1
|
Chang H, Chen E, Hu Y, Wu L, Deng L, Ye‐Lehmann S, Mao X, Zhu T, Liu J, Chen C. Extracellular Vesicles: The Invisible Heroes and Villains of COVID-19 Central Neuropathology. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305554. [PMID: 38143270 PMCID: PMC10933635 DOI: 10.1002/advs.202305554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 11/18/2023] [Indexed: 12/26/2023]
Abstract
Acknowledging the neurological symptoms of COVID-19 and the long-lasting neurological damage even after the epidemic ends are common, necessitating ongoing vigilance. Initial investigations suggest that extracellular vesicles (EVs), which assist in the evasion of the host's immune response and achieve immune evasion in SARS-CoV-2 systemic spreading, contribute to the virus's attack on the central nervous system (CNS). The pro-inflammatory, pro-coagulant, and immunomodulatory properties of EVs contents may directly drive neuroinflammation and cerebral thrombosis in COVID-19. Additionally, EVs have attracted attention as potential candidates for targeted therapy in COVID-19 due to their innate homing properties, low immunogenicity, and ability to cross the blood-brain barrier (BBB) freely. Mesenchymal stromal/stem cell (MSCs) secreted EVs are widely applied and evaluated in patients with COVID-19 for their therapeutic effect, considering the limited antiviral treatment. This review summarizes the involvement of EVs in COVID-19 neuropathology as carriers of SARS-CoV-2 or other pathogenic contents, as predictors of COVID-19 neuropathology by transporting brain-derived substances, and as therapeutic agents by delivering biotherapeutic substances or drugs. Understanding the diverse roles of EVs in the neuropathological aspects of COVID-19 provides a comprehensive framework for developing, treating, and preventing central neuropathology and the severe consequences associated with the disease.
Collapse
Affiliation(s)
- Haiqing Chang
- Department of AnesthesiologyWest China HospitalSichuan UniversityLaboratory of Anesthesia and Critical Care MedicineNational‐Local Joint Engineering Research Centre of Translational Medicine of AnesthesiologyWest China HospitalSichuan UniversityChengduSichuan610041China
| | - Erya Chen
- Department of AnesthesiologyWest China HospitalSichuan UniversityLaboratory of Anesthesia and Critical Care MedicineNational‐Local Joint Engineering Research Centre of Translational Medicine of AnesthesiologyWest China HospitalSichuan UniversityChengduSichuan610041China
| | - Yi Hu
- Department of Cardiology, Honghui hospitalXi'an Jiaotong UniversityXi'an710049China
| | - Lining Wu
- Department of AnesthesiologyWest China HospitalSichuan UniversityLaboratory of Anesthesia and Critical Care MedicineNational‐Local Joint Engineering Research Centre of Translational Medicine of AnesthesiologyWest China HospitalSichuan UniversityChengduSichuan610041China
| | - Liyun Deng
- Department of AnesthesiologyWest China HospitalSichuan UniversityLaboratory of Anesthesia and Critical Care MedicineNational‐Local Joint Engineering Research Centre of Translational Medicine of AnesthesiologyWest China HospitalSichuan UniversityChengduSichuan610041China
| | - Shixin Ye‐Lehmann
- Diseases and Hormones of the Nervous System University of Paris‐Scalay Bicêtre Hosptial BâtGrégory Pincus 80 Rue du Gal Leclerc, CedexLe Kremlin Bicêtre94276France
| | - Xiaobo Mao
- Department of NeurologyInstitute of Cell EngineeringSchool of MedicineJohns Hopkins UniversityBaltimoreMD21218USA
| | - Tao Zhu
- Department of AnesthesiologyWest China HospitalSichuan UniversityLaboratory of Anesthesia and Critical Care MedicineNational‐Local Joint Engineering Research Centre of Translational Medicine of AnesthesiologyWest China HospitalSichuan UniversityChengduSichuan610041China
| | - Jin Liu
- Department of AnesthesiologyWest China HospitalSichuan UniversityLaboratory of Anesthesia and Critical Care MedicineNational‐Local Joint Engineering Research Centre of Translational Medicine of AnesthesiologyWest China HospitalSichuan UniversityChengduSichuan610041China
| | - Chan Chen
- Department of AnesthesiologyWest China HospitalSichuan UniversityLaboratory of Anesthesia and Critical Care MedicineNational‐Local Joint Engineering Research Centre of Translational Medicine of AnesthesiologyWest China HospitalSichuan UniversityChengduSichuan610041China
| |
Collapse
|
2
|
Mohan S, Hakami MA, Dailah HG, Khalid A, Najmi A, Zoghebi K, Halawi MA. Bridging autoimmunity and epigenetics: The influence of lncRNA MALAT1. Pathol Res Pract 2024; 254:155041. [PMID: 38199135 DOI: 10.1016/j.prp.2023.155041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/12/2023] [Accepted: 12/16/2023] [Indexed: 01/12/2024]
Abstract
Autoimmune disorders represent a heterogeneous spectrum of conditions defined by an immune system's atypical reactivity against endogenous constituents. In the complex anatomy of autoimmune pathogenesis, lncRNAs have appeared as pivotal arbiters orchestrating the mechanisms of ailment initiation, immune cascades, and transcriptional modulation. One such lncRNA, MALAT1, has garnered attention for its potential association with the aetiology of several autoimmune diseases. MALAT1 has been shown to influence a wide spectrum of cellular processes, which include cell multiplication and specialization, as well as apoptosis and inflammation. In autoimmune diseases, MALAT1 exhibits both disease-specific and shared patterns of dysregulation, often correlating with disease severity. The molecular mechanisms underlying MALAT1's impact on autoimmune disorders include epigenetic modifications, alternative splicing, and modulation of gene expression networks. Additionally, MALAT1's intricate interactions with microRNAs, other lncRNAs, and protein-coding genes further underscore its role in immune regulation and autoimmune disease progression. Understanding the contribution of MALAT1 in autoimmune pathogenesis across different diseases could offer valuable insights into shared pathways, thereby clearing a path for the creation of innovative and enhanced therapeutic approaches to address these complex disorders. This review aims to elucidate the complex role of MALAT1 in autoimmune disorders, encompassing rheumatoid arthritis, multiple sclerosis, inflammatory bowel disease (Crohn's disease and ulcerative colitis), type 1 diabetes, systemic lupus erythematosus, and psoriasis. Furthermore, it discusses the potential of MALAT1 as a diagnostic biomarker, therapeutic target, and prognostic indicator.
Collapse
Affiliation(s)
- Syam Mohan
- Substance Abuse and Toxicology Research Centre, Jazan University, Jazan 45142, Saudi Arabia; School of Health Sciences, University of Petroleum and Energy Studies, Dehradun, Uttarakhand, India; Center for Global health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, India
| | - Mohammed Ageeli Hakami
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Al-Quwayiyah, Shaqra University, Riyadh, Saudi Arabia.
| | - Hamad Ghaleb Dailah
- Research and Scientific Studies Unit, College of Nursing, Jazan University, Jazan 45142, Saudi Arabia
| | - Asaad Khalid
- Substance Abuse and Toxicology Research Centre, Jazan University, Jazan 45142, Saudi Arabia
| | - Asim Najmi
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Khalid Zoghebi
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Maryam A Halawi
- Department of Clinical Pharmacy, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| |
Collapse
|
3
|
Gorgzadeh A, Nazari A, Ali Ehsan Ismaeel A, Safarzadeh D, Hassan JAK, Mohammadzadehsaliani S, Kheradjoo H, Yasamineh P, Yasamineh S. A state-of-the-art review of the recent advances in exosome isolation and detection methods in viral infection. Virol J 2024; 21:34. [PMID: 38291452 PMCID: PMC10829349 DOI: 10.1186/s12985-024-02301-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 01/22/2024] [Indexed: 02/01/2024] Open
Abstract
Proteins, RNA, DNA, lipids, and carbohydrates are only some of the molecular components found in exosomes released by tumor cells. They play an essential role in healthy and diseased cells as messengers of short- and long-distance intercellular communication. However, since exosomes are released by every kind of cell and may be found in blood and other bodily fluids, they may one day serve as biomarkers for a wide range of disorders. In many pathological conditions, including cancer, inflammation, and infection, they play a role. It has been shown that the biogenesis of exosomes is analogous to that of viruses and that the exosomal cargo plays an essential role in the propagation, dissemination, and infection of several viruses. Bidirectional modulation of the immune response is achieved by the ability of exosomes associated with viruses to facilitate immunological escape and stimulate the body's antiviral immune response. Recently, exosomes have received a lot of interest due to their potential therapeutic use as biomarkers for viral infections such as human immunodeficiency virus (HIV), Hepatitis B virus (HBV), Hepatitis C virus (HCV), Epstein-Barr virus (EBV), and SARS-CoV-2. This article discusses the purification procedures and detection techniques for exosomes and examines the research on exosomes as a biomarker of viral infection.
Collapse
Affiliation(s)
| | - Ahmad Nazari
- Tehran University of Medical Sciences, Tehran, Iran
| | | | - Diba Safarzadeh
- Vocational School of Health Service, Near East University, Nicosia, Cyprus
| | - Jawad A K Hassan
- National University of Science and Technology, Nasiriyah, Dhi Qar, Iraq
| | | | | | - Pooneh Yasamineh
- Young Researchers and Elite Club, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Saman Yasamineh
- Young Researchers and Elite Club, Tabriz Branch, Islamic Azad University, Tabriz, Iran.
| |
Collapse
|
4
|
Kwiatkowska A, Granicka LH. Anti-Viral Surfaces in the Fight against the Spread of Coronaviruses. MEMBRANES 2023; 13:464. [PMID: 37233525 PMCID: PMC10223398 DOI: 10.3390/membranes13050464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 04/22/2023] [Accepted: 04/24/2023] [Indexed: 05/27/2023]
Abstract
This review is conducted against the background of nanotechnology, which provides us with a chance to effectively combat the spread of coronaviruses, and which primarily concerns polyelectrolytes and their usability for obtaining protective function against viruses and as carriers for anti-viral agents, vaccine adjuvants, and, in particular, direct anti-viral activity. This review covers nanomembranes in the form of nano-coatings or nanoparticles built of natural or synthetic polyelectrolytes--either alone or else as nanocomposites for creating an interface with viruses. There are not a wide variety of polyelectrolytes with direct activity against SARS-CoV-2, but materials that are effective in virucidal evaluations against HIV, SARS-CoV, and MERS-CoV are taken into account as potentially active against SARS-CoV-2. Developing new approaches to materials as interfaces with viruses will continue to be relevant in the future.
Collapse
Affiliation(s)
| | - Ludomira H. Granicka
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Ks. Trojdena 4 St., 02-109 Warsaw, Poland;
| |
Collapse
|
5
|
Chavda VP, Valu DD, Parikh PK, Tiwari N, Chhipa AS, Shukla S, Patel SS, Balar PC, Paiva-Santos AC, Patravale V. Conventional and Novel Diagnostic Tools for the Diagnosis of Emerging SARS-CoV-2 Variants. Vaccines (Basel) 2023; 11:374. [PMID: 36851252 PMCID: PMC9960989 DOI: 10.3390/vaccines11020374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/25/2023] [Accepted: 02/02/2023] [Indexed: 02/10/2023] Open
Abstract
Accurate identification at an early stage of infection is critical for effective care of any infectious disease. The "coronavirus disease 2019 (COVID-19)" outbreak, caused by the virus "Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2)", corresponds to the current and global pandemic, characterized by several developing variants, many of which are classified as variants of concern (VOCs) by the "World Health Organization (WHO, Geneva, Switzerland)". The primary diagnosis of infection is made using either the molecular technique of RT-PCR, which detects parts of the viral genome's RNA, or immunodiagnostic procedures, which identify viral proteins or antibodies generated by the host. As the demand for the RT-PCR test grew fast, several inexperienced producers joined the market with innovative kits, and an increasing number of laboratories joined the diagnostic field, rendering the test results increasingly prone to mistakes. It is difficult to determine how the outcomes of one unnoticed result could influence decisions about patient quarantine and social isolation, particularly when the patients themselves are health care providers. The development of point-of-care testing helps in the rapid in-field diagnosis of the disease, and such testing can also be used as a bedside monitor for mapping the progression of the disease in critical patients. In this review, we have provided the readers with available molecular diagnostic techniques and their pitfalls in detecting emerging VOCs of SARS-CoV-2, and lastly, we have discussed AI-ML- and nanotechnology-based smart diagnostic techniques for SARS-CoV-2 detection.
Collapse
Affiliation(s)
- Vivek P. Chavda
- Department of Pharmaceutics and Pharmaceutical Technology, L. M. College of Pharmacy, Ahmedabad 380009, Gujarat, India
| | - Disha D. Valu
- Formulation and Drug Product Development, Biopharma Division, Intas Pharmaceutical Ltd., 3000-548 Moraiya, Ahmedabad 380054, Gujarat, India
| | - Palak K. Parikh
- Department of Pharmaceutical Chemistry and Quality Assurance, L. M. College of Pharmacy, Ahmedabad 380009, Gujarat, India
| | - Nikita Tiwari
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai 400019, Maharashtra, India
| | - Abu Sufiyan Chhipa
- Department of Pharmacology, Institute of Pharmacy, Nirma University, Ahmedabad 382481, Gujarat, India
| | - Somanshi Shukla
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai 400019, Maharashtra, India
| | - Snehal S. Patel
- Department of Pharmacology, Institute of Pharmacy, Nirma University, Ahmedabad 382481, Gujarat, India
| | - Pankti C. Balar
- Pharmacy Section, L. M. College of Pharmacy, Ahmedabad 380009, Gujarat, India
| | - Ana Cláudia Paiva-Santos
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, 3000-548 Coimbra, Portugal
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Vandana Patravale
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai 400019, Maharashtra, India
| |
Collapse
|
6
|
Venkatesan G, Wan Ab Rahman WS, Shahidan WNS, Iberahim S, Muhd Besari@Hashim AB. Plasma-derived exosomal miRNA as potential biomarker for diagnosis and prognosis of vector-borne diseases: A review. Front Microbiol 2023; 14:1097173. [PMID: 37125151 PMCID: PMC10133507 DOI: 10.3389/fmicb.2023.1097173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 03/21/2023] [Indexed: 05/02/2023] Open
Abstract
Early disease diagnosis is critical for better management and treatment outcome of patients. Therefore, diagnostic methods should ideally be accurate, consistent, easy to perform at low cost and preferably non-invasive. In recent years, various biomarkers have been studied for the detection of cardiovascular diseases, cerebrovascular diseases, infectious diseases, diabetes mellitus and malignancies. Exosomal microRNA (miRNA) are small non-coding RNA molecules that influence gene expression after transcription. Previous studies have shown that these types of miRNAs can potentially be used as biomarkers for cancers of the breast and colon, as well as diffuse large B-cell lymphoma. It may also be used to indicate viral and bacterial infections, such as the human immunodeficiency virus (HIV), tuberculosis and hepatitis. However, its use in the diagnosis of vector-borne diseases is rather limited. Therefore, this review aims to introduce several miRNAs derived from exosomal plasma that may potentially serve as a disease biomarker due to the body's immune response, with special focus on the early detection of vector-borne diseases.
Collapse
Affiliation(s)
| | - Wan Suriana Wan Ab Rahman
- School of Dental Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
- *Correspondence: Wan Suriana Wan Ab Rahman,
| | | | - Salfarina Iberahim
- Department of Haematology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| | - Alwi bin Muhd Besari@Hashim
- Department of Internal Medicine, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| |
Collapse
|
7
|
Cardoso RV, Pereira PR, Freitas CS, Paschoalin VMF. Trends in Drug Delivery Systems for Natural Bioactive Molecules to Treat Health Disorders: The Importance of Nano-Liposomes. Pharmaceutics 2022; 14:2808. [PMID: 36559301 PMCID: PMC9785269 DOI: 10.3390/pharmaceutics14122808] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/04/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Drug delivery systems are believed to increase pharmaceutical efficacy and the therapeutic index by protecting and stabilizing bioactive molecules, such as protein and peptides, against body fluids' enzymes and/or unsuitable physicochemical conditions while preserving the surrounding healthy tissues from toxicity. Liposomes are biocompatible and biodegradable and do not cause immunogenicity following intravenous or topical administration. Still, their most important characteristic is the ability to load any drug or complex molecule uncommitted to its hydrophobic or hydrophilic character. Selecting lipid components, ratios and thermo-sensitivity is critical to achieve a suitable nano-liposomal formulation. Nano-liposomal surfaces can be tailored to interact successfully with target cells, avoiding undesirable associations with plasma proteins and enhancing their half-life in the bloodstream. Macropinocytosis-dynamin-independent, cell-membrane-cholesterol-dependent processes, clathrin, and caveolae-independent mechanisms are involved in liposome internalization and trafficking within target cells to deliver the loaded drugs to modulate cell function. A successful translation from animal studies to clinical trials is still an important challenge surrounding the approval of new nano-liposomal drugs that have been the focus of investigations. Precision medicine based on the design of functionalized nano-delivery systems bearing highly specific molecules to drive therapies is a promising strategy to treat degenerative diseases.
Collapse
Affiliation(s)
| | | | | | - Vania Margaret Flosi Paschoalin
- Programa de Pós-Graduação em Ciência de Alimentos e Programa de Pós-Graduação em Quimica, Instituto de Química, Universidade Federal do Rio de Janeiro, Av. Athos da Silveira Ramos 149-sala 545-Cidade Universitária, Rio de Janeiro 21941-909, RJ, Brazil
| |
Collapse
|
8
|
Chen X, Li H, Song H, Wang J, Zhang X, Han P, Wang X. Meet changes with constancy: Defence, antagonism, recovery, and immunity roles of extracellular vesicles in confronting SARS-CoV-2. J Extracell Vesicles 2022; 11:e12288. [PMID: 36450704 PMCID: PMC9712136 DOI: 10.1002/jev2.12288] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 11/12/2022] [Accepted: 11/16/2022] [Indexed: 12/03/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has wrought havoc on the world economy and people's daily lives. The inability to comprehensively control COVID-19 is due to the difficulty of early and timely diagnosis, the lack of effective therapeutic drugs, and the limited effectiveness of vaccines. The body contains billions of extracellular vesicles (EVs), which have shown remarkable potential in disease diagnosis, drug development, and vaccine carriers. Recently, increasing evidence has indicated that EVs may participate or assist the body in defence, antagonism, recovery and acquired immunity against SARS-CoV-2. On the one hand, intercepting and decrypting the general intelligence carried in circulating EVs from COVID-19 patients will provide an important hint for diagnosis and treatment; on the other hand, engineered EVs modified by gene editing in the laboratory will amplify the effectiveness of inhibiting infection, replication and destruction of ever-mutating SARS-CoV-2, facilitating tissue repair and making a better vaccine. To comprehensively understand the interaction between EVs and SARS-CoV-2, providing new insights to overcome some difficulties in the diagnosis, prevention and treatment of COVID-19, we conducted a rounded review in this area. We also explain numerous critical challenges that these tactics face before they enter the clinic, and this work will provide previous 'meet change with constancy' lessons for responding to future similar public health disasters. Extracellular vesicles (EVs) provide a 'meet changes with constancy' strategy to combat SARS-CoV-2 that spans defence, antagonism, recovery, and acquired immunity. Targets for COVID-19 diagnosis, therapy, and prevention of progression may be found by capture of the message decoding in circulating EVs. Engineered and biomimetic EVs can boost effects of the natural EVs, especially anti-SARS-CoV-2, targeted repair of damaged tissue, and improvement of vaccine efficacy.
Collapse
Affiliation(s)
- Xiaohang Chen
- Shanxi Medical University School and Hospital of StomatologyTaiyuanChina
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New MaterialsTaiyuanChina
- Fujian Key Laboratory of Oral Diseases, School and Hospital of StomatologyFujian Medical UniversityFuzhouChina
| | - Huifei Li
- Shanxi Medical University School and Hospital of StomatologyTaiyuanChina
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New MaterialsTaiyuanChina
| | - Haoyue Song
- Shanxi Medical University School and Hospital of StomatologyTaiyuanChina
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New MaterialsTaiyuanChina
| | - Jie Wang
- Shanxi Medical University School and Hospital of StomatologyTaiyuanChina
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New MaterialsTaiyuanChina
| | - Xiaoxuan Zhang
- Shanxi Medical University School and Hospital of StomatologyTaiyuanChina
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New MaterialsTaiyuanChina
| | - Pengcheng Han
- CAS Key Laboratory of Pathogen Microbiology and ImmunologyInstitute of Microbiology, Chinese Academy of SciencesBeijingChina
- School of MedicineZhongda Hospital, Southeast UniversityNanjingChina
| | - Xing Wang
- Shanxi Medical University School and Hospital of StomatologyTaiyuanChina
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New MaterialsTaiyuanChina
| |
Collapse
|
9
|
Gül F, Gonen ZB, Jones OY, Taşlı NP, Zararsız G, Ünal E, Özdarendeli A, Şahin F, Eken A, Yılmaz S, Karakukçu M, Kırbaş OK, Gökdemir NS, Bozkurt BT, Özkul Y, Oktay BD, Uygut MA, Cinel I, Çetin M. A pilot study for treatment of severe COVID-19 pneumonia by aerosolized formulation of convalescent human immune plasma exosomes (ChipEXO™). Front Immunol 2022; 13:963309. [PMID: 36439138 PMCID: PMC9682905 DOI: 10.3389/fimmu.2022.963309] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 09/20/2022] [Indexed: 07/22/2023] Open
Abstract
This is a single-center prospective, open-label, single arm interventional study to test the safety and efficacy of recently described ChipEXO™ for severe COVID-19 pneumonia. The ChipEXO™ is a natural product derived from convalescent human immune plasma of patients recovered from moderate COVID-19 infection. In September 2021, 13 patients with pending respiratory failure were treated with ChipEXO™ adapted for aerosolized formulation delivered via jet nebulizer. Patients received 1-5x1010 nano vesicle/5 mL in distilled water twice daily for five days as an add-on to ongoing conventional COVID-19 treatment. The primary endpoint was patient safety and survival over a 28-day follow-up. The secondary endpoint was longitudinal assessment of clinical parameters following ChipEXO™ to evaluate treatment response and gain insights into the pharmacodynamics. ChipEXO™ was tolerated well without any allergic reaction or acute toxicity. The survival rate was 84.6% and 11 out of 13 recovered without any sequel to lungs or other organs. ChipEXO™ treatment was effective immediately as shown in arterial blood gas analyses before and two hours after exosome inhalation. During the 5 days of treatment, there was a sustainable and gradual improvement on oxygenation parameters: i.e. respiratory rate (RR) [20.8% (P < 0.05)], oxygen saturation (SpO2) [6,7% (P < 0.05)] and partial pressure of oxygen to the fraction of inspired oxygen (PaO2/FiO2) [127.9% (P < 0.05)] that correlated with steep decrease in the disease activity scores and inflammatory markers, i.e. the sequential organ failure assessment (SOFA) score (75%, p < 0.05), C-reactive protein (46% p < 0.05), ferritin (58% p = 0.53), D-dimer (28% p=0.46). In conclusion, aerosolized ChipEXO™ showed promising safety and efficacy for life-threatening COVID-19 pneumonia. Further studies on larger patient populations are required to confirm our findings and understand the pathophysiology of improvement toward a new therapeutic agent for the treatment of severe COVID-19 pneumonia.
Collapse
Affiliation(s)
- Fethi Gül
- Department of Anesthesiology and Reanimation, Division of Critical Care Medicine, School of Medicine, Marmara University, Istanbul, Türkiye
| | | | - Olcay Y. Jones
- Division of Rheumatology, Department of Medicine, George Washington University School of Medicine and Health Sciences, Washington, DC, United States
| | - Neslihan Pakize Taşlı
- Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Yeditepe University, İstanbul, Türkiye
| | - Gökmen Zararsız
- Department of Biostatistics, Faculty of Medicine, Erciyes University, Kayseri, Türkiye
| | - Ekrem Ünal
- Department of Pediatrics, Division of Pediatric Hematology, Faculty of Medicine, Erciyes University, Kayseri, Türkiye
| | - Aykut Özdarendeli
- Faculty of Medicine, Vaccine Research and Development Application and Research Center, Erciyes University, Kayseri, Türkiye
| | - Fikrettin Şahin
- Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Yeditepe University, İstanbul, Türkiye
| | - Ahmet Eken
- Department of Biology, Faculty of Science, Erciyes University, Kayseri, Türkiye
| | - Semih Yılmaz
- Institute of Health Sciences, Department of Medical Biochemistry, Erciyes University, Kayseri, Türkiye
| | - Musa Karakukçu
- Department of Pediatrics, Division of Pediatric Hematology, Faculty of Medicine, Erciyes University, Kayseri, Türkiye
| | - Oğuz Kaan Kırbaş
- Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Yeditepe University, İstanbul, Türkiye
| | - Nur Seda Gökdemir
- Betül-Ziya Eren Genome and Stem Cell Center (GENKOK), Kayseri, Türkiye
| | - Batuhan Turhan Bozkurt
- Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Yeditepe University, İstanbul, Türkiye
| | - Yusuf Özkul
- Faculty of Medicine, Erciyes University, Kayseri, Türkiye
| | - Burçin Doruk Oktay
- Department of Anesthesiology and Reanimation, Division of Critical Care Medicine, School of Medicine, Marmara University, İstanbul, Türkiye
| | - Muhammet Ali Uygut
- Vaccine Research and Development Application and Research Center, Erciyes University, Kayseri, Türkiye
| | - Ismail Cinel
- Department of Anesthesiology and Reanimation, Division of Critical Care Medicine, School of Medicine, Marmara University, İstanbul, Türkiye
| | - Mustafa Çetin
- Faculty of Medicine, Erciyes University, Kayseri, Türkiye
| |
Collapse
|
10
|
Gül F, Gonen ZB, Jones OY, Taşlı NP, Zararsız G, Ünal E, Özdarendeli A, Şahin F, Eken A, Yılmaz S, Karakukçu M, Kırbaş OK, Gökdemir NS, Bozkurt BT, Özkul Y, Oktay BD, Uygut MA, Cinel I, Çetin M. A pilot study for treatment of severe COVID-19 pneumonia by aerosolized formulation of convalescent human immune plasma exosomes (ChipEXO™). Front Immunol 2022. [DOI: https://doi.org/10.3389/fimmu.2022.963309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
This is a single-center prospective, open-label, single arm interventional study to test the safety and efficacy of recently described ChipEXO™ for severe COVID-19 pneumonia. The ChipEXO™ is a natural product derived from convalescent human immune plasma of patients recovered from moderate COVID-19 infection. In September 2021, 13 patients with pending respiratory failure were treated with ChipEXO™ adapted for aerosolized formulation delivered via jet nebulizer. Patients received 1-5x1010 nano vesicle/5 mL in distilled water twice daily for five days as an add-on to ongoing conventional COVID-19 treatment. The primary endpoint was patient safety and survival over a 28-day follow-up. The secondary endpoint was longitudinal assessment of clinical parameters following ChipEXO™ to evaluate treatment response and gain insights into the pharmacodynamics. ChipEXO™ was tolerated well without any allergic reaction or acute toxicity. The survival rate was 84.6% and 11 out of 13 recovered without any sequel to lungs or other organs. ChipEXO™ treatment was effective immediately as shown in arterial blood gas analyses before and two hours after exosome inhalation. During the 5 days of treatment, there was a sustainable and gradual improvement on oxygenation parameters: i.e. respiratory rate (RR) [20.8% (P < 0.05)], oxygen saturation (SpO2) [6,7% (P < 0.05)] and partial pressure of oxygen to the fraction of inspired oxygen (PaO2/FiO2) [127.9% (P < 0.05)] that correlated with steep decrease in the disease activity scores and inflammatory markers, i.e. the sequential organ failure assessment (SOFA) score (75%, p < 0.05), C-reactive protein (46% p < 0.05), ferritin (58% p = 0.53), D-dimer (28% p=0.46). In conclusion, aerosolized ChipEXO™ showed promising safety and efficacy for life-threatening COVID-19 pneumonia. Further studies on larger patient populations are required to confirm our findings and understand the pathophysiology of improvement toward a new therapeutic agent for the treatment of severe COVID-19 pneumonia.
Collapse
|
11
|
Gül F, Gonen ZB, Jones OY, Taşlı NP, Zararsız G, Ünal E, Özdarendeli A, Şahin F, Eken A, Yılmaz S, Karakukçu M, Kırbaş OK, Gökdemir NS, Bozkurt BT, Özkul Y, Oktay BD, Uygut MA, Cinel I, Çetin M. A pilot study for treatment of severe COVID-19 pneumonia by aerosolized formulation of convalescent human immune plasma exosomes (ChipEXO™). Front Immunol 2022. [DOI: https:/doi.org/10.3389/fimmu.2022.963309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
This is a single-center prospective, open-label, single arm interventional study to test the safety and efficacy of recently described ChipEXO™ for severe COVID-19 pneumonia. The ChipEXO™ is a natural product derived from convalescent human immune plasma of patients recovered from moderate COVID-19 infection. In September 2021, 13 patients with pending respiratory failure were treated with ChipEXO™ adapted for aerosolized formulation delivered via jet nebulizer. Patients received 1-5x1010 nano vesicle/5 mL in distilled water twice daily for five days as an add-on to ongoing conventional COVID-19 treatment. The primary endpoint was patient safety and survival over a 28-day follow-up. The secondary endpoint was longitudinal assessment of clinical parameters following ChipEXO™ to evaluate treatment response and gain insights into the pharmacodynamics. ChipEXO™ was tolerated well without any allergic reaction or acute toxicity. The survival rate was 84.6% and 11 out of 13 recovered without any sequel to lungs or other organs. ChipEXO™ treatment was effective immediately as shown in arterial blood gas analyses before and two hours after exosome inhalation. During the 5 days of treatment, there was a sustainable and gradual improvement on oxygenation parameters: i.e. respiratory rate (RR) [20.8% (P < 0.05)], oxygen saturation (SpO2) [6,7% (P < 0.05)] and partial pressure of oxygen to the fraction of inspired oxygen (PaO2/FiO2) [127.9% (P < 0.05)] that correlated with steep decrease in the disease activity scores and inflammatory markers, i.e. the sequential organ failure assessment (SOFA) score (75%, p < 0.05), C-reactive protein (46% p < 0.05), ferritin (58% p = 0.53), D-dimer (28% p=0.46). In conclusion, aerosolized ChipEXO™ showed promising safety and efficacy for life-threatening COVID-19 pneumonia. Further studies on larger patient populations are required to confirm our findings and understand the pathophysiology of improvement toward a new therapeutic agent for the treatment of severe COVID-19 pneumonia.
Collapse
|
12
|
Alahdal M, Elkord E. Promising use of immune cell-derived exosomes in the treatment of SARS-CoV-2 infections. Clin Transl Med 2022; 12:e1026. [PMID: 35988156 PMCID: PMC9393056 DOI: 10.1002/ctm2.1026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 08/01/2022] [Accepted: 08/08/2022] [Indexed: 12/11/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is persistently threatening the lives of thousands of individuals globally. It triggers pulmonary oedema, driving to dyspnoea and lung failure. Viral infectivity of coronavirus disease 2019 (COVID-19) is a genuine challenge due to the mutagenic genome and mysterious immune-pathophysiology. Early reports highlighted that extracellular vesicles (exosomes, Exos) work to enhance COVID-19 progression by mediating viral transmission, replication and mutations. Furthermore, recent studies revealed that Exos derived from immune cells play an essential role in the promotion of immune cell exhaustion by transferring regulatory lncRNAs and miRNAs from exhausted cells to the active cells. Fortunately, there are great chances to modulate the immune functions of Exos towards a sustained repression of COVID-19. Engineered Exos hold promising immunotherapeutic opportunities for remodelling cytotoxic T cells' function. Immune cell-derived Exos may trigger a stable epigenetic repression of viral infectivity, restore functional cytokine-producing T cells and rebalance immune response in severe infections by inducing functional T regulatory cells (Tregs). This review introduces a view on the current outcomes of immunopathology, and immunotherapeutic applications of immune cell-derived Exos in COVID-19, besides new perspectives to develop novel patterns of engineered Exos triggering novel anti-SARS-CoV-2 immune responses.
Collapse
Affiliation(s)
- Murad Alahdal
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Oman
| | - Eyad Elkord
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Oman.,Biomedical Research Center, School of Science, Engineering and Environment, University of Salford, Manchester, United Kingdom
| |
Collapse
|
13
|
Taşlı NP, Gönen ZB, Kırbaş OK, Gökdemir NS, Bozkurt BT, Bayrakcı B, Sağraç D, Taşkan E, Demir S, Ekimci Gürcan N, Bayındır Bilgiç M, Bayrak ÖF, Yetişkin H, Kaplan B, Pavel STI, Dinç G, Serhatlı M, Çakırca G, Eken A, Aslan V, Yay M, Karakukcu M, Unal E, Gül F, Basaran KE, Ozkul Y, Şahin F, Jones OY, Tekin Ş, Özdarendeli A, Cetin M. Preclinical Studies on Convalescent Human Immune Plasma-Derived Exosome: Omics and Antiviral Properties to SARS-CoV-2. Front Immunol 2022; 13:824378. [PMID: 35401544 PMCID: PMC8987587 DOI: 10.3389/fimmu.2022.824378] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 02/16/2022] [Indexed: 02/05/2023] Open
Abstract
The scale of the COVID-19 pandemic forced urgent measures for the development of new therapeutics. One of these strategies is the use of convalescent plasma (CP) as a conventional source for passive immunity. Recently, there has been interest in CP-derived exosomes. In this report, we present a structural, biochemical, and biological characterization of our proprietary product, convalescent human immune plasma-derived exosome (ChipEXO), following the guidelines set forth by the Turkish Ministry of Health and the Turkish Red Crescent, the Good Manufacturing Practice, the International Society for Extracellular Vesicles, and the Gene Ontology Consortium. The data support the safety and efficacy of this product against SARS-CoV-2 infections in preclinical models.
Collapse
Affiliation(s)
| | - Zeynep Burçin Gönen
- Oral and Maxillofacial Surgery, Genome and Stem Cell Centre, Erciyes University, Kayseri, Turkey
| | | | - Nur Seda Gökdemir
- Oral and Maxillofacial Surgery, Genome and Stem Cell Centre, Erciyes University, Kayseri, Turkey
| | | | - Buse Bayrakcı
- Faculty of Engineering, Yeditepe University, Istanbul, Turkey
| | - Derya Sağraç
- Faculty of Engineering, Yeditepe University, Istanbul, Turkey
| | - Ezgi Taşkan
- Faculty of Engineering, Yeditepe University, Istanbul, Turkey
| | - Sevda Demir
- Faculty of Engineering, Yeditepe University, Istanbul, Turkey
| | | | | | | | - Hazel Yetişkin
- Faculty of Medicine, Erciyes University, Kayseri, Turkey
- Vaccine Research and Development Application and Research Center, Erciyes University, Kayseri, Turkey
| | - Büşra Kaplan
- Faculty of Medicine, Erciyes University, Kayseri, Turkey
- Vaccine Research and Development Application and Research Center, Erciyes University, Kayseri, Turkey
| | - Shaikh Terkıs Islam Pavel
- Faculty of Medicine, Erciyes University, Kayseri, Turkey
- Vaccine Research and Development Application and Research Center, Erciyes University, Kayseri, Turkey
| | - Gökçen Dinç
- Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Müge Serhatlı
- The Scientific and Technological Research Council of Turkey (TÜBITAK) Marmara Research Centre Energy Institute, Kocaeli, Turkey
| | - Gamze Çakırca
- The Scientific and Technological Research Council of Turkey (TÜBITAK) Marmara Research Centre Energy Institute, Kocaeli, Turkey
- Department of Molecular Biology and Genetics, Faculty of Science, Gebze Technical University, Kocaeli, Turkey
| | - Ahmet Eken
- Department of Biology, Faculty of Science, Erciyes University, Kayseri, Turkey
- Gevher Nesibe Genome and Stem Cell Institute, Erciyes University, Kayseri, Turkey
| | - Vedat Aslan
- Antalya Training and Research Hospital, Antalya, Turkey
| | - Mehmet Yay
- Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Musa Karakukcu
- Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Ekrem Unal
- Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Fethi Gül
- Department of Anesthesiology and Reanimation, School of Medicine, Marmara University, Istanbul, Turkey
| | - Kemal Erdem Basaran
- Faculty of Medicine, Erciyes University, Kayseri, Turkey
- Gevher Nesibe Genome and Stem Cell Institute, Erciyes University, Kayseri, Turkey
| | - Yusuf Ozkul
- Faculty of Medicine, Erciyes University, Kayseri, Turkey
- Gevher Nesibe Genome and Stem Cell Institute, Erciyes University, Kayseri, Turkey
| | - Fikrettin Şahin
- Faculty of Engineering, Yeditepe University, Istanbul, Turkey
| | - Olcay Y Jones
- Division of Rheumatology, Department of Medicine, George Washington University School of Medicine and Health Sciences, Washington, DC, United States
| | - Şaban Tekin
- The Scientific and Technological Research Council of Turkey (TÜBITAK) Marmara Research Centre Energy Institute, Kocaeli, Turkey
- Medical Biology, Department of Basic Medical Sciences, University of Health Sciences, Istanbul, Turkey
| | - Aykut Özdarendeli
- Faculty of Medicine, Erciyes University, Kayseri, Turkey
- Vaccine Research and Development Application and Research Center, Erciyes University, Kayseri, Turkey
| | - Mustafa Cetin
- Faculty of Medicine, Erciyes University, Kayseri, Turkey
| |
Collapse
|
14
|
Dhawan M, Priyanka, Parmar M, Angural S, Choudhary OP. Convalescent plasma therapy against the emerging SARS-CoV-2 variants: Delineation of the potentialities and risks. Int J Surg 2022; 97:106204. [PMID: 34974199 PMCID: PMC8717699 DOI: 10.1016/j.ijsu.2021.106204] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 12/21/2021] [Accepted: 12/23/2021] [Indexed: 12/12/2022]
Abstract
Coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has resulted in a catastrophic pandemic and severely impacted people's livelihoods worldwide. In addition, the emergence of SARS-CoV-2 variants has posed a severe threat to humankind. Due to the dearth of therapeutic options during the commencement of the pandemic, convalescent plasma therapy (CPT) played a significant part in the management of patients with severe form of COVID-19. Several recent studies have proposed various protective effects of CPT, such as antiviral, anti-inflammatory, anti-thrombotic, and immunomodulatory actions, curtailing the devastating consequences of the SARS-CoV-2 infection. On the contrary, several clinical studies have raised some serious concerns about the effectiveness and reliability of CPT in the management of patients with COVID-19. The protective effects of CPT in severely ill patients are yet to be proved. Moreover, the emergence of SARS-CoV-2 variants has raised concerns about the effectiveness of CPT against COVID-19. Therefore, to establish concrete evidence of the efficacy of CPT and adjudicate its inclusion in the management of COVID-19, an updated review of present literature is required, which could help in the development of an efficient therapeutic regimen to treat COVID-19 amid the emergence of new viral variants.
Collapse
Affiliation(s)
- Manish Dhawan
- Department of Microbiology, Punjab Agricultural University, Ludhiana, 141004, Punjab, India,The Trafford Group of Colleges, Manchester, WA14 5PQ, UK
| | - Priyanka
- Independent Researcher, 07, Type IV Quarter, College of Veterinary Sciences and Animal Husbandry, Central Agricultural University (I), Selesih, Aizawl, 796015, Mizoram, India
| | - Manisha Parmar
- Department of Veterinary Microbiology, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, 141004, Punjab, India
| | - Steffy Angural
- Department of Medical Lab Technology, Faculty of Applied Health Sciences, GNA University, Phagwara-Hoshiarpur Road, Sri Hargobindgarh, 144401, Punjab, India,Corresponding author
| | - Om Prakash Choudhary
- Department of Veterinary Anatomy and Histology, College of Veterinary Sciences and Animal Husbandry, Central Agricultural University (I), Selesih, Aizawl, 796015, Mizoram, India,Corresponding author
| |
Collapse
|