimulating Bcl-2 gene expression. Simultaneously, it reactivated impaired autophagy by increasing Beclin-1 expression, decreasing the expression of SQSTM-1/p62 and modulate the phosphorylation of AMPK and mTOR proteins. Eprosartan hold promise for managing testicular dysfunction arising from testicular torsion exerting antioxidant, pro-autophagic and anti-apoptotic effect via the activation of SIRT1/Nrf2/HO-1 as well as Beclin-1/AMPK/mTOR pathways.
Collapse
Affiliation(s)
- Rania H Abu-Baih
- Faculty of Pharmacy, Drug Information Center, Minia University, Minia, 61519, Egypt
| | - Dalia H Abu-Baih
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Deraya University, Minia, 61111, Egypt
- Deraya Center for Scientific Research, Deraya University, Minia, 61111, Egypt
| | | | - Moustafa Fathy
- Department of Biochemistry, Faculty of Pharmacy, Minia University, Minia, 61519, Egypt.
| |
Collapse
|
6
|
Ono N, Horikoshi J, Izawa T, Nishiyama K, Tanaka M, Fujita T, Kuwamura M, Azuma YT. Functional role of IL-19 in a mouse model of L-arginine-induced pancreatitis and related lung injury. Exp Anim 2024; 73:175-185. [PMID: 38057085 PMCID: PMC11091360 DOI: 10.1538/expanim.23-0094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 11/26/2023] [Indexed: 12/08/2023] Open
Abstract
IL-19 is a member of IL-10 family and is mainly produced by macrophages. Acute pancreatitis (AP) is an inflammatory disease characterized by acinar cell injury and necrosis. In the present study, the role of IL-19 in AP and AP-associated lung injury in mice was explored using L-arginine-induced pancreatitis. Experimental pancreatitis was induced by intraperitoneal injection of L-arginine in wild-type (WT) and IL-19 gene-deficient (IL-19 KO) mice. Among the mice treated with L-arginine, the serum amylase level was significantly increased in the IL-19 KO mice, and interstitial edema, analyzed using hematoxylin and eosin-stained sections, was aggravated mildly in IL-19 KO mice compared with WT mice. Furthermore, the mRNA expression of tumor necrosis factor-α was significantly upregulated in IL-19 KO mice treated with L-arginine compared with WT mice treated with L-arginine. IL-19 mRNA was equally expressed in the pancreases of both control and L-arginine-treated WT mice. The conditions of lung alveoli were then evaluated in WT and IL-19 KO mice treated with L-arginine. In mice with L-arginine-induced pancreatitis, the alveolar area was remarkedly decreased, and expression of lung myeloperoxidase was significantly increased in IL-19 KO mice compared with WT mice. In the lungs, the mRNA expression of IL-6 and inducible nitric oxide synthase was significantly increased in IL-19 KO mice compared with WT mice. In summary, IL-19 was proposed to alleviate L-arginine-induced pancreatitis by regulating TNF-α production and to protect against AP-related lung injury by inhibiting neutrophil migration.
Collapse
Affiliation(s)
- Naoshige Ono
- Laboratory of Prophylactic Pharmacology, Osaka Metropolitan University Graduate School of Veterinary Science, 1-58 Rinku-ohraikita, Izumisano, Osaka 598-8531, Japan
| | - Joji Horikoshi
- Laboratory of Prophylactic Pharmacology, Osaka Metropolitan University Graduate School of Veterinary Science, 1-58 Rinku-ohraikita, Izumisano, Osaka 598-8531, Japan
| | - Takeshi Izawa
- Laboratory of Veterinary Pathology, Osaka Metropolitan University Graduate School of Veterinary Science, 1-58 Rinku-ohraikita, Izumisano, Osaka 598-8531, Japan
| | - Kazuhiro Nishiyama
- Laboratory of Prophylactic Pharmacology, Osaka Metropolitan University Graduate School of Veterinary Science, 1-58 Rinku-ohraikita, Izumisano, Osaka 598-8531, Japan
| | - Miyuu Tanaka
- Laboratory of Veterinary Pathology, Osaka Metropolitan University Graduate School of Veterinary Science, 1-58 Rinku-ohraikita, Izumisano, Osaka 598-8531, Japan
| | - Takashi Fujita
- Molecular Toxicology Laboratory, Department of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga 525-8577, Japan
| | - Mitsuru Kuwamura
- Laboratory of Veterinary Pathology, Osaka Metropolitan University Graduate School of Veterinary Science, 1-58 Rinku-ohraikita, Izumisano, Osaka 598-8531, Japan
| | - Yasu-Taka Azuma
- Laboratory of Prophylactic Pharmacology, Osaka Metropolitan University Graduate School of Veterinary Science, 1-58 Rinku-ohraikita, Izumisano, Osaka 598-8531, Japan
| |
Collapse
|
7
|
Mohanad M, Mohamed SK, Aboulhoda BE, Ahmed MAE. Neuroprotective effects of vitamin D in an Alzheimer's disease rat model: Improvement of mitochondrial dysfunction via calcium/calmodulin-dependent protein kinase kinase 2 activation of Sirtuin1 phosphorylation. Biofactors 2024; 50:371-391. [PMID: 37801071 DOI: 10.1002/biof.2013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 09/17/2023] [Indexed: 10/07/2023]
Abstract
Mitochondrial dysfunction is an early event in Alzheimer's disease (AD) pathogenesis. To assess the impact of vitamin D3 (Vit.D) on neurogenesis, we investigated its role in mitigating cognitive impairment and mitochondrial dysfunction through calcium/calmodulin-dependent protein kinase kinase 2 (CAMKK2)-mediated phosphorylation of Sirtuin1 (SIRT1) in an aluminum-chloride-D-galactose (AlCl3-D-gal)-induced AD rat model. Rats were distributed into four groups: control, AlCl3 + D-gal (10 + 60 mg/kg, ip), Vit.D (500 IU/kg, po), and AlCl3 + D-gal+Vit.D. Novel object recognition (NOR), Morris Water Maze, and passive avoidance (PA) tests were used to measure memory abilities. The hippocampal tissue was used to assess vitamin D3 receptor (VDR) and peroxisome-proliferator-activated-receptor-γ-coactivator-1α (PGC-1α) expression by quantitative real-time polymerase chain reaction (qRT-PCR), CAMKK2, p-SIRT1, phosphorylated-AMP-activated protein kinase (p-AMPK), dynamin-related-protein-1 (Drp1), and mitofusin-1 (Mnf1) proteins by western blot and Ca2+ levels, endothelial nitic oxide synthase (eNOS), superoxide dismutase (SOD), amyloid beta (Aβ), and phospho tau (p-Tau) via enzyme-linked immunosorbent assay(ELISA) in addition to histological and ultrastructural examination of rat's brain tissue. Vit.D-attenuated hippocampal injury reversed the cognitive decline and Aβ aggregation, and elevated p-Tau levels in the AlCl3 + D-gal-induced AD rat model. In AlCl3 + D-gal-exposed rats, Vit.D induced VDR expression, normalized Ca2+ levels, elevated CAMKK2, p-AMPK, p-SIRT1, and PGC-1α expression. Vit.D reduced Drp1, induced Mnf1, increased mitochondrial membrane potential, preserved mitochondrial structure, restored normal mitochondrial function, and retained normal eNOS level and SOD activity in AlCl3 + D-gal rats. In conclusion, our findings proved that Vit.D may ameliorate cognitive deficits in AlCl3 + D-gal-induced AD by restoring normal mitochondrial function and reducing inflammatory and oxidative stress via CAMKK2-AMPK/SIRT1 pathway upregulation.
Collapse
Affiliation(s)
- Marwa Mohanad
- Department of Biochemistry, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology (MUST), Giza, Egypt
| | - Shimaa K Mohamed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| | - Basma E Aboulhoda
- Department of Anatomy and Embryology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Maha A E Ahmed
- Department of Pharmacology and Toxicology, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology (MUST), Giza, Egypt
| |
Collapse
|
8
|
Mores MG, Fikry EM, El-Gendy AO, Mohamed WR, Badary OA. Probiotics mixture and taurine attenuate L-arginine-induced acute pancreatitis in rats: Impact on transient receptor potential vanilloid-1 (TRPV-1)/IL-33/NF-κB signaling and apoptosis. Tissue Cell 2023; 85:102234. [PMID: 37844391 DOI: 10.1016/j.tice.2023.102234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/01/2023] [Accepted: 10/05/2023] [Indexed: 10/18/2023]
Abstract
Acute pancreatitis (AP) is an inflammatory disorder of acinar cells. It may develop into severe chronic pancreatitis with a significant mortality rate. The current study aimed to assess the therapeutic effect of a Lactobacillus (LAB) mixture against rat AP. Six groups were created including control, taurine (300 mg/kg; i.p.) for 7 days, LAB mixture for 7 days, L-arginine (2.5 g/kg; i.p.) 2 doses with 1 h interval on 1st day, L-arginine+taurine, and L-arginine+LAB. Serum amylase and lipase activities were measured. Pancreatic tissue was used for histopathological examination, oxidative stress biomarkers including malondialdehyde (MDA) and reduced glutathione (GSH), and inflammatory biomarkers including myeloperoxidase (MPO) and interleukin (IL)-33 assessment. qRT-PCR was used for transient receptor potential vanilloid-1 (TRPV-1) investigation and Western blot analysis for measuring nuclear factor kappa-B (NF-κBp65) and the apoptosis biomarker; caspase-3. Taurine and LAB reduced lipase and significantly ameliorated induced oxidative stress by normalizing MDA and GSH contents. They counteracted inflammation by reducing MPO, IL-33, NF-κBp65, and TRPV-1. In addition, taurine and LAB counteracted apoptosis as proved by reduced caspase-3 expression. Taken together, these findings indicate that taurine and the use LAB mixture can mitigate AP by L-arginine via influencing TRPV-1/IL-33/NF-κB signaling together with exhibiting potent antioxidant and anti-inflammatory effects.
Collapse
Affiliation(s)
- Marvy G Mores
- Pharmacology Department, Egyptian Drug Authority, (previously, National Organization for Drug Control and Research), Giza, Egypt
| | - Ebtehal Mohammad Fikry
- Pharmacology Department, Egyptian Drug Authority, (previously, National Organization for Drug Control and Research), Giza, Egypt
| | - Ahmed O El-Gendy
- Microbiology and Immunology Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Wafaa R Mohamed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt.
| | - Osama A Badary
- Clinical Pharmacy Department, Faculty of Pharmacy, Misr University for Science and Technology, Cairo, Egypt; Clinical Pharmacy Department, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt.
| |
Collapse
|
9
|
He L, Wang L, Hou H. Bicarbonated Ringer's solution improves L-arg-induced acute pancreatitis in rats via the NF-κB and Nrf2 pathways. Scand J Gastroenterol 2023; 58:276-285. [PMID: 36124782 DOI: 10.1080/00365521.2022.2118553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
OBJECTIVE Bicarbonated Ringer's solution (BRS), as a new generation of crystalline fluid, has been widely used for intravenous fluid resuscitation in patients with shock diseases. The purpose of our study is to investigate the intervention effects and potential mechanisms of BRS on L-arg-induced AP in rats. METHODS The AP model was induced by intraperitoneal injection of 20% L-arg. BRS was infused immediately following the previous L-arg injection. The pancreatic tissue was harvested for histological examination. The serum levels of amylase and lipase activity, lactic acid, proinflammatory and anti-inflammatory cytokines were determined. The peroxide and antioxidant activities in the pancreatic tissue were measured. The protein and mRNA levels of nuclear factor-κB, TNF-α, nuclear factor erythroid 2-related Factor 2 and heme oxygenase-1 were determined by Western blot and quantitative reverse transcription PCR analysis. RESULTS Pancreatic tissue injuries were obviously alleviated, with a significant increase in normal acinar cells after BRS treatment. The serum levels of amylase, lipase, lactic acid, IL-1β and TNF-α were significantly decreased, while IL-10 was obviously increased by inhibiting the NF-κB pathway and TNF-α. Moreover, Nrf2 pathway and HO-1 were promoted by BRS treatment, which resulted in significantly reduced malondialdehyde and reactive oxygen species levels. In contrast, antioxidant activities, including glutathione peroxidase and so on, were markedly increased after BRS treatment. CONCLUSIONS Bicarbonated Ringer's solution improves L-arg-induced acute pancreatitis in rats through the NF-κB and Nrf2 pathways, indicating that BRS holds promise as a priority in fluid resuscitation to treat acute pancreatitis.
Collapse
Affiliation(s)
- Liang He
- Department of Hepatobiliary Surgery, The Second Hospital of Anhui Medical University, Hefei, PR China
| | - Lei Wang
- Department of Hepatobiliary Surgery, The Second Hospital of Anhui Medical University, Hefei, PR China
| | - Hui Hou
- Department of Hepatobiliary Surgery, The Second Hospital of Anhui Medical University, Hefei, PR China
| |
Collapse
|
10
|
Burzyński J, Fichna J, Tarasiuk A. Putative molecular targets for vitamin A in neutralizing oxidative stress in acute and chronic pancreatitis - a systematic review. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023:10.1007/s00210-023-02442-4. [PMID: 36843131 DOI: 10.1007/s00210-023-02442-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 02/21/2023] [Indexed: 02/28/2023]
Abstract
Acute pancreatitis (AP) and chronic pancreatitis (CP) are debilitating diseases of gastrointestinal tract and constitute great threat for human health in high-income countries. Recent studies emphasize the impact of oxidative stress on development of these pathologies, and numerous authors evaluate the effect of the antioxidant therapy on the course of AP and CP. Though several antioxidative agents were discovered in the past decades, vitamins remain canonical antioxidants. Despite the fact that vitamin A is known for its antioxidative effect, there is little data about the impact of vitamin A on oxidative stress in the pathogenesis of AP and CP. The scope of the review is to evaluate molecular targets for vitamin A, which may be involved in oxidative stress occurring in the course of AP and CP. Our research of available literature revealed that several mechanisms are responsible for attenuation of oxidative stress in AP and CP, including Nrf2, MAPK, AMPK, TLR3, and TLR4. Furthermore, these factors are at least partially expressed in vitamin A-dependent manner, though further investigations are required for elucidating in detail the role of vitamin A in defense against reactive oxygen species. Our review revealed that vitamin A might influence the expression of several molecular pathways involved in antioxidative defense and cytoprotection; thus, its administration during AP and CP may change the course of the disease.
Collapse
Affiliation(s)
- Jacek Burzyński
- Department of Biochemistry, Medical University of Lodz, Mazowiecka 5, 92-215, Lodz, Poland
| | - Jakub Fichna
- Department of Biochemistry, Medical University of Lodz, Mazowiecka 5, 92-215, Lodz, Poland
| | - Aleksandra Tarasiuk
- Department of Biochemistry, Medical University of Lodz, Mazowiecka 5, 92-215, Lodz, Poland.
| |
Collapse
|
11
|
Yehia Kamel M, Zekry Attia J, Mahmoud Ahmed S, Hassan Saeed Z, Welson NN, Yehia Abdelzaher W. Protective effect of rivastigmine against lung injury in acute pancreatitis model in rats via Hsp 70/IL6/ NF-κB signaling cascade. Int J Immunopathol Pharmacol 2023; 37:3946320231222804. [PMID: 38112159 PMCID: PMC10734328 DOI: 10.1177/03946320231222804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 12/08/2023] [Indexed: 12/20/2023] Open
Abstract
Acute lung injury (ALI) that develops as a result of AP can progress to acute respiratory distress syndrome. Some hypotheses are proposed to explain the pathophysiology of AP and its related pulmonary hazards. This experiment aimed to evaluate the mitigating action of rivastigmine (Riva) in lung injury that occurs on the top of acute pancreatitis (AP) induced in rats. Thirty-two male Wister rats were randomized to one of four groups: control, Riva-treated, acute pancreatitis (AP), and acute pancreatitis treated by Riva. Serum amylase and lipase levels were assessed. Pulmonary oxidative stress and inflammatory indicators were estimated. A pancreatic and pulmonary histopathological examination, as well as an immunohistochemical study of HSP70, was carried out. Riva significantly attenuated the L-arginine-related lung injury that was characterized by increased pulmonary inflammatory biomarkers (interleukin-6 [IL-6]), nuclear factor kappa B (NF-κB), tumor necrosis factor-α (TNF-α), increased pulmonary oxidative markers (total nitrite/nitrate [NOx]), MDA, decreased total antioxidant capacity (TAC), and reduced glutathione level (GSH)) with increased caspase-3 expression. Therefore, Riva retains potent ameliorative effects against lung injury that occur on the top of AP by relieving oxidative stress, inflammation, and apoptosis via HSP70/IL6/NF-κB signaling.
Collapse
Affiliation(s)
- Maha Yehia Kamel
- Department of Pharmacology, Minia University, Faculty of Medicine, Minia, Egypt
| | - Josef Zekry Attia
- Department of Anesthesia and I.C.U, Minia University, Faculty of Medicine, Minia, Egypt
| | - Sabreen Mahmoud Ahmed
- Department of Human Anatomy and Embryology, Faculty of Medicine, Minia University, Delegated to Deraya University, New Minia City, Egypt
| | | | - Nermeen N Welson
- Department of Forensic Medicine and Clinical Toxicology, Beni-Suef University, Faculty of Medicine, Beni Suef, Egypt
| | | |
Collapse
|
12
|
Ren Y, Liu W, Zhang J, Bi J, Fan M, Lv Y, Wu Z, Zhang Y, Wu R. MFG-E8 Maintains Cellular Homeostasis by Suppressing Endoplasmic Reticulum Stress in Pancreatic Exocrine Acinar Cells. Front Cell Dev Biol 2022; 9:803876. [PMID: 35096831 PMCID: PMC8795834 DOI: 10.3389/fcell.2021.803876] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 12/27/2021] [Indexed: 01/25/2023] Open
Abstract
Excessive endoplasmic reticulum (ER) stress contributes significantly to the pathogenesis of exocrine acinar damage in acute pancreatitis. Our previous study found that milk fat globule EGF factor 8 (MFG-E8), a lipophilic glycoprotein, alleviates acinar cell damage during AP via binding to αvβ3/5 integrins. Ligand-dependent integrin-FAK activation of STAT3 was reported to be of great importance for maintaining cellular homeostasis. However, MFG-E8's role in ER stress in pancreatic exocrine acinar cells has not been evaluated. To study this, thapsigargin, brefeldin A, tunicamycin and cerulein + LPS were used to induce ER stress in rat pancreatic acinar cells in vitro. L-arginine- and cerulein + LPS-induced acute pancreatitis in mice were used to study ER stress in vivo. The results showed that MFG-E8 dose-dependently inhibited ER stress under both in vitro and in vivo conditions. MFG-E8 knockout mice suffered more severe ER stress and greater inflammatory response after L-arginine administration. Mechanistically, MFG-E8 increased phosphorylation of FAK and STAT3 in cerulein + LPS-treated pancreatic acinar cells. The presence of specific inhibitors of αvβ3/5 integrin, FAK or STAT3 abolished MFG-E8's effect on cerulein + LPS-induced ER stress in pancreatic acinar cells. In conclusion, MFG-E8 maintains cellular homeostasis by alleviating ER stress in pancreatic exocrine acinar cells.
Collapse
Affiliation(s)
- Yifan Ren
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China,Department of General Surgery, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Wuming Liu
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China,Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Jia Zhang
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China,Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Jianbin Bi
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China,Department of Oncology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Meng Fan
- Department of General Surgery, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Yi Lv
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China,Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Zheng Wu
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Yuanyuan Zhang
- Department of Pediatrics, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China,*Correspondence: Yuanyuan Zhang, ; Rongqian Wu,
| | - Rongqian Wu
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China,*Correspondence: Yuanyuan Zhang, ; Rongqian Wu,
| |
Collapse
|
13
|
El-Shamarka ME, Eliwa HA, Ahmed MAE. Inhibition of boldenone-induced aggression in rats by curcumin: Targeting TLR4/MyD88/TRAF-6/NF-κB pathway. J Biochem Mol Toxicol 2021; 36:e22936. [PMID: 34719837 DOI: 10.1002/jbt.22936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 09/22/2021] [Accepted: 10/18/2021] [Indexed: 11/08/2022]
Abstract
The illicit abuse of anabolic steroids is associated with brutal aggression, which represents a serious health hazard and social threat. Boldenone is commonly used for doping by athletes and adolescents for esthetic purposes and to enhance performance and endurance during competitions. However, the mechanistic pathways underlying boldenone-induced behavioral deviations and neuronal toxicity have not yet been elucidated. On the other hand, the natural polyphenol curcumin is appreciated for its relative safety, potent antioxidant activity, and anti-inflammatory properties. Therefore, the present study was initiated to explore the signaling pathways underlying boldenone-induced anxiety and aggression in rats, and the protective effects of curcumin. To achieve this aim, male Wistar albino rats were randomly distributed into control, curcumin (100 mg/kg in sesame oil, p.o., once daily), boldenone (5 mg/kg, intramuscular, once weekly), and combination groups. Rats were challenged across the open field, irritability, defensive aggression, and resident-intruder tests. The prefrontal cortex was used to assess serotonin level, oxidative stress markers, and mRNA expression of myeloid differentiation primary response gene (MyD88), TNFR-associated factor 6 (TRAF-6), tumor necrosis factor α (TNF-α), interleukin-1β (IL-1β), protein expression of toll-like receptor 4 (TLR4), and phosphorylated nuclear factor-κB transcription factor (NF-κB p65). Unprecedented, the current results showed that boldenone elicited aggression in rats accompanied by depleted serotonin, enhanced oxidative stress, and exaggerated inflammatory response via upregulation of TLR4/MyD88/TRAF-6/NF-κB pathway. Interestingly, curcumin mitigated boldenone-induced neurobehavioral disturbances in rats, normalized the oxidant/antioxidant balance, and suppressed TLR4/MyD88/TRAF-6/NF-κB pathway and its downstream proinflammatory signaling molecules TNF-α and IL-1β.
Collapse
Affiliation(s)
- Marwa E El-Shamarka
- Department of Narcotics, Ergogenic Aids and Poisons, National Research Center, Dokki, Egypt
| | - Hesham A Eliwa
- Department of Pharmacology and Toxicology, Faculty of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology (MUST), Giza, Egypt
| | - Maha A E Ahmed
- Department of Pharmacology and Toxicology, Faculty of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology (MUST), Giza, Egypt
| |
Collapse
|
14
|
Zhang H, Wang Z, Li Z, Wang K, Kong B, Chen Q. l-glycine and l-glutamic acid protect Pediococcus pentosaceus R1 against oxidative damage induced by hydrogen peroxide. Food Microbiol 2021; 101:103897. [PMID: 34579850 DOI: 10.1016/j.fm.2021.103897] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 09/01/2021] [Accepted: 09/02/2021] [Indexed: 11/18/2022]
Abstract
The effects of l-glycine (Gly) and l-glutamic acid (Glu) on oxidative damage induced by hydrogen peroxide (H2O2) in Pediococcus pentosaceus R1 were investigated. Gly and Glu significantly reduce the production of intracellular reactive oxygen species and the levels of malondialdehyde and carbonylated proteins and concomitantly increase ATP levels in P. pentosaceus R1 under H2O2-induced stress (P < 0.05). Transmission electron microscopy and atomic force microscopy of bacteria under H2O2-induced stress revealed that Gly and Glu suppress bacterial membrane deformation and cell damage. Gly exhibited stronger ferrous ion-chelating ability, whereas Glu has higher radical scavenging activities and reducing power (P < 0.05). The abilities of Gly and Glu to inhibit lipid peroxidation are comparable. Gly and Glu significantly enhance the activities of superoxide dismutase and glutathione peroxidase, respectively, and increase the total antioxidant capacity of bacteria (P < 0.05). These findings indicate that Gly and Glu alleviate H2O2-induced oxidative stress via direct antioxidant effects and increase the activities of bacterial antioxidant enzyme.
Collapse
Affiliation(s)
- Huan Zhang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Zhi Wang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Zhiwei Li
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Keda Wang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Baohua Kong
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China.
| | - Qian Chen
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| |
Collapse
|
15
|
Asghar MA, Yousuf RI, Shoaib MH, Asghar MA, Zehravi M, Rehman AA, Imtiaz MS, Khan K. Green Synthesis and Characterization of Carboxymethyl Cellulose Fabricated Silver-Based Nanocomposite for Various Therapeutic Applications. Int J Nanomedicine 2021; 16:5371-5393. [PMID: 34413643 PMCID: PMC8370115 DOI: 10.2147/ijn.s321419] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 07/27/2021] [Indexed: 12/13/2022] Open
Abstract
Purpose The current study proposed the simple, eco-friendly and cost-effective synthesis of carboxymethyl cellulose (CMC) structured silver-based nanocomposite (CMC-AgNPs) using Syzygium aromaticum buds extract. Methods The CMC-AgNPs were characterized by ultraviolet (UV) spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier transmission infra-red (FTIR), energy-dispersive X-ray (EDX), and dynamic light scattering (DLS) techniques. The synthesized nanocomposites were evaluated for their bactericidal kinetics, in-vivo anti-inflammatory, anti-leishmaniasis, antioxidant and cytotoxic activities using different in-vitro and in-vivo models. Results The spherical shape nanocomposite of CMC-AgNPs was synthesized with the mean size range of 20–30 nm, and the average pore diameter is 18.2 nm while the mean zeta potential of −31.6 ± 3.64 mV. The highly significant (P < 0.005) antibacterial activity was found against six bacterial strains with the ZIs of 24.6 to 27.9 mm. More drop counts were observed in Gram-negative strains after 10 min exposure with CMC-AgNPs. Significant damage in bacterial cell membrane was also observed in atomic force microscopy (AFM) after treated with CMC-AgNPs. Nanocomposite showed highly significant anti-inflammatory activity in cotton pellet induced granuloma model (Phase I) in rats with the mean inhibitions of 43.13% and 48.68% at the doses of 0.025 and 0.05 mg/kg, respectively, when compared to control. Reduction in rat paw edema (Phase II) was also highly significant (0.025 mg/kg; 42.39%; 0.05 mg/kg, 47.82%). At dose of 0.05 mg/kg, CMC-AgNPs caused highly significant decrease in leukocyte counts (922 ± 83), levels of CRP (8.4 ± 0.73 mg/mL), IL-1 (177.4 ± 21.3 pg/mL), IL-2 (83.7 ± 11.5 pg/mL), IL-6 (83.7 ± 11.5 pg/mL) and TNF-α (18.3 ± 5.3 pg/mL) as compared to control group. CMC-AgNPs produced highly effective anti-leishmaniasis activity with the viable Leishmania major counts decreased up to 36.7% within 24 h, and the IC50 was found to be 28.41 μg/mL. The potent DPPH radical scavenging potential was also observed for CMC-AgNPs with the IC50 value of 112 μg/mL. Furthermore, the cytotoxicity was assessed using HeLa cell lines with the LC50 of 108.2 μg/mL. Conclusion The current findings demonstrate positive attributes of CMC fabricated AgNPs as a promising antibacterial, anti-inflammatory, anti-leishmaniasis, and antioxidant agent with low cytotoxic potential.
Collapse
Affiliation(s)
- Muhammad Arif Asghar
- Department of Pharmaceutics, Faculty of Pharmacy and Pharmaceutical Sciences, University of Karachi, Karachi, Pakistan
| | - Rabia Ismail Yousuf
- Department of Pharmaceutics, Faculty of Pharmacy and Pharmaceutical Sciences, University of Karachi, Karachi, Pakistan
| | - Muhammad Harris Shoaib
- Department of Pharmaceutics, Faculty of Pharmacy and Pharmaceutical Sciences, University of Karachi, Karachi, Pakistan
| | - Muhammad Asif Asghar
- Food and Feed Safety Laboratory, Food and Marine Resources Research Centre, PCSIR Laboratories Complex, Karachi, Sindh, Pakistan
| | - Mehrukh Zehravi
- Department of Clinical Pharmacy, College of Pharmacy for Girls, Prince Sattam Bin Abdul Aziz University, Al-Kharj, Kingdom of Saudi Arabia
| | - Ahad Abdul Rehman
- Department of Pharmacology, Institute of Pharmaceutical Sciences, Jinnah Sindh Medical University, Karachi, Pakistan
| | - Muhammad Suleman Imtiaz
- Department of Pharmaceutics, Institute of Pharmaceutical Sciences, Jinnah Sindh Medical University, Karachi, Pakistan
| | - Kamran Khan
- Department of Pharmaceutics, Institute of Pharmaceutical Sciences, Jinnah Sindh Medical University, Karachi, Pakistan
| |
Collapse
|
16
|
Ahmed MAE, Mohanad M, Ahmed AAE, Aboulhoda BE, El-Awdan SA. Mechanistic insights into the protective effects of chlorogenic acid against indomethacin-induced gastric ulcer in rats: Modulation of the cross talk between autophagy and apoptosis signaling. Life Sci 2021; 275:119370. [PMID: 33744322 DOI: 10.1016/j.lfs.2021.119370] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 03/05/2021] [Accepted: 03/08/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND This study aimed to investigate the gastroprotective effect of chlorogenic acid (CGA) against Indomethacin (IND)-induced gastric ulcer (GU) in rats and its underlying mechanism, especially through autophagic and apoptotic pathways. METHODS Seventy-five rats were divided into five groups; control, IND (50 mg/kg, p.o.), CGA (100 mg/kg, p.o., 14 days), IND pretreated with CGA (50 mg/kg or 100 mg/kg, p.o., 14 days). The stomach tissues were examined to calculate the ulcer index and analyze markers of autophagy (beclin-1, LC3-II/LC3-I and p62), lysosomal function (cathepsin-D) and apoptosis (Bcl-2, Bax and caspase-3), along with expression of Akt/mTOR pathway using western blot or ELISA techniques. In addition, viability of gastric mucosal cells was detected by flowcytometry. Structural changes were assessed histologically, while autophagic and apoptotic changes of gastric mucosa were observed by transmission electron microscopy. RESULTS CGA exhibited a dose-dependent gastroprotective effect by reversing IND-induced accumulation of autophagic vacuoles, significant reduction in beclin-1, LC3-II/LC3-I, and p62 levels, and down-regulation of p-Akt/p-mTOR expression. CGA100 also restored normal autolysosomal function by modulation of cathepsin-D levels. Furthermore, pretreatment with CGA100 was significantly associated with an increase in antiapoptotic protein Bcl-2 along with a decrease in proapoptotic Bax and caspase-3 proteins in such a way that impairs IND-induced apoptosis. This was confirmed by CGA-induced significant decrease in annexin V+ cells. CONCLUSIONS The natural compound CGA offers a novel gastroprotective intervention against IND-induced GU through restoration of normal autophagic flux, impairment of apoptosis in a crosstalk mechanism mediated by Akt/mTOR pathway reactivation, and alleviation of IND-induced lysosomal dysfunction.
Collapse
Affiliation(s)
- Maha A E Ahmed
- Department of Pharmacology and Toxicology, Faculty of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology (MUST), 6th of October City, Giza, Egypt.
| | - Marwa Mohanad
- Department of Biochemistry, Faculty of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology (MUST), 6th of October City, Giza, Egypt
| | - Amany A E Ahmed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Helwan University, Ein Helwan, Cairo, Egypt
| | - Basma E Aboulhoda
- Department of Anatomy and Embryology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Sally A El-Awdan
- Department of Pharmacology, National Research Centre, Dokki, Giza, Egypt
| |
Collapse
|
17
|
Saikosaponin A-Induced Gut Microbiota Changes Attenuate Severe Acute Pancreatitis through the Activation of Keap1/Nrf2-ARE Antioxidant Signaling. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:9217219. [PMID: 33204401 PMCID: PMC7652616 DOI: 10.1155/2020/9217219] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 07/11/2020] [Accepted: 07/21/2020] [Indexed: 12/16/2022]
Abstract
Objective Severe acute pancreatitis (SAP) is a serious and life-threatening disease associated with multiple organ failure and a high mortality rate and is accompanied by distinct oxidative stress and inflammatory responses. Saikosaponin A has strong antioxidant properties and can affect the composition of gut microbiota. We sought to determine the effects of Saikosaponin A interventions on SAP by investigating the changes of gut microbiota and related antioxidant signaling. Methods A SAP model was established in Sprague-Dawley (SD) rats through the injection of sodium taurocholate into the biliopancreatic duct and confirmed by elevated levels of serum lipase and amylase. The model was fed a standard diet either with saline solution or with Saikosaponin A. Fecal microbiota transplantation (FMT) from Saikosaponin A-induced rats into the rat model was performed to test the effects of gut microbiota. The composition of gut microbiota was analyzed by using 16S rRNA gene sequencing. We measured apoptotic status, inflammatory biomarkers, and Keap1-Nrf2-ARE ((Kelch-like ECH-associated protein 1) nuclear factor erythroid 2-related factor 2-antioxidant response element) antioxidant signaling. Results Saikosaponin A intervention attenuated SAP lesions and reduced the levels of serum amylase and lipase, oxidative stress, and inflammatory responses by reducing pathological scores and affecting the serum level of oxidative and inflammatory factors. Meanwhile, the expression of Keap1-Nrf2-ARE was increased. Saikosaponin A intervention improved microbiota composition by increasing the relative abundance of Lactobacillus and Prevotella species. FMT resulted in similar results as those caused by the Saikosaponin A intervention, suggesting Saikosaponin A may exert its function via the improvement of gut microbiota composition. Conclusions Saikosaponin A-induced gut microbiota changes attenuate SAP progression in the rat model and may be a potential natural drug for adjuvant treatment of SAP. Further work is needed to clear up the points.
Collapse
|
18
|
Ahmed MAE, Ahmed AAE, El Morsy EM. Acetyl-11-keto-β-boswellic acid prevents testicular torsion/detorsion injury in rats by modulating 5-LOX/LTB4 and p38-MAPK/JNK/Bax/Caspase-3 pathways. Life Sci 2020; 260:118472. [PMID: 32971106 DOI: 10.1016/j.lfs.2020.118472] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/08/2020] [Accepted: 09/16/2020] [Indexed: 02/06/2023]
Abstract
AIMS Testicular torsion/detorsion (T/D) is a critical medical condition that necessitates prompt surgical intervention to avoid testicular atrophy and infertility. The use of natural compounds may protect against the associated detrimental oxidative stress and inflammatory responses. Interestingly, acetyl-11-keto-β-boswellic acid (AKBA), the main active constituent of Boswellia resin, has shown potent inhibitory effect on 5-lipoxygenase enzyme which converts arachidonic acid into inflammatory mediators. Therefore, this study was conducted to assess the protective mechanisms by which AKBA may protect against testicular T/D injury in rats. MAIN METHODS Male rats were randomly distributed into five groups: Sham, AKBA (50 mg/kg, p.o.), unilateral testicular T/D, AKBA at two dose levels (25 or 50 mg/kg for 15 successive days) followed by T/D. Histological examination and Johnsen's score were performed to assess testicular injury and perturbations in spermatogenesis. Biochemical parameters included markers of testicular function (serum testosterone), oxidant/antioxidant status (malondialdehyde, glutathione), inflammation (5-lipoxygenase, leukotriene-B4, myeloperoxidase, interleukin-1β, interleukin-6), apoptosis (Bax, Bcl2, caspase-3), DNA integrity (quantitative DNA fragmentation, DNA laddering, PARP-1), energy production (ATP), in addition to p38 MAPK and JNK protein expression. KEY FINDINGS In a dose dependent manner, AKBA significantly inhibited testicular T/D-induced upregulation of 5-LOX/LTB4 and p38-MAPK/JNK/Bax pathways and their associated downstream inflammatory and apoptotic cascades. These effects were accompanied with ATP replenishment and DNA preservation, resulting ultimately in salvage of the testis. SIGNIFICANCE Unprecedentedly, the present mechanistic study revealed the pathways by which AKBA may inhibit testicular T/D injury and offered a novel protective approach that may attenuate the severity of this condition.
Collapse
Affiliation(s)
- Maha A E Ahmed
- Department of Pharmacology and Toxicology, Faculty of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology (MUST), 6th of October City, Giza, Egypt.
| | - Amany A E Ahmed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Helwan University, Ein Helwan, Cairo, Egypt
| | - Engy M El Morsy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Helwan University, Ein Helwan, Cairo, Egypt
| |
Collapse
|