1
|
Mendes M, Morais AS, Carlos A, Sousa JJ, Pais AC, Mihăilă SM, Vitorino C. Organ-on-a-chip: Quo vademus? Applications and regulatory status. Colloids Surf B Biointerfaces 2025; 249:114507. [PMID: 39826309 DOI: 10.1016/j.colsurfb.2025.114507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 12/15/2024] [Accepted: 01/07/2025] [Indexed: 01/22/2025]
Abstract
Organ-on-a-chip systems, also referred to as microphysiological systems (MPS), represent an advance in bioengineering microsystems designed to mimic key aspects of human organ physiology and function. Drawing inspiration from the intricate and hierarchical architecture of the human body, these innovative platforms have emerged as invaluable in vitro tools with wide-ranging applications in drug discovery and development, as well as in enhancing our understanding of disease physiology. The facility to replicate human tissues within physiologically relevant three-dimensional multicellular environments empowers organ-on-a-chip systems with versatility throughout different stages of the drug development process. Moreover, these systems can be tailored to mimic specific disease states, facilitating the investigation of disease progression, drug responses, and potential therapeutic interventions. In particular, they can demonstrate, in early-phase pre-clinical studies, the safety and toxicity profiles of potential therapeutic compounds. Furthermore, they play a pivotal role in the in vitro evaluation of drug efficacy and the modeling of human diseases. One of the most promising prospects of organ-on-a-chip technology is to simulate the pathophysiology of specific subpopulations and even individual patients, thereby being used in personalized medicine. By mimicking the physiological responses of diverse patient groups, these systems hold the promise of revolutionizing therapeutic strategies, guiding them towards tailored intervention to the unique needs of each patient. This review presents the development status and evolution of microfluidic platforms that have facilitated the transition from cells to organs recreated on chips and some of the opportunities and applications offered by organ-on-a-chip technology. Additionally, the current potential and future perspectives of these microphysiological systems and the challenges this technology still faces are discussed.
Collapse
Affiliation(s)
- Maria Mendes
- Faculty of Pharmacy, University of Coimbra, Coimbra 3000-548, Portugal; Coimbra Chemistry Centre, Institute of Molecular Sciences - IMS, Department of Chemistry, University of Coimbra, Coimbra 3000-535, Portugal
| | - Ana Sofia Morais
- Faculty of Pharmacy, University of Coimbra, Coimbra 3000-548, Portugal
| | - Ana Carlos
- Faculty of Pharmacy, University of Coimbra, Coimbra 3000-548, Portugal
| | - João José Sousa
- Faculty of Pharmacy, University of Coimbra, Coimbra 3000-548, Portugal; Coimbra Chemistry Centre, Institute of Molecular Sciences - IMS, Department of Chemistry, University of Coimbra, Coimbra 3000-535, Portugal
| | - Alberto Canelas Pais
- Coimbra Chemistry Centre, Institute of Molecular Sciences - IMS, Department of Chemistry, University of Coimbra, Coimbra 3000-535, Portugal
| | - Silvia M Mihăilă
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
| | - Carla Vitorino
- Faculty of Pharmacy, University of Coimbra, Coimbra 3000-548, Portugal; Coimbra Chemistry Centre, Institute of Molecular Sciences - IMS, Department of Chemistry, University of Coimbra, Coimbra 3000-535, Portugal.
| |
Collapse
|
2
|
Wang X, Tan X, Zhang T, Xu S, Zeng Y, Xu A, Li X, Zhang G, Jiang Y, Jiang H, Fan J, Bo X, Fan H, Zhou Y. Modeling diabetic cardiomyopathy using human cardiac organoids: Effects of high glucose and lipid conditions. Chem Biol Interact 2025; 411:111421. [PMID: 39984109 DOI: 10.1016/j.cbi.2025.111421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 01/02/2025] [Accepted: 02/06/2025] [Indexed: 02/23/2025]
Abstract
Diabetic cardiomyopathy (DCM) is a complex metabolic disorder resulting from chronic hyperglycemia and lipid toxicity, which leads to cardiac dysfunction, fibrosis, inflammation, and mitochondrial impairment. Traditional two-dimensional (2D) cell cultures and animal models have limitations in replicating human cardiac physiology and pathophysiology. In this study, we successfully developed a three-dimensional (3D) model of DCM using cardiac organoids generated from human induced pluripotent stem cells (hiPSCs). These organoids were treated with varying concentrations of glucose and sodium palmitate to mimic the high-glucose and high-lipid environment associated with diabetes. At lower concentrations, glucose and sodium palmitate enhanced cell viability, while higher concentrations induced significant cardiotoxic effects, including apoptosis, oxidative stress, and mitochondrial dysfunction. The cardiac organoids also exhibited increased expression of cardiac injury markers, fibrosis-related genes, and inflammatory cytokines under high-glucose and high-lipid conditions. Treatment with metformin, a widely used antidiabetic drug, mitigated these adverse effects, indicating the model's potential for drug testing and evaluation. Our findings demonstrate that this human-derived 3D cardiac organoid model provides a more physiologically relevant platform for studying DCM and can effectively complement traditional models. This model holds promise for advancing the understanding of diabetic heart disease and for assessing the efficacy of potential therapeutic interventions.
Collapse
Affiliation(s)
- Xiangyu Wang
- Department of Cardiology, The Fourth Affiliated Hospital of Soochow University, Suzhou Dushu Lake Hospital, Medical Center of Soochow University, Suzhou, 215000, China; Institute for Hypertension, Soochow University, Suzhou, 215000, China
| | - Xin Tan
- Department of Cardiology, The Fourth Affiliated Hospital of Soochow University, Suzhou Dushu Lake Hospital, Medical Center of Soochow University, Suzhou, 215000, China; Institute for Hypertension, Soochow University, Suzhou, 215000, China
| | - Ting Zhang
- Department of Cardiology, The Fourth Affiliated Hospital of Soochow University, Suzhou Dushu Lake Hospital, Medical Center of Soochow University, Suzhou, 215000, China; Institute for Hypertension, Soochow University, Suzhou, 215000, China; Department of Cardiology, The Second People's Hospital of Hefei, Hefei Hospital Affiliated to Ahhui Medical University, Hefei, 230011, China
| | - Shuai Xu
- Department of Cardiology, The Fourth Affiliated Hospital of Soochow University, Suzhou Dushu Lake Hospital, Medical Center of Soochow University, Suzhou, 215000, China; Institute for Hypertension, Soochow University, Suzhou, 215000, China
| | - Yiyao Zeng
- Department of Cardiology, The Fourth Affiliated Hospital of Soochow University, Suzhou Dushu Lake Hospital, Medical Center of Soochow University, Suzhou, 215000, China; Institute for Hypertension, Soochow University, Suzhou, 215000, China
| | - Anchen Xu
- Department of Cardiology, The Fourth Affiliated Hospital of Soochow University, Suzhou Dushu Lake Hospital, Medical Center of Soochow University, Suzhou, 215000, China; Institute for Hypertension, Soochow University, Suzhou, 215000, China
| | - Xian Li
- Department of Cardiology, The Fourth Affiliated Hospital of Soochow University, Suzhou Dushu Lake Hospital, Medical Center of Soochow University, Suzhou, 215000, China; Institute for Hypertension, Soochow University, Suzhou, 215000, China
| | - Ge Zhang
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yufeng Jiang
- Department of Cardiology, The Fourth Affiliated Hospital of Soochow University, Suzhou Dushu Lake Hospital, Medical Center of Soochow University, Suzhou, 215000, China; Institute for Hypertension, Soochow University, Suzhou, 215000, China
| | - Hezi Jiang
- Department of Cardiology, The Fourth Affiliated Hospital of Soochow University, Suzhou Dushu Lake Hospital, Medical Center of Soochow University, Suzhou, 215000, China; Institute for Hypertension, Soochow University, Suzhou, 215000, China
| | - Jili Fan
- Department of Cardiovascular Disease, Taihe County People's Hospital, Fuyang, 236600, China
| | - Xiaohong Bo
- Department of Cardiovascular Disease, Taihe County People's Hospital, Fuyang, 236600, China
| | - Huimin Fan
- Department of Cardiology, The Fourth Affiliated Hospital of Soochow University, Suzhou Dushu Lake Hospital, Medical Center of Soochow University, Suzhou, 215000, China; Center of Translational Medicine and Clinical Laboratory, The Fourth Affiliated Hospital to Soochow University, Suzhou Dushu Lake Hospital, Suzhou, 215028, China.
| | - Yafeng Zhou
- Department of Cardiology, The Fourth Affiliated Hospital of Soochow University, Suzhou Dushu Lake Hospital, Medical Center of Soochow University, Suzhou, 215000, China; Institute for Hypertension, Soochow University, Suzhou, 215000, China.
| |
Collapse
|
3
|
Xia X, Hu M, Zhou W, Jin Y, Yao X. Engineering cardiology with miniature hearts. Mater Today Bio 2025; 31:101505. [PMID: 39911371 PMCID: PMC11795835 DOI: 10.1016/j.mtbio.2025.101505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/28/2024] [Accepted: 01/18/2025] [Indexed: 02/07/2025] Open
Abstract
Cardiac organoids offer sophisticated 3D structures that emulate key aspects of human heart development and function. This review traces the evolution of cardiac organoid technology, from early stem cell differentiation protocols to advanced bioengineering approaches. We discuss the methodologies for creating cardiac organoids, including self-organization techniques, biomaterial-based scaffolds, 3D bioprinting, and organ-on-chip platforms, which have significantly enhanced the structural complexity and physiological relevance of in vitro cardiac models. We examine their applications in fundamental research and medical innovations, highlighting their potential to transform our understanding of cardiac biology and pathology. The integration of multiple cell types, vascularization strategies, and maturation protocols has led to more faithful representations of the adult human heart. However, challenges remain in achieving full functional maturity and scalability. We critically assess the current limitations and outline future directions for advancing cardiac organoid technology. By providing a comprehensive analysis of the field, this review aims to catalyze further innovation in cardiac tissue engineering and facilitate its translation to clinical applications.
Collapse
Affiliation(s)
- Xiaojun Xia
- Department of Cardiology, Center of Regenerative and Aging Medicine, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China
| | - Miner Hu
- Department of Cardiology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, 310000, China
| | - Wenyan Zhou
- School of Medicine, Taizhou University, Taizhou, Zhejiang, 318000, China
| | - Yunpeng Jin
- Department of Cardiology, Center of Regenerative and Aging Medicine, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China
| | - Xudong Yao
- Department of Cardiology, Center of Regenerative and Aging Medicine, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
| |
Collapse
|
4
|
Huang Z, Jia K, Tan Y, Yu Y, Xiao W, Zhou X, Yi J, Zhang C. Advances in cardiac organoid research: implications for cardiovascular disease treatment. Cardiovasc Diabetol 2025; 24:25. [PMID: 39827092 PMCID: PMC11743075 DOI: 10.1186/s12933-025-02598-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 01/13/2025] [Indexed: 01/22/2025] Open
Abstract
Globally, cardiovascular diseases remain among the leading causes of mortality, highlighting the urgent need for innovative research models. Consequently, the development of accurate models that simulate cardiac function holds significant scientific and clinical value for both disease research and therapeutic interventions. Cardiac organoids, which are three-dimensional structures derived from the induced differentiation of stem cells, are particularly promising. These organoids not only replicate the autonomous beating and essential electrophysiological properties of the heart but are also widely employed in studies related to cardiac diseases, drug efficacy testing, and regenerative medicine. This review comprehensively surveys the various fabrication techniques used to create cardiac organoids and their diverse applications in modeling a range of cardiac diseases. We emphasize the role of advanced technologies in enhancing the maturation and functionality of cardiac cells, ensuring that these models closely resemble native cardiac tissue. Furthermore, we discuss monitoring techniques and evaluation parameters critical for assessing the performance of cardiac organoids, considering the complex interactions within multi-organ systems. This approach is vital for enhancing precision and efficiency in drug development, allowing for more effective therapeutic strategies. Ultimately, this review aims to provide a thorough and innovative perspective on both fundamental research and clinical treatment of cardiovascular diseases, offering insights that could pave the way for future advancements in understanding and addressing these prevalent health challenges.
Collapse
Affiliation(s)
- Ziteng Huang
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Keran Jia
- Department of Medical Cell Biology and Genetics, School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Yadan Tan
- Department of Medical Cell Biology and Genetics, School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Yang Yu
- Department of Cardiology, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Wudian Xiao
- Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Ministry of Education, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Xiangyu Zhou
- Department of Thyroid Surgery, The Affiliated Hospital, Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Ministry of Education, Southwest Medical University, Luzhou, 646000, Sichuan, China.
| | - Jingyan Yi
- Department of Medical Cell Biology and Genetics, School of Basic Medical Sciences, Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Ministry of Education, Southwest Medical University, Luzhou, 646000, Sichuan, China.
| | - Chunxiang Zhang
- Department of Cardiology, The Affiliated Hospital, Key Laboratory of Medical Electrophysiology, Ministry of Education, Institute of Cardiovascular Research, Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Ministry of Education, Southwest Medical University, Luzhou, 646000, Sichuan, China.
| |
Collapse
|
5
|
Jang J, Jung H, Jeong J, Jeon J, Lee K, Jang HR, Han JW, Lee J. Modeling doxorubicin-induced-cardiotoxicity through breast cancer patient specific iPSC-derived heart organoid. Heliyon 2024; 10:e38714. [PMID: 39640743 PMCID: PMC11620051 DOI: 10.1016/j.heliyon.2024.e38714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 09/26/2024] [Accepted: 09/27/2024] [Indexed: 12/07/2024] Open
Abstract
Heart organoid (HO) technology has successfully overcome the limitations of two-dimensional (2D) disease modeling and drug testing, thereby emerging as a valuable tool in drug discovery for assessing toxicity and efficacy. However, its ability to distinguish drug responses among individuals remain unclear, which is crucial for developing predictive models. We addressed this gap by comparing human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) with human induced pluripotent stem cell-derived heart organoids (hiPSC-HOs) in the context of doxorubicin-induced cardiotoxicity (DIC). For this study, we utilized hiPSCs generated from breast cancer patients who had previously been treated with doxorubicin. By comparing groups with and without DIC, we examined various parameters, including cell viability, mRNA expression, protein expression and electrophysiological variations. The results of our analysis revealed significant differences between these groups, providing insights into hiPSC-HOs as a potential platform for testing differences in drug responses among patients.
Collapse
Affiliation(s)
- Jiye Jang
- Department of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon, 16419, Republic of Korea
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
- Epigenome Dynamics Control Research Center (EDCRC), School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Hyewon Jung
- Department of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon, 16419, Republic of Korea
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
- Epigenome Dynamics Control Research Center (EDCRC), School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Jaekyun Jeong
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
- Epigenome Dynamics Control Research Center (EDCRC), School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Junseok Jeon
- Division of Nephrology, Department of Medicine, Cell and Gene Therapy Institute, Samsung Medical Center, Sungkyunkwan University, Seoul, Republic of Korea
| | - Kyungho Lee
- Division of Nephrology, Department of Medicine, Cell and Gene Therapy Institute, Samsung Medical Center, Sungkyunkwan University, Seoul, Republic of Korea
| | - Hye Ryoun Jang
- Division of Nephrology, Department of Medicine, Cell and Gene Therapy Institute, Samsung Medical Center, Sungkyunkwan University, Seoul, Republic of Korea
| | - Jeung-Whan Han
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
- Epigenome Dynamics Control Research Center (EDCRC), School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Jaecheol Lee
- Department of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon, 16419, Republic of Korea
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
- Epigenome Dynamics Control Research Center (EDCRC), School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
- Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon, 16419, Republic of Korea
- Department of Biohealth Regulatory Science, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| |
Collapse
|
6
|
Du X, Jia H, Chang Y, Zhao Y, Song J. Progress of organoid platform in cardiovascular research. Bioact Mater 2024; 40:88-103. [PMID: 38962658 PMCID: PMC11220467 DOI: 10.1016/j.bioactmat.2024.05.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/28/2024] [Accepted: 05/28/2024] [Indexed: 07/05/2024] Open
Abstract
Cardiovascular disease is a significant cause of death in humans. Various models are necessary for the study of cardiovascular diseases, but once cellular and animal models have some defects, such as insufficient fidelity. As a new technology, organoid has certain advantages and has been used in many applications in the study of cardiovascular diseases. This article aims to summarize the application of organoid platforms in cardiovascular diseases, including organoid construction schemes, modeling, and application of cardiovascular organoids. Advances in cardiovascular organoid research have provided many models for different cardiovascular diseases in a variety of areas, including myocardium, blood vessels, and valves. Physiological and pathological models of different diseases, drug research models, and methods for evaluating and promoting the maturation of different kinds of organ tissues are provided for various cardiovascular diseases, including cardiomyopathy, myocardial infarction, and atherosclerosis. This article provides a comprehensive overview of the latest research progress in cardiovascular organ tissues, including construction protocols for cardiovascular organoid tissues and their evaluation system, different types of disease models, and applications of cardiovascular organoid models in various studies. The problems and possible solutions in organoid development are summarized.
Collapse
Affiliation(s)
- Xingchao Du
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, National Centre for Cardiovascular Disease, Department of Cardiac Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Science, PUMC, 167 Beilishi Road, Xicheng District, Beijing, 100037, China
| | - Hao Jia
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, National Centre for Cardiovascular Disease, Department of Cardiac Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Science, PUMC, 167 Beilishi Road, Xicheng District, Beijing, 100037, China
| | - Yuan Chang
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, National Centre for Cardiovascular Disease, Department of Cardiac Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Science, PUMC, 167 Beilishi Road, Xicheng District, Beijing, 100037, China
| | - Yiqi Zhao
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, National Centre for Cardiovascular Disease, Department of Cardiac Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Science, PUMC, 167 Beilishi Road, Xicheng District, Beijing, 100037, China
| | - Jiangping Song
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, National Centre for Cardiovascular Disease, Department of Cardiac Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Science, PUMC, 167 Beilishi Road, Xicheng District, Beijing, 100037, China
| |
Collapse
|
7
|
Yang H, Niu S, Guo M, Xue Y. Applications of 3D organoids in toxicological studies: a comprehensive analysis based on bibliometrics and advances in toxicological mechanisms. Arch Toxicol 2024; 98:2309-2330. [PMID: 38806717 DOI: 10.1007/s00204-024-03777-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 04/29/2024] [Indexed: 05/30/2024]
Abstract
A mechanism exploration is an important part of toxicological studies. However, traditional cell and animal models can no longer meet the current needs for in-depth studies of toxicological mechanisms. The three-dimensional (3D) organoid derived from human embryonic stem cells (hESC) or induced pluripotent stem cells (hiPSC) is an ideal experimental model for the study of toxicological effects and mechanisms, which further recapitulates the human tissue microenvironment and provides a reliable method for studying complex cell-cell interactions. This article provides a comprehensive overview of the state of the 3D organoid technology in toxicological studies, including a bibliometric analysis of the existing literature and an exploration of the latest advances in toxicological mechanisms. The use of 3D organoids in toxicology research is growing rapidly, with applications in disease modeling, organ-on-chips, and drug toxicity screening being emphasized, but academic communications among countries/regions, institutions, and research scholars need to be further strengthened. Attempts to study the toxicological mechanisms of exogenous chemicals such as heavy metals, nanoparticles, drugs and organic pollutants are also increasing. It can be expected that 3D organoids can be better applied to the safety evaluation of exogenous chemicals by establishing a standardized methodology.
Collapse
Affiliation(s)
- Haitao Yang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Shuyan Niu
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Menghao Guo
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Yuying Xue
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China.
| |
Collapse
|
8
|
Wen Y, Yang H, Hong Y. Transcriptomic Approaches to Cardiomyocyte-Biomaterial Interactions: A Review. ACS Biomater Sci Eng 2024; 10:4175-4194. [PMID: 38934720 DOI: 10.1021/acsbiomaterials.4c00303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
Biomaterials, essential for supporting, enhancing, and repairing damaged tissues, play a critical role in various medical applications. This Review focuses on the interaction of biomaterials and cardiomyocytes, emphasizing the unique significance of transcriptomic approaches in understanding their interactions, which are pivotal in cardiac bioengineering and regenerative medicine. Transcriptomic approaches serve as powerful tools to investigate how cardiomyocytes respond to biomaterials, shedding light on the gene expression patterns, regulatory pathways, and cellular processes involved in these interactions. Emerging technologies such as bulk RNA-seq, single-cell RNA-seq, single-nucleus RNA-seq, and spatial transcriptomics offer promising avenues for more precise and in-depth investigations. Longitudinal studies, pathway analyses, and machine learning techniques further improve the ability to explore the complex regulatory mechanisms involved. This review also discusses the challenges and opportunities of utilizing transcriptomic techniques in cardiomyocyte-biomaterial research. Although there are ongoing challenges such as costs, cell size limitation, sample differences, and complex analytical process, there exist exciting prospects in comprehensive gene expression analyses, biomaterial design, cardiac disease treatment, and drug testing. These multimodal methodologies have the capacity to deepen our understanding of the intricate interaction network between cardiomyocytes and biomaterials, potentially revolutionizing cardiac research with the aim of promoting heart health, and they are also promising for studying interactions between biomaterials and other cell types.
Collapse
Affiliation(s)
- Yufeng Wen
- Department of Bioengineering, University of Texas at Arlington, Arlington, Texas 76019, United States
| | - Huaxiao Yang
- Department of Biomedical Engineering, University of North Texas, Denton, Texas 76207, United States
| | - Yi Hong
- Department of Bioengineering, University of Texas at Arlington, Arlington, Texas 76019, United States
| |
Collapse
|
9
|
Wu X, Chen Y, Kreutz A, Silver B, Tokar EJ. Pluripotent stem cells for target organ developmental toxicity testing. Toxicol Sci 2024; 199:163-171. [PMID: 38547390 PMCID: PMC11131012 DOI: 10.1093/toxsci/kfae037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024] Open
Abstract
Prenatal developmental toxicity research focuses on understanding the potential adverse effects of environmental agents, drugs, and chemicals on the development of embryos and fetuses. Traditional methods involve animal testing, but ethical concerns and the need for human-relevant models have prompted the exploration of alternatives. Pluripotent stem cells (PSCs) are versatile cells with the unique ability to differentiate into any cell type, serving as a foundational tool for studying human development. Two-dimensional (2D) PSC models are often chosen for their ease of use and reproducibility for high-throughput screening. However, they lack the complexity of an in vivo environment. Alternatively, three-dimensional (3D) PSC models, such as organoids, offer tissue architecture and intercellular communication more reminiscent of in vivo conditions. However, they are complicated to produce and analyze, usually requiring advanced and expensive techniques. This review discusses recent advances in the use of human PSCs differentiated into brain and heart lineages and emerging tools and methods that can be combined with PSCs to help address important scientific questions in the area of developmental toxicology. These advancements and new approach methods align with the push for more relevant and predictive developmental toxicity assessment, combining innovative techniques with organoid models to advance regulatory decision-making.
Collapse
Affiliation(s)
- Xian Wu
- Mechanistic Toxicology Branch, Division of Translational Toxicology, NIEHS, Research Triangle Park, North Carolina 27709, USA
- Department of Pharmacology and Toxicology, Brody School of Medicine, East Carolina University, Greenville, North Carolina 27834, USA
| | - Yichang Chen
- Mechanistic Toxicology Branch, Division of Translational Toxicology, NIEHS, Research Triangle Park, North Carolina 27709, USA
| | - Anna Kreutz
- Mechanistic Toxicology Branch, Division of Translational Toxicology, NIEHS, Research Triangle Park, North Carolina 27709, USA
- Inotiv, Research Triangle Park, North Carolina 27560, USA
| | - Brian Silver
- Mechanistic Toxicology Branch, Division of Translational Toxicology, NIEHS, Research Triangle Park, North Carolina 27709, USA
| | - Erik J Tokar
- Mechanistic Toxicology Branch, Division of Translational Toxicology, NIEHS, Research Triangle Park, North Carolina 27709, USA
| |
Collapse
|
10
|
Song SS, Park HJ, Kim YK, Kang SW. Revolutionizing biomedical research: The imperative need for heart-kidney-connected organoids. APL Bioeng 2024; 8:010902. [PMID: 38420624 PMCID: PMC10901547 DOI: 10.1063/5.0190840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 02/06/2024] [Indexed: 03/02/2024] Open
Abstract
Organoids significantly advanced our comprehension of organ development, function, and disease modeling. This Perspective underscores the potential of heart-kidney-connected organoids in understanding the intricate relationship between these vital organs, notably the cardiorenal syndrome, where dysfunction in one organ can negatively impact the other. Conventional models fall short in replicating this complexity, necessitating an integrated approach. By co-culturing heart and kidney organoids, combined with microfluidic and 3D bioprinting technologies, a more accurate representation of in vivo conditions can be achieved. Such interconnected systems could revolutionize our grasp of multi-organ diseases, drive drug discovery by evaluating therapeutic agents on both organs simultaneously, and reduce the need for animal models. In essence, heart-kidney-connected organoids present a promising avenue to delve deeper into the pathophysiology underlying cardiorenal disorders, bridging existing knowledge gaps, and advancing biomedical research.
Collapse
|