1
|
Perry SF, Pan YK, Gilmour KM. Insights into the control and consequences of breathing adjustments in fishes-from larvae to adults. Front Physiol 2023; 14:1065573. [PMID: 36793421 PMCID: PMC9923008 DOI: 10.3389/fphys.2023.1065573] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 01/11/2023] [Indexed: 01/31/2023] Open
Abstract
Adjustments of ventilation in fishes to regulate the volume of water flowing over the gills are critically important responses to match branchial gas transfer with metabolic needs and to defend homeostasis during environmental fluctuations in O2 and/or CO2 levels. In this focused review, we discuss the control and consequences of ventilatory adjustments in fish, briefly summarizing ventilatory responses to hypoxia and hypercapnia before describing the current state of knowledge of the chemoreceptor cells and molecular mechanisms involved in sensing O2 and CO2. We emphasize, where possible, insights gained from studies on early developmental stages. In particular, zebrafish (Danio rerio) larvae have emerged as an important model for investigating the molecular mechanisms of O2 and CO2 chemosensing as well as the central integration of chemosensory information. Their value stems, in part, from their amenability to genetic manipulation, which enables the creation of loss-of-function mutants, optogenetic manipulation, and the production of transgenic fish with specific genes linked to fluorescent reporters or biosensors.
Collapse
|
2
|
Rahbar S, Pan W, Jonz MG. Purinergic and Cholinergic Drugs Mediate Hyperventilation in Zebrafish: Evidence from a Novel Chemical Screen. PLoS One 2016; 11:e0154261. [PMID: 27100625 PMCID: PMC4839714 DOI: 10.1371/journal.pone.0154261] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 04/10/2016] [Indexed: 12/29/2022] Open
Abstract
A rapid test to identify drugs that affect autonomic responses to hypoxia holds therapeutic and ecologic value. The zebrafish (Danio rerio) is a convenient animal model for investigating peripheral O2 chemoreceptors and respiratory reflexes in vertebrates; however, the neurotransmitters and receptors involved in this process are not adequately defined. The goals of the present study were to demonstrate purinergic and cholinergic control of the hyperventilatory response to hypoxia in zebrafish, and to develop a procedure for screening of neurochemicals that affect respiration. Zebrafish larvae were screened in multi-well plates for sensitivity to the cholinergic receptor agonist, nicotine, and antagonist, atropine; and to the purinergic receptor antagonists, suramin and A-317491. Nicotine increased ventilation frequency (fV) maximally at 100 μM (EC50 = 24.5 μM). Hypoxia elevated fV from 93.8 to 145.3 breaths min-1. Atropine reduced the hypoxic response only at 100 μM. Suramin and A-317491 maximally reduced fV at 50 μM (EC50 = 30.4 and 10.8 μM) and abolished the hyperventilatory response to hypoxia. Purinergic P2X3 receptors were identified in neurons and O2-chemosensory neuroepithelial cells of the gills using immunohistochemistry and confocal microscopy. These studies suggest a role for purinergic and nicotinic receptors in O2 sensing in fish and implicate ATP and acetylcholine in excitatory neurotransmission, as in the mammalian carotid body. We demonstrate a rapid approach for screening neuroactive chemicals in zebrafish with implications for respiratory medicine and carotid body disease in humans; as well as for preservation of aquatic ecosystems.
Collapse
Affiliation(s)
- Saman Rahbar
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Wen Pan
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Michael G. Jonz
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
- * E-mail:
| |
Collapse
|
3
|
Jonz MG, Zachar PC, Da Fonte DF, Mierzwa AS. Peripheral chemoreceptors in fish: A brief history and a look ahead. Comp Biochem Physiol A Mol Integr Physiol 2015; 186:27-38. [DOI: 10.1016/j.cbpa.2014.09.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 09/03/2014] [Accepted: 09/03/2014] [Indexed: 11/24/2022]
|
4
|
Jonz MG, Buck LT, Perry SF, Schwerte T, Zaccone G. Sensing and surviving hypoxia in vertebrates. Ann N Y Acad Sci 2015; 1365:43-58. [PMID: 25959851 DOI: 10.1111/nyas.12780] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 03/26/2015] [Accepted: 03/31/2015] [Indexed: 12/15/2022]
Abstract
Surviving hypoxia is one of the most critical challenges faced by vertebrates. Most species have adapted to changing levels of oxygen in their environment with specialized organs that sense hypoxia, while only few have been uniquely adapted to survive prolonged periods of anoxia. The goal of this review is to present the most recent research on oxygen sensing, adaptation to hypoxia, and mechanisms of anoxia tolerance in nonmammalian vertebrates. We discuss the respiratory structures in fish, including the skin, gills, and air-breathing organs, and recent evidence for chemosensory neuroepithelial cells (NECs) in these tissues that initiate reflex responses to hypoxia. The use of the zebrafish as a genetic and developmental model has allowed observation of the ontogenesis of respiratory and chemosensory systems, demonstration of a putative intracellular O2 sensor in chemoreceptors that may initiate transduction of the hypoxia signal, and investigation into the effects of extreme hypoxia on cardiorespiratory development. Other organisms, such as goldfish and freshwater turtles, display a high degree of anoxia tolerance, and these models are revealing important adaptations at the cellular level, such as the regulation of glutamatergic and GABAergic neurotransmission in defense of homeostasis in central neurons.
Collapse
Affiliation(s)
- Michael G Jonz
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Leslie T Buck
- Cell and Systems Biology, and Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
| | - Steve F Perry
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | | | - Giacomo Zaccone
- Department of Environmental Sciences, Territorial, Food and Health Security (S.A.S.T.A.S.), University of Messina, Messina, Italy
| |
Collapse
|
5
|
Abdallah SJ, Thomas BS, Jonz MG. Aquatic surface respiration and swimming behaviour in adult and developing zebrafish exposed to hypoxia. J Exp Biol 2015; 218:1777-86. [DOI: 10.1242/jeb.116343] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 04/14/2015] [Indexed: 11/20/2022]
Abstract
Severe hypoxia elicits aquatic surface respiration (ASR) behaviour in many species of fish, where ventilation of the gills at the air-water interface improves O2 uptake and survival. ASR is an important adaptation that may have given rise to air breathing in vertebrates. The neural substrate of this behaviour, however, is not defined. We characterized ASR in developing and adult zebrafish (Danio rerio) to ascertain a potential role for peripheral chemoreceptors in initiation or modulation of this response. Adult zebrafish exposed to acute, progressive hypoxia (PO2 from 158 to 15 mmHg) performed ASR with a threshold of 30 mmHg, and spent more time at the surface as PO2 decreased. Acclimation to hypoxia attenuated ASR responses. In larvae, ASR behaviour was observed between 5 and 21 days postfertilization with a threshold of 16 mmHg. Zebrafish decreased swimming behaviour (i.e. distance, velocity and acceleration) as PO2 was decreased, with a secondary increase in behaviour near or below threshold PO2. In adults that underwent a 10-day intraperitoneal injection regime of 10 µg g−1 serotonin (5-HT) or 20 µg g−1 acetylcholine (ACh), an acute bout of hypoxia (15 mmHg) increased the time engaged in ASR by 5.5 and 4.9 times, respectively, compared to controls. Larvae previously immersed in 10 µmol l−1 5-HT or ACh also displayed an increased ASR response. Our results support the notion that ASR is a behavioural response that is reliant upon input from peripheral O2 chemoreceptors. We discuss implications for the role of chemoreceptors in the evolution of air breathing.
Collapse
Affiliation(s)
- Sara J. Abdallah
- Department of Biology, University of Ottawa, Ottawa, ON, Canada, K1N 6N5
| | - Benjamin S. Thomas
- Department of Biology, University of Ottawa, Ottawa, ON, Canada, K1N 6N5
| | - Michael G. Jonz
- Department of Biology, University of Ottawa, Ottawa, ON, Canada, K1N 6N5
| |
Collapse
|
6
|
Strain-dependent differential behavioral responses of zebrafish larvae to acute MK-801 treatment. Pharmacol Biochem Behav 2014; 127:82-9. [DOI: 10.1016/j.pbb.2014.11.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Revised: 10/23/2014] [Accepted: 11/01/2014] [Indexed: 12/15/2022]
|
7
|
Shakarchi K, Zachar PC, Jonz MG. Serotonergic and cholinergic elements of the hypoxic ventilatory response in developing zebrafish. ACTA ACUST UNITED AC 2012; 216:869-80. [PMID: 23155078 DOI: 10.1242/jeb.079657] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The chemosensory roles of gill neuroepithelial cells (NECs) in mediating the hyperventilatory response to hypoxia are not clearly defined in fish. While serotonin (5-HT) is the predominant neurotransmitter in O(2)-sensitive gill NECs, acetylcholine (ACh) plays a more prominent role in O(2) sensing in terrestrial vertebrates. The present study characterized the developmental chronology of potential serotonergic and cholinergic chemosensory pathways of the gill in the model vertebrate, the zebrafish (Danio rerio). In immunolabelled whole gills from larvae, serotonergic NECs were observed in epithelia of the gill filaments and gill arches, while non-serotonergic NECs were found primarily in the gill arches. Acclimation of developing zebrafish to hypoxia (P(O2)=75 mmHg) reduced the number of serotonergic NECs observed at 7 days post-fertilization (d.p.f.), and this effect was absent at 10 d.p.f. In vivo administration of 5-HT mimicked hypoxia by increasing ventilation frequency (f(V)) in early stage (7-10 d.p.f.) and late stage larvae (14-21 d.p.f.), while ACh increased f(V) only in late stage larvae. In time course experiments, application of ketanserin inhibited the hyperventilatory response to acute hypoxia (P(O2)=25 mmHg) at 10 d.p.f., while hexamethonium did not have this effect until 12 d.p.f. Cells immunoreactive for the vesicular acetylcholine transporter (VAChT) began to appear in the gill filaments by 14 d.p.f. Characterization in adult gills revealed that VAChT-positive cells were a separate population of neurosecretory cells of the gill filaments. These studies suggest that serotonergic and cholinergic pathways in the zebrafish gill develop at different times and contribute to the hyperventilatory response to hypoxia.
Collapse
Affiliation(s)
- Kamila Shakarchi
- Department of Biology, University of Ottawa, Ottawa, ON, Canada K1N 6N5
| | | | | |
Collapse
|
8
|
Bohnsack JP, Assemi S, Miller JD, Furgeson DY. The primacy of physicochemical characterization of nanomaterials for reliable toxicity assessment: a review of the zebrafish nanotoxicology model. Methods Mol Biol 2012; 926:261-316. [PMID: 22975971 DOI: 10.1007/978-1-62703-002-1_19] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Engineered nanomaterials (ENMs) have become increasingly prevalent in the past two decades in academic, medical, commercial, and industrial settings. The unique properties imbued with nanoparticles, as the physiochemical properties change from the bulk material to the surface atoms, present unique and often challenging characteristics that larger macromolecules do not possess. While nanoparticle characteristics are indeed exciting for unique chemistries, surface properties, and diverse applications, reports of toxicity and environmental impacts have tempered this enthusiasm and given cause for an exponential increase for concomitant nanotoxicology assessment. Currently, nanotoxicology is a steadily growing with new literature and studies being published more frequently than ever before; however, the literature reveals clear, inconsistent trends in nanotoxicological assessment. At the heart of this issue are several key problems including the lack of validated testing protocols and models, further compounded by inadequate physicochemical characterization of the nanomaterials in question and the seminal feedback loop of chemistry to biology back to chemistry. Zebrafish (Danio rerio) are emerging as a strong nanotoxicity model of choice for ease of use, optical transparency, cost, and high degree of genomic homology to humans. This review attempts to amass all contemporary nanotoxicology studies done with the zebrafish and present as much relevant information on physicochemical characteristics as possible. While this report is primarily a physicochemical summary of nanotoxicity studies, we wish to strongly emphasize that for the proper evolution of nanotoxicology, there must be a strong marriage between the physical and biological sciences. More often than not, nanotoxicology studies are reported by groups dominated by one discipline or the other. Regardless of the starting point, nanotoxicology must be seen as an iterative process between chemistry and biology. It is our sincere hope that the future will introduce a paradigm shift in the approach to nanotoxicology with multidisciplinary groups for data analysis to produce predictive and correlative models for the end goal of rapid preclinical development of new therapeutics into the clinic or insertion into environmental protection.
Collapse
Affiliation(s)
- John P Bohnsack
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT, USA
| | | | | | | |
Collapse
|
9
|
Zakhary SM, Ayubcha D, Ansari F, Kamran K, Karim M, Leheste JR, Horowitz JM, Torres G. A behavioral and molecular analysis of ketamine in zebrafish. Synapse 2011; 65:160-7. [PMID: 20623473 DOI: 10.1002/syn.20830] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Ketamine exerts powerful anesthetic, psychotic, and antidepressant effects in both healthy volunteers and clinically depressed patients. Although ketamine targets particular glutamate receptors, there is a dearth of evidence for additional, alternative molecular substrates for the behavioral actions of this N-methyl-D-aspartate (NMDA) receptor antagonist drug. Here, we provide behavioral and molecular evidence for the actions of ketamine using a new vertebrate model for psychiatric disorders: the zebrafish. Subanesthetic doses of ketamine produced a variety of abnormal behaviors in zebrafish that were qualitatively analogous to those previously measured in humans and rodents treated with drugs that produce transient psychosis. In addition, we revealed that the transcription factor Phox2b is a molecular substrate for the actions of ketamine, particularly during periods of hypoxic stress. Finally, we also show that SIRT1, a histone deacetylase widely recognized for its link to cell survival is also affected by hypoxia crises. These results establish a relevant assay system in which the effects of psychotomimetic drugs can rapidly be assessed, and provide a plausible and novel neuronal mechanism through which ketamine affects critical sensory circuits that monitor breathing behavior.
Collapse
Affiliation(s)
- Sherry M Zakhary
- Department of Neuroscience and Histology, New York College of Osteopathic Medicine of New York Institute of Technology, Old Westbury, New York 11568, USA
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Porteus C, Hedrick MS, Hicks JW, Wang T, Milsom WK. Time domains of the hypoxic ventilatory response in ectothermic vertebrates. J Comp Physiol B 2011; 181:311-33. [PMID: 21312038 PMCID: PMC3058336 DOI: 10.1007/s00360-011-0554-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2010] [Revised: 01/11/2011] [Accepted: 01/19/2011] [Indexed: 01/19/2023]
Abstract
Over a decade has passed since Powell et al. (Respir Physiol 112:123-134, 1998) described and defined the time domains of the hypoxic ventilatory response (HVR) in adult mammals. These time domains, however, have yet to receive much attention in other vertebrate groups. The initial, acute HVR of fish, amphibians and reptiles serves to minimize the imbalance between oxygen supply and demand. If the hypoxia is sustained, a suite of secondary adjustments occur giving rise to a more long-term balance (acclimatization) that allows the behaviors of normal life. These secondary responses can change over time as a function of the nature of the stimulus (the pattern and intensity of the hypoxic exposure). To add to the complexity of this process, hypoxia can also lead to metabolic suppression (the hypoxic metabolic response) and the magnitude of this is also time dependent. Unlike the original review of Powell et al. (Respir Physiol 112:123-134, 1998) that only considered the HVR in adult animals, we also consider relevant developmental time points where information is available. Finally, in amphibians and reptiles with incompletely divided hearts the magnitude of the ventilatory response will be modulated by hypoxia-induced changes in intra-cardiac shunting that also improve the match between O(2) supply and demand, and these too change in a time-dependent fashion. While the current literature on this topic is reviewed here, it is noted that this area has received little attention. We attempt to redefine time domains in a more 'holistic' fashion that better accommodates research on ectotherms. If we are to distinguish between the genetic, developmental and environmental influences underlying the various ventilatory responses to hypoxia, however, we must design future experiments with time domains in mind.
Collapse
Affiliation(s)
- Cosima Porteus
- Department of Zoology, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada.
| | | | | | | | | |
Collapse
|
11
|
Pelster B, Gittenberger‐de Groot A, Poelmann R, Rombough P, Schwerte T, Thompson M. Functional Plasticity of the Developing Cardiovascular System: Examples from Different Vertebrates. Physiol Biochem Zool 2010; 83:775-91. [DOI: 10.1086/656004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
12
|
Turesson J, Johansson M, Sundin L. Involvement of non-NMDA receptors in central mediation of chemoreflexes in the shorthorn sculpin, Myoxocephalus scorpius. Respir Physiol Neurobiol 2010; 172:83-93. [DOI: 10.1016/j.resp.2010.03.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2007] [Revised: 02/25/2010] [Accepted: 03/19/2010] [Indexed: 10/19/2022]
|
13
|
Yaqoob N, Schwerte T. Cardiovascular and respiratory developmental plasticity under oxygen depleted environment and in genetically hypoxic zebrafish (Danio rerio). Comp Biochem Physiol A Mol Integr Physiol 2010; 156:475-84. [PMID: 20363352 DOI: 10.1016/j.cbpa.2010.03.033] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2009] [Revised: 03/25/2010] [Accepted: 03/28/2010] [Indexed: 12/28/2022]
Abstract
Known vertebrate response to low oxygen concentration include change in carbohydrate metabolism, increase in nitric oxide, stimulation of red blood cell and hemoglobin production and induction of gene expression for glycolytic enzymes and hormones. Also, extreme hypoxia plays main role in pathological studies of cardiac dysfunction. The morphological and physiological developmental studies of the cardiovascular system under low oxygen are important as it is directly related to oxygen supply and consumption. Furthermore, cardiac function demands high energy during system development and thus it is most likely to be affected by hypoxia. Zebrafish (Danio rerio) can act as a model organism for oxygen demand management study as in natural environment, due to ecological disturbances, it is exposed to changes in oxygen concentrations routinely and thus would have natural ability to cope with it for survival. We have studied, in zebrafish, i) cardiovascular flexibility under extreme hypoxia (PO(2)=20 Torr, 3 kPa) at 3-10 dpf (days post-fertilization), ii) cardiac re-animation in normoxia (PO(2)=152 Torr, 20 kPa) after 90 min of anoxia (PO(2)=0 Torr, 0 kPa)-induced suspended animation at 4 dpf and iii) oxygen consumption in 8 dpf von Hippel-Lindau (vhl(-)(/)(-)) mutant that exhibits an artificial hypoxic response under normoxic conditions. In hypoxic fish, cardiac output, stroke volume and end-diastolic volume were elevated while intersegmental blood vessels vascularization index at 6 dpf and at 10 dpf was 22% and 11% higher respectively as compared to the normoxic fish. The heart rate in hypoxic fish was lower until 6 dpf and then showed an elevated trend. There was no significant difference in body length between the hypoxic and normoxic individuals. The observed changes may have enhanced the performance of the cardiovascular system for oxygen uptake. We also report for the first time that the post-anoxia re-animated heart rate returns to normal after 48h. Measurement of oxygen consumption in 8 dpf hyperventilating vhl(-)(/)(-) mutant was, unexpectedly, significantly lower than the non-mutant fish of the same age which point towards artificial hypoxic signal from brain in these mutants.
Collapse
Affiliation(s)
- Nadeem Yaqoob
- University of Innsbruck, Institute of Zoology, Technikerstrasse 25, A-6020 Innsbruck, Austria
| | | |
Collapse
|
14
|
Schwerte T. Cardio-respiratory control during early development in the model animal zebrafish. Acta Histochem 2009; 111:230-43. [PMID: 19121852 DOI: 10.1016/j.acthis.2008.11.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Independent of species, the cardiovascular system is the first functioning component of developing vertebrate embryos. One of the main hypotheses is the assumption that larval and juvenile stages of fish and amphibians are not just smaller versions of an adult phenotype. In this review, the cardiovascular and respiratory responses to environmental, genetic and epigenetic perturbations are discussed in detail to understand the relationships between cardiac and respiratory performance, haematopoiesis for embryonic or larval stages with special focus on the popular model animal, the zebrafish. Zebrafish are tiny animals which have many advantages as a model organism in analysis of the cardio-respiratory system. It obtains sufficient amounts of oxygen via bulk diffusion, in contrast to convection-dependent mammals. It is possible to study genetic mutants even with extreme defective phenotypes of the cardio-respiratory system in order to understand its developmental and physiological mechanisms. It has become apparent that the cardio-respiratory system and its control starts functioning very early during development, long before oxygen uptake becomes diffusion limited in zebrafish. Finally, recent improvements in imaging techniques for the use of fish models relevant for developmental physiology and biomedical research are discussed.
Collapse
|
15
|
Henry TB, Menn FM, Fleming JT, Wilgus J, Compton RN, Sayler GS. Attributing effects of aqueous C60 nano-aggregates to tetrahydrofuran decomposition products in larval zebrafish by assessment of gene expression. ENVIRONMENTAL HEALTH PERSPECTIVES 2007; 115:1059-65. [PMID: 17637923 PMCID: PMC1913576 DOI: 10.1289/ehp.9757] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2006] [Accepted: 02/21/2007] [Indexed: 05/04/2023]
Abstract
BACKGROUND C(60) is a highly insoluble nanoparticle that can form colloidal suspended aggregates in water, which may lead to environmental exposure in aquatic organisms. Previous research has indicated toxicity from C(60) aggregate; however, effects could be because of tetrahydrofuran (THF) vehicle used to prepare aggregates. OBJECTIVE Our goal was to investigate changes in survival and gene expression in larval zebrafish Danio rerio after exposure to aggregates of C(60) prepared by two methods: a) stirring and sonication of C(60) in water (C(60)-water); and b) suspension of C(60) in THF followed by rotovaping, resuspension in water, and sparging with nitrogen gas (THF-C(60)). RESULTS Survival of larval zebrafish was reduced in THF-C(60) and THF-water but not in C(60)-water. The greatest differences in gene expression were observed in fish exposed to THF-C(60) and most (182) of these genes were similarly expressed in fish exposed to THF-water. Significant up-regulation (3- to 7-fold) of genes involved in controlling oxidative damage was observed after exposure to THF-C(60) and THF-water. Analyses of THF-C(60) and THF-water by gas chromatography-mass spectrometry did not detect THF but found THF oxidation products gamma-butyrolactone and tetrahydro-2-furanol. Toxicity of gamma-butyrolactone (72-hr lethal concentration predicted to kill 50% was 47 ppm) indicated effects in THF treatments can result from gamma-butyrolactone toxicity. CONCLUSION This research is the first to link toxic effects directly to a THF degradation product (gamma-butyrolactone) rather than to C(60) and may explain toxicity attributed to C(60) in other investigations. The present work was first presented at the meeting "Overcoming Obstacles to Effective Research Design in Nanotoxicology" held 24-26 April 2006 in Cambridge, Massachusetts, USA.
Collapse
Affiliation(s)
- Theodore B Henry
- The Center for Environmental Biotechnology, University of Tennessee, Knoxville, TN 37996-1605, USA.
| | | | | | | | | | | |
Collapse
|