1
|
Chithra KR, Rao SM, Varsha MV, Nageswaran G. Bimetallic Metal-Organic Frameworks (BMOF) and BMOF- Incorporated Membranes for Energy and Environmental Applications. Chempluschem 2023; 88:e202200420. [PMID: 36795938 DOI: 10.1002/cplu.202200420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/24/2023] [Accepted: 02/13/2023] [Indexed: 02/18/2023]
Abstract
Bimetallic metal organic frameworks (BMOFs) are a class of crystalline solids and their structure comprises two metal ions in the lattice. BMOFs show a synergistic effect of two metal centres and enhanced properties compared to MOFs. By controlling the composition and relative distribution of two metal ions in the lattice the structure, morphology, and topology of BMOFs could be regulated resulting in an improvement in the tunability of pore structure, activity, and selectivity. Thus, developing BMOFs and BMOF incorporated membranes for applications such as adsorption, separation, catalysis, and sensing is a promising strategy to mitigate environmental pollution and address the looming energy crisis. Herein we present an overview of recent advancements in the area of BMOFs and a comprehensive review of BMOF incorporated membranes reported to date. The scope, challenges as well as future perspectives for BMOFs and BMOF incorporated membranes are presented.
Collapse
Affiliation(s)
- K R Chithra
- Department of Chemistry, Indian Institute of Space Science and Technology Valiyamala, Thiruvanthapuram, Kerala, India
| | - Shashank M Rao
- Department of Chemistry, Indian Institute of Space Science and Technology Valiyamala, Thiruvanthapuram, Kerala, India
| | - M V Varsha
- Department of Chemistry, Indian Institute of Space Science and Technology Valiyamala, Thiruvanthapuram, Kerala, India
| | - Gomathi Nageswaran
- Department of Chemistry, Indian Institute of Space Science and Technology Valiyamala, Thiruvanthapuram, Kerala, India
| |
Collapse
|
2
|
Garbinato C, Schneider SE, Sachett A, Decui L, Conterato GM, Müller LG, Siebel AM. Exposure to ractopamine hydrochloride induces changes in heart rate and behavior in zebrafish embryos and larvae. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:21468-21475. [PMID: 32277412 DOI: 10.1007/s11356-020-08634-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Accepted: 03/26/2020] [Indexed: 06/11/2023]
Abstract
Different veterinary drugs have been widely found in surface and groundwater, affecting non-target organisms. Ractopamine (RAC) is one of these drugs found in water bodies. It is a β-adrenergic agonist used as a feed additive to modulate the metabolism, redirect nutrients from the adipose tissue towards muscles, and increase protein synthesis in swine, cattle, and turkeys. RAC shows toxicological potential, but there is no data about its impacts on the development of non-target organisms, such as zebrafish (Danio rerio). In this study, we evaluated the effect of the exposure to this feed additive on critical parameters (hatching, survival, spontaneous movement, heart rate, and exploratory and locomotor behavior) in zebrafish embryos and larvae. The animals were exposed to RAC hydrochloride at 0.1, 0.2, 0.85, 8.5, and 85 μg/L. Zebrafish exposed to the drug showed increased heart rate at all tested concentrations and alterations on locomotion and exploratory behavior at 85 μg/L. No changes were observed in the survival, hatching rate and spontaneous movement. Our results suggest that RAC present in the environment can induce disabling effects on non-target organisms and elicit an ecological imbalance by increasing the animals' vulnerability to predation due to greater visibility.
Collapse
Affiliation(s)
- Cristiane Garbinato
- Laboratório de Genética e Ecotoxicologia Molecular, Programa de Pós-Graduação em Ciências Ambientais, Universidade Comunitária da Região de Chapecó, Servidão Anjo da Guarda, 295-D, Chapecó, SC, 89809-900, Brazil
- Laboratório de Genética e Ecotoxicologia Molecular, Curso de Ciências Biológicas, Universidade Comunitária da Região de Chapecó, Servidão Anjo da Guarda, 295-D, Chapecó, SC, 89809-900, Brazil
| | - Sabrina Ester Schneider
- Laboratório de Genética e Ecotoxicologia Molecular, Programa de Pós-Graduação em Ciências Ambientais, Universidade Comunitária da Região de Chapecó, Servidão Anjo da Guarda, 295-D, Chapecó, SC, 89809-900, Brazil
- Laboratório de Genética e Ecotoxicologia Molecular, Curso de Ciências Biológicas, Universidade Comunitária da Região de Chapecó, Servidão Anjo da Guarda, 295-D, Chapecó, SC, 89809-900, Brazil
| | - Adrieli Sachett
- Laboratório de Psicofarmacologia e Comportamento, Programa de Pós-Graduação em Neurociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Laura Decui
- Laboratório de Genética e Ecotoxicologia Molecular, Programa de Pós-Graduação em Ciências Ambientais, Universidade Comunitária da Região de Chapecó, Servidão Anjo da Guarda, 295-D, Chapecó, SC, 89809-900, Brazil
- Laboratório de Genética e Ecotoxicologia Molecular, Curso de Ciências Biológicas, Universidade Comunitária da Região de Chapecó, Servidão Anjo da Guarda, 295-D, Chapecó, SC, 89809-900, Brazil
| | - Greicy M Conterato
- Laboratório de Fisiologia da Reprodução Animal, Departamento de Agricultura, Biodiversidade e Floresta, Universidade Federal de Santa Catarina, Campus de Curitibanos, Curitibanos, SC, Brazil
| | - Liz Girardi Müller
- Laboratório de Genética e Ecotoxicologia Molecular, Programa de Pós-Graduação em Ciências Ambientais, Universidade Comunitária da Região de Chapecó, Servidão Anjo da Guarda, 295-D, Chapecó, SC, 89809-900, Brazil
| | - Anna Maria Siebel
- Laboratório de Genética e Ecotoxicologia Molecular, Programa de Pós-Graduação em Ciências Ambientais, Universidade Comunitária da Região de Chapecó, Servidão Anjo da Guarda, 295-D, Chapecó, SC, 89809-900, Brazil.
| |
Collapse
|
3
|
Zhu B, Cai L, Jiang Z, Li Q, Guo X. Simultaneous stereoselective determination of seven β-agonists in pork meat samples by ultra-performance liquid chromatography-tandem mass spectrometry. Microchem J 2019. [DOI: 10.1016/j.microc.2019.104082] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
4
|
Vélez EJ, Balbuena-Pecino S, Capilla E, Navarro I, Gutiérrez J, Riera-Codina M. Effects of β2-adrenoceptor agonists on gilthead sea bream (Sparus aurata) cultured muscle cells. Comp Biochem Physiol A Mol Integr Physiol 2019; 227:179-193. [DOI: 10.1016/j.cbpa.2018.10.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 10/15/2018] [Indexed: 01/15/2023]
|
5
|
Vélez EJ, Perelló M, Azizi S, Moya A, Lutfi E, Pérez-Sánchez J, Calduch-Giner JA, Navarro I, Blasco J, Fernández-Borràs J, Capilla E, Gutiérrez J. Recombinant bovine growth hormone (rBGH) enhances somatic growth by regulating the GH-IGF axis in fingerlings of gilthead sea bream (Sparus aurata). Gen Comp Endocrinol 2018; 257:192-202. [PMID: 28666853 DOI: 10.1016/j.ygcen.2017.06.019] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 06/16/2017] [Accepted: 06/22/2017] [Indexed: 02/07/2023]
Abstract
The growth hormone (GH)/insulin-like growth factors (IGFs) endocrine axis is the main growth-regulator system in vertebrates. Some authors have demonstrated the positive effects on growth of a sustained-release formulation of a recombinant bovine GH (rBGH) in different fish species. The aim of this work was to characterize the effects of a single injection of rBGH in fingerlings of gilthead sea bream on growth, GH-IGF axis, and both myogenic and osteogenic processes. Thus, body weight and specific growth rate were significantly increased in rBGH-treated fish respect to control fish at 6weeks post-injection, whereas the hepatosomatic index was decreased and the condition factor and mesenteric fat index were unchanged, altogether indicating enhanced somatic growth. Moreover, rBGH injection increased the plasma IGF-I levels in parallel with a rise of hepatic mRNA from total IGF-I, IGF-Ic and IGF-II, the binding proteins IGFBP-1a and IGFBP-2b, and also the receptors IGF-IRb, GHR-I and GHR-II. In skeletal muscle, the expression of IGF-Ib and GHR-I was significantly increased but that of IGF-IRb was reduced; the mRNA levels of myogenic regulatory factors, proliferation and differentiation markers (PCNA and MHC, respectively), or that of different molecules of the signaling pathway (TOR/AKT) were unaltered. Besides, the growth inhibitor myostatin (MSTN1 and MSTN2) and the hypertrophic marker (MLC2B) expression resulted significantly enhanced, suggesting altogether that the muscle is in a non-proliferative stage of development. Contrarily in bone, although the expression of most molecules of the GH/IGF axis was decreased, the mRNA levels of several osteogenic genes were increased. The histology analysis showed a GH induced lipolytic effect with a clear decrease in the subcutaneous fat layer. Overall, these results reveal that a better growth potential can be achieved on this species and supports the possibility to improve growth and quality through the optimization of its culture conditions.
Collapse
Affiliation(s)
- Emilio J Vélez
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Miquel Perelló
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Sheida Azizi
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Alberto Moya
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Esmail Lutfi
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Jaume Pérez-Sánchez
- Nutrigenomics and Fish Growth Endocrinology, Institute of Aquaculture Torre de la Sal (CSIC), 12595 Ribera de Cabanes, Castellón, Spain
| | - Josep A Calduch-Giner
- Nutrigenomics and Fish Growth Endocrinology, Institute of Aquaculture Torre de la Sal (CSIC), 12595 Ribera de Cabanes, Castellón, Spain
| | - Isabel Navarro
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Josefina Blasco
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Jaume Fernández-Borràs
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Encarnación Capilla
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Joaquim Gutiérrez
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain.
| |
Collapse
|
6
|
Liu B, Wang L, Tong B, Zhang Y, Sheng W, Pan M, Wang S. Development and comparison of immunochromatographic strips with three nanomaterial labels: Colloidal gold, nanogold-polyaniline-nanogold microspheres (GPGs) and colloidal carbon for visual detection of salbutamol. Biosens Bioelectron 2016; 85:337-342. [PMID: 27183285 DOI: 10.1016/j.bios.2016.05.032] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Revised: 05/05/2016] [Accepted: 05/08/2016] [Indexed: 10/21/2022]
Abstract
In this study, the three nanomaterials: colloidal gold, nanogold-polyaniline-nanogold microspheres (GPGs) and colloidal carbon were respectively labeled with the antibody against salbutamol (SAL). We aimed to develop immunochromatographic strips with these nanomaterial labels and determine their performance in visual detection of SAL. For the colloidal gold-based strip, the detection limit of SAL was 1.0µgL(-1) in standard solution and 5.0µgkg(-1) in meat samples. For the GPG- and colloidal carbon-based strips, the limit of detection was 2.0µgL(-1) in standard solution and 10µgkg(-1) in meat samples. The results obtained using the test strips were found to be highly consistent with those obtained using a commercial kit, indicating the high accuracy of these strips. The three strips were also found to be stable up to 18 weeks under laboratory conditions. In terms of sensitivity, the colloidal gold-based strip was slightly better than the other two. For the GPG- and colloidal carbon-based strips, the difference between the results obtained for different batches was small (high consistency), and the stability was much better than that of the colloidal gold-based one. Our results indicate that colloidal carbon can be used as a label in immunochromatographic tests; it can also help reduce the cost involved and scale-up the production. The use of immunochromatographic test strips labeled with colloidal carbon can be a rapid and inexpensive method for SAL assays in on-site applications.
Collapse
Affiliation(s)
- Bing Liu
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China; Tianjin Food Safety & Low Carbon Manufacturing Collaborative Innovation Center, 300457 Tianjin, China
| | - Lingling Wang
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China; Tianjin Food Safety & Low Carbon Manufacturing Collaborative Innovation Center, 300457 Tianjin, China
| | - Bei Tong
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China; Tianjin Food Safety & Low Carbon Manufacturing Collaborative Innovation Center, 300457 Tianjin, China
| | - Yan Zhang
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China; Tianjin Food Safety & Low Carbon Manufacturing Collaborative Innovation Center, 300457 Tianjin, China
| | - Wei Sheng
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China; Tianjin Food Safety & Low Carbon Manufacturing Collaborative Innovation Center, 300457 Tianjin, China
| | - Mingfei Pan
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China; Tianjin Food Safety & Low Carbon Manufacturing Collaborative Innovation Center, 300457 Tianjin, China
| | - Shuo Wang
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China; Tianjin Food Safety & Low Carbon Manufacturing Collaborative Innovation Center, 300457 Tianjin, China.
| |
Collapse
|
7
|
Mauro D, Ciardullo S, Civitareale C, Fiori M, Pastorelli A, Stacchini P, Palleschi G. Development and validation of a multi-residue method for determination of 18 β-agonists in bovine urine by UPLC–MS/MS. Microchem J 2014. [DOI: 10.1016/j.microc.2014.02.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
8
|
Oliveira L, Leal R, Mesquita T, Pimenta M, Zangeronimo M, Sousa R, Alvarenga R. Effect of ractopamine on the chemical and physical characteristics of pacu(Piaractus mesopotamicus) steaks. ARQ BRAS MED VET ZOO 2014. [DOI: 10.1590/s0102-09352014000100026] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The objective was to evaluate the use of ractopamine (RAC) in the diet for pacu (Piaractus mesopotaminus) in the finishing phase on some quality parameters of the fillets. Thirty-five animals weighing 0.868±0.168kg were distributed in a completely randomised design with five treatments (0.0 - control; 11.25, 22.50, 33.75 and 45 ppm of RAC) and seven replicates with two fillets obtained from the same animal. The diets were isocaloric and isoprotein and experimental time was 90 days. RAC did not affect (P>0.05) the initial pH or ph after 24 hours of the fillets. Compared to the control, RAC increased (P<0.05) the moisture content of the fillets in natura and lipid oxidation of samples stored for 12 days in the refrigerator or freezer for 60 days. The RAC in 11.25 ppm reduced (P<0.05) the lipid content, while 45 ppm reduced (P<0.05) the crude protein in the fillets. Considering only RAC, there was a linear increase (P<0.05) in the lipid content (P<0.05) and a linear reduction in crude protein and weight loss after cooking the fillets. There was a quadratic effect (P<0.05) on the ash content, weight loss and lipid oxidation in fillets stored in the refrigerator or freezer. A RAC dose of 33.75 ppm resulted in a lower lipid oxidation index. In conclusion, ractopamine at 11.25 ppm is effective for reducing the fat content in fillets of pacu, although it increases the formation of peroxides in samples kept in the freezer for longer than 60 days. At 33.75 ppm, ractopamine is effective in reducing the effect of oxidation during storage in the refrigerator or freezer.
Collapse
|
9
|
Fragkaki AG, Georgakopoulos C, Sterk S, Nielen MWF. Sports doping: emerging designer and therapeutic β2-agonists. Clin Chim Acta 2013; 425:242-58. [PMID: 23954776 DOI: 10.1016/j.cca.2013.07.031] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2013] [Revised: 07/30/2013] [Accepted: 07/31/2013] [Indexed: 12/12/2022]
Abstract
Beta2-adrenergic agonists, or β2-agonists, are considered essential bronchodilator drugs in the treatment of bronchial asthma, both as symptom-relievers and, in combination with inhaled corticosteroids, as disease-controllers. The use of β2-agonists is prohibited in sports by the World Anti-Doping Agency (WADA) due to claimed anabolic effects, and also, is prohibited as growth promoters in cattle fattening in the European Union. This paper reviews the last seven-year (2006-2012) literature concerning the development of novel β2-agonists molecules either by modifying the molecule of known β2-agonists or by introducing moieties producing indole-, adamantyl- or phenyl urea derivatives. New emerging β2-agonists molecules for future therapeutic use are also presented, intending to emphasize their potential use for doping purposes or as growth promoters in the near future.
Collapse
Affiliation(s)
- A G Fragkaki
- Doping Control Laboratory of Athens, Olympic Athletic Center of Athens "Spyros Louis", Kifisias 37, 15123 Maroussi, Greece.
| | | | | | | |
Collapse
|
10
|
Cha MC, Purslow PP. Expressions of matrix metalloproteinases and their inhibitor are modified by beta-adrenergic agonist Ractopamine in skeletal fibroblasts and myoblasts. CANADIAN JOURNAL OF ANIMAL SCIENCE 2012. [DOI: 10.4141/cjas2011-086] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Cha, M. C. and Purslow, P. P. 2012. Expressions of matrix metalloproteinases and their inhibitor are modified by beta-adrenergic agonist Ractopamine in skeletal fibroblasts and myoblasts. Can. J. Anim. Sci. 92: 159–166. The beta-adrenergic agonist ractopamine is known to promote growth and improve feed efficiency in animal production, in part by suppressing muscle protein degradation. This investigation aims to determine whether ractopamine modifies the expression of enzymes principally involved in intramuscular connective tissue turnover, the matrix metalloproteinases (MMPs) and their inhibitors, in the principal cell types of skeletal muscle. Mouse skeletal muscle fibroblasts (NOR-10 cells) and myoblasts (C2C12 cells) were cultured with or without 2 or 10 µM ractopamine for 6 or 24 h. Cellular MMP-2 expression was increased (P<0.05) by ractopamine in both cell lines. Cellular MMP-3 expression was also increased in response to ractopamine in myoblasts (P<0.03). The amount of a tissue inhibitor of MMPs (TIMP-1) in cell lysates of both cell lines was increased (P<0.05) by the 6-h ractopamine treatment. The extracellular expression of MMP-2 and TIMP-1 was increased (P<0.05) in myoblasts, but not in fibroblasts. The elevated TIMP-1 expression in medium is in the order of three times higher (P<0.02) than the increased activity of MMP-2 expressed by myoblasts at 6 h. In summary, ractopamine treatment results in a higher cellular expression of MMP-2 and MMP-3 as compared with the expression of their inhibitor TIMP-1. However, the increased extracellular MMP-2 activity is counterbalanced by the increased presence of TIMP-1. The findings show that ractopamine has the potential to alter connective tissue turnover in treated animals.
Collapse
Affiliation(s)
- Ming C. Cha
- Department of Food Science, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| | - Peter P. Purslow
- Department of Food Science, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| |
Collapse
|
11
|
Abbasvali M, Shekarforoush SS, Aminlari M, Ebrahimnejad H. Effects of medium-voltage electrical stimulation on postmortem changes in fat-tailed sheep. J Food Sci 2011; 77:S47-53. [PMID: 22122156 DOI: 10.1111/j.1750-3841.2011.02463.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Effects of different medium-voltage electrical stimulation (ES) and ageing on postmortem changes in longissimus dorsi muscle of the fat-tailed sheep were studied. Fifteen male animals were divided into 5 equal groups (n= 3) including: T₁ (control, without ES), T₂ (100 V/30 s), T₃ (100 V/60 s), T₄ (150 V/30 s), and T₅ (150 V/60 s) with fixed frequency of 50 Hz. Five minutes after sticking, the carcasses were stimulated in order of the treatments. After normal processing, they were kept at 6 °C for 14 d. ES accelerated the glycolytic rate resulting in a significant fast fall in pH (P < 0.05) during the 1st 6-h postmortem (PM) with a gradual decline until 24-h PM, and a simultaneous significant reduction in adenosine triphosphate (ATP) content (P < 0.05). There was a significant (P < 0.05) decline in the total calpain activity during the 1st 6-h PM. The muscles from ES carcasses had significantly (P < 0.05) lower water holding capacity (WHC) than those from nonstimulated ones. Ageing revealed a significant (P < 0.05) effect on the reduction of WHC. No significant difference was found for the mean value of the muscle color (L*, a*, and b*) in all treatment groups during ageing (P > 0.05). The results of free amino acid (FAA) content and myofibrillar fragmentation index (MFI) revealed a significant improvement of proteolysis and tenderness by ES and ageing (P < 0.05). In the present study, higher voltage/duration (150 V/60 s) showed greater effects and significantly accelerated glycolysis, pH decline, and ATP depletion and thus decreased the time for rigor completion and improved the tenderness.
Collapse
Affiliation(s)
- Maryam Abbasvali
- Department of Food Hygiene and Public Health, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | | | | | | |
Collapse
|
12
|
Gaarder MØ, Bahuaud D, Veiseth-Kent E, Mørkøre T, Thomassen MS. Relevance of calpain and calpastatin activity for texture in super-chilled and ice-stored Atlantic salmon (Salmo salar L.) fillets. Food Chem 2011; 132:9-17. [PMID: 26434257 DOI: 10.1016/j.foodchem.2011.09.139] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2011] [Revised: 06/29/2011] [Accepted: 09/29/2011] [Indexed: 11/15/2022]
Abstract
The aim of the present experiment was to measure the protease activities in ice-stored and super-chilled Atlantic salmon (Salmo salar) fillets, and the effect on texture. Pre-rigour fillets of Atlantic salmon were either super-chilled to a core temperature of -1.5°C or directly chilled on ice prior to 144h of ice storage. A significantly higher calpain activity was detected in the super-chilled fillets at 6h post-treatment compared to the ice-stored fillets and followed by a significant decrease below its initial level, while the calpastatin activity was significantly lower for the super-chilled fillets at all time points. The cathepsin B+L and B activities increased significantly with time post-treatment; however, no significant differences were observed at any time points between the two treatments. For the ice stored fillets, the cathepsin L activity decreased significantly from 6 to 24h post-treatment and thereafter increased significantly to 144h post-treatment. There was also a significantly lower cathepsin L activity in the super-chilled fillets at 0h post-treatment. No significant difference in breaking force was detected; however, a significant difference in maximum compression (Fmax) was detected at 24h post-treatment with lower Fmax in the super-chilled fillets. This experiment showed that super-chilling had a significant effect on the protease activities and the ATP degradation in salmon fillets. The observed difference in Fmax may be a result of these observed differences, and may indicate a softening of the super-chilled salmon muscle at 24h post-treatment.
Collapse
Affiliation(s)
- M Ø Gaarder
- Norwegian University of Life Sciences (UMB), Department of Animal- and Aquacultural Sciences (IHA), Post Box 5003, 1432 Aas, Norway.
| | - D Bahuaud
- Norwegian University of Life Sciences (UMB), Department of Animal- and Aquacultural Sciences (IHA), Post Box 5003, 1432 Aas, Norway
| | | | - T Mørkøre
- Nofima Marin AS, Osloveien 1, 1430 Aas, Norway
| | - M S Thomassen
- Norwegian University of Life Sciences (UMB), Department of Animal- and Aquacultural Sciences (IHA), Post Box 5003, 1432 Aas, Norway
| |
Collapse
|
13
|
Baviera AM, Zanon NM, Navegantes LCC, Kettelhut IC. Involvement of cAMP/Epac/PI3K-dependent pathway in the antiproteolytic effect of epinephrine on rat skeletal muscle. Mol Cell Endocrinol 2010; 315:104-12. [PMID: 19804812 DOI: 10.1016/j.mce.2009.09.028] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2009] [Revised: 09/14/2009] [Accepted: 09/28/2009] [Indexed: 02/04/2023]
Abstract
Very little is known about the signaling pathways by which catecholamines exert anabolic effects on muscle protein metabolism, stimulating protein synthesis and suppressing proteolysis. The present work tested the hypothesis that epinephrine-induced inhibition of muscle proteolysis is mediated through the cAMP/Epac/PI3K-dependent pathway with the involvement of AKT and Foxo. The incubation of extensor digitorum longus (EDL) muscles from rats with epinephrine and/or insulin increased the phosphorylation of AKT and its downstream target Foxo3a, a well-known effect that prevents Foxo translocation to the nucleus and the activation of proteolysis. Similar effects on AKT/Foxo signaling were observed in muscles incubated with DBcAMP (cAMP analog). The stimulatory effect of epinephrine on AKT phosphorylation was completely blocked by wortmannin (selective PI3K inhibitor), suggesting that the epinephrine-induced activation of AKT is mediated through PI3K. As for epinephrine and DBcAMP, the incubation of muscles with 8CPT-2Me-cAMP (selective Epac agonist) reduced rates of proteolysis and increased phosphorylation levels of AKT and Foxo3a. The specific PKA agonist (N6BZ-cAMP) inhibited proteolysis and abolished the epinephrine-induced AKT and Foxo3a phosphorylation. On the other hand, inhibition of PKA by H89 further increased the phosphorylation levels of AKT and Foxo3a induced by epinephrine, DBcAMP or 8CPT-2Me-cAMP. These findings suggest that the antiproteolytic effect of the epinephrine on isolated skeletal muscle may occur through a cAMP/Epac/PI3K-dependent pathway, which leads to the phosphorylation of AKT and Foxo3a. The parallel activation of PKA-dependent pathway also inhibits proteolysis and seems to limit the stimulatory effect of cAMP on AKT/Foxo3a signaling.
Collapse
Affiliation(s)
- Amanda Martins Baviera
- Department of Chemistry, Federal University of Mato Grosso, 78060-900 Cuiabá, MT, Brazil
| | | | | | | |
Collapse
|
14
|
Bahuaud D, Mørkøre T, Østbye TK, Veiseth-Kent E, Thomassen M, Ofstad R. Muscle structure responses and lysosomal cathepsins B and L in farmed Atlantic salmon (Salmo salar L.) pre- and post-rigor fillets exposed to short and long-term crowding stress. Food Chem 2010. [DOI: 10.1016/j.foodchem.2009.05.028] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
15
|
Salem M, Kenney PB, Rexroad CE, Yao J. Proteomic signature of muscle atrophy in rainbow trout. J Proteomics 2009; 73:778-89. [PMID: 19903543 DOI: 10.1016/j.jprot.2009.10.014] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2009] [Revised: 10/13/2009] [Accepted: 10/31/2009] [Indexed: 02/06/2023]
Abstract
Muscle deterioration arises as a physiological response to elevated energetic demands of fish during sexual maturation and spawning. Previously, we used this model to characterize the transcriptomic mechanisms associated with fish muscle degradation and identified potential biological markers of muscle growth and quality. However, transcriptional measurements do not necessarily reflect changes in active mature proteins. Here we report the characterization of proteomic profile in degenerating muscle of rainbow trout in relation to the female reproductive cycle using a LC/MS-based label-free protein quantification method. A total of 146 significantly changed proteins in atrophying muscles (FDR <5%) was identified. Proteins were clustered according to their gene ontology identifiers. Muscle atrophy was associated with decreased abundance in proteins of anaerobic respiration, protein biosynthesis, monooxygenases, follistatins, and myogenin, as well as growth hormone, interleukin-1 and estrogen receptors. In contrast, proteins of MAPK/ERK kinase, glutamine synthetase, transcription factors, Stat3, JunB, Id2, and NFkappaB inhibitor, were greater in atrophying muscle. These changes are discussed in light of the mammalian muscle atrophy paradigm and proposed fish-specific mechanisms of muscle degradation. These data will help identify genes associated with muscle degeneration and superior flesh quality in rainbow trout, facilitating identification of genetic markers for muscle growth and quality.
Collapse
Affiliation(s)
- Mohamed Salem
- Laboratory of Animal Biotechnology and Genomics, Division of Animal and Nutritional Sciences, West Virginia University, Morgantown, WV 26506-6108, United States
| | | | | | | |
Collapse
|
16
|
Navegantes LCC, Baviera AM, Kettelhut IC. The inhibitory role of sympathetic nervous system in the Ca2+-dependent proteolysis of skeletal muscle. Braz J Med Biol Res 2009; 42:21-8. [PMID: 19219294 DOI: 10.1590/s0100-879x2009000100005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2008] [Accepted: 12/04/2008] [Indexed: 02/04/2023] Open
Abstract
Mammalian cells contain several proteolytic systems to carry out the degradative processes and complex regulatory mechanisms to prevent excessive protein breakdown. Among these systems, the Ca2+-activated proteolytic system involves the cysteine proteases denoted calpains, and their inhibitor, calpastatin. Despite the rapid progress in molecular research on calpains and calpastatin, the physiological role and regulatory mechanisms of these proteins remain obscure. Interest in the adrenergic effect on Ca2+-dependent proteolysis has been stimulated by the finding that the administration of beta2-agonists induces muscle hypertrophy and prevents the loss of muscle mass in a variety of pathologic conditions in which calpains are activated. This review summarizes evidence indicating that the sympathetic nervous system produces anabolic, protein-sparing effects on skeletal muscle protein metabolism. Studies are reviewed, which indicate that epinephrine secreted by the adrenal medulla and norepinephrine released from adrenergic terminals have inhibitory effects on Ca2+-dependent protein degradation, mainly in oxidative muscles, by increasing calpastatin levels. Evidence is also presented that this antiproteolytic effect, which occurs under both basal conditions and in stress situations, seems to be mediated by beta2- and beta3-adrenoceptors and cAMP-dependent pathways. The understanding of the precise mechanisms by which catecholamines promote muscle anabolic effects may have therapeutic value for the treatment of muscle-wasting conditions and may enhance muscle growth in farm species for economic and nutritional purposes.
Collapse
Affiliation(s)
- L C C Navegantes
- Departamento de Fisiologia, Universidade de São Paulo, Av. Bandeirantes 3900, Ribeirão Preto, SP, Brazil.
| | | | | |
Collapse
|
17
|
Dhillon RS, Esbaugh AJ, Wang YS, Tufts BL. Characterization and expression of a myosin heavy-chain isoform in juvenile walleye Sander vitreus. JOURNAL OF FISH BIOLOGY 2009; 75:1048-62. [PMID: 20738597 DOI: 10.1111/j.1095-8649.2009.02376.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
In this study, myosin, the major component of myofibrillar protein in the skeletal muscle, was characterized and its expression was monitored during growth in juvenile walleye Sander vitreus. First, the coding region of myosin heavy chain (MyHC) from the fast skeletal muscle of walleye was amplified by long-distance PCR using a full-length cDNA. Phylogenetic analysis was used to determine the evolutionary relationship of this S. vitreus myosin sequence to other vertebrate myosin sequences. Next, it was established that the myosin isoform was most prevalent in the white muscle, compared with the red and cardiac muscle. Myosin expression was monitored over a series of experiments designed to influence growth. Specifically, change in MyHC mRNA was monitored after acute changes in feeding. Fish exposed to a one-week fasting period showed significant decreases in MyHC mRNA levels by the end of the fast. The effect of feeding was also examined more closely over a 24 h period after feeding, but results showed no significant change in myosin expression levels through this time period. Finally, fish with higher growth rates had higher MyHC mRNA and protein expression levels. This study indicates that MyHC mRNA expression is sensitive to the factors that may influence growth in juvenile S. vitreus.
Collapse
Affiliation(s)
- R S Dhillon
- Department of Biology, Queen's University, 116 Barrie Street, Kingston, Ontario K7L3N6, Canada.
| | | | | | | |
Collapse
|
18
|
Kawano F, Tanihata J, Sato S, Nomura S, Shiraishi A, Tachiyashiki K, Imaizumi K. Effects of dexamethasone on the expression of beta(1)-, beta (2)- and beta (3)-adrenoceptor mRNAs in skeletal and left ventricle muscles in rats. J Physiol Sci 2009; 59:383-90. [PMID: 19585216 PMCID: PMC10717288 DOI: 10.1007/s12576-009-0046-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2008] [Accepted: 06/02/2009] [Indexed: 10/20/2022]
Abstract
Glucocorticoids are known to increase the density and mRNA levels of beta-adrenoceptors (beta-AR) via the glucocorticoid receptor (GR) in many tissues. However, the effects of these changes in the skeletal and cardiac muscles remain relatively unknown. We have investigated the effects of dexamethasone on the expression of the beta(1)-, beta(2)-, and beta(3)-AR mRNAs and GR mRNA in fast-twitch fiber-rich extensor digitorum longus (EDL), slow-twitch fiber-rich soleus (SOL), and left ventricle (LV) muscles by real-time quantitative RT-PCR. Male rats were divided into a dexamethasone group and control group. The weight, RNA concentration, and total RNA content of EDL muscle were 0.76-, 0.85-, and 0.65-fold lower, respectively, in the dexamethasone group than in the control group. The weight, RNA concentration, and total RNA content of SOL muscle were 0.92-, 0.87-, and 0.81-fold lower, respectively, in the dexamethasone group than in the control group; these differences were significant. However, the weight/body weight and total RNA content/body weight of LV muscle were 1.38- and 1.39-fold higher, respectively, in the dexamethasone group than in the control group, respectively; these differences were also significant. Dexamethasone significantly decreased GR mRNA expression in EDL muscle without changing the expression of the beta(1)-, beta(2)-, and beta(3)-AR mRNAs. However, dexamethasone significantly decreased the expressions of beta(2)-AR and GR mRNAs in SOL muscle and significantly increased beta(1)-AR mRNA expression in LV muscle-without changing GR mRNA expression. These results suggest that the effects of dexamethasone on the expression of beta(1)- and beta(2)-AR mRNAs and muscle mass depend on the muscle contractile and/or constructive types.
Collapse
MESH Headings
- Animals
- Body Weight/physiology
- Dexamethasone/pharmacology
- Dose-Response Relationship, Drug
- Drinking/physiology
- Eating/physiology
- Glucocorticoids/pharmacology
- Heart Ventricles/metabolism
- Male
- Muscle, Skeletal/metabolism
- Myocardium/metabolism
- RNA, Messenger/metabolism
- Rats
- Rats, Sprague-Dawley
- Receptors, Adrenergic, beta-1/drug effects
- Receptors, Adrenergic, beta-1/metabolism
- Receptors, Adrenergic, beta-2/drug effects
- Receptors, Adrenergic, beta-2/metabolism
- Receptors, Adrenergic, beta-3/drug effects
- Receptors, Adrenergic, beta-3/metabolism
Collapse
Affiliation(s)
- Fuuun Kawano
- Laboratory of Physiological Sciences, Faculty of Human Sciences, Waseda University, 2-579-15 Mikajima, Tokorozawa, Saitama 359-1192 Japan
| | - Jun Tanihata
- Laboratory of Physiological Sciences, Faculty of Human Sciences, Waseda University, 2-579-15 Mikajima, Tokorozawa, Saitama 359-1192 Japan
| | - Shogo Sato
- Laboratory of Physiological Sciences, Faculty of Human Sciences, Waseda University, 2-579-15 Mikajima, Tokorozawa, Saitama 359-1192 Japan
| | - Sachiko Nomura
- Consolidated Research Institute for Advanced Science and Medical Care, Waseda University, 513 Wasedatsurumaki-cho, Shinjuku Tokyo, 162-0041 Japan
| | - Akira Shiraishi
- Faculty of Budo and Sport Studies, Tenri University, 80 Tainosho-cho, Tenri Nara, 632-0071 Japan
| | - Kaoru Tachiyashiki
- Department of Natural and Health Sciences, Joetsu University of Education, 1 Yamayashiki, Joetsu Niigata, 943-8512 Japan
| | - Kazuhiko Imaizumi
- Laboratory of Physiological Sciences, Faculty of Human Sciences, Waseda University, 2-579-15 Mikajima, Tokorozawa, Saitama 359-1192 Japan
- Consolidated Research Institute for Advanced Science and Medical Care, Waseda University, 513 Wasedatsurumaki-cho, Shinjuku Tokyo, 162-0041 Japan
| |
Collapse
|
19
|
Zebrafish beta-adrenergic receptor mRNA expression and control of pigmentation. Gene 2009; 446:18-27. [PMID: 19540320 DOI: 10.1016/j.gene.2009.06.005] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2009] [Revised: 06/12/2009] [Accepted: 06/15/2009] [Indexed: 01/08/2023]
Abstract
Beta adrenergic receptors (beta-ARs) are members of the G-protein-coupled receptor superfamily and mediate various physiological processes in many species. The expression patterns and functions of beta-ARs in zebrafish are, however, largely unknown. We have identified zebrafish beta-AR orthologs, which we have designated as adrb1, adrb2a, adrb2b, adrb3a and adrb3b. adrb1 was found to be expressed in the heart and brain. Expression of adrb2a predominated in the brain and skin, whereas adrb2b was found to be highly expressed in muscle, pancreas and liver. Both adrb3a and adrb3b were exclusively expressed in blood. Knock-down of these beta-ARs by morpholino oligonucleotides revealed a functional importance of adrb2a in pigmentation. Expression of atp5a1 and atp5b, genes that encode subunits of F1F0-ATPase, which is known to be involved in pigmentation, was significantly increased by knock-down of adrb2a. Our data suggest that adrb2a may regulate pigmentation, partly by modulating F1F0-ATPase.
Collapse
|
20
|
Lamarre SG, Le François NR, Driedzic WR, Blier PU. Protein synthesis is lowered while 20S proteasome activity is maintained following acclimation to low temperature in juvenile spotted wolffish(Anarhichas minor Olafsen). J Exp Biol 2009; 212:1294-301. [DOI: 10.1242/jeb.028290] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
SUMMARY
The effects of temperature on protein metabolism have been studied mostly with respect to protein synthesis. Temperature generally has a parabolic effect on protein synthesis with a maximum rate being observed at optimal growth temperature. The effect of temperature on protein degradation is poorly understood. The 20S proteasome is mainly responsible for the degradation of short-lived and oxidatively modified proteins and has been recently identified as a potentially good proxy for protein degradation in fish. The aim of this experiment was to examine the relationships between the rate of protein synthesis, activity of the 20S proteasome, oxidative stress markers and antioxidant capacity in white muscle of juvenile spotted wolffish(Anarhichas minor) acclimated at three temperatures (4, 8 and 12°C). The rate of protein synthesis was lower at 4°C than at 8°C while it was intermediate at 12°C. Despite the decrease of protein synthesis at low temperature, the activity of 20S proteasome activity was maintained high in fish acclimated at lower temperature (4°C), reaching levels 130% of that of fish acclimated at 8°C when measured at a common temperature. The oxidative stress markers TBARS and protein-carbonyl content did not change among temperature groups, but reduced glutathione concentration was higher in cold-acclimated fish, suggesting a higher antioxidant capacity in this group. Our data suggest that lower growth rate in cold temperature results from both high 20S proteasome activity and a reduced rate of protein synthesis.
Collapse
Affiliation(s)
- Simon G. Lamarre
- Ocean Sciences Centre, Memorial University of Newfoundland, St John's,Newfoundland, Canada A1C 5S7
| | - Nathalie R. Le François
- Biodôme de Montréal, 4777 Ave Pierre-De Coubertin,Montréal, Québec, Canada H1V 1B3
- Département de Biologie, Université du Québec àRimouski, Rimouski, Québec, Canada G5L 3A1
| | - William R. Driedzic
- Ocean Sciences Centre, Memorial University of Newfoundland, St John's,Newfoundland, Canada A1C 5S7
| | - Pierre U. Blier
- Département de Biologie, Université du Québec àRimouski, Rimouski, Québec, Canada G5L 3A1
| |
Collapse
|
21
|
Overturf K, Gaylord TG. Determination of relative protein degradation activity at different life stages in rainbow trout (Oncorhynchus mykiss). Comp Biochem Physiol B Biochem Mol Biol 2009; 152:150-60. [DOI: 10.1016/j.cbpb.2008.10.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2008] [Revised: 10/29/2008] [Accepted: 10/30/2008] [Indexed: 10/21/2022]
|
22
|
Sato S, Nomura S, Kawano F, Tanihata J, Tachiyashiki K, Imaizumi K. Effects of the beta2-agonist clenbuterol on beta1- and beta2-adrenoceptor mRNA expressions of rat skeletal and left ventricle muscles. J Pharmacol Sci 2008; 107:393-400. [PMID: 18678986 DOI: 10.1254/jphs.08097fp] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
The beta2-agonist clenbuterol [4-amino-alpha(t-butyl-amino)methyl-3,5-dichlorobenzyl alcohol] is used as a non-steroidal anabolic drug for sports doping. The effects of clenbuterol on the transcriptional process and mRNA stability of beta-adrenoceptor (beta-AR) in skeletal and cardiac muscles are still unknown. Therefore, we investigated the effects of clenbuterol on beta1- and beta2-AR mRNA expressions of fast-twitch fiber-rich extensor digitorum longus (EDL), slow-twitch fiber-rich soleus (SOL), and left ventricle (LV) muscles by real-time RT-PCR. Adult male Sprague Dawley rats were divided into the clenbuterol-administered group and control group. The administration (dose = 1.0 mg/kg body weight/day, s.c.) of clenbuterol was maintained for 10 days. The administration of clenbuterol significantly increased the weight, RNA concentration, and total RNA content of EDL muscle. No effects of clenbuterol on those of SOL and LV muscles, however, were observed. The administration of clenbuterol significantly decreased beta1-AR mRNA expression of LV muscle. Furthermore, the administration of clenbuterol significantly decreased beta2-AR mRNA expression of EDL and LV muscles. No effect of clenbuterol on beta2-AR mRNA expression of SOL muscle, however, was observed. These results suggest that the effects of clenbuterol on beta1- and beta2-AR mRNA expressions and muscle hypertrophy depend on muscle fiber types.
Collapse
Affiliation(s)
- Shogo Sato
- Laboratory of Physiological Sciences, Faculty of Human Sciences, Waseda University, Tokorozawa, Saitama, Japan
| | | | | | | | | | | |
Collapse
|
23
|
Salem M, Silverstein J, Rexroad CE, Yao J. Effect of starvation on global gene expression and proteolysis in rainbow trout (Oncorhynchus mykiss). BMC Genomics 2007; 8:328. [PMID: 17880706 PMCID: PMC2040161 DOI: 10.1186/1471-2164-8-328] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2007] [Accepted: 09/19/2007] [Indexed: 12/20/2022] Open
Abstract
Background Fast, efficiently growing animals have increased protein synthesis and/or reduced protein degradation relative to slow, inefficiently growing animals. Consequently, minimizing the energetic cost of protein turnover is a strategic goal for enhancing animal growth. Characterization of gene expression profiles associated with protein turnover would allow us to identify genes that could potentially be used as molecular biomarkers to select for germplasm with improved protein accretion. Results We evaluated changes in hepatic global gene expression in response to 3-week starvation in rainbow trout (Oncorhynchus mykiss). Microarray analysis revealed a coordinated, down-regulated expression of protein biosynthesis genes in starved fish. In addition, the expression of genes involved in lipid metabolism/transport, aerobic respiration, blood functions and immune response were decreased in response to starvation. However, the microarray approach did not show a significant increase of gene expression in protein catabolic pathways. Further studies, using real-time PCR and enzyme activity assays, were performed to investigate the expression of genes involved in the major proteolytic pathways including calpains, the multi-catalytic proteasome and cathepsins. Starvation reduced mRNA expression of the calpain inhibitor, calpastatin long isoform (CAST-L), with a subsequent increase in the calpain catalytic activity. In addition, starvation caused a slight but significant increase in 20S proteasome activity without affecting mRNA levels of the proteasome genes. Neither the mRNA levels nor the activities of cathepsin D and L were affected by starvation. Conclusion These results suggest a significant role of calpain and 20S proteasome pathways in protein mobilization as a source of energy during fasting and a potential association of the CAST-L gene with fish protein accretion.
Collapse
Affiliation(s)
- Mohamed Salem
- Laboratory of Animal Biotechnology and Genomics, Division of Animal and Nutritional Sciences, West Virginia University, Morgantown, WV 26505, USA
| | - Jeff Silverstein
- U.S. Department of Agriculture, Agricultural Research Service, National Center for Cool and Cold Water Aquaculture, Kearneysville, WV 25430, USA
| | - Caird E Rexroad
- U.S. Department of Agriculture, Agricultural Research Service, National Center for Cool and Cold Water Aquaculture, Kearneysville, WV 25430, USA
| | - Jianbo Yao
- Laboratory of Animal Biotechnology and Genomics, Division of Animal and Nutritional Sciences, West Virginia University, Morgantown, WV 26505, USA
| |
Collapse
|
24
|
Shirato K, Tanihata J, Motohashi N, Tachiyashiki K, Tomoda A, Imaizumi K. Beta2-agonist clenbuterol induced changes in the distribution of white blood cells in rats. J Pharmacol Sci 2007; 104:146-52. [PMID: 17558185 DOI: 10.1254/jphs.fp0070267] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Clenbuterol [CLE: 4-amino-alpha(t-butyl-amino)methyl-3,5-dichlorobenzyl alcohol] is well known as a potent beta2-adrenergic agonist and non-steroidal anabolic drug, and thus it is generally used for sports doping and asthma therapy. Although the functions of immune cells such as white blood cells (WBCs) have shown to be modulated through beta2-adrenoceptors, the effects of CLE on immune-responsive systems have not been elucidated systematically. Therefore, the effects of CLE on the number of WBCs were studied in rats. Male adult rats were divided into CLE-administered group and the control group to compare the number of total WBCs, neutrophils, monocytes, lymphocytes, eosinophils, and basophils. The administration (dose = 1.0 mg . kg(-1) body weight . day(-1), s.c.) of CLE was maintained for 30 days. CLE did not change the number of total WBCs during the experimental period. However, CLE increased significantly the number of neutrophils and monocytes, while CLE decreased drastically the number of lymphocytes and eosinophils. There was no significant change in the number of basophils between both groups. These results suggest that the administration of CLE induces drastic redistribution of WBCs in circulation without changing the number of total WBCs, and these responses of WBCs during the administration of CLE are sustained for at least 30 days.
Collapse
Affiliation(s)
- Ken Shirato
- Laboratory of Physiological Sciences, Faculty of Human Sciences, Waseda University, 2-579-15 Mikajima, Tokorozawa 359-1192, Japan
| | | | | | | | | | | |
Collapse
|
25
|
Salem M, Kenney PB, Rexroad CE, Yao J. Microarray gene expression analysis in atrophying rainbow trout muscle: a unique nonmammalian muscle degradation model. Physiol Genomics 2006; 28:33-45. [PMID: 16882886 DOI: 10.1152/physiolgenomics.00114.2006] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Muscle atrophy is a physiological response to diverse physiological and pathological conditions that trigger muscle deterioration through specific cellular mechanisms. Despite different signals, the biochemical changes in atrophying muscle share many common cascades. Muscle deterioration as a physiological response to the energetic demands of fish vitellogenesis represents a unique model for studying the mechanisms of muscle degradation in non-mammalian animals. A salmonid microarray, containing 16,006 cDNAs, was used to study the transcriptome response to atrophy of fast-switch muscles from gravid rainbow trout compared with sterile fish. Eighty-two unique transcripts were upregulated and 120 transcripts were downregulated in atrophying muscles. Transcripts having gene ontology identifiers were grouped according to their functions. Muscle deterioration was associated with elevated expression of genes involved in the catheptic and collagenase proteolytic pathways; the aerobic production, buffering, and utilization of ATP; and growth arrest; whereas atrophying muscle showed downregulation of genes encoding a serine proteinase inhibitor, enzymes of anaerobic respiration, muscle proteins as well as genes required for RNA and protein biosynthesis/processing. Therefore, gene transcription of the trout muscle atrophy changed in a manner similar to mammalian muscle atrophy. These changes result in an arrest of normal cell growth, protein degradation, and decreased glycolytic cellular respiration that is characteristic of the fast-switch muscle. For the first time, other changes/mechanisms unique to fish were discussed including genes associated with muscle atrophy.
Collapse
Affiliation(s)
- Mohamed Salem
- Division of Animal and Veterinary Sciences, West Virginia University, Morgantown, WV 26506-6108, USA
| | | | | | | |
Collapse
|