1
|
Seidi F, Yazdi MK, Jouyandeh M, Habibzadeh S, Munir MT, Vahabi H, Bagheri B, Rabiee N, Zarrintaj P, Saeb MR. Crystalline polysaccharides: A review. Carbohydr Polym 2022; 275:118624. [PMID: 34742405 DOI: 10.1016/j.carbpol.2021.118624] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 08/26/2021] [Accepted: 08/26/2021] [Indexed: 12/12/2022]
Abstract
The biodegradability and mechanical properties of polysaccharides are dependent on their architecture (linear or branched) as well as their crystallinity (size of crystals and crystallinity percent). The amount of crystalline zones in the polysaccharide significantly governs their ultimate properties and applications (from packaging to biomedicine). Although synthesis, characterization, and properties of polysaccharides have been the subject of several review papers, the effects of crystallization kinetics and crystalline domains on the properties and application have not been comprehensively addressed. This review places focus on different aspects of crystallization of polysaccharides as well as applications of crystalline polysaccharides. Crystallization of cellulose, chitin, chitosan, and starch, as the main members of this family, were discussed. Then, application of the aforementioned crystalline polysaccharides and nano-polysaccharides as well as their physical and chemical interactions were overviewed. This review attempts to provide a complete picture of crystallization-property relationship in polysaccharides.
Collapse
Affiliation(s)
- Farzad Seidi
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Mohsen Khodadadi Yazdi
- Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | - Maryam Jouyandeh
- Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | - Sajjad Habibzadeh
- Department of Chemical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | | | - Henri Vahabi
- Université de Lorraine, CentraleSupélec, LMOPS, F-57000 Metz, France
| | - Babak Bagheri
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Navid Rabiee
- Department of Physics, Sharif University of Technology, P.O. Box 11155-9161, Tehran, Iran
| | - Payam Zarrintaj
- School of Chemical Engineering, Oklahoma State University, 420 Engineering North, Stillwater, OK 74078, United States
| | - Mohammad Reza Saeb
- Department of Polymer Technology, Faculty of Chemistry, Gdańsk University of Technology, G. Narutowicza 11/12, 80-233 Gdańsk, Poland.
| |
Collapse
|
2
|
Yazdi MK, Seidi F, Jin Y, Zarrintaj P, Xiao H, Esmaeili A, Habibzadeh S, Saeb MR. Crystallization of Polysaccharides. POLYSACCHARIDES 2021. [DOI: 10.1002/9781119711414.ch13] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
3
|
Małecka M, Kusz J, Eriksson L, Adamus-Grabicka A, Budzisz E. The relationship between Hirshfeld potential and cytotoxic activity: a study along a series of flavonoid and chromanone derivatives. ACTA CRYSTALLOGRAPHICA SECTION C-STRUCTURAL CHEMISTRY 2020; 76:723-733. [PMID: 32756034 DOI: 10.1107/s205322962000813x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 06/18/2020] [Indexed: 11/10/2022]
Abstract
The present study examines a series of six biologically-active flavonoid and chromanone derivatives by X-ray crystal structure analysis: (E)-3-benzylidene-2-phenylchroman-4-one, C22H16O2, I, (E)-3-(4-methylbenzylidene)-2-phenylchroman-4-one, C23H18O2, II, (E)-3-(3-methylbenzylidene)-2-phenylchroman-4-one, C23H18O2, III, (E)-3-(4-methoxybenzylidene)-2-phenylchroman-4-one, C23H18O3, IV, (E)-3-benzylidenechroman-4-one, C16H12O2, V, and (E)-3-(4-methoxybenzylidene)chroman-4-one, C17H14O3, VI. The cytotoxic activities of the presented crystal structures have been determined, together with their intermolecular interaction preferences and Hirshfeld surface characteristics. An inverse relationship was found between the contribution of C...C close contacts to the Hirshfeld surface and cytotoxic activity against the WM-115 cancer line. Dependence was also observed between the logP value and the percentage contribution of C...H contacts to the Hirshfeld surface.
Collapse
Affiliation(s)
- Magdalena Małecka
- Department of Physical Chemistry, Faculty of Chemistry, University of Łódź, Pomorska 163/165, 90-236 Łódź, Poland
| | - Joachim Kusz
- Institute of Physics, University of Silesia, Uniwersytecka 4, 40-007 Katowice, Poland
| | - Lars Eriksson
- Department of Materials and Environmental Chemistry, Stockholm University, SE-10691 Stockholm, Sweden
| | - Angelika Adamus-Grabicka
- Food Science Department, Faculty of Pharmacy, Medical University of Łódź, Muszynskiego 1, 90-151 Łódź, Poland
| | - Elżbieta Budzisz
- Department of Cosmetic Raw Materials Chemistry, Faculty of Pharmacy, Medical University of Łódź, Muszynskiego 1, 90-151 Łódź, Poland
| |
Collapse
|
4
|
Lima HGD, Santos FO, Santos ACV, Silva GDD, Santos RJD, Carneiro KDO, Reis IMA, Estrela IDO, Freitas HFD, Bahiense TC, Pita SSDR, Uzeda RS, Branco A, Costa SL, Batatinha MJM, Botura MB. Anti-tick effect and cholinesterase inhibition caused by Prosopis juliflora alkaloids: in vitro and in silico studies. REVISTA BRASILEIRA DE PARASITOLOGIA VETERINARIA 2020; 29:e019819. [DOI: 10.1590/s1984-29612020036] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 04/30/2020] [Indexed: 01/23/2023]
Abstract
Abstract We investigated the in vitro acaricide activity of the methanolic extract (ME) and alkaloid-rich fraction (AF) of Prosopis juliflora on Rhipicephalus microplus and correlated this effect with acetylcholinesterase (AChE) inhibition. The acaricide activity was evaluated using adult and larval immersion tests. Also, we studied the possible interaction mechanism of the major alkaloids present in this fraction via molecular docking at the active site of R. microplus AChE1 (RmAChE1). Higher reproductive inhibitory activity of the AF was recorded, with effective concentration (EC50) four times lower than that of the ME (31.6 versus 121 mg/mL). The AF caused mortality of tick larvae, with lethal concentration 50% (LC50) of 13.8 mg/mL. Both ME and AF were seen to have anticholinesterase activity on AChE of R. microplus larvae, while AF was more active with half-maximal inhibitory concentration (IC50) of 0.041 mg/mL. The LC-MS/MS analyses on the AF led to identification of three alkaloids: prosopine (1), juliprosinine (2) and juliprosopine (3). The molecular docking studies revealed that these alkaloids had interactions at the active site of the RmAChE1, mainly relating to hydrogen bonds and cation-pi interactions. We concluded that the alkaloids of P. juliflora showed acaricide activity on R. microplus and acted through an anticholinesterase mechanism.
Collapse
|
5
|
Tamura Y, Takezawa H, Domoto Y, Fujita M. Microgram-scale X-ray Structure Analysis of Small Molecules via High-throughput Co-crystallization. CHEM LETT 2018. [DOI: 10.1246/cl.180082] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Yukari Tamura
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Hiroki Takezawa
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Yuya Domoto
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Makoto Fujita
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
6
|
Guo F, Zhou W, Li P, Mao Z, Yennawar N, French JB, Jun Huang T. Precise Manipulation and Patterning of Protein Crystals for Macromolecular Crystallography Using Surface Acoustic Waves. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2015; 11:2733-7. [PMID: 25641793 PMCID: PMC4478196 DOI: 10.1002/smll.201403262] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 12/19/2014] [Indexed: 05/20/2023]
Abstract
Advances in modern X-ray sources and detector technology have made it possible for crystallographers to collect usable data on crystals of only a few micrometers or less in size. Despite these developments, sample handling techniques have significantly lagged behind and often prevent the full realization of current beamline capabilities. In order to address this shortcoming, a surface acoustic wave-based method for manipulating and patterning crystals is developed. This method, which does not damage the fragile protein crystals, can precisely manipulate and pattern micrometer and submicrometer-sized crystals for data collection and screening. The technique is robust, inexpensive, and easy to implement. This method not only promises to significantly increase efficiency and throughput of both conventional and serial crystallography experiments, but will also make it possible to collect data on samples that were previously intractable.
Collapse
Affiliation(s)
- Feng Guo
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA 16802, USA
| | - Weijie Zhou
- Department of Chemistry, Stony Brook University, Stony Brook, NY 11794, USA
| | - Peng Li
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA 16802, USA
| | - Zhangming Mao
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA 16802, USA
| | - Neela Yennawar
- Huck Institutes for Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Jarrod B. French
- Department of Chemistry, Stony Brook University, Stony Brook, NY 11794, USA
- Department of Biochemistry & Cell Biology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Tony Jun Huang
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
7
|
Azam F, Abugrain IM, Sanalla MH, Elnaas RF, Rajab IAI. in Silico investigation of the structural requirements for the AMPA receptor antagonism by quinoxaline derivatives. Bioinformation 2013; 9:864-9. [PMID: 24250113 PMCID: PMC3819572 DOI: 10.6026/97320630009864] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Accepted: 10/01/2013] [Indexed: 12/12/2022] Open
Abstract
Glutamate receptors have been implicated in various neurological disorders and their antagonism offers a suitable approach for the
treatment of such disorders. The field of drug design and discovery aims to find best medicines to prevent, treat and cure diseases
quickly and efficiently. In this regard, computational tools have helped medicinal chemists modify and optimize molecules to
potent drug candidates with better pharmacokinetic profiles, and guiding biologists and pharmacologists to explore new disease
genes as well as novel drug targets. In the present study, to understand the structural requirements for AMPA receptor
antagonism, molecular docking study was performed on 41 structurally diverse antagonists based on quinoxaline nucleus.
Lamarckian genetic algorithm methodology was employed for docking simulations using AutoDock 4.2 program. The results
obtained signify that the molecular docking approach is reliable and produces a good correlation coefficient (r2 = 0.6) between
experimental and docking predicted AMPA receptor antagonistic activity. The aromatic moiety of quinoxaline core has been
proved to be vital for hydrophobic contacts exhibiting - interactions in docked conformations. However, polar moieties such as
carboxylic group and 1,2,4-triazole moieties were noted to be sites for hydrophilic interactions in terms of hydrogen bonding with
the receptor. These analyses can be exploited to design and develop novel AMPA receptor antagonists for the treatment of
different neurological disorders.
Collapse
Affiliation(s)
- Faizul Azam
- Faculty of Pharmacy, Misurata University, PO Box 2873, Misurata, Libya
| | | | | | | | | |
Collapse
|
8
|
Fang Y. Ligand-receptor interaction platforms and their applications for drug discovery. Expert Opin Drug Discov 2012; 7:969-88. [PMID: 22860803 DOI: 10.1517/17460441.2012.715631] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
INTRODUCTION The study of drug-target interactions is essential for the understanding of biological processes and for the efforts to develop new therapeutic molecules. Increased ligand-binding assays have coincided with the advances in reagents, detection and instrumentation technologies, the expansion in therapeutic targets of interest, and the increasingly recognized importance of biochemical aspects of drug-target interactions in determining the clinical performance of drug molecules. Nowadays, ligand-binding assays can determine every aspect of many drug-target interactions. AREAS COVERED Given that ligand-target interactions are very diverse, the author has decided to focus on the binding of small molecules to protein targets. This article first reviews the key biochemical aspects of drug-target interactions, and then discusses the detection principles of various ligand-binding techniques in the context of their primary applications for drug discovery and development. EXPERT OPINION Equilibrium-binding affinity should not be used as a solo indicator for the in vivo pharmacology of drugs. The clinical relevance of drug-binding kinetics demands high throughput kinetics early in drug discovery. The dependence of ligand binding and function on the conformation of targets necessitates solution-based and whole cell-based ligand-binding assays. The increasing need to examine ligand binding at the proteome level, driven by the clinical importance of the polypharmacology of ligands, has started to make the structure-based in silico binding screen an indispensable technique for drug discovery and development. Integration of different ligand-binding assays is important to improve the efficiency of the drug discovery and development process.
Collapse
Affiliation(s)
- Ye Fang
- Biochemical Technologies, Science and Technology Division, Corning, Inc., Corning, NY 14831, USA.
| |
Collapse
|
9
|
Debreczeni JÉ, Emsley P. Handling ligands with Coot. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2012; 68:425-30. [PMID: 22505262 PMCID: PMC3322601 DOI: 10.1107/s0907444912000200] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Accepted: 01/03/2012] [Indexed: 11/21/2022]
Abstract
Coot is a molecular-graphics application primarily aimed to assist in model building and validation of biological macromolecules. Recently, tools have been added to work with small molecules. The newly incorporated tools for the manipulation and validation of ligands include interaction with PRODRG, subgraph isomorphism-based tools, representation of ligand chemistry, ligand fitting and analysis, and are described here.
Collapse
Affiliation(s)
- Judit É Debreczeni
- Structure and Biophysics, DS, AstraZeneca, Alderley Park SK10 4TG, England.
| | | |
Collapse
|
10
|
Frozen out: molecular modeling in the age of cryocrystallography. J Comput Aided Mol Des 2011; 26:91-2. [DOI: 10.1007/s10822-011-9537-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Accepted: 12/16/2011] [Indexed: 10/14/2022]
|
11
|
Sperry JB, Smith CL, Caparon MG, Ellenberger T, Gross ML. Mapping the protein-protein interface between a toxin and its cognate antitoxin from the bacterial pathogen Streptococcus pyogenes. Biochemistry 2011; 50:4038-45. [PMID: 21466233 PMCID: PMC3096607 DOI: 10.1021/bi200244k] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Protein--protein interactions are ubiquitous and essential for most biological processes. Although new proteomic technologies have generated large catalogs of interacting proteins, considerably less is known about these interactions at the molecular level, information that would aid in predicting protein interactions, designing therapeutics to alter these interactions, and understanding the effects of disease-producing mutations. Here we describe mapping the interacting surfaces of the bacterial toxin SPN (Streptococcus pyogenes NAD(+) hydrolase) in complex with its antitoxin IFS (immunity factor for SPN) by using hydrogen-deuterium amide exchange and electrospray ionization mass spectrometry. This approach affords data in a relatively short time for small amounts of protein, typically 5-7 pmol per analysis. The results show a good correspondence with a recently determined crystal structure of the IFS--SPN complex but additionally provide strong evidence for a folding transition of the IFS protein that accompanies its binding to SPN. The outcome shows that mass-based chemical footprinting of protein interaction surfaces can provide information about protein dynamics that is not easily obtained by other methods and can potentially be applied to large, multiprotein complexes that are out of range for most solution-based methods of biophysical analysis.
Collapse
Affiliation(s)
- Justin B. Sperry
- Analytical Research and Development, Pfizer Inc., Chesterfield, MO 63017
| | - Craig L. Smith
- Department of Biochemistry and Molecular Biophysics, Washington University in St. Louis, St. Louis, MO 63110
| | - Michael G. Caparon
- Department of Molecular Microbiology, Washington University in St. Louis, St. Louis, MO 63110
| | - Tom Ellenberger
- Department of Biochemistry and Molecular Biophysics, Washington University in St. Louis, St. Louis, MO 63110
| | - Michael L. Gross
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130
| |
Collapse
|
12
|
Dong YD, Boyd BJ. Applications of X-ray scattering in pharmaceutical science. Int J Pharm 2011; 417:101-11. [PMID: 21256941 DOI: 10.1016/j.ijpharm.2011.01.022] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Revised: 01/11/2011] [Accepted: 01/17/2011] [Indexed: 01/04/2023]
Abstract
The use of X-ray scattering techniques in pharmaceutical science is increasing, in part through increased collaborations with the materials science community, and through increased availability of instrumentation, particularly synchrotron sources. The ability to understand not only the biopharmaceutical outcome, but also arguably, more importantly, the structural aspects of drugs and drug delivery systems, is essential to progressing pharmaceutical science; this review serves as an introduction to the major techniques and the wide range of areas in which X-ray scattering may be applied in understanding and controlling structure in pharmaceutical systems.
Collapse
Affiliation(s)
- Yao-Da Dong
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | | |
Collapse
|
13
|
Madden J, Dod JR, Godemann R, Kraemer J, Smith M, Biniszkiewicz M, Hallett DJ, Barker J, Dyekjaer JD, Hesterkamp T. Fragment-based discovery and optimization of BACE1 inhibitors. Bioorg Med Chem Lett 2010; 20:5329-33. [DOI: 10.1016/j.bmcl.2010.06.089] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2010] [Revised: 06/14/2010] [Accepted: 06/14/2010] [Indexed: 10/19/2022]
|
14
|
Emsley P, Lohkamp B, Scott WG, Cowtan K. Features and development of Coot. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2010; 66:486-501. [PMID: 20383002 PMCID: PMC2852313 DOI: 10.1107/s0907444910007493] [Citation(s) in RCA: 21063] [Impact Index Per Article: 1504.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2009] [Accepted: 02/26/2010] [Indexed: 11/12/2022]
Abstract
Coot is a molecular-graphics program designed to assist in the building of protein and other macromolecular models. The current state of development and available features are presented. Coot is a molecular-graphics application for model building and validation of biological macromolecules. The program displays electron-density maps and atomic models and allows model manipulations such as idealization, real-space refinement, manual rotation/translation, rigid-body fitting, ligand search, solvation, mutations, rotamers and Ramachandran idealization. Furthermore, tools are provided for model validation as well as interfaces to external programs for refinement, validation and graphics. The software is designed to be easy to learn for novice users, which is achieved by ensuring that tools for common tasks are ‘discoverable’ through familiar user-interface elements (menus and toolbars) or by intuitive behaviour (mouse controls). Recent developments have focused on providing tools for expert users, with customisable key bindings, extensions and an extensive scripting interface. The software is under rapid development, but has already achieved very widespread use within the crystallographic community. The current state of the software is presented, with a description of the facilities available and of some of the underlying methods employed.
Collapse
Affiliation(s)
- P Emsley
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, England.
| | | | | | | |
Collapse
|
15
|
Smith AJT, Li Y, Houk KN. Quantum mechanics/molecular mechanics investigation of the mechanism of phosphate transfer in human uridine-cytidine kinase 2. Org Biomol Chem 2009; 7:2716-24. [PMID: 19532987 DOI: 10.1039/b901429b] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The mechanisms of enzyme-catalyzed phosphate transfer and hydrolysis reactions are of great interest due to their importance and abundance in biochemistry. The reaction may proceed in a stepwise fashion, with either a pentavalent phosphorane or a metaphosphate anion intermediate, or by a concerted SN2 mechanism. Despite much theoretical work focused on a few key enzymes, a consensus for the mechanism has not been reached, and examples of all three possibilities have been demonstrated. We have investigated the mechanism of human uridine-cytidine kinase 2 (UCK2, EC 2.7.1.48), which catalyzes the transfer of a phosphate group from ATP to the ribose 5'-hydroxyl of cytidine and uridine. UCK2 is normally expressed in human placenta, but is overexpressed in certain cancer cells, where it is responsible for activating a class of antitumor prodrugs. The UCK2 mechanism was investigated by generating a 2D potential energy surface as a function of the P-O bonds forming and breaking, with energies calculated using a quantum mechanics/molecular mechanics potential (B3LYP/6-31G(d):AMBER). The mechanism of phosphate transfer is shown to be concerted, and is accompanied by concerted proton transfer from the 5'-hydroxyl to a conserved active site aspartic acid that serves as a catalytic base. The calculated barrier for this reaction is 15.1 kcal/mol, in relatively good agreement with the experimental barrier of 17.5 kcal/mol. The interactions of the enzyme active site with the reactant, transition state, and product are examined for their implications on the design of anticancer prodrugs or positron emission tomography (PET) reporter probes for this enzyme.
Collapse
Affiliation(s)
- Adam J T Smith
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
| | | | | |
Collapse
|
16
|
Deschamps JR. X-ray crystallography of chemical compounds. Life Sci 2009; 86:585-9. [PMID: 19303027 DOI: 10.1016/j.lfs.2009.02.028] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2008] [Revised: 01/15/2009] [Accepted: 02/09/2009] [Indexed: 11/25/2022]
Abstract
AIMS Accurate knowledge of molecular structure is a prerequisite for rational drug design. This review examines the role of X-ray crystallography in providing the required structural information and advances in the field of X-ray crystallography that enhance or expand its role. MAIN METHODS X-ray crystallography of new drugs candidates and intermediates can provide valuable information of new syntheses and parameters for quantitative structure activity relationships (QSAR). KEY FINDINGS Crystallographic studies play a vital role in many disciplines including materials science, chemistry, pharmacology, and molecular biology. X-ray crystallography is the most comprehensive technique available to determine molecular structure. A requirement for the high accuracy of crystallographic structures is that a 'good crystal' must be found, and this is often the rate-limiting step. In the past three decades developments in detectors, increases in computer power, and powerful graphics capabilities have contributed to a dramatic increase in the number of materials characterized by X-ray crystallography. More recently the advent of high-throughput crystallization techniques has enhanced our ability to produce that one good crystal required for crystallographic analysis. SIGNIFICANCE Continuing advances in all phases of a crystallographic study have expanded the ranges of samples which can be analyzes by X-ray crystallography to include larger molecules, smaller or weakly diffracting crystals, and twinned crystals.
Collapse
Affiliation(s)
- Jeffrey R Deschamps
- Naval Research Laboratory, Code 6030, 4555 Overlook Ave., Washington, DC 20375, United States.
| |
Collapse
|
17
|
Smith AJT, Zhang X, Leach AG, Houk KN. Beyond picomolar affinities: quantitative aspects of noncovalent and covalent binding of drugs to proteins. J Med Chem 2009; 52:225-33. [PMID: 19053779 DOI: 10.1021/jm800498e] [Citation(s) in RCA: 136] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Adam J T Smith
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, USA
| | | | | | | |
Collapse
|
18
|
Rickert KW, Kelley P, Byrne NJ, Diehl RE, Hall DL, Montalvo AM, Reid JC, Shipman JM, Thomas BW, Munshi SK, Darke PL, Su HP. Structure of human prostasin, a target for the regulation of hypertension. J Biol Chem 2008; 283:34864-72. [PMID: 18922802 DOI: 10.1074/jbc.m805262200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Prostasin (also called channel activating protease-1 (CAP1)) is an extracellular serine protease implicated in the modulation of fluid and electrolyte regulation via proteolysis of the epithelial sodium channel. Several disease states, particularly hypertension, can be affected by modulation of epithelial sodium channel activity. Thus, understanding the biochemical function of prostasin and developing specific agents to inhibit its activity could have a significant impact on a widespread disease. We report the expression of the prostasin proenzyme in Escherichia coli as insoluble inclusion bodies, refolding and activating via proteolytic removal of the N-terminal propeptide. The refolded and activated enzyme was shown to be pure and monomeric, with kinetic characteristics very similar to prostasin expressed from eukaryotic systems. Active prostasin was crystallized, and the structure was determined to 1.45 A resolution. These apoprotein crystals were soaked with nafamostat, allowing the structure of the inhibited acyl-enzyme intermediate structure to be determined to 2.0 A resolution. Comparison of the inhibited and apoprotein forms of prostasin suggest a mechanism of regulation through stabilization of a loop which interferes with substrate recognition.
Collapse
Affiliation(s)
- Keith W Rickert
- Department of Global Structural Biology, Merck Research Laboratories, West Point, Pennsylvania 19486, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Solid-state NMR spectroscopy as a tool for drug design: from membrane-embedded targets to amyloid fibrils. Biochem Soc Trans 2007; 35:985-90. [DOI: 10.1042/bst0350985] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Structure-based design has gained credibility as a valuable component of the modern drug discovery process. The technique of SSNMR (solid-state NMR) promises to be a useful counterpart to the conventional experimental techniques of X-ray crystallography and solution-state NMR for providing structural features of drug targets that can guide medicinal chemistry towards drug candidates. This article highlights some recent SSNMR approaches from our group for identifying active compounds, such as enzyme inhibitors, receptor antagonists and peptide agents, that prevent the aggregation of amyloid proteins involved in neurodegenerative diseases. It is anticipated that the use of SSNMR in drug discovery will become more widespread in the wake of advances in hardware and methodological developments.
Collapse
|
20
|
Steuber H, Zentgraf M, La Motta C, Sartini S, Heine A, Klebe G. Evidence for a Novel Binding Site Conformer of Aldose Reductase in Ligand-Bound State†. J Mol Biol 2007; 369:186-97. [PMID: 17418233 DOI: 10.1016/j.jmb.2007.03.021] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2006] [Revised: 03/06/2007] [Accepted: 03/08/2007] [Indexed: 10/23/2022]
Abstract
Human aldose reductase (ALR2) has evolved as a promising therapeutic target for the treatment of diabetic long-term complications. The binding site of this enzyme possesses two main subpockets: the catalytic anion-binding site and the hydrophobic specificity pocket. The latter can be observed in the open or closed state, depending on the bound ligand. Thus, it exhibits a pronounced capability for induced-fit adaptations, whereas the catalytic pocket exhibits rigid properties throughout all known crystal structures. Here, we determined two ALR2 crystal structures at 1.55 and 1.65 A resolution, each complexed with an inhibitor of the recently described naphtho[1,2-d]isothiazole acetic acid series. In contrast to the original design hypothesis based on the binding mode of tolrestat (1), both inhibitors leave the specificity pocket in the closed state. Unexpectedly, the more potent ligand (2) extends the catalytic pocket by opening a novel subpocket. Access to this novel subpocket is mainly attributed to the rotation of an indole moiety of Trp 20 by about 35 degrees . The newly formed subpocket provides accommodation of the naphthyl portion of the ligand. The second inhibitor, 3, differs from 2 only by an extended glycolic ester functionality added to one of its carboxylic groups. However, despite this slight structural modification, the binding mode of 3 differs dramatically from that of the first inhibitor, but provokes less pronounced induced-fit adaptations of the binding cavity. Thus, a novel binding site conformation has been identified in a region where previous complex structures suggested only low adaptability of the binding pocket. Furthermore, the two ligand complexes represent an impressive example of how the slight change of a chemically extended side-chain at a given ligand scaffold can result in a dramatically altered binding mode. In addition, our study emphasizes the importance of crystal structure analysis for the translation of affinity data into structure-activity relationships.
Collapse
Affiliation(s)
- Holger Steuber
- Department of Pharmaceutical Chemistry, Philipps University Marburg, Marbacher Weg 6, 35032 Marburg, Germany
| | | | | | | | | | | |
Collapse
|
21
|
Sawyer TK. Chemical biology and drug design: three-dimensional, dynamic, and mechanistic nature of two multidisciplinary fields. Chem Biol Drug Des 2007; 67:196-200. [PMID: 16611212 DOI: 10.1111/j.1747-0285.2006.00371.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Tomi K Sawyer
- Chemical Biology & Drug Design, Drug Discovery, ARIAD Pharmaceuticals, Inc., Cambridge, MA, USA
| |
Collapse
|
22
|
Chung CW. The use of biophysical methods increases success in obtaining liganded crystal structures. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2006; 63:62-71. [PMID: 17164528 PMCID: PMC2483471 DOI: 10.1107/s0907444906051869] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2006] [Accepted: 11/30/2006] [Indexed: 11/29/2022]
Abstract
This paper highlights some of the problems that can arise when attempting to obtain crystal structures of small molecule–protein complexes and how biophysical methods can be used to define and overcome these problems. Many of the techniques mentioned are also applicable to the study of protein–protein complexes and mode-of-action analysis. In attempts to determine the crystal structure of small molecule–protein complexes, a common frustration is the absence of ligand binding once the protein structure has been solved. While the first structure, even with no ligand bound (apo), can be a cause for celebration, the solution of dozens of apo structures can give an unwanted sense of déjà vu. Much time and material is wasted on unsuccessful experiments, which can have a serious impact on productivity and morale. There are many reasons for the lack of observed binding in crystals and this paper highlights some of these. Biophysical methods may be used to confirm and optimize solution conditions to increase the success rate of crystallizing protein–ligand complexes. As there are an overwhelming number of biophysical methods available, some of the factors that need to be considered when choosing the most appropriate technique for a given system are discussed. Finally, a few illustrative examples where biophysical methods have proven helpful in real systems are given.
Collapse
Affiliation(s)
- Chun-wa Chung
- Structural and Biophysical Sciences, GlaxoSmithKline Research and Development, Medicines Research Centre, Gunnelswood Road, Stevenage SG1 2NY, England.
| |
Collapse
|
23
|
Sawyer TK. Smart drug discovery leveraging innovative technologies and predictive knowledge. Nat Chem Biol 2006; 2:646-8. [PMID: 17108975 DOI: 10.1038/nchembio1206-646] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Tomi K Sawyer
- Pfizer Research Technology Center, Cambridge, MA 02139, USA.
| |
Collapse
|
24
|
Ferrer JL, Dupuy J, Borel F, Jacquamet L, Noel JP, Dulic V. Structural basis for the modulation of CDK-dependent/independent activity of cyclin D1. Cell Cycle 2006; 5:2760-8. [PMID: 17172845 PMCID: PMC2864588 DOI: 10.4161/cc.5.23.3506] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
D-type cyclins are key regulators of the cell division cycle. In association with Cyclin Dependent Kinases (CDK) 2/4/6, they control the G1/S-phase transition in part by phosphorylation and inactivation of tumor suppressor of retinoblastoma family. Defective regulation of the G1/S transition is a well-known cause of cancer, making the cyclin D1-CDK4/6 complex a promising therapeutic target. Our objective is to develop inhibitors that would block the formation or the activation of the cyclin D1-CDK4/6 complex, using in silico docking experiments on a structural homology model of the cyclin D1-CDK4/6 complex. To this end we focused on the cyclin subunit in three different ways: (1) targeting the part of the cyclin D1 facing the N-terminal domain of CDK4/6, in order to prevent the dimer formation; (2) targeting the part of the cyclin D1 facing the C-terminal domain of CDK4/6, in order to prevent the activation of CDK4/6 by blocking the T-loop in an inactive conformation, and also to destabilize the dimer; (3) targeting the groove of cyclin D1 where p21 binds, in order to mimic its inhibition mode by preventing binding of cyclin D1-CDK4/6 complex to its targets. Our strategy, and the tools we developed, will provide a computational basis to design lead compounds for novel cancer therapeutics, targeting a broad range of proteins involved in the regulation of the cell cycle.
Collapse
Affiliation(s)
- Jean-Luc Ferrer
- Laboratoire de Cristallogenèse et Cristallographie des Protéines, Institut de Biologie Structural J.-P Ebel, Grenoble, France.
| | | | | | | | | | | |
Collapse
|
25
|
|
26
|
Polymeric hydrophobic membranes as a tool to control polymorphism and protein–ligand interactions. J Memb Sci 2006. [DOI: 10.1016/j.memsci.2006.06.028] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
27
|
Schmid MB. Crystallizing new approaches for antimicrobial drug discovery. Biochem Pharmacol 2006; 71:1048-56. [PMID: 16458857 DOI: 10.1016/j.bcp.2005.12.024] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2005] [Revised: 12/07/2005] [Accepted: 12/09/2005] [Indexed: 11/29/2022]
Abstract
Over the past decade, the sequences of microbial genomes have accumulated, changing the strategies for the discovery of novel anti-infective agents. Targets have become plentiful, yet new antimicrobial agents have been slow to emerge from this effort. In part, this reflects the long discovery and development times needed to bring new drugs to market. In addition, bottlenecks have been revealed in the antimicrobial drug discovery process at the steps of identifying good leads, and optimizing those leads into drug candidates. The fruit of structural genomics may provide opportunities to overcome these bottlenecks and fill the antimicrobial pipeline, by using the tools of structure guided drug discovery (SGDD).
Collapse
Affiliation(s)
- Molly B Schmid
- Keck Graduate Institute, 535 Watson Drive, Claremont, CA 91711, USA.
| |
Collapse
|