1
|
Braga CB, Perli G, Fonseca R, Grigolo TA, Ionta M, Ornelas C, Pilli RA. Enhanced Synergistic Efficacy Against Breast Cancer Cells Promoted by Co-Encapsulation of Piplartine and Paclitaxel in Acetalated Dextran Nanoparticles. Mol Pharm 2024; 21:5577-5597. [PMID: 39365693 DOI: 10.1021/acs.molpharmaceut.4c00548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2024]
Abstract
Malignant breast tumors constitute the most frequent cancer diagnosis among women. Notwithstanding the progress in treatments, this condition persists as a major public health issue. Paclitaxel (PTX) is a first-line classical chemotherapeutic drug used as a single active pharmaceutical ingredient (API) or in combination therapy for breast cancer (BC) treatment. Adverse effects, poor water solubility, and inevitable susceptibility to drug resistance seriously limit its therapeutic efficacy in the clinic. Piplartine (PPT), an alkaloid extracted from Piper longum L., has been shown to inhibit cancer cell proliferation in several cell lines due to its pro-oxidant activity. However, PPT has low water solubility and bioavailability in vivo, and new strategies should be developed to optimize its use as a chemotherapeutic agent. In this context, the present study aimed to synthesize a series of acetalated dextran nanoparticles (Ac-Dex NPs) encapsulating PPT and PTX to overcome the limitations of PPT and PTX, maximizing their therapeutic efficacy and achieving prolonged and targeted codelivery of these anticancer compounds into BC cells. Biodegradable, pH-responsive, and biocompatible Ac-Dex NPs with diameters of 100-200 nm and spherical morphologies were formulated using a single emulsion method. Selected Ac-Dex NPs containing only PPT or PTX as well as those coloaded with PPT and PTX achieved excellent drug-loading capabilities (PPT, ca. 11-33%; PTX, ca. 2-14%) and high encapsulation efficiencies (PPT, ∼57-98%; PTX, ∼80-97%). Under physiological conditions (pH 7.4), these NPs exhibited excellent colloidal stability and were capable of protecting drug release, while under acidic conditions (pH 5.5) they showed structural collapse, releasing the therapeutics in an extended manner. Cytotoxicity results demonstrated that the encapsulation in Ac-Dex NPs had a positive effect on the activities of both PPT and PTX against the MCF-7 human breast cancer cell line after 48 h of treatment, as well as toward MDA-MB-231 triple-negative BC cells. PPT/PTX@Ac-Dex NPs were significantly more cytotoxic (IC50/PPT = 0.25-1.77 μM and IC50/PTX = 0.07-0.75 μM) and selective (SI = 2.9-6.7) against MCF-7 cells than all the control therapeutic agents: free PPT (IC50 = 4.57 μM; SI = 1.2), free PTX (IC50 = 0.97 μM; SI = 1.0), the single-drug-loaded Ac-Dex NPs, and the physical mixture of both free drugs. All combinations of PPT and PTX resulted in pronounced synergistic antiproliferative effects in MCF-7 cells, with an optimal molar ratio of PPT to PTX of 2.3:1. PPT/PTX-2@Ac-Dex NPs notably promoted apoptosis, cell cycle arrest at the G2/M, accumulation of intracellular reactive oxygen species (ROS), and combined effects from both PPT and PTX on the microtubule network of MCF-7 cells. Overall, the combination of PTX and PPT in pH-responsive Ac-Dex NPs may offer great potential to improve the therapeutic efficacy, overcome the limitations, and provide effective simultaneous delivery of these therapeutics for BC treatment.
Collapse
Affiliation(s)
- Carolyne Brustolin Braga
- Department of Organic Chemistry, Institute of Chemistry, University of Campinas, UNICAMP, P.O. Box 6154, 13083-970, Campinas, São Paulo Brazil
| | - Gabriel Perli
- Department of Organic Chemistry, Institute of Chemistry, University of Campinas, UNICAMP, P.O. Box 6154, 13083-970, Campinas, São Paulo Brazil
- POLYMAT, University of the Basque Country UPV/EHU, Joxe Mari Korta Center, 20018 Donostia-San Sebastián Spain
| | - Rafael Fonseca
- Institute of Biomedical Sciences, Federal University of Alfenas, UNIFAL-MG, 37130-001 Alfenas, Minas Gerais, Brazil
| | - Thiago Augusto Grigolo
- Department of Organic Chemistry, Institute of Chemistry, University of Campinas, UNICAMP, P.O. Box 6154, 13083-970, Campinas, São Paulo Brazil
| | - Marisa Ionta
- Institute of Biomedical Sciences, Federal University of Alfenas, UNIFAL-MG, 37130-001 Alfenas, Minas Gerais, Brazil
| | - Catia Ornelas
- Department of Organic Chemistry, Institute of Chemistry, University of Campinas, UNICAMP, P.O. Box 6154, 13083-970, Campinas, São Paulo Brazil
- R&D Department, ChemistryX, R&D and Consulting Company, 9000 Funchal, Portugal
- R&D Department, Dendriwave, Research & Development Start-Up Company, 9000 Funchal, Portugal
| | - Ronaldo A Pilli
- Department of Organic Chemistry, Institute of Chemistry, University of Campinas, UNICAMP, P.O. Box 6154, 13083-970, Campinas, São Paulo Brazil
| |
Collapse
|
2
|
Zou Y, Wan X, Ding Z, Tang C, Wang C, Chen X. Design, synthesis, and biological studies of nitric oxide-donating piperlongumine derivatives triggered by lysyl oxidase as anti-triple negative breast cancer agents. Fitoterapia 2024; 177:106091. [PMID: 38908760 DOI: 10.1016/j.fitote.2024.106091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 06/18/2024] [Accepted: 06/19/2024] [Indexed: 06/24/2024]
Abstract
Nitric oxide (NO) is an important gas messenger molecule with a wide range of biological functions. High concentration of NO exerts promising antitumor effects and is regarded as one of the hot spots in cancer research, that have limitations in their direct application due to its gaseous state, short half-life (seconds) and high reactivity. Lysyl oxidase (LOX) is a copper-dependent amine oxidase that is responsible for the covalent bonding between collagen and elastin and promotes tumor cell invasion and metastasis. The overexpression of LOX in triple-negative breast cancer (TNBC) makes it an attractive target for TNBC therapy. Herein, novel NO donor prodrug molecules were designed and synthesized based on the naturally derived piperlongumine (PL) skeleton, which can be selectively activated by LOX to release high concentrations of NO and PL derivatives, both of them play a synergistic role in TNBC therapy. Among them, the compound TM-1 selectively released NO in highly invasive TNBC cells (MDA-MB-231), and TM-1 was also confirmed as a potential TNBC cell line inhibitor with an inhibitory concentration of 2.274 μM. Molecular docking results showed that TM-1 had a strong and selective binding affinity with LOX protein.
Collapse
Affiliation(s)
- Yu Zou
- Institute of Pharmaceutical Process, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China.
| | - Xin Wan
- Institute of Pharmaceutical Process, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Zedan Ding
- Institute of Pharmaceutical Process, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Chunyang Tang
- Institute of Pharmaceutical Process, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Chuan Wang
- Institute of Pharmaceutical Process, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Xia Chen
- Institute of Pharmaceutical Process, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China.
| |
Collapse
|
3
|
Baranoski A, Semprebon SC, Biazi BI, Zanetti TA, Corveloni AC, Areal Marques L, Lepri SR, Coatti GC, Mantovani MS. Piperlongumine inhibits antioxidant enzymes, increases ROS levels, induces DNA damage and G2/M cell cycle arrest in breast cell lines. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2024; 87:294-309. [PMID: 38279841 DOI: 10.1080/15287394.2024.2308801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2024]
Abstract
Piperlongumine (PLN) is a biologically active alkaloid/amide derived from Piper longum, with known promising anticancer activity. The aim of this study was to compare the antiproliferative activity of PLN in human breast MCF-7 adenocarcinoma cell line with effects in HB4a normal mammary epithelial non-tumor cell line. The parameters examined were cell growth, viability, reactive oxygen species (ROS) levels and DNA damage, as well as the effects on the modulating targets responsible through regulation of these pathways. PLN increased ROS levels and expression of the SOD1 antioxidant enzyme. PLN inhibited the expression of the antioxidant enzymes catalase, TRx1, and PRx2. The ability of PLN to inhibit antioxidant enzyme expression was associated with the oxidative stress response. PLN induced genotoxicity in both cell lines and upregulated the levels of GADD45A mRNA and p21 protein. The DNA damage response ATR protein was downregulated in both cell lines and contributed to an enhanced PLN genotoxicity. In HB4a cells, Chk1 protein, and mRNA levels were also decreased. In response to elevated ROS levels and DNA damage induction, the cells were arrested at the G2/M phase, probably in an attempt to promote cell survival. Although cell viability was reduced in both cell lines, only HB4a cells underwent apoptotic cell death, whereas other types of cellular death may be involved in MCF-7 cells. Taken together, these data provide insight into the anticancer mechanisms attributed to PLN effects, which acts as an inhibitor of DNA damage response (DDR) proteins and antioxidant enzymes.
Collapse
Affiliation(s)
- Adrivanio Baranoski
- Centro de Ciências Biológicas, Departamento de Biologia Geral, Universidade Estadual de Londrina, Londrina, Brazil
| | - Simone Cristine Semprebon
- Centro de Ciências Biológicas, Departamento de Biologia Geral, Universidade Estadual de Londrina, Londrina, Brazil
| | - Bruna Isabela Biazi
- Centro de Ciências Biológicas, Departamento de Biologia Geral, Universidade Estadual de Londrina, Londrina, Brazil
| | - Thalita Alves Zanetti
- Centro de Ciências Biológicas, Departamento de Biologia Geral, Universidade Estadual de Londrina, Londrina, Brazil
| | - Amanda Cristina Corveloni
- Centro de Ciências Biológicas, Departamento de Biologia Geral, Universidade Estadual de Londrina, Londrina, Brazil
| | - Lilian Areal Marques
- Centro de Ciências Biológicas, Departamento de Biologia Geral, Universidade Estadual de Londrina, Londrina, Brazil
| | - Sandra R Lepri
- Centro de Ciências Biológicas, Departamento de Biologia Geral, Universidade Estadual de Londrina, Londrina, Brazil
| | - Giuliana Castello Coatti
- Centro de Pesquisa Sobre o Genoma Humano e Células Tronco, Universidade de São Paulo, São Paulo, Brazil
| | - Mário Sérgio Mantovani
- Centro de Ciências Biológicas, Departamento de Biologia Geral, Universidade Estadual de Londrina, Londrina, Brazil
| |
Collapse
|
4
|
Li QZ, Chen YY, Liu QP, Feng ZH, Zhang L, Zhang H. Cucurbitacin B suppresses hepatocellular carcinoma progression through inducing DNA damage-dependent cell cycle arrest. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 126:155177. [PMID: 38412667 DOI: 10.1016/j.phymed.2023.155177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 10/15/2023] [Accepted: 10/31/2023] [Indexed: 02/29/2024]
Abstract
BACKGROUND The mortality rate of liver cancer ranks third in the world, and hepatocellular carcinoma (HCC) is a malignant tumor of the digestive tract. Cucurbitacin B (CuB), a natural compound extracted from Cucurbitaceae spp., is the main active component of Chinese patent medicine the Cucurbitacin Tablet, which has been widely used in the treatment of various malignant tumors in clinics, especially HCC. PURPOSE This study explored the role and mechanism of CuB in the suppression of liver cancer progression. METHODS Cell Counting Kit-8 (CCK-8) and colony formation assays were used to detect the inhibitory function of CuB in Huh7, Hep3B, and Hepa1/6 hepatoma cells. Calcein-AM/propidium iodide (PI) staining and lactate dehydrogenase (LDH) measurement assays were performed to determine cell death. Mitochondrial membrane potential (Δψm) was measured, and flow cytometry was performed to evaluate cell apoptosis and cell cycle. Several techniques, such as proteomics, Western blotting (WB), and ribonucleic acid (RNA) interference, were utilized to explore the potential mechanism. The animal experiment was performed to verify the results of in vitro experiments. RESULTS CuB significantly inhibited the growth of Huh7, Hep3B, and Hepa1/6 cells and triggered the cell cycle arrest in G2/M phage without leading to cell death, especially apoptosis. Knockdown of insulin-like growth factor 2 mRNA-binding protein 1 (IGF2BP1), a target of CuB, did not reverse CuB elicited cell cycle arrest. CuB enhanced phosphorylated ataxia telangiectasia mutated (p-ATM) and phosphorylated H2A histone family member X (γ-H2AX) levels. Moreover, CuB increased p53 and p21 levels and decreased cyclin-dependent kinase 1 (CDK1) expression, accompanied by improving phosphorylated checkpoint kinase 1 (p-CHK1) level and suppressing cell division cycle 25C (CDC25C) protein level. Interestingly, these phenomena were partly abolished by a deoxyribonucleic acid (DNA) protector methylproamine (MPA). Animal studies showed that CuB also significantly suppressed tumor growth in BALB/c mice bearing Hepa1/6 cells. In tumor tissues, CuB reduced the expression levels of proliferating cell nuclear antigen (PCNA) and γ-H2AX but did not change the terminal deoxynucleotidyl transferase deoxyuridine triphosphate (dUTP) nick-end labeling (TUNEL) level. CONCLUSION This study demonstrated for the first time that CuB could effectively impede HCC progression by inducing DNA damage-dependent cell cycle arrest without directly triggering cell death, such as necrosis and apoptosis. The effect was achieved through ataxia telangiectasia mutated (ATM)-dependent p53-p21-CDK1 and checkpoint kinase 1 (CHK1)-CDC25C signaling pathways. These findings indicate that CuB may be used as an anti-HCC drug, when the current findings are confirmed by independent studies and after many more clinical phase 1, 2, 3, and 4 testings have been done.
Collapse
Affiliation(s)
- Qi-Zhang Li
- Innovative Drug R&D Center, College of Life Sciences, Huaibei Normal University, Huaibei, Anhui 235000, China
| | - Yu-Ying Chen
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Qiu-Ping Liu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Zhi-Hui Feng
- Innovative Drug R&D Center, College of Life Sciences, Huaibei Normal University, Huaibei, Anhui 235000, China
| | - Lei Zhang
- Innovative Drug R&D Center, College of Life Sciences, Huaibei Normal University, Huaibei, Anhui 235000, China; Department of Pharmaceutical Botany, School of Pharmacy, Naval Medical University, Shanghai 200433, China.
| | - Hong Zhang
- Innovative Drug R&D Center, College of Life Sciences, Huaibei Normal University, Huaibei, Anhui 235000, China.
| |
Collapse
|
5
|
Cui Y, Chen XB, Liu Y, Wang Q, Tang J, Chen MJ. Piperlongumine inhibits esophageal squamous cell carcinoma in vitro and in vivo by triggering NRF2/ROS/TXNIP/NLRP3-dependent pyroptosis. Chem Biol Interact 2024; 390:110875. [PMID: 38242274 DOI: 10.1016/j.cbi.2024.110875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/03/2024] [Accepted: 01/15/2024] [Indexed: 01/21/2024]
Abstract
Pyroptosis, a type of programmed cell death, is characterized by cell swelling with bubbles, and the release of inflammatory cell cytokines. Piperlongumine (PL) is a natural bioactive product extracted from Piper longum L, which can effectively exert anti-tumor activities in cancer. However, the effects and the exact molecular mechanisms of PL in esophageal squamous cell carcinoma (ESCC) remain unclear. This research aimed to investigate the role and mechanism of PL on ESCC in vitro and in vivo. In vitro, the MTT results showed that the IC50 of PL in ESCC cells was 28.55 μM. Moreover, PL significantly suppressed malignant behavior by promoting pyroptosis of ESCC cells by inhibiting proliferation, migration, invasion, and colony formation of KYSE-30 cells, up-regulating expressions of ASC, Cleaved-caspase-1, NLRP3, and GSDMD, while inducing the generation of ROS. Further, NRF2 knockdown promoted TXNIP expression, while overexpression of NRF2 inhibited TXNIP expression. However, after PL treatment, this effect was reversed. In addition, PL significantly inhibited the malignant behavior of ESCC cells while the inhibitory effects were reversed by DMF (NRF2 activator) or NAC (ROS eliminator) treatment. Finally, PL markedly increased expressions of ASC, Cleaved-caspase-1, NLRP3, GSDMD, and the generation of ROS while the effects were reversed by TXNIP knockdown or RUS (TXNIP inhibitor) treatment. In vivo, the KYSE-30 xenograft model confirmed that PL inhibited the growth of ESCC transplanted tumors by promoting cell pyroptosis. In conclusion, the results suggested that PL inhibited the malignant behavior of ESCC cells in vitro and tumorigenesis of ESCC in vivo by inhibiting NRF2 and promoting ROS-TXNIP-NLRP3-mediated pyroptosis.
Collapse
Affiliation(s)
- Yue Cui
- Department of Thoracic Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, 650032, Yunnan, China
| | - Xiao-Bo Chen
- Department of Thoracic Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, 650032, Yunnan, China
| | - Ying Liu
- Pathology Department, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital), Kunming, 650500, Yunnan, China
| | - Qian Wang
- Department of Pathology and Pathophysiology, Kunming Medical University, Kunming, 650500, Yunnan, China
| | - Jie Tang
- Department of Thoracic Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, 650032, Yunnan, China
| | - Man-Jun Chen
- Department of Thoracic Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, 650032, Yunnan, China.
| |
Collapse
|
6
|
Ibrahim FAR, Hussein NA, Soliman AYM, Shalaby TI, Rashad MM, Matar NA, El-Sewedy TS. Chitosan-loaded piperlongumine nanoparticles and kaempferol enhance the anti-cancer action of doxorubicin in targeting of Ehrlich solid adenocarcinoma: in vivo and in silico modeling study. Med Oncol 2024; 41:61. [PMID: 38253759 PMCID: PMC10803394 DOI: 10.1007/s12032-023-02282-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 12/06/2023] [Indexed: 01/24/2024]
Abstract
Doxorubicin is a chemotherapeutic drug that generates free radical-induced toxicities. Natural agents are used to potentiate or ameliorate the toxicity of chemotherapy. None of the studies investigating whether antioxidants or prooxidants should be used with chemotherapy have addressed their efficacy in the same study. Therefore, the aim of this study was to investigate the potential synergy between doxorubicin and two natural rarely in vivo studied anticancer agents; the antioxidant "Kaempferol" and prooxidant "Piperlongumine" in Ehrlich tumor mice model. 77 albino mice were divided into 11 groups; Ehrlich ascites carcinoma cells were injected intramuscularly to develop solid tumors. After 14 days, intratumoral injections of single or combinations of free or Chitosan nanoparticles loaded with doxorubicin, Piperlongumine, and Kaempferol were performed. Tumor Characterization of nanoparticles was measured, tumors were histopathologically examined and evaluation of expression for cancer-related genes by real-time PCR. In silico molecular docking was performed to uncover potential novel targets for Piperlongumine and Kaempferol. Despite receiving half of the overall dose compared to the free drugs, the combined doxorubicin/ piperlongumine-chitosan nanoparticles treatment was the most efficient in reducing tumor volume; down-regulating Cyclin D1, and BCL2; as well as the Beclin-1, and Cyclophilin A genes modulating growth, apoptosis, autophagy, and metastasis, respectively; up-regulating the Glutathione peroxidase expression as a defense mechanism protecting from oxidative damage. When combined with doxorubicin, Kaempferol and Piperlongumine were effective against Ehrlich solid tumors. However, the combination with the Piperlongumine-loaded chitosan nanoparticles significantly enhanced its anticancer effect compared to the Kaempferol or the same free compounds.
Collapse
Affiliation(s)
- Fawziya A R Ibrahim
- Department of Applied Medical Chemistry, Medical Research Institute, Alexandria University, 165 El-Horreya Avenue, El-Hadara, Alexandria, Egypt
| | - Neveen A Hussein
- Department of Applied Medical Chemistry, Medical Research Institute, Alexandria University, 165 El-Horreya Avenue, El-Hadara, Alexandria, Egypt
| | - Aisha Y M Soliman
- Faculty of Applied Medical Sciences, Pharos University, Alexandria, Egypt
| | - Thanaa I Shalaby
- Department of Medical Biophysics, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Mona M Rashad
- Department of Applied Medical Chemistry, Medical Research Institute, Alexandria University, 165 El-Horreya Avenue, El-Hadara, Alexandria, Egypt
| | - Noura A Matar
- Department of Histochemistry and Cell Biology Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Tarek S El-Sewedy
- Department of Applied Medical Chemistry, Medical Research Institute, Alexandria University, 165 El-Horreya Avenue, El-Hadara, Alexandria, Egypt.
| |
Collapse
|
7
|
Rawat L, Balan M, Sasamoto Y, Sabarwal A, Pal S. A novel combination therapy with Cabozantinib and Honokiol effectively inhibits c-Met-Nrf2-induced renal tumor growth through increased oxidative stress. Redox Biol 2023; 68:102945. [PMID: 37898101 PMCID: PMC10628632 DOI: 10.1016/j.redox.2023.102945] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 10/17/2023] [Accepted: 10/19/2023] [Indexed: 10/30/2023] Open
Abstract
Receptor tyrosine kinase (RTK), c-Met, is overexpressed and hyper active in renal cell carcinoma (RCC). Most of the therapeutic agents mediate cancer cell death through increased oxidative stress. Induction of c-Met in renal cancer cells promotes the activation of redox-sensitive transcription factor Nrf2 and cytoprotective heme oxygenase-1 (HO-1), which can mediate therapeutic resistance against oxidative stress. c-Met/RTK inhibitor, Cabozantinib, has been approved for the treatment of advanced RCC. However, acquired drug resistance is a major hurdle in the clinical use of cabozantinib. Honokiol, a naturally occurring phenolic compound, has a great potential to downregulate c-Met-induced pathways. In this study, we found that a novel combination treatment with cabozantinib + Honokiol inhibits the growth of renal cancer cells in a synergistic manner through increased production of reactive oxygen species (ROS); and it significantly facilitates apoptosis-and autophagy-mediated cancer cell death. Activation of c-Met can induce Rubicon (a negative regulator of autophagy) and p62 (an autophagy adaptor protein), which can stabilize Nrf2. By utilizing OncoDB online database, we found a positive correlation among c-Met, Rubicon, p62 and Nrf2 in renal cancer. Interestingly, the combination treatment significantly downregulated Rubicon, p62 and Nrf2 in RCC cells. In a tumor xenograft model, this combination treatment markedly inhibited renal tumor growth in vivo; and it is associated with decreased expression of Rubicon, p62, HO-1 and vessel density in the tumor tissues. Together, cabozantinib + Honokiol combination can significantly inhibit c-Met-induced and Nrf2-mediated anti-oxidant pathway in renal cancer cells to promote increased oxidative stress and tumor cell death.
Collapse
Affiliation(s)
- Laxminarayan Rawat
- Division of Nephrology, Boston Children's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Murugabaskar Balan
- Division of Nephrology, Boston Children's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Yuzuru Sasamoto
- Division of Nephrology, Boston Children's Hospital, Boston, MA, USA; Division of Genetics, Brigham and Women's Hospital, MA, USA; Department of Ophthalmology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Akash Sabarwal
- Division of Nephrology, Boston Children's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Soumitro Pal
- Division of Nephrology, Boston Children's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
8
|
Luo A, Liu H, Huang C. KLF5-induced miR-487a augments the progression of osteosarcoma cells by targeting NKX3-1 in vitro. Oncol Lett 2022; 24:258. [PMID: 35765275 PMCID: PMC9219018 DOI: 10.3892/ol.2022.13378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 05/10/2022] [Indexed: 11/19/2022] Open
Abstract
MicroRNAs (miRNAs or miRs) are involved in the development and progression of numerous types of cancer however their role in osteosarcoma has not been fully clarified. The present study aimed to use high-throughput bioinformatics analysis as well as in vitro experiments to investigate the potential role of transcription factors, miRNAs and their targets in the progression of osteosarcoma. miRNA data and clinical information of osteosarcoma were obtained from Gene Expression Omnibus database to investigate differentially expressed miRNAs. The expression of miRNAs/mRNAs in osteosarcoma cell lines was detected via reverse transcription-quantitative (RT-qPCR). MTT and colony formation assay were used to determine cell proliferation ability and transwell assay was used to observe cell invasion and migration ability. A total of four prediction algorithms for miRNA-mRNA interactions were used to determine potential target genes of miR-487a. Predicted target genes were used to intersect with overlapped differentially expressed genes (DEGs) from GSE12865 and The Cancer Genome Atlas osteosarcoma datasets. Expression of NK3 homeobox 1 (NKX3-1) was analyzed by western blotting and RT-qPCR assay. Dual luciferase assay was conducted to verify whether NKX3-1 was a direct target of miR-487a. The regulatory association between Kruppel-like factor 5 (KLF5) and miR-487a was detected using chromatin immunoprecipitation assay. miR-487a was upregulated in osteosarcoma tissue (GSE65071 and GSE28423) and cell lines (HOS and MG63). miR-487a mimic promoted proliferation, migration and invasion of osteosarcoma cells. NKX3-1 was a direct target of miR-487a and transfection of NKX3-1 plasmid reversed the effect of miR-487a on proliferation, migration and invasion of osteosarcoma cells. KLF5 enhanced miR-487a expression by directly binding to its promoter region and miR-487a inhibitor reversed the effect of KLF5 on proliferation, migration and invasion of osteosarcoma cells. The present results indicated that KLF5/miR-487a signaling promoted invasion and metastasis of osteosarcoma cells via targeting NKX3-1.
Collapse
Affiliation(s)
- Anyu Luo
- Department of Orthopedics, Hanyang Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei 430051, P.R. China
| | - Hanlin Liu
- Department of Orthopedics, Hanyang Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei 430051, P.R. China
| | - Chen Huang
- Department of Orthopedics, Hanyang Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei 430051, P.R. China
| |
Collapse
|