1
|
Shen R, Zhou J, Xin L, Zhou HB, Huang J. OBHSA, a novel selective estrogen receptor degrader, overcomes tamoxifen resistance through cell cycle arrest and unfolded protein response-mediated apoptosis in breast cancer. J Steroid Biochem Mol Biol 2024; 244:106599. [PMID: 39147211 DOI: 10.1016/j.jsbmb.2024.106599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/23/2024] [Accepted: 08/12/2024] [Indexed: 08/17/2024]
Abstract
Breast cancer (BC) is a highly heterogeneous tumor that has surpassed lung cancer as the most frequently diagnosed cancer in women. In clinical practice,the primary approach for treating estrogen receptor alpha (ERα)-positive BC is through endocrine therapy, which involves targeting the ERα using medications like tamoxifen and fulvestrant. However, the problem of de novo or acquired resistance poses a significant clinical challenge, emphasizing the critical need for the development of novel therapeutic strategies. In this regard, we have successfully designed and developed a novel selective estrogen receptor degrader (SERD) called OBHSA, which specifically targets and degrades ERα, demonstrating remarkable efficacy. Our findings revealed the effectiveness of OBHSA in inhibiting the proliferation of various BC cells, including both tamoxifen-sensitive and tamoxifen-resistant BC cells, indicating its great potential to overcome endocrine resistance. In terms of mechanism, we discovered that OBHSA overcame tamoxifen resistance through two distinct pathways. Firstly, OBHSA degraded cyclin D1 in an ERα-dependent manner, thereby blocking the cell cycle. Secondly, OBHSA induced an elevation in intracellular reactive oxygen species, triggering an excessive activation of the unfolded protein response (UPR) and ultimately leading to apoptotic cell death. In summary, our finding demonstrated that OBHSA exerts anti-tumor effects by inducing cell cycle arrest and UPR-mediated apoptosis. These findings hold promise for the development of novel therapeutic drugs targeting endocrine-resistant BC.
Collapse
Affiliation(s)
- Rong Shen
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Bayi Road, Wuhan, Hubei 430072, China
| | - Jiawei Zhou
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Bayi Road, Wuhan, Hubei 430072, China
| | - Lilan Xin
- Department of Gynecological Oncology, Zhongnan Hospital of Wuhan University, Frontier Science Center for Immunology and Metabolism, State Key Laboratory of Virology, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Hai-Bing Zhou
- Department of Gynecological Oncology, Zhongnan Hospital of Wuhan University, Frontier Science Center for Immunology and Metabolism, State Key Laboratory of Virology, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China.
| | - Jian Huang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Bayi Road, Wuhan, Hubei 430072, China.
| |
Collapse
|
2
|
Han X, Zhang Y, Li Y, Lin Z, Fu Z, Wang C, Zhang S, Shao D, Li C. MCL restrained ROS/AKT/ASAH1 pathway to therapy tamoxifen resistance breast cancer by stabilizing NRF2. Cell Prolif 2024; 57:e13700. [PMID: 38924190 PMCID: PMC11533064 DOI: 10.1111/cpr.13700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/05/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
Tamoxifen resistance is a common and difficult problem in the clinical treatment of breast cancer (BC). As a novel antitumor agent, Micheliolide (MCL) has shown a better therapeutic effect on tumours; however, little is known about MCL and its role in BC therapy. With tamoxifen stimulation, drug-resistant BC cells MCF7TAMR and T47DTAMR obtained a high oxidative status and Amidohydrolase 1 (ASAH1) was abnormally activated. The inhibition of ASAH1 rescued the sensitivity of resistant cells to tamoxifen. We found that MCL inhibited the expression of ASAH1 and cell proliferation, especially in MCF7TAMR and T47DTAMR cells. The high oxidative stress status of resistant cells stimulated the expression of ASAH1 by positively regulating AKT, which was restrained by MCL. MCL activated NRF2 by directly binding to KEAP1 and promoting the antioxidant level of tamoxifen-resistant (TAMR) cells. In addition, ACT001, the prodrug of MCL, significantly inhibited the tumour growth of TAMR cells in preclinical xenograft tumour models. In conclusion, ASAH1 mediates tamoxifen resistance in ER-positive BC cells. MCL could activate the cellular antioxidant system via NRF2/KEAP1 and inhibit ASAH1 expression through the ROS/AKT signalling pathway, thus suppressing cell proliferation. MCL could be used as a potential treatment for TAMR-BC.
Collapse
Affiliation(s)
- Xiao Han
- Zhejiang Cancer HospitalHangzhou Institute of Medicine (HIM), Chinese Academy of SciencesHangzhouZhejiangChina
- Key Laboratory of PreventionDiagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang ProvinceHangzhouChina
- State Key Laboratory of Medicinal Chemical Biology and College of PharmacyNankai UniversityTianjinChina
| | - Yupeng Zhang
- State Key Laboratory of Medicinal Chemical Biology and College of PharmacyNankai UniversityTianjinChina
| | - Yin Li
- State Key Laboratory of Medicinal Chemical Biology and College of PharmacyNankai UniversityTianjinChina
| | - Zhoujun Lin
- State Key Laboratory of Medicinal Chemical Biology and College of PharmacyNankai UniversityTianjinChina
| | - Zhenkun Fu
- Department of Immunology & Wu Lien‐Teh Institute & Heilongjiang Provincial Key Laboratory for Infection and ImmunityHarbin Medical University & Heilongjiang Academy of Medical ScienceHarbinChina
| | - Changjun Wang
- Department of Breast SurgeryPeking Union Medical College HospitalBeijingChina
| | - Shengjie Zhang
- Zhejiang Cancer HospitalHangzhou Institute of Medicine (HIM), Chinese Academy of SciencesHangzhouZhejiangChina
- Key Laboratory of PreventionDiagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang ProvinceHangzhouChina
| | - Di Shao
- Chonggang General HospitalChongqingChina
- Chongqing Emergency Medical CenterChongqing University Central HospitalChongqingChina
| | - Chenggang Li
- State Key Laboratory of Medicinal Chemical Biology and College of PharmacyNankai UniversityTianjinChina
| |
Collapse
|
3
|
Zhang P, Qian N, Lai H, Chen S, Wu K, Luo X, Lei B, Liu M, Cui J. PRODH Regulates Tamoxifen Resistance through Ferroptosis in Breast Cancer Cells. Genes (Basel) 2024; 15:1316. [PMID: 39457440 PMCID: PMC11507086 DOI: 10.3390/genes15101316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/02/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND Estrogen receptor-positive breast cancer accounts for around 70% of all cases. Tamoxifen, an anti-estrogenic inhibitor, is the primary drug used for this type of breast cancer treatment. However, tamoxifen resistance is a major challenge in clinics. Metabolic reprogramming, an emerging hallmark of cancer, plays a key role in cancer initiation, progression, and therapy resistance. The metabolism of non-essential amino acids such as serine, proline, and glutamine is involved in tumor metabolism reprogramming. Although the association of glutamine metabolism with tamoxifen resistance has been well established, the role of proline metabolism and its critical enzyme PRODH is unknown. OBJECTIVE The aim of this study is to explore the role and mechanism of PRODH in tamoxifen resistance in breast cancer cells. METHODS PRODH and GPX4 expressions in tamoxifen-resistant cells were detected using real-time PCR and Western blot analysis. The breast cells' response to tamoxifen was measured using MTT assays. Trans-well assays were used to detect cell migration and invasion. A Xenograft tumor assay was used to detect the role of PRODH in tumor growth. Reactive oxygen species were measured using flow cytometry. RESULTS PRODH expression is reduced in tamoxifen-resistant cells, and its overexpression enhances tamoxifen response in vitro and in vivo. Conversely, PRODH knockdown confers tamoxifen resistance in tamoxifen-sensitive cells. Mechanistic studies show that ferroptosis is inhibited in tamoxifen-resistant cells and overexpression of PRODH restores the ferroptosis in tamoxifen-resistant cells. Moreover, Ferrostatin-1 (Fer-1), the ferroptosis inhibitor, reversed the effect of PRODH on tamoxifen resistance. CONCLUSIONS These findings suggest that PRODH regulates tamoxifen resistance by regulating ferroptosis in tamoxifen-resistant cells.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Jiajun Cui
- The Department of Biochemistry, Medicine School, Yichun University, Yichun 336000, China (N.Q.); (K.W.); (X.L.); (B.L.); (M.L.)
| |
Collapse
|
4
|
Valle ABCDS, da Silva FFA, Carneiro MÂP, Espuche B, Tavares GD, Bernardes ES, Moya SE, Pittella F. In Vivo HOXB7 Gene Silencing and Cotreatment with Tamoxifen for Luminal A Breast Cancer Therapy. Pharmaceuticals (Basel) 2024; 17:1325. [PMID: 39458966 PMCID: PMC11509954 DOI: 10.3390/ph17101325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 09/26/2024] [Accepted: 09/27/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND Acquired resistance and adverse effects are some of the challenges faced by thousands of Luminal A breast cancer patients under tamoxifen (TMX) treatment. Some authors associate the overexpression of HOXB7 with TMX resistance in this molecular subtype, and the knockdown of this gene could be an effective strategy to regain TMX sensitivity. Therefore, we used calcium phosphate hybrid nanoparticles (HNP) for the delivery of short interfering RNA molecule (siRNA) complementary to the HOXB7 gene and evaluated the RNA interference (RNAi) effects associated with TMX treatment in breast cancer in vivo. METHODS HNP were prepared by the self-assembly of a methoxy-poly (ethylene glycol)-block-poly (L-glutamic acid) copolymer (PEG-pGlu) and the coprecipitation of CaPO4 to incorporate siRNA. The in vitro cell viability and migration were evaluated prior to in vivo experiments. Further, animals bearing early-stage and advanced Luminal A breast cancer were treated with HNP-siHOXB7, HNP-siHOXB7 + TMX, and TMX. Antitumoral activity and gene expression were evaluated following histopathological, hematological, and biochemical analysis. RESULTS The HNP were efficient in delivering the siRNA in vitro and in vivo, whilst HOXB7 silencing associated with TMX administration promoted controlled tumor growth, as well as a higher survival rate and reduction in immuno- and hepatotoxicity. CONCLUSIONS Therefore, our findings suggest that HOXB7 can be an interesting molecular target for Luminal A breast cancer, especially associated with hormone therapy, aiming for adverse effect mitigation and higher therapeutic efficacy.
Collapse
Affiliation(s)
- Ana Beatriz Caribé dos Santos Valle
- Laboratório de Desenvolvimento de Sistemas Nanoestruturados, Faculdade de Farmácia, Universidade Federal de Juiz de Fora, Rua José Lourenço Kelmer, Juiz de Fora 36036-900, Brazil; (A.B.C.d.S.V.); (G.D.T.)
| | - Fábio Fernando Alves da Silva
- Instituto de Pesquisas Energéticas e Nucleares, Centro de Radiofarmácia (IPEN/CECRF), Comissão Nacional de Energia Nuclear, São Paulo 05508-000, Brazil; (F.F.A.d.S.); (M.Â.P.C.); (E.S.B.)
| | - Maria Ângela Pepe Carneiro
- Instituto de Pesquisas Energéticas e Nucleares, Centro de Radiofarmácia (IPEN/CECRF), Comissão Nacional de Energia Nuclear, São Paulo 05508-000, Brazil; (F.F.A.d.S.); (M.Â.P.C.); (E.S.B.)
| | - Bruno Espuche
- Soft Matter Laboratory, Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo Miramón 194, 20014 Donostia-San Sebastián, Spain; (B.E.); (S.E.M.)
| | - Guilherme Diniz Tavares
- Laboratório de Desenvolvimento de Sistemas Nanoestruturados, Faculdade de Farmácia, Universidade Federal de Juiz de Fora, Rua José Lourenço Kelmer, Juiz de Fora 36036-900, Brazil; (A.B.C.d.S.V.); (G.D.T.)
| | - Emerson Soares Bernardes
- Instituto de Pesquisas Energéticas e Nucleares, Centro de Radiofarmácia (IPEN/CECRF), Comissão Nacional de Energia Nuclear, São Paulo 05508-000, Brazil; (F.F.A.d.S.); (M.Â.P.C.); (E.S.B.)
| | - Sergio Enrique Moya
- Soft Matter Laboratory, Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo Miramón 194, 20014 Donostia-San Sebastián, Spain; (B.E.); (S.E.M.)
| | - Frederico Pittella
- Laboratório de Desenvolvimento de Sistemas Nanoestruturados, Faculdade de Farmácia, Universidade Federal de Juiz de Fora, Rua José Lourenço Kelmer, Juiz de Fora 36036-900, Brazil; (A.B.C.d.S.V.); (G.D.T.)
| |
Collapse
|
5
|
Song X, Shen L, Contreras JM, Liu Z, Ma K, Ma B, Liu X, Wang DO. New potential selective estrogen receptor modulators in traditional Chinese medicine for treating menopausal syndrome. Phytother Res 2024; 38:4736-4756. [PMID: 39120263 DOI: 10.1002/ptr.8289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 05/19/2024] [Accepted: 06/23/2024] [Indexed: 08/10/2024]
Abstract
Women go through several predictable conditions and symptoms during menopause that are caused by age, changes in sex hormone levels, and other factors. Conventional menopause hormone therapy has raised serious concerns about the increased risks of cancers, blood clots, depression, etc. Selective estrogen receptor modulators (SERMs) that can be both agonists and antagonists of estrogen receptors in a tissue-specific manner are being developed to reduce the health concerns associated with menopause hormone therapy. Here, we have searched the Chinese national traditional Chinese medicine (TCM) patent database to identify potential SERM-like compounds with reduced health risks. TCM has been widely used for treating complex symptoms associated with menopause syndrome and thus can be a particularly rich source for pharmaceutical alternatives with SERM properties. After extensive literature review and molecular simulation, we conclude that protopanaxatriol, paeoniflorin, astragalin, catalpol, and hyperoside among others may be particularly promising as SERM-like compounds in treating the menopausal syndrome. Compounds in TCM hold promise in yielding comparable outcomes to hormone therapy but with reduced associated risks, thus presenting promising avenues for their clinical applications.
Collapse
Affiliation(s)
- Xintong Song
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, China
| | - Lan Shen
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, China
| | | | - Zhiyuan Liu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, China
| | - Kai Ma
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, China
| | - Biao Ma
- RIKEN Center for Computational Science, Kobe, Japan
| | - Xiaoling Liu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, China
| | - Dan Ohtan Wang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, China
- Biology Program, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| |
Collapse
|
6
|
Tirado-Garibay AC, Ruiz-Barcenas B, Rescala-Ponce de León JI, Ochoa-Zarzosa A, López-Meza JE. The GPR30 Receptor Is Involved in IL-6-Induced Metastatic Properties of MCF-7 Luminal Breast Cancer Cells. Int J Mol Sci 2024; 25:8988. [PMID: 39201674 PMCID: PMC11354767 DOI: 10.3390/ijms25168988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/12/2024] [Accepted: 08/17/2024] [Indexed: 09/03/2024] Open
Abstract
Luminal breast cancer has a high incidence worldwide and poses a severe health threat. Estrogen receptor alpha (ER-α) is activated by 17β-estradiol (E2), and its overexpression promotes cancerous characteristics. Luminal breast cancer is an epithelial type; however, the cytokine IL-6, secreted by cells within the tumor microenvironment, stimulates the epithelial-to-mesenchymal transition (EMT) and promotes metastasis. Also, IL-6 decreases ER-α levels, favoring the tamoxifen (TMX) resistance development. However, genes under E2 regulation continue to be expressed even though this receptor is absent. GPR30 is an alternative E2 receptor present in both luminal and aggressive triple-negative breast cancer and is related to TMX resistance and cancer progression. The roles of GPR30 and IL-6 in metastasis have been individually established; however, their interplay remains unexplored. This study aims to elucidate the role of GPR30 in IL-6-induced metastatic properties of MCF-7 luminal breast cancer cells. Results showed that GPR30 contributes to the E2-induced MCF-7 proliferation because its inhibition with the antagonist G15 and the Pertussis toxin (PTX) reduced it. Besides, GPR30 upregulated vimentin and downregulated E-cadherin levels in MCF-7 and TMX-resistant (R-TMX) cells and is also involved in the IL-6-induced migration, invasion, and TMX resistance in MCF-7 cells. In addition, in MDA-MB-231 triple-negative cells, both basal and IL-6-induced metastatic properties were related to GPR30 activity. These results indicate that the GPR30 receptor regulates the EMT induced by IL-6 in breast cancer cells.
Collapse
Affiliation(s)
| | | | | | | | - Joel E. López-Meza
- Centro Multidisciplinario de Estudios en Biotecnología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Michoacana de San Nicolás de Hidalgo, Km 9.5 Carretera Morelia-Zinapécuaro, Posta Veterinaria, Morelia 58893, Michoacán, Mexico; (A.C.T.-G.); (B.R.-B.); (J.I.R.-P.d.L.); (A.O.-Z.)
| |
Collapse
|
7
|
Wang J, Lv F, Zhu Y, Lu X, Zhang B. Reversal of the tamoxifen‑resistant breast cancer malignant phenotype by proliferation inhibition with bromosulfonamidine amino‑podophyllotoxin. Oncol Lett 2024; 28:373. [PMID: 38910903 PMCID: PMC11190816 DOI: 10.3892/ol.2024.14506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 04/16/2024] [Indexed: 06/25/2024] Open
Abstract
One of the lignans isolated from plants within the genus Podophyllum is podophyllotoxin (PPT). PPT and its derivatives are pharmacologically active compounds with potential antiproliferative properties in several kinds of tumors. Although these compounds have been used to treat other malignancies, no PPT derivative-based chemotherapeutic agent has been used to cure tamoxifen (TAM)-resistant breast cancer in clinical trials, to the best of our knowledge. Thus, using TAM-resistant breast cancer as a disease model, the present study assessed the effects of a recently synthesized PPT derivative, bromosulfonamidine amino-PPT (BSAPPT), on TAM-resistant breast cancer. Using the tamoxifen-resistant breast cancer cell model (MCF-7/TAMR) in vitro, Cell Counting Kit-8 and colony formation assays were adopted to evaluate the effect of BSAPPT on cell proliferation. Cell apoptosis and cell cycle assays were used to assess the influence of BSAPPT on cell apoptosis and the cell cycle in MCF-7/TAMR. The targets of the potential mechanism of action were analyzed by RT-qPCR and western blotting. The present study demonstrated that BSAPPT suppressed MCF-7/TAMR cell proliferation in a dose-dependent manner. By modulating the level of expression of genes linked to both apoptosis and the cell cycle, BSAPPT triggered MCF-7/TAMR cells to undergo apoptosis and prevented them from entering the cell cycle. Consequently, BSAPPT blocked these cells from proliferating, thereby halting the malignant advancement of TAM-resistant breast cancer. Therefore, these findings indicate that new therapeutic agents involving BSAPPT may be developed to facilitate the treatment of TAM-resistant breast cancer.
Collapse
Affiliation(s)
- Jiayi Wang
- BSL-3 Laboratory (Guangdong), Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
- Medical Laboratory (Guangdong), Dongguan Eighth People's Hospital, Dongguan, Guangdong 523320, P.R. China
- Department of Genetics, Key Laboratory for Children's Genetics and Infectious Diseases of Dongguan, Dongguan, Guangdong 523320, P.R. China
| | - Fen Lv
- Medical Laboratory (Guangdong), Dongguan Eighth People's Hospital, Dongguan, Guangdong 523320, P.R. China
- Department of Genetics, Key Laboratory for Children's Genetics and Infectious Diseases of Dongguan, Dongguan, Guangdong 523320, P.R. China
| | - Yinghua Zhu
- Medical Laboratory (Guangdong), Dongguan Eighth People's Hospital, Dongguan, Guangdong 523320, P.R. China
- Department of Genetics, Key Laboratory for Children's Genetics and Infectious Diseases of Dongguan, Dongguan, Guangdong 523320, P.R. China
| | - Xiaomei Lu
- Medical Laboratory (Guangdong), Dongguan Eighth People's Hospital, Dongguan, Guangdong 523320, P.R. China
- Department of Genetics, Key Laboratory for Children's Genetics and Infectious Diseases of Dongguan, Dongguan, Guangdong 523320, P.R. China
| | - Bao Zhang
- BSL-3 Laboratory (Guangdong), Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| |
Collapse
|
8
|
Chen X, Wu W, Jeong JH, Rokavec M, Wei R, Feng S, Schroth W, Brauch H, Zhong S, Luo JL. Cytokines-activated nuclear IKKα-FAT10 pathway induces breast cancer tamoxifen-resistance. SCIENCE CHINA. LIFE SCIENCES 2024; 67:1413-1426. [PMID: 38565741 DOI: 10.1007/s11427-023-2460-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 09/26/2023] [Indexed: 04/04/2024]
Abstract
Endocrine therapy that blocks estrogen signaling is the most effective treatment for patients with estrogen receptor positive (ER+) breast cancer. However, the efficacy of agents such as tamoxifen (Tam) is often compromised by the development of resistance. Here we report that cytokines-activated nuclear IKKα confers Tam resistance to ER+ breast cancer by inducing the expression of FAT10, and that the expression of FAT10 and nuclear IKKα in primary ER+ human breast cancer was correlated with lymphotoxin β (LTB) expression and significantly associated with relapse and metastasis in patients treated with adjuvant mono-Tam. IKKα activation or enforced FAT10 expression promotes Tam-resistance while loss of IKKα or FAT10 augments Tam sensitivity. The induction of FAT10 by IKKα is mediated by the transcription factor Pax5, and coordinated via an IKKα-p53-miR-23a circuit in which activation of IKKα attenuates p53-directed repression of FAT10. Thus, our findings establish IKKα-to-FAT10 pathway as a new therapeutic target for the treatment of Tam-resistant ER+ breast cancer.
Collapse
Affiliation(s)
- Xueyan Chen
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, 33458, USA
| | - Weilin Wu
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, 33458, USA
| | - Ji-Hak Jeong
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, 33458, USA
| | - Matjaz Rokavec
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, 33458, USA
| | - Rui Wei
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Shaolong Feng
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, 33458, USA
| | - Werner Schroth
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, 70376, Germany
- iFIT Cluster of Excellence, University of Tübingen, Tübingen, 72074, Germany
| | - Hiltrud Brauch
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, 70376, Germany
- iFIT Cluster of Excellence, University of Tübingen, Tübingen, 72074, Germany
| | - Shangwei Zhong
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, 33458, USA.
- The Cancer Research Institute and the Second Affiliated Hospital, Henyang Medical School, University of South China, Hengyang, 421001, China.
| | - Jun-Li Luo
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, 33458, USA.
- The Cancer Research Institute and the Second Affiliated Hospital, Henyang Medical School, University of South China, Hengyang, 421001, China.
- National Health Commission Key Laboratory of Birth Defect Research and Prevention, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, 410008, China.
| |
Collapse
|
9
|
Song Y, Ren S, Chen X, Li X, Chen L, Zhao S, Zhang Y, Shen X, Chen Y. Inhibition of MFN1 restores tamoxifen-induced apoptosis in resistant cells by disrupting aberrant mitochondrial fusion dynamics. Cancer Lett 2024; 590:216847. [PMID: 38583647 DOI: 10.1016/j.canlet.2024.216847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 03/18/2024] [Accepted: 03/31/2024] [Indexed: 04/09/2024]
Abstract
Tamoxifen (TAM) resistance presents a major clinical obstacle in the management of estrogen-sensitive breast cancer, highlighting the need to understand the underlying mechanisms and potential therapeutic approaches. We showed that dysregulated mitochondrial dynamics were involved in TAM resistance by protecting against mitochondrial apoptosis. The dysregulated mitochondrial dynamics were associated with increased mitochondrial fusion and decreased fission, thus preventing the release of mitochondrial cytochrome c to the cytoplasm following TAM treatment. Dynamin-related GTPase protein mitofusin 1 (MFN1), which promotes fusion, was upregulated in TAM-resistant cells, and high MFN1 expression indicated a poor prognosis in TAM-treated patients. Mitochondrial translocation of MFN1 and interaction between MFN1 and mitofusin 2 (MFN2) were enhanced to promote mitochondrial outer membrane fusion. The interaction of MFN1 and cristae-shaping protein optic atrophy 1 (OPA1) and OPA1 oligomerization were reduced due to augmented OPA1 proteolytic cleavage, and their apoptosis-promoting function was reduced due to cristae remodeling. Furthermore, the interaction of MFN1 and BAK were increased, which restrained BAK activation following TAM treatment. Knockdown or pharmacological inhibition of MFN1 blocked mitochondrial fusion, restored BAK oligomerization and cytochrome c release, and amplified activation of caspase-3/9, thus sensitizing resistant cells to apoptosis and facilitating the therapeutic effects of TAM both in vivo and in vitro. Conversely, overexpression of MFN1 alleviated TAM-induced mitochondrial apoptosis and promoted TAM resistance in sensitive cells. These results revealed that dysregulated mitochondrial dynamics contributes to the development of TAM resistance, suggesting that targeting MFN1-mediated mitochondrial fusion is a promising strategy to circumvent TAM resistance.
Collapse
Affiliation(s)
- Yuxuan Song
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, No.6 Ankang Avenue, Guian New District, Guizhou 561113, China; The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, No.6 Ankang Avenue, Guian New District, Guizhou 561113, China; The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, No.6 Ankang Avenue, Guian New District, Guizhou 561113, China; Key Laboratory of Novel Anti-Cancer Drug Targets Discovery and Application, School of Pharmaceutical Sciences, Guizhou Medical University, No.6 Ankang Avenue, Guian New District, Guizhou 561113, China
| | - Shuang Ren
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, No.6 Ankang Avenue, Guian New District, Guizhou 561113, China; The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, No.6 Ankang Avenue, Guian New District, Guizhou 561113, China; The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, No.6 Ankang Avenue, Guian New District, Guizhou 561113, China; Key Laboratory of Novel Anti-Cancer Drug Targets Discovery and Application, School of Pharmaceutical Sciences, Guizhou Medical University, No.6 Ankang Avenue, Guian New District, Guizhou 561113, China
| | - Xingmei Chen
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, No.6 Ankang Avenue, Guian New District, Guizhou 561113, China; The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, No.6 Ankang Avenue, Guian New District, Guizhou 561113, China; The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, No.6 Ankang Avenue, Guian New District, Guizhou 561113, China; Key Laboratory of Novel Anti-Cancer Drug Targets Discovery and Application, School of Pharmaceutical Sciences, Guizhou Medical University, No.6 Ankang Avenue, Guian New District, Guizhou 561113, China
| | - Xuhong Li
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, No.6 Ankang Avenue, Guian New District, Guizhou 561113, China; The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, No.6 Ankang Avenue, Guian New District, Guizhou 561113, China; The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, No.6 Ankang Avenue, Guian New District, Guizhou 561113, China
| | - Lin Chen
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, No.6 Ankang Avenue, Guian New District, Guizhou 561113, China; The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, No.6 Ankang Avenue, Guian New District, Guizhou 561113, China; The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, No.6 Ankang Avenue, Guian New District, Guizhou 561113, China
| | - Shijie Zhao
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, No.6 Ankang Avenue, Guian New District, Guizhou 561113, China; The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, No.6 Ankang Avenue, Guian New District, Guizhou 561113, China; The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, No.6 Ankang Avenue, Guian New District, Guizhou 561113, China
| | - Yue Zhang
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, No.6 Ankang Avenue, Guian New District, Guizhou 561113, China; The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, No.6 Ankang Avenue, Guian New District, Guizhou 561113, China; The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, No.6 Ankang Avenue, Guian New District, Guizhou 561113, China.
| | - Xiangchun Shen
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, No.6 Ankang Avenue, Guian New District, Guizhou 561113, China; The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, No.6 Ankang Avenue, Guian New District, Guizhou 561113, China; The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, No.6 Ankang Avenue, Guian New District, Guizhou 561113, China.
| | - Yan Chen
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, No.6 Ankang Avenue, Guian New District, Guizhou 561113, China; The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, No.6 Ankang Avenue, Guian New District, Guizhou 561113, China; The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, No.6 Ankang Avenue, Guian New District, Guizhou 561113, China; Key Laboratory of Novel Anti-Cancer Drug Targets Discovery and Application, School of Pharmaceutical Sciences, Guizhou Medical University, No.6 Ankang Avenue, Guian New District, Guizhou 561113, China.
| |
Collapse
|
10
|
Liu H, Li L, Lu R. ZIP transporters-regulated Zn 2+ homeostasis: A novel determinant of human diseases. J Cell Physiol 2024; 239:e31223. [PMID: 38530191 DOI: 10.1002/jcp.31223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/16/2024] [Accepted: 02/06/2024] [Indexed: 03/27/2024]
Abstract
As an essential trace element for organisms, zinc participates in various physiological processes, such as RNA transcription, DNA replication, cell proliferation, and cell differentiation. The destruction of zinc homeostasis is associated with various diseases. Zinc homeostasis is controlled by the cooperative action of zinc transporter proteins that are responsible for the influx and efflux of zinc. Zinc transporter proteins are mainly categorized into two families: Zrt/Irt-like protein (SLC39A/ZIP) family and zinc transporter (SLC30A/ZNT) family. ZIP transporters contain 14 members, namely ZIP1-14, which can be further divided into four subfamilies. Currently, ZIP transporters-regulated zinc homeostasis is one of the research hotspots. Cumulative evidence suggests that ZIP transporters-regulated zinc homeostasis may cause physiological dysfunction and contribute to the onset and progression of diverse diseases, such as cancers, neurological diseases, and cardiovascular diseases. In this review, we initially discuss the structure and distribution of ZIP transporters. Furthermore, we comprehensively review the latest research progress of ZIP transporters-regulated zinc homeostasis in diseases, providing a new perspective into new therapeutic targets for treating related diseases.
Collapse
Affiliation(s)
- Huimei Liu
- Department of Pharmacology, Hengyang Medical School, University of South China, Hengyang, China
| | - Lanfang Li
- Department of Pharmacology, Hengyang Medical School, University of South China, Hengyang, China
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, China
| | - Ruirui Lu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, China
| |
Collapse
|
11
|
Ye S, Chen S, Yang X, Lei X. Drug resistance in breast cancer is based on the mechanism of exocrine non-coding RNA. Discov Oncol 2024; 15:138. [PMID: 38691224 PMCID: PMC11063018 DOI: 10.1007/s12672-024-00993-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 04/22/2024] [Indexed: 05/03/2024] Open
Abstract
Breast cancer (BC) ranks first among female malignant tumors and involves hormonal changes and genetic as well as environmental risk factors. In recent years, with the improvement of medical treatment, a variety of therapeutic approaches for breast cancer have emerged and have strengthened to accommodate molecular diversity. However, the primary way to improve the effective treatment of breast cancer patients is to overcome treatment resistance. Recent studies have provided insights into the mechanisms of resistance to exosome effects in BC. Exosomes are membrane-bound vesicles secreted by both healthy and malignant cells that facilitate intercellular communication. Specifically, exosomes released by tumor cells transport their contents to recipient cells, altering their properties and promoting oncogenic components, ultimately resulting in drug resistance. As important coordinators, non-coding RNAs (ncRNAs) are involved in this process and are aberrantly expressed in various human cancers. Exosome-derived ncRNAs, including microRNAs (miRNAs), long-noncoding RNAs (lncRNAs), and circular RNAs (circRNAs), have emerged as crucial components in understanding drug resistance in breast cancer. This review provides insights into the mechanism of exosome-derived ncRNAs in breast cancer drug resistance, thereby suggesting new strategies for the treatment of BC.
Collapse
Affiliation(s)
- Simin Ye
- School of Pharmaceutical Science, Hengyang Medical College, University of South China, 28 Western Changsheng Road, Hengyang, 421001, Hunan, People's Republic of China
| | - Shiyu Chen
- School of Pharmaceutical Science, Hengyang Medical College, University of South China, 28 Western Changsheng Road, Hengyang, 421001, Hunan, People's Republic of China
| | - Xiaoyan Yang
- School of Pharmaceutical Science, Hengyang Medical College, University of South China, 28 Western Changsheng Road, Hengyang, 421001, Hunan, People's Republic of China.
| | - Xiaoyong Lei
- School of Pharmaceutical Science, Hengyang Medical College, University of South China, 28 Western Changsheng Road, Hengyang, 421001, Hunan, People's Republic of China.
- The Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, University of South China, 28 Western Changsheng Road, Hengyang, 421001, Hunan, People's Republic of China.
| |
Collapse
|
12
|
Fletcher KA, Alkurashi MH, Lindsay AJ. Endosomal recycling inhibitors downregulate estrogen receptor-alpha and synergise with endocrine therapies. Breast Cancer Res Treat 2024; 204:631-642. [PMID: 38228924 PMCID: PMC10959794 DOI: 10.1007/s10549-023-07225-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 12/11/2023] [Indexed: 01/18/2024]
Abstract
PURPOSE Breast cancer (BC) accounts for roughly 30% of new cancers diagnosed in women each year; thus, this cancer type represents a substantial burden for people and health care systems. Despite the existence of effective therapies to treat BC, drug resistance remains a problem and is a major cause of treatment failure. Therefore, new drugs and treatment regimens are urgently required to overcome resistance. Recent research indicates that inhibition of the endosomal recycling pathway, an intracellular membrane trafficking pathway that returns endocytosed proteins back to the plasma membrane, may be a promising strategy to downregulate clinically relevant cell surface proteins such as HER2 and HER3, and to overcome drug resistance. METHODS To investigate the molecular mechanism of action of an endosomal recycling inhibitor (ERI) called primaquine, we performed a reverse-phase protein array (RPPA) assay using a HER2-positive breast cancer cell line. The RPPA findings were confirmed by Western blot and RT-qPCR in several BC cell lines. Novel drug combinations were tested by MTT cell viability and clonogenic assays. RESULTS Among the signalling molecules downregulated by ERIs were estrogen receptor-alpha (ER-α) and androgen receptor. We confirmed this finding in other breast cancer cell lines and show that downregulation occurs at the transcriptional level. We also found that ERIs synergise with tamoxifen, a standard-of-care therapy for breast cancer. DISCUSSION Our data suggest that combining ERIs with hormone receptor antagonists may enhance their efficacy and reduce the emergence of drug resistance.
Collapse
Affiliation(s)
- Kelsey A Fletcher
- Membrane Trafficking and Disease Laboratory, School of Biochemistry & Cell Biology, Biosciences Institute, University College Cork, Cork, T12 YT20, Ireland
| | - Mai H Alkurashi
- Membrane Trafficking and Disease Laboratory, School of Biochemistry & Cell Biology, Biosciences Institute, University College Cork, Cork, T12 YT20, Ireland
| | - Andrew J Lindsay
- Membrane Trafficking and Disease Laboratory, School of Biochemistry & Cell Biology, Biosciences Institute, University College Cork, Cork, T12 YT20, Ireland.
| |
Collapse
|
13
|
Xu S, Wang L, Zhao Y, Mo T, Wang B, Lin J, Yang H. Metabolism-regulating non-coding RNAs in breast cancer: roles, mechanisms and clinical applications. J Biomed Sci 2024; 31:25. [PMID: 38408962 PMCID: PMC10895768 DOI: 10.1186/s12929-024-01013-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 01/17/2024] [Indexed: 02/28/2024] Open
Abstract
Breast cancer is one of the most common malignancies that pose a serious threat to women's health. Reprogramming of energy metabolism is a major feature of the malignant transformation of breast cancer. Compared to normal cells, tumor cells reprogram metabolic processes more efficiently, converting nutrient supplies into glucose, amino acid and lipid required for malignant proliferation and progression. Non-coding RNAs(ncRNAs) are a class of functional RNA molecules that are not translated into proteins but regulate the expression of target genes. NcRNAs have been demonstrated to be involved in various aspects of energy metabolism, including glycolysis, glutaminolysis, and fatty acid synthesis. This review focuses on the metabolic regulatory mechanisms and clinical applications of metabolism-regulating ncRNAs involved in breast cancer. We summarize the vital roles played by metabolism-regulating ncRNAs for endocrine therapy, targeted therapy, chemotherapy, immunotherapy, and radiotherapy resistance in breast cancer, as well as their potential as therapeutic targets and biomarkers. Difficulties and perspectives of current targeted metabolism and non-coding RNA therapeutic strategies are discussed.
Collapse
Affiliation(s)
- Shiliang Xu
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215004, People's Republic of China
| | - Lingxia Wang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215004, People's Republic of China
| | - Yuexin Zhao
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215004, People's Republic of China
| | - Tong Mo
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215004, People's Republic of China
| | - Bo Wang
- Department of Oncology, The Second Affiliated Hospital of Soochow University, 1055 Sanxiang Road, Suzhou, Jiangsu, 215004, People's Republic of China
| | - Jun Lin
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215004, People's Republic of China.
| | - Huan Yang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215004, People's Republic of China.
| |
Collapse
|
14
|
Ahn S, Park JH, Grimm SL, Piyarathna DWB, Samanta T, Putluri V, Mezquita D, Fuqua SA, Putluri N, Coarfa C, Kaipparettu BA. Metabolomic Rewiring Promotes Endocrine Therapy Resistance in Breast Cancer. Cancer Res 2024; 84:291-304. [PMID: 37906431 PMCID: PMC10842725 DOI: 10.1158/0008-5472.can-23-0184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 09/08/2023] [Accepted: 10/27/2023] [Indexed: 11/02/2023]
Abstract
Approximately one-third of endocrine-treated women with estrogen receptor alpha-positive (ER+) breast cancers are at risk of recurrence due to intrinsic or acquired resistance. Thus, it is vital to understand the mechanisms underlying endocrine therapy resistance in ER+ breast cancer to improve patient treatment. Mitochondrial fatty acid β-oxidation (FAO) has been shown to be a major metabolic pathway in triple-negative breast cancer (TNBC) that can activate Src signaling. Here, we found metabolic reprogramming that increases FAO in ER+ breast cancer as a mechanism of resistance to endocrine therapy. A metabolically relevant, integrated gene signature was derived from transcriptomic, metabolomic, and lipidomic analyses in TNBC cells following inhibition of the FAO rate-limiting enzyme carnitine palmitoyl transferase 1 (CPT1), and this TNBC-derived signature was significantly associated with endocrine resistance in patients with ER+ breast cancer. Molecular, genetic, and metabolomic experiments identified activation of AMPK-FAO-oxidative phosphorylation (OXPHOS) signaling in endocrine-resistant ER+ breast cancer. CPT1 knockdown or treatment with FAO inhibitors in vitro and in vivo significantly enhanced the response of ER+ breast cancer cells to endocrine therapy. Consistent with the previous findings in TNBC, endocrine therapy-induced FAO activated the Src pathway in ER+ breast cancer. Src inhibitors suppressed the growth of endocrine-resistant tumors, and the efficacy could be further enhanced by metabolic priming with CPT1 inhibition. Collectively, this study developed and applied a TNBC-derived signature to reveal that metabolic reprogramming to FAO activates the Src pathway to drive endocrine resistance in ER+ breast cancer. SIGNIFICANCE Increased fatty acid oxidation induced by endocrine therapy activates Src signaling to promote endocrine resistance in breast cancer, which can be overcome using clinically approved therapies targeting FAO and Src.
Collapse
Affiliation(s)
- Songyeon Ahn
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Jun Hyoung Park
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Sandra L. Grimm
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| | | | - Tagari Samanta
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Vasanta Putluri
- Advanced Technology Core, Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas
| | - Dereck Mezquita
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Suzanne A.W. Fuqua
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas
| | - Nagireddy Putluri
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas
| | - Cristian Coarfa
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas
| | - Benny Abraham Kaipparettu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
15
|
Newell S, van der Watt PJ, Leaner VD. Therapeutic targeting of nuclear export and import receptors in cancer and their potential in combination chemotherapy. IUBMB Life 2024; 76:4-25. [PMID: 37623925 PMCID: PMC10952567 DOI: 10.1002/iub.2773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 07/03/2023] [Indexed: 08/26/2023]
Abstract
Systemic modalities are crucial in the management of disseminated malignancies and liquid tumours. However, patient responses and tolerability to treatment are generally poor and those that enter remission often return with refractory disease. Combination therapies provide a methodology to overcome chemoresistance mechanisms and address dose-limiting toxicities. A deeper understanding of tumorigenic processes at the molecular level has brought a targeted therapy approach to the forefront of cancer research, and novel cancer biomarkers are being identified at a rapid rate, with some showing potential therapeutic benefits. The Karyopherin superfamily of proteins is soluble receptors that mediate nucleocytoplasmic shuttling of proteins and RNAs, and recently, nuclear transport receptors have been recognized as novel anticancer targets. Inhibitors against nuclear export have been approved for clinical use against certain cancer types, whereas inhibitors against nuclear import are in preclinical stages of investigation. Mechanistically, targeting nucleocytoplasmic shuttling has shown to abrogate oncogenic signalling and restore tumour suppressor functions through nuclear sequestration of relevant proteins and mRNAs. Hence, nuclear transport inhibitors display broad spectrum anticancer activity and harbour potential to engage in synergistic interactions with a wide array of cytotoxic agents and other targeted agents. This review is focussed on the most researched nuclear transport receptors in the context of cancer, XPO1 and KPNB1, and highlights how inhibitors targeting these receptors can enhance the therapeutic efficacy of standard of care therapies and novel targeted agents in a combination therapy approach. Furthermore, an updated review on the therapeutic targeting of lesser characterized karyopherin proteins is provided and resistance to clinically approved nuclear export inhibitors is discussed.
Collapse
Affiliation(s)
- Stella Newell
- Division of Medical Biochemistry and Structural Biology, Department of Integrative Biomedical Sciences, Faculty of Health SciencesUniversity of Cape TownCape TownSouth Africa
| | - Pauline J. van der Watt
- Division of Medical Biochemistry and Structural Biology, Department of Integrative Biomedical Sciences, Faculty of Health SciencesUniversity of Cape TownCape TownSouth Africa
- Institute of Infectious Diseases and Molecular Medicine, University of Cape TownCape TownSouth Africa
| | - Virna D. Leaner
- Division of Medical Biochemistry and Structural Biology, Department of Integrative Biomedical Sciences, Faculty of Health SciencesUniversity of Cape TownCape TownSouth Africa
- UCT/SAMRC Gynaecological Cancer Research CentreUniversity of Cape TownCape TownSouth Africa
| |
Collapse
|
16
|
Ye L, Zhong F, Sun S, Ou X, Yuan J, Zhu J, Zeng Z. Tamoxifen induces ferroptosis in MCF-7 organoid. J Cancer Res Ther 2023; 19:1627-1635. [PMID: 38156931 DOI: 10.4103/jcrt.jcrt_608_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 09/05/2023] [Indexed: 01/03/2024]
Abstract
BACKGROUND Breast cancer is the most common female malignant tumor type globally. The occurrence and development of breast cancer involve ferroptosis, which is closely related to its treatment. The development of breast cancer organoids facilitates the analysis of breast cancer molecular background and tumor biological behavior, including clinical pathological characteristics, drug response, or drug resistance relationship, and promotes the advancement of precision treatment for breast cancer. The three-dimensional (3D) cell culture of breast cancer MCF-7 organoid is more similar to the in vivo environment and thus obtains more realistic results than 2D cell culture. Our study examined the new mechanism of tamoxifen in treating breast cancer through breast cancer MCF-7 organoids. METHODS We used 3D cells to culture breast cancer MCF-7 organoid, as well as tamoxifen-treated MCF-7 and tamoxifen-resistant MCF-7 (MCF-7 TAMR) cells. We used transcriptome sequencing. We detected GPX4 and SLC7A11 protein levels using Western blotting and the content of ATP, glutathione, and ferrous ions using the Cell Counting Lite 3D Kit. We assessed cell viability using the Cell Counting Kit-8 (CCK-8) assay. RESULTS Tamoxifen significantly inhibited the growth of MCF-7 organoids and significantly induced ferroptosis in MCF-7 organoids. The ferroptosis inhibitor reversed the significant tamoxifen-induced MCF-7 organoid inhibition activity. Moreover, the ferroptosis activator enhanced the tamoxifen-induced MCF-7 TAMR cell activity inhibition. CONCLUSION Our study revealed that ferroptosis plays an important role in tamoxifen-induced MCF-7 organoid cell death and provides a new research idea for precise treatment of breast cancer through an organoid model.
Collapse
Affiliation(s)
- Lei Ye
- Foshan Clinical Medical School, Guangzhou University of Chinese Medicine, Foshan, China
| | - Fei Zhong
- Foshan Clinical Medical School, Guangzhou University of Chinese Medicine, Foshan, China
| | - Shishen Sun
- Foshan Clinical Medical School, Guangzhou University of Chinese Medicine, Foshan, China
| | - Xiaowei Ou
- Department of General Surgery, Foshan Fosun Chancheng Hospital, Foshan, China
| | - Jie Yuan
- Foshan Clinical Medical School, Guangzhou University of Chinese Medicine, Foshan, China
- Department of General Surgery, Foshan Fosun Chancheng Hospital, Foshan, China
| | - Jintao Zhu
- Department of Breast Surgery, Foshan Fosun Chancheng Hospital, Foshan, China
| | - Zhiqiang Zeng
- Foshan Clinical Medical School, Guangzhou University of Chinese Medicine, Foshan, China
- Department of Breast Surgery, Foshan Fosun Chancheng Hospital, Foshan, China
| |
Collapse
|
17
|
Choi MC, Kim SK, Choi YJ, Choi YJ, Kim S, Jegal KH, Lim SC, Kang KW. Role of monocarboxylate transporter I/lactate dehydrogenase B-mediated lactate recycling in tamoxifen-resistant breast cancer cells. Arch Pharm Res 2023; 46:907-923. [PMID: 38048029 DOI: 10.1007/s12272-023-01474-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 11/25/2023] [Indexed: 12/05/2023]
Abstract
Although tamoxifen (TAM) is widely used in patients with estrogen receptor-positive breast cancer, the development of tamoxifen resistance is common. The previous finding suggests that the development of tamoxifen resistance is driven by epiregulin or hypoxia-inducible factor-1α-dependent glycolysis activation. Nonetheless, the mechanisms responsible for cancer cell survival and growth in a lactic acid-rich environment remain elusive. We found that the growth and survival of tamoxifen-resistant MCF-7 cells (TAMR-MCF-7) depend on glycolysis rather than oxidative phosphorylation. The levels of the glycolytic enzymes were higher in TAMR-MCF-7 cells than in parental MCF-7 cells, whereas the mitochondrial number and complex I level were decreased. Importantly, TAMR-MCF-7 cells were more resistant to low glucose and high lactate growth conditions. Isotope tracing analysis using 13C-lactate confirmed that lactate conversion to pyruvate was enhanced in TAMR-MCF-7 cells. We identified monocarboxylate transporter1 (MCT1) and lactate dehydrogenase B (LDHB) as important mediators of lactate influx and its conversion to pyruvate, respectively. Consistently, AR-C155858 (MCT1 inhibitor) inhibited the proliferation, migration, spheroid formation, and in vivo tumor growth of TAMR-MCF-7 cells. Our findings suggest that TAMR-MCF-7 cells depend on glycolysis and glutaminolysis for energy and support that targeting MCT1- and LDHB-dependent lactate recycling may be a promising strategy to treat patients with TAM-resistant breast cancer.
Collapse
Affiliation(s)
- Min Chang Choi
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Sang Kyum Kim
- College of Pharmacy, Chungnam University, Daejeon, 34134, Republic of Korea
| | - Young Jae Choi
- College of Pharmacy, Chungnam University, Daejeon, 34134, Republic of Korea
| | - Yong June Choi
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Suntae Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Kyung Hwan Jegal
- College of Oriental Medicine, Daegu Haany University, Kyongsan, 38610, Republic of Korea
| | - Sung Chul Lim
- Department of Pathology, College of Medicine, Chosun University, Gwangju, 61452, Republic of Korea
| | - Keon Wook Kang
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
18
|
Gonçalves TL, de Araújo LP, Pereira Ferrer V. Tamoxifen as a modulator of CXCL12-CXCR4-CXCR7 chemokine axis: A breast cancer and glioblastoma view. Cytokine 2023; 170:156344. [PMID: 37639844 DOI: 10.1016/j.cyto.2023.156344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/18/2023] [Accepted: 08/20/2023] [Indexed: 08/31/2023]
Abstract
The chemokine stromal cell-derived-factor 1 (SDF)-1/CXCL12 acts by binding to its receptors, the CXC-4 chemokine receptor (CXCR4) and the CXC-7 chemokine receptor (CXCR7). The binding of CXCL12 to its receptors results in downstream signaling that leads to cell survival, proliferation and migration of tumor cells. CXCL12 and CXCR4 are highly expressed in breast cancer (BC) and glioblastoma (GBM) compared to normal cells. High expression of this chemokine axis correlates with increased therapy resistance and grade, tumor spread and poorer prognosis in these tumors. Tamoxifen (TMX) is a selective estrogen receptor modulator (SERM) that inhibits the expression of estrogen-regulated genes, including growth and angiogenic factors secreted by tumor cells. Additionally, TMX targets several proteins, such as protein kinase C (PKC), phospholipase C (PLC), P-glycoprotein (PgP), phosphatidylinositol-3-kinase (PI3K) and ion channels. This drug showed promising antitumor activity against both BC and GBM cells. In this review, we discuss the role of the CXCL12-CXCR4-CXCR7 chemokine axis in BC and GBM tumor biology and propose TMX as a potential modulator of this axis in these tumors. TMX modulates the CXCL12-CXCR4-CXCR7 axis in BC, however, there are no studies on this in GBM. We propose that studying this axis in GBM cells/patients treated with TMX might be beneficial for these patients. TMX inhibits important signaling pathways in these tumors and the activation of this chemokine axis is associated with increased therapy resistance.
Collapse
Affiliation(s)
- Thaynan Lopes Gonçalves
- Laboratory of Cell and Molecular Biology of Tumors, Department of Cell and Molecular Biology, Biology Institute, Fluminense Federal University, Niterói, Rio de Janeiro, Brazil; Postgraduate Program in Pathological Anatomy, Faculty of Medicine, Rio de Janeiro Federal University, Rio de Janeiro, Brazil
| | - Luanna Prudencio de Araújo
- Laboratory of Cell and Molecular Biology of Tumors, Department of Cell and Molecular Biology, Biology Institute, Fluminense Federal University, Niterói, Rio de Janeiro, Brazil
| | - Valéria Pereira Ferrer
- Laboratory of Cell and Molecular Biology of Tumors, Department of Cell and Molecular Biology, Biology Institute, Fluminense Federal University, Niterói, Rio de Janeiro, Brazil; Postgraduate Program in Pathological Anatomy, Faculty of Medicine, Rio de Janeiro Federal University, Rio de Janeiro, Brazil.
| |
Collapse
|
19
|
Zhong C, Xie Z, Duan S. H1Innovative approaches to combat anti-cancer drug resistance: Targeting lncRNA and autophagy. Clin Transl Med 2023; 13:e1445. [PMID: 37837401 PMCID: PMC10576445 DOI: 10.1002/ctm2.1445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 09/21/2023] [Accepted: 10/01/2023] [Indexed: 10/16/2023] Open
Abstract
BACKGROUND To date, standardizing clinical predictive biomarkers for assessing the response to immunotherapy remains challenging due to variations in personal genetic signatures, tumour microenvironment complexities and epigenetic onco-mechanisms. MAIN BODY Early monitoring of key non-coding RNA (ncRNA) biomarkers may help in predicting the clinical efficacy of cancer immunotherapy and come up with standard predictive ncRNA biomarkers. For instance, reduced miR-125b-5p level in the plasma of non-small cell lung cancer patients treated with anti-PD-1 predicts a positive outcome. The level of miR-153 in the plasma of colorectal cancer patients treated with chimeric antigen receptor T lymphocyte (CAR-T) cell therapy may indicate the activation of T-cell killing activity. miR-148a-3p and miR-375 levels may forecast favourable responses to CAR-T-cell therapy in B-cell acute lymphoblastic leukaemia. In cancer patients treated with the GPC3 peptide vaccine, serum levels of miR-1228-5p, miR-193a-5p and miR-375-3p were reported as predictive biomarkers of good response and improved overall survival. Therefore, there is a critical need for further studies to elaborate on the key ncRNA biomarkers that have the potential to predict early clinical responses to immunotherapy. CONCLUSIONS This review summarises important predictive ncRNA biomarkers that were reported in cancer patients treated with different immunotherapeutic modalities including monoclonal antibodies, small molecule inhibitors, cancer vaccines and CAR-T cells. In addition, a concise discussion on forthcoming perspectives is provided, outlining technical approaches for the optimal utilisation of immune-modulatory ncRNA biomarkers as predictive tools and therapeutic targets.
Collapse
Affiliation(s)
- Chenming Zhong
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of MedicineHangzhou City UniversityHangzhouZhejiangP. R. China
- Medical Genetics CenterSchool of MedicineNingbo UniversityNingboZhejiangP. R. China
| | - Zijun Xie
- Medical Genetics CenterSchool of MedicineNingbo UniversityNingboZhejiangP. R. China
| | - Shiwei Duan
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of MedicineHangzhou City UniversityHangzhouZhejiangP. R. China
- Medical Genetics CenterSchool of MedicineNingbo UniversityNingboZhejiangP. R. China
| |
Collapse
|
20
|
Huang C, Arbiser JL. Targeting the Vulnerabilities of Oncogene Activation. Cancers (Basel) 2023; 15:3359. [PMID: 37444469 DOI: 10.3390/cancers15133359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 06/25/2023] [Indexed: 07/15/2023] Open
Abstract
Treatment strategies for cancer have progressed greatly in recent decades [...].
Collapse
Affiliation(s)
- Christina Huang
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Jack L Arbiser
- Metroderm/United Dermatology Partners, 875 Johnson Ferry Rd., Atlanta, GA 30342, USA
| |
Collapse
|
21
|
Hany D, Vafeiadou V, Picard D. CRISPR-Cas9 screen reveals a role of purine synthesis for estrogen receptor α activity and tamoxifen resistance of breast cancer cells. SCIENCE ADVANCES 2023; 9:eadd3685. [PMID: 37172090 PMCID: PMC10181187 DOI: 10.1126/sciadv.add3685] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
In breast cancer, resistance to endocrine therapies that target estrogen receptor α (ERα), such as tamoxifen and fulvestrant, remains a major clinical problem. Whether and how ERα+ breast cancers switch from being estrogen-dependent to estrogen-independent remains unclear. With a genome-wide CRISPR-Cas9 knockout screen, we identified previously unknown biomarkers and potential therapeutic targets of endocrine resistance. We demonstrate that high levels of PAICS, an enzyme involved in the de novo biosynthesis of purines, can shift the balance of ERα activity to be more estrogen-independent and tamoxifen-resistant. We find that this may be due to elevated activities of cAMP-activated protein kinase A and mTOR, kinases known to phosphorylate ERα specifically and to stimulate its activity. Genetic or pharmacological targeting of PAICS sensitizes tamoxifen-resistant cells to tamoxifen. Addition of purines renders them more resistant. On the basis of these findings, we propose the combined targeting of PAICS and ERα as a new, effective, and potentially safe therapeutic regimen.
Collapse
Affiliation(s)
- Dina Hany
- Département de Biologie Moléculaire et Cellulaire, Université de Genève, Sciences III, Quai Ernest-Ansermet 30, CH - 1211 Genève 4, Switzerland
- On leave from: Department of Pharmacology and Therapeutics Faculty of Pharmacy, Pharos University in Alexandria, Alexandria 21311, Egypt
| | - Vasiliki Vafeiadou
- Département de Biologie Moléculaire et Cellulaire, Université de Genève, Sciences III, Quai Ernest-Ansermet 30, CH - 1211 Genève 4, Switzerland
| | - Didier Picard
- Département de Biologie Moléculaire et Cellulaire, Université de Genève, Sciences III, Quai Ernest-Ansermet 30, CH - 1211 Genève 4, Switzerland
| |
Collapse
|
22
|
Huang Y, Qian M, Chu J, Chen L, Jian W, Wang G. Identification of circRNA-miRNA-mRNA network in luminal breast cancers by integrated analysis of microarray datasets. Front Mol Biosci 2023; 10:1162259. [PMID: 37187897 PMCID: PMC10175596 DOI: 10.3389/fmolb.2023.1162259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 04/17/2023] [Indexed: 05/17/2023] Open
Abstract
Introduction: Circular RNAs (circRNAs) regulatory network is important in human cancer. We, therefore, mapped the regulatory networks driven by circRNA in luminal-subtype breast cancer. Methods: Breast cancer-related microarray datasets from GEO database were analyzed for the differentially expressed circRNAs, miRNAs, and mRNAs. The potential downstream RNAs were collected using Circular RNA Interactome or Targetscan database. Protein-protein interaction (PPI) analysis was performed for the filtered genes to identify hub genes. The functions were annotated by the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis. CircRNA-miRNA-mRNA networks were mapped using Cytoscape software. Hsa_circ_0086735-miR-1296-5p-STAT1 axis was used for verification. The expression levels of hsa_circ_0086735, miR-1296-5p, and STAT1 mRNA were confirmed by qRT-PCR in luminal-subtype tissues and cell lines. The interactions among them were verified by Luciferase reporter assay and RNA pull-down assay. Cell proliferation and apoptosis were assayed. Overall and distant metastasis-free survival was analyzed. Results: A total of 70 genes were finally targeted and enriched in multi-process and multi-pathway. Networks containing 96 circRNA-miRNA-mRNA axes were constructed. Hsa_circ_0086735 and STAT1 mRNA was upregulated in luminal breast cancer, while miR-1296-5p was downregulated. Hsa_circ_0086735-miR-1296-5p-STAT1 axis promotes breast cancer progression and contributes to tamoxifen resistance. High hsa_circ_0086735 was associated with poor overall and distant metastasis-free survival. Discussion: This study identified the hsa_circ_0086735-miR-1296-5p-STAT1 as an important regulatory axis in luminal-subtype breast cancer, aiding to determine potential therapeutic targets.
Collapse
Affiliation(s)
| | | | | | | | | | - Gang Wang
- Department of Thyroid and Breast Surgery, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
23
|
LPCAT1 is transcriptionally regulated by FOXA1 to promote breast cancer progression and paclitaxel resistance. Oncol Lett 2023; 25:134. [PMID: 36909375 PMCID: PMC9996177 DOI: 10.3892/ol.2023.13720] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 01/09/2023] [Indexed: 02/17/2023] Open
Abstract
Bioinformatics analysis indicates that lysophosphatidylcholine acyltransferase 1 (LPCAT1) and forkhead box A1 (FOXA1) are highly expressed in breast cancer tissues and their expression levels are correlated. Therefore, the aim of the present study was to investigate their involvement in the malignant progression and drug resistance of breast cancer. The clinical significance of LPCAT1 was analyzed using The Cancer Genome Atlas data. The enrichment of LPCAT1 in breast cancer cells was determined and the effects of LPCAT1 knockdown on cell proliferation, colony formation, migration, invasion and paclitaxel (PTX) resistance were evaluated. The association between LPCAT1 and FOXA1 was verified using luciferase reporter and chromatin immunoprecipitation assays. Thereafter, the ability of FOXA1 overexpression to regulate LPCAT1 regulation was evaluated. The results revealed that a high LPCAT1 level was associated with poor overall survival in patients with breast cancer. Furthermore, LPCAT1 was found to be highly expressed in breast cancer cells, and its knockdown resulted in suppressed proliferation, colony formation, migration and invasion, and weakened PTX resistance. Furthermore, FOXA1 overexpression attenuated the effects of LPCAT1 knockdown on cells, indicating that FOXA1 transcriptionally regulates LPCAT1. In summary, the present study reveals that LPCAT1 is transcriptionally regulated by FOXA1, which influences breast cancer cell proliferation, metastatic potential and PTX resistance.
Collapse
|
24
|
The Functions of TRIM56 in Antiviral Innate Immunity and Tumorigenesis. Int J Mol Sci 2023; 24:ijms24055046. [PMID: 36902478 PMCID: PMC10003129 DOI: 10.3390/ijms24055046] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/01/2023] [Accepted: 03/04/2023] [Indexed: 03/09/2023] Open
Abstract
As a member of the TRIM (tripartite motif) protein family, TRIM56 can function as an E3 ubiquitin ligase. In addition, TRIM56 has been shown to possess deubiquitinase activity and the ability to bind RNA. This adds to the complexity of the regulatory mechanism of TRIM56. TRIM56 was initially found to be able to regulate the innate immune response. In recent years, its role in direct antiviral and tumor development has also attracted the interest of researchers, but there is no systematic review on TRIM56. Here, we first summarize the structural features and expression of TRIM56. Then, we review the functions of TRIM56 in TLR and cGAS-STING pathways of innate immune response, the mechanisms and structural specificity of TRIM56 against different types of viruses, and the dual roles of TRIM56 in tumorigenesis. Finally, we discuss the future research directions regarding TRIM56.
Collapse
|
25
|
Elbagoury RM, Shenouda MA, Elnakib HE, Wober J, Abadi AH, Ahmed NS. Design, synthesis, and metabolite identification of Tamoxifen esterase-activatable prodrugs. Bioorg Chem 2023; 131:106303. [PMID: 36455483 DOI: 10.1016/j.bioorg.2022.106303] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 11/13/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022]
Abstract
Tamoxifen (TAM) is used in treatment of hormonal dependent breast cancer, both in premenopausal and postmenopausal women. TAM is intrinsically metabolized by CYP450 enzymes to more active metabolites. Recent reports identified CYP2D6, an enzyme involved in the conversion of TAM to the more potent 4-OH-TAM, is encoded by theCYP2D6gene, which is highly polymorphic. Women with inactive alleles are poor metabolizers; in many cases they suffer acquired TAM resistance. Herein we report synthesis and biological evaluation of novel TAM analogues. The novel analogues are designed to elude CYP2D6 metabolism. Hydrolysis of the carbamate moiety on ring C is mediated via carboxylesterases. Compound 3d [E/Z Benzyl-carbamic acid4-{2-benzyl-1-[4-(2-pyrrolidin-1-yl-ethoxy)-phenyl]-but-1-enyl}-phenyl ester] showed GI50 = 0.09 µM on MCF-7 and GI50 = 1.84 µM on MDA-MB231 cell lines. To further validate our hypothesis, metabolites of selected novel analogues were determined in vitro under different incubation conditions. The hydroxylated analogues were obtained under non CYP2D6 dependent conditions. Compound 8d, a benzyl carbamate derivative, was the least-stable analog and showed the highest rate of metabolism among all tested analogues. Our in silico model showed the novel flexible analogues can still adopt an antiestrogenic binding profile occupying the same pocket as 4-OH-TAM.
Collapse
Affiliation(s)
- Rahma M Elbagoury
- Faculty of Pharmacy and Biotechnology, Department of Pharmaceutical Chemistry, German University in Cairo, Cairo, Egypt
| | - Miriam A Shenouda
- Faculty of Pharmacy and Biotechnology, Department of Pharmaceutical Chemistry, German University in Cairo, Cairo, Egypt
| | - Heba E Elnakib
- Faculty of Pharmacy and Biotechnology, Department of Pharmaceutical Chemistry, German University in Cairo, Cairo, Egypt
| | - Jannette Wober
- Faculty of Biology, Institute of Zoology, Technische Universität Dresden, 01062 Dresden, Germany
| | - Ashraf H Abadi
- Faculty of Pharmacy and Biotechnology, Department of Pharmaceutical Chemistry, German University in Cairo, Cairo, Egypt
| | - Nermin S Ahmed
- Faculty of Pharmacy and Biotechnology, Department of Pharmaceutical Chemistry, German University in Cairo, Cairo, Egypt.
| |
Collapse
|
26
|
Chen S, Wu D, Liu Q, Jin F, Yao F, Fang Y. POR overexpression induces tamoxifen-resistance in breast cancer through the STAT1/c-Myc pathway. Mol Carcinog 2023; 62:249-260. [PMID: 36321415 DOI: 10.1002/mc.23481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/09/2022] [Accepted: 10/12/2022] [Indexed: 01/20/2023]
Abstract
Breast cancer is the most common cancer in women worldwide. Although tamoxifen (TAM), a selective estrogen receptor (ER) modulator, is widely used to treat ER-positive breast cancers, resistance to TAM remains a major clinical problem. NADPH-dependent cytochrome P450 reductase (POR) is known to participate in drug metabolism and steroid metabolism. Recent studies showed that high POR expression was correlated with poor outcomes in triple-negative breast cancer (TNBC), and POR might be a prognostic biomarker in TNBC. However, the role of POR in TAM resistance is still elusive. In this study, we found that high POR expression was associated with poor prognosis of ER-positive and TAM-treated breast cancer patients. In addition, COX analysis showed that POR expression was an independent prognostic biomarker for ER-positive as well as TAM-treated breast cancer patients. Furthermore, our results suggested that POR overexpression promoted TAM resistance by activating the STAT1/c-Myc pathway in ER-positive breast cancer cells. Immunohistochemical analysis showed that high POR/STAT1 expression was correlated with poor prognosis in TAM-treated breast cancer patients. Notably, combined treatment with TAM and a specific STAT1 inhibitor Fludarabine was more effective for inhibiting TAM-resistant breast cancer cells. Altogether, our findings suggested that POR overexpression induced TAM resistance through STAT1/c-Myc pathway and might serve as an independent prognostic biomarker in TAM-treated breast cancer patients. Combining TAM and STAT1 inhibitors might be an effective strategy for treating POR-induced TAM-resistant breast cancer.
Collapse
Affiliation(s)
- Si Chen
- Department of Microbial and Biochemical Pharmacy, School of Pharmacy, China Medical University, Shenyang, Liaoning Province, China
| | - Dingjie Wu
- Department of Microbial and Biochemical Pharmacy, School of Pharmacy, China Medical University, Shenyang, Liaoning Province, China
| | - Qiannan Liu
- Department of Microbial and Biochemical Pharmacy, School of Pharmacy, China Medical University, Shenyang, Liaoning Province, China
| | - Feng Jin
- Department of Breast Surgery and Surgical Oncology, Research Unit of General Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Fan Yao
- Department of Breast Surgery and Surgical Oncology, Research Unit of General Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Yue Fang
- Department of Microbial and Biochemical Pharmacy, School of Pharmacy, China Medical University, Shenyang, Liaoning Province, China
| |
Collapse
|
27
|
Choi M, Kang KW. Mitoregulin controls mitochondrial function and stress-adaptation response during early phase of endoplasmic reticulum stress in breast cancer cells. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166570. [PMID: 36241124 DOI: 10.1016/j.bbadis.2022.166570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 09/19/2022] [Accepted: 10/06/2022] [Indexed: 11/05/2022]
Abstract
The proper regulation of mitochondrial function is important for cellular homeostasis. Especially, in cancer cells, dysregulation of mitochondria is associated with diverse cellular events such as metabolism, redox status, and stress responses. Mitoregulin (MTLN), a micro protein encoded by LINC00116, recently has been reported to control mitochondrial functions in skeletal muscle cells and adipocytes. However, the role of MTLN in cancer cells remains unclear. In the present study, we found that MTLN regulates membrane potential and reactive oxygen species (ROS) generation of mitochondria in breast cancer cells. Moreover, MTLN deficiency resulted in abnormal mitochondria-associated ER membranes (MAMs) formation, which is crucial for stress adaptation. Indeed, the MTLN-deficient breast cancer cells failed to successfully resolve ER (endoplasmic reticulum) stress, and cell vulnerability to ER-stress inducers was significantly enhanced by the downregulation of MTLN. In conclusion, MTLN controls stress-adaptation responses in breast cancer cells as a key regulator of mitochondria-ER harmonization, and thereby its expression level may serve as an indicator of the responsiveness of cancer cells to proteasome inhibitors.
Collapse
Affiliation(s)
- Munkyung Choi
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Keon Wook Kang
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
28
|
Yao Q, Zhai H, Huang H, Lin J, He W. A comparative study of the efficacy of tamoxifen and Chinese patented medicine (Pingxiao capsules) in gynecomastia: A retrospective cohort study. Andrologia 2022; 54:e14640. [DOI: 10.1111/and.14640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 10/27/2022] [Accepted: 10/29/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
- Qianli Yao
- Department of Breast Surgery The First Affiliated Hospital of Jinan University Guangzhou China
| | - Hening Zhai
- Department of Digestive Endoscopy Center The First/Fifth Affiliated Hospital of Jinan University Guangzhou China
| | - Hailang Huang
- Department of General Surgery Guizhou Moutai Hospital Renhuai Guizhou China
| | - Junnan Lin
- Department of Cardiothoracic Surgery The First Affiliated Hospital of Jinan University Guangzhou China
- Department of Nursing Chaoshan Hospital, The First Affiliated Hospital of Jinan University Chaozhou China
| | - Weili He
- Department of Breast Surgery The First Affiliated Hospital of Jinan University Guangzhou China
| |
Collapse
|
29
|
Wo G, Zhu Z, Fang Z, Chen X, Liang M, Wang Y, Shao X, Shen H, Tang J. Dihydrotanshinone I: A Target for STAT3 in the Therapy of Tamoxifen‐Resistant Breast Cancer. ChemistrySelect 2022. [DOI: 10.1002/slct.202203082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Guanqun Wo
- Nanjing University of Chinese Medicine Xianlin Road 138 Nanjing 210023 P. R. China
| | - Zhen Zhu
- Nanjing Medical University Nanjing 210029 P. R. China
| | - Zheng Fang
- Nanjing Medical University Nanjing 210029 P. R. China
| | - Xi Chen
- Nanjing University of Chinese Medicine Xianlin Road 138 Nanjing 210023 P. R. China
| | | | - Yalin Wang
- Xuzhou Medical University 209 Tongshan Road Xuzhou 221004 P. R. China
| | - Xinyi Shao
- Nanjing University of Chinese Medicine Xianlin Road 138 Nanjing 210023 P. R. China
| | - Hongyu Shen
- Nanjing Medical University Nanjing 210029 P. R. China
| | - Jin‐Hai Tang
- Nanjing University of Chinese Medicine Xianlin Road 138 Nanjing 210023 P. R. China
| |
Collapse
|
30
|
Chen Y, Zhang J, Zhang M, Song Y, Zhang Y, Fan S, Ren S, Fu L, Zhang N, Hui H, Shen X. Baicalein resensitizes tamoxifen-resistant breast cancer cells by reducing aerobic glycolysis and reversing mitochondrial dysfunction via inhibition of hypoxia-inducible factor-1α. Clin Transl Med 2021; 11:e577. [PMID: 34841716 PMCID: PMC8567056 DOI: 10.1002/ctm2.577] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 09/03/2021] [Accepted: 09/06/2021] [Indexed: 12/19/2022] Open
Abstract
Drug resistance is a major hurdle for the effectiveness of tamoxifen (TAM) to provide clinical benefit. Therefore, it is essential to identify a sensitizer that could be used to improve TAM efficacy in treating TAM-resistant breast cancer. Here, we investigated the ability of baicalein to reverse TAM resistance. We found that baicalein increased the efficacy of TAM in inhibiting proliferation and inducing apoptosis of TAM-resistant cells. It also enhanced the TAM-induced growth reduction of resistant cells from NOD/SCID mouse mammary fat pads, without causing obvious systemic toxicity. Analyses using the CellMiner tool and the Kaplan-Meier plotter database showed that HIF-1α expression was inversely correlated with TAM therapeutic response in NCI-60 cancer cells and breast cancer patients. HIF-1α expression was increased in TAM-resistant cells due to an increase in mRNA levels and reduced ubiquitin-mediated degradation. Baicalein reduced HIF-1α expression by promoting its interaction with PHD2 and pVHL, thus facilitating ubiquitin ligase-mediated proteasomal degradation and thereby suppressing the nuclear translocation, binding to the hypoxia-response element, and transcriptional activity of HIF-1α. As a result, baicalein downregulated aerobic glycolysis by restricting glucose uptake, lactate production, ATP generation, lactate/pyruvate ratio and expression of HIF-1α-targeted glycolytic genes, thereby enhancing the antiproliferative efficacy of TAM. Furthermore, baicalein interfered with HIF-1α inhibition of mitochondrial biosynthesis, which increased mitochondrial DNA content and mitochondrial numbers, restored the generation of reactive oxygen species in mitochondria, and thus enhanced the TAM-induced mitochondrial apoptotic pathway. The HIF-1α stabilizer dimethyloxallyl glycine prevented the baicalein-induced downregulation of glycolysis and mitochondrial biosynthesis and reduced the effects of baicalein on reversing TAM resistance. Our results indicate that baicalein is a promising candidate to help overcome TAM resistance by sensitizing resistant cells to TAM-induced growth inhibition and apoptosis. The mechanism underlying the effects of baicalein consists of inhibition of HIF-1α-mediated aerobic glycolysis and mitochondrial dysfunction.
Collapse
Affiliation(s)
- Yan Chen
- The State Key Laboratory of Functions and Applications of Medicinal PlantsGuizhou Medical UniversityGuizhouChina
- The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou ProvinceSchool of Pharmaceutical SciencesGuizhou Medical UniversityGuizhouChina
- The Union Key Laboratory of Guiyang City‐Guizhou Medical UniversitySchool of Pharmaceutical SciencesGuizhou Medical UniversityGuizhouChina
| | - Jingyu Zhang
- The State Key Laboratory of Functions and Applications of Medicinal PlantsGuizhou Medical UniversityGuizhouChina
- The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou ProvinceSchool of Pharmaceutical SciencesGuizhou Medical UniversityGuizhouChina
- The Union Key Laboratory of Guiyang City‐Guizhou Medical UniversitySchool of Pharmaceutical SciencesGuizhou Medical UniversityGuizhouChina
| | - Minqin Zhang
- The State Key Laboratory of Functions and Applications of Medicinal PlantsGuizhou Medical UniversityGuizhouChina
- The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou ProvinceSchool of Pharmaceutical SciencesGuizhou Medical UniversityGuizhouChina
- The Union Key Laboratory of Guiyang City‐Guizhou Medical UniversitySchool of Pharmaceutical SciencesGuizhou Medical UniversityGuizhouChina
| | - Yuxuan Song
- The State Key Laboratory of Functions and Applications of Medicinal PlantsGuizhou Medical UniversityGuizhouChina
- The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou ProvinceSchool of Pharmaceutical SciencesGuizhou Medical UniversityGuizhouChina
- The Union Key Laboratory of Guiyang City‐Guizhou Medical UniversitySchool of Pharmaceutical SciencesGuizhou Medical UniversityGuizhouChina
| | - Yue Zhang
- The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou ProvinceSchool of Pharmaceutical SciencesGuizhou Medical UniversityGuizhouChina
- The Key Laboratory of Optimal Utilization of Natural Medicine ResourcesSchool of Pharmaceutical SciencesGuizhou Medical UniversityGuizhouChina
| | - Shuangqin Fan
- The State Key Laboratory of Functions and Applications of Medicinal PlantsGuizhou Medical UniversityGuizhouChina
- The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou ProvinceSchool of Pharmaceutical SciencesGuizhou Medical UniversityGuizhouChina
- The Key Laboratory of Optimal Utilization of Natural Medicine ResourcesSchool of Pharmaceutical SciencesGuizhou Medical UniversityGuizhouChina
| | - Shuang Ren
- The State Key Laboratory of Functions and Applications of Medicinal PlantsGuizhou Medical UniversityGuizhouChina
- The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou ProvinceSchool of Pharmaceutical SciencesGuizhou Medical UniversityGuizhouChina
- The Union Key Laboratory of Guiyang City‐Guizhou Medical UniversitySchool of Pharmaceutical SciencesGuizhou Medical UniversityGuizhouChina
| | - Lingyun Fu
- The State Key Laboratory of Functions and Applications of Medicinal PlantsGuizhou Medical UniversityGuizhouChina
- The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou ProvinceSchool of Pharmaceutical SciencesGuizhou Medical UniversityGuizhouChina
- The Union Key Laboratory of Guiyang City‐Guizhou Medical UniversitySchool of Pharmaceutical SciencesGuizhou Medical UniversityGuizhouChina
| | - Nenling Zhang
- The State Key Laboratory of Functions and Applications of Medicinal PlantsGuizhou Medical UniversityGuizhouChina
- The Key Laboratory of Optimal Utilization of Natural Medicine ResourcesSchool of Pharmaceutical SciencesGuizhou Medical UniversityGuizhouChina
| | - Hui Hui
- State Key Laboratory of Natural MedicinesJiangsu Key Laboratory of Carcinogenesis and InterventionChina Pharmaceutical UniversityNanjingChina
| | - Xiangchun Shen
- The State Key Laboratory of Functions and Applications of Medicinal PlantsGuizhou Medical UniversityGuizhouChina
- The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou ProvinceSchool of Pharmaceutical SciencesGuizhou Medical UniversityGuizhouChina
- The Union Key Laboratory of Guiyang City‐Guizhou Medical UniversitySchool of Pharmaceutical SciencesGuizhou Medical UniversityGuizhouChina
- The Key Laboratory of Optimal Utilization of Natural Medicine ResourcesSchool of Pharmaceutical SciencesGuizhou Medical UniversityGuizhouChina
| |
Collapse
|