1
|
Lin YT, Wu SY, Lee TH. Salinity effects on expression and localization of aquaporin 3 in gills of the euryhaline milkfish (Chanos chanos). JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2023; 339:951-960. [PMID: 37574887 DOI: 10.1002/jez.2744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/28/2023] [Accepted: 07/27/2023] [Indexed: 08/15/2023]
Abstract
Milkfish (Chanos chanos) are important euryhaline fish in Southeast Asian countries that can tolerate a wide range of salinity changes. Previous studies have revealed that milkfish have strong ion regulation and survival abilities under osmotic stress. In addition to ion regulation, water homeostasis in euryhaline teleosts is important during environmental salinity shifts. Aquaporins (AQP) are vital water channels in fish, and different AQPs can transport water influx or outflux from the body. AQP3 is one of the AQP channels, and the function of AQP3 in the gills of euryhaline milkfish is still unknown. The aim of this study was to investigate the expression and localization of AQP3 in the gills of euryhaline milkfish to contribute to our understanding of the physiological role and localization of AQP3 in fish. The AQP3 sequence was found in the milkfish next-generation sequencing (NGS) database and is mainly distributed in the gills of freshwater (FW)-acclimated milkfish. Under hypoosmotic and hyperosmotic stress, the osmolality of milkfish immediately shifted, similar to the aqp3 gene expression. Moreover, the abundance of AQP3 protein significantly decreased 3 h after transferring milkfish from FW to seawater (SW). However, there was no change within 7 days when the milkfish experienced hypoosmotic stress. Moreover, double immunofluorescence staining of milkfish gills showed that AQP3 colocalized with Na+ /K+ ATPase at the basolateral membrane of ionocytes. These results combined indicate that milkfish have a strong osmoregulation ability under acute osmotic stress because of the quick shift in the gene and protein expression of AQP3 in their gills.
Collapse
Affiliation(s)
- Yu-Ting Lin
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
- The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
| | - Shao-Ying Wu
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Tsung-Han Lee
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
- The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
2
|
Ciji A, Tripathi PH, Pandey A, Akhtar MS. Expression of genes encoding non-specific immunity, anti-oxidative status and aquaporins in β-glucan-fed golden mahseer ( Tor putitora) juveniles under ammonia stress. FISH AND SHELLFISH IMMUNOLOGY REPORTS 2023; 4:100100. [PMID: 37397802 PMCID: PMC10313902 DOI: 10.1016/j.fsirep.2023.100100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/01/2023] [Accepted: 06/02/2023] [Indexed: 07/04/2023] Open
Abstract
The study investigated the effects of dietary administration of β-glucan on aquaporins and antioxidative & immune gene expression in endangered golden mahseer, Tor putitora juveniles, exposed to ammonia stress. For that, fish were fed experimental diets having 0 (control/basal), 0.25, 0.5, and 0.75% β-d-glucan for five weeks and then exposed to ammonia (10 mgL-1 total ammonia nitrogen) for 96 h. Administration of β-glucan differentially influenced the mRNA expression of aquaporins, anti-oxidative, and immune genes in ammonia-exposed fish. For instance, the transcript abundance of catalase and glutathione-s-transferase in gill varied significantly among the treatment groups, with the lowest levels in 0.75% β-glucan fed groups. At the same time, their hepatic mRNA expression was similar. Congruently, transcript abundance of inducible nitric oxide synthase considerably decreased in the β-glucan fed ammonia-challenged fish. Conversely, the relative mRNA expression of various immune genes viz., major histocompatibility complex, immunoglobulin light chain, interleukin 1-beta, toll-like receptors (tlr4 and tlr5) and complement component 3 remained largely unchanged in ammonia-exposed mahseer juveniles that were fed with graded levels of β-glucan. On the other hand, a significantly lower transcript level of aquaporins 1a and 3a was noticed in the gill of glucan-fed fish compared to ammonia-exposed fish that received the basal diet. However, branchial aquaporin 3b remained unaltered. Altogether, this study showed that dietary intake of 0.75% β-glucan improved resistance to ammonia stress to a certain degree, probably through activating anti-oxidative system and reducing brachial ammonia uptake.
Collapse
|
3
|
Blondeau-Bidet E, Banousse G, L'Honoré T, Farcy E, Cosseau C, Lorin-Nebel C. The role of salinity on genome-wide DNA methylation dynamics in European sea bass gills. Mol Ecol 2023; 32:5089-5109. [PMID: 37526137 DOI: 10.1111/mec.17089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 07/18/2023] [Accepted: 07/20/2023] [Indexed: 08/02/2023]
Abstract
Epigenetic modifications, like DNA methylation, generate phenotypic diversity in fish and ultimately lead to adaptive evolutionary processes. Euryhaline marine species that migrate between salinity-contrasted habitats have received little attention regarding the role of salinity on whole-genome DNA methylation. Investigation of salinity-induced DNA methylation in fish will help to better understand the potential role of this process in salinity acclimation. Using whole-genome bisulfite sequencing, we compared DNA methylation patterns in European sea bass (Dicentrarchus labrax) juveniles in seawater and after freshwater transfer. We targeted the gill as a crucial organ involved in plastic responses to environmental changes. To investigate the function of DNA methylation in gills, we performed RNAseq and assessed DNA methylome-transcriptome correlations. We showed a negative correlation between gene expression levels and DNA methylation levels in promoters, first introns and first exons. A significant effect of salinity on DNA methylation dynamics with an overall DNA hypomethylation in freshwater-transferred fish compared to seawater controls was demonstrated. This suggests a role of DNA methylation changes in salinity acclimation. Genes involved in key functions as metabolism, ion transport and transepithelial permeability (junctional complexes) were differentially methylated and expressed between salinity conditions. Expression of genes involved in mitochondrial metabolism (tricarboxylic acid cycle) was increased, whereas the expression of DNA methyltransferases 3a was repressed. This study reveals novel links between DNA methylation, mainly in promoters and first exons/introns, and gene expression patterns following salinity change.
Collapse
Affiliation(s)
| | | | - Thibaut L'Honoré
- MARBEC, Univ. Montpellier, CNRS, Ifremer, IRD, Montpellier, France
| | - Emilie Farcy
- MARBEC, Univ. Montpellier, CNRS, Ifremer, IRD, Montpellier, France
| | - Céline Cosseau
- IHPE, Université Montpellier, CNRS, Ifremer, University of Perpignan Via Domitia, Perpignan, France
| | | |
Collapse
|
4
|
Ferreira M, Sousa V, Oliveira B, Canadas-Sousa A, Abreu H, Dias J, Kiron V, Valente LMP. An in-depth characterisation of European seabass intestinal segments for assessing the impact of an algae-based functional diet on intestinal health. Sci Rep 2023; 13:11686. [PMID: 37468554 DOI: 10.1038/s41598-023-38826-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 07/15/2023] [Indexed: 07/21/2023] Open
Abstract
Sustainable farming of fish species depends on emerging new feed ingredients, which can alter the features of the digestive tract and influence animals' overall health. Recent research has shown that functional feeds hold great potential for enhancing fish robustness by evoking appropriate responses at the intestine level. However, there is a lack of extensive and accurate descriptions of the morphology of the gastrointestinal tract of most farmed fish. We have characterised the intestine of European seabass thoroughly, by targeting four segments - anterior, mid, posterior and rectum. Results indicated that the anterior segment is mostly associated with absorption-related features; this segment has the largest absorptive area, the longest villi, and the highest number of neutral goblet cells (GC). The posterior segment and rectum have distinct histomorphometric features, but both seem to be important for immunity, displaying the highest count of acid GC and the highest expression of immune-related genes. The strongest proliferating cell nuclear antigen (PCNA) signal was observed in the anterior intestine and rectum, with PCNA+ cells appearing at the base of the villi and the corresponding villi branches. We have also evaluated the impact of a novel feed supplemented with a macro- and microalgae blend and found that there were no differences in terms of growth. However, the alterations observed in the mid intestine of fish fed the blend, such as thickening of the submucosa and lamina propria, an increased number of leucocytes, and higher expression of immune- and oxidative stress-related genes, suggest that algae may have an immunomodulatory effect. In the current article, we have described the morphology and expression patterns of the intestine segments of European seabass in detail and have presented a comprehensive report of the indices and methods used for the semi-quantitative and quantitative histomorphometric assessments, thereby providing useful information for future studies that aim to maintain intestinal health through dietary interventions.
Collapse
Affiliation(s)
- Mariana Ferreira
- CIIMAR/CIMAR-LA, Centro Interdisciplinar de Investigação Marinha e Ambiental, 4450-208, Matosinhos, Portugal
- ICBAS, Instituto de Ciências Biomédicas de Abel Salazar, Universidade Do Porto, 4050-313, Porto, Portugal
| | - Vera Sousa
- CIIMAR/CIMAR-LA, Centro Interdisciplinar de Investigação Marinha e Ambiental, 4450-208, Matosinhos, Portugal
- ICBAS, Instituto de Ciências Biomédicas de Abel Salazar, Universidade Do Porto, 4050-313, Porto, Portugal
| | - Beatriz Oliveira
- CIIMAR/CIMAR-LA, Centro Interdisciplinar de Investigação Marinha e Ambiental, 4450-208, Matosinhos, Portugal
- ICBAS, Instituto de Ciências Biomédicas de Abel Salazar, Universidade Do Porto, 4050-313, Porto, Portugal
| | - Ana Canadas-Sousa
- ICBAS, Instituto de Ciências Biomédicas de Abel Salazar, Universidade Do Porto, 4050-313, Porto, Portugal
- EUVG, Escola Universitária Vasco da Gama, Quinta de S. Jorge, Estrada da Conraria, Castelo Viegas, 3040-714, Coimbra, Portugal
| | - H Abreu
- ALGAplus, Production and Trading of Seaweed and Derived Products Ltd, 3830-196, Ílhavo, Portugal
| | - J Dias
- SPAROS Lda., 8700-221, Olhão, Portugal
| | - Viswanath Kiron
- Faculty of Biosciences and Aquaculture, Nord University, 8049, Bodø, Norway
| | - Luisa M P Valente
- CIIMAR/CIMAR-LA, Centro Interdisciplinar de Investigação Marinha e Ambiental, 4450-208, Matosinhos, Portugal. *
- ICBAS, Instituto de Ciências Biomédicas de Abel Salazar, Universidade Do Porto, 4050-313, Porto, Portugal. *
| |
Collapse
|
5
|
Chutia P, Saha N, Das M, Goswami LM. Differential expression of aquaporin genes and the influence of environmental hypertonicity on their expression in juveniles of air-breathing stinging catfish (Heteropneustes fossilis). Comp Biochem Physiol A Mol Integr Physiol 2022; 274:111314. [PMID: 36096299 DOI: 10.1016/j.cbpa.2022.111314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 09/02/2022] [Accepted: 09/03/2022] [Indexed: 11/19/2022]
Abstract
Aquaporins (AQPs) are a superfamily of transmembrane channel proteins that are responsible for the transport of water and some other molecules to and from the cell, mainly for osmoregulation under anisotonicity. We investigated here the expression patterns of different AQP isoforms and also during exposure to hypertonicity (300 mOsmol/L) for 48 h in juvenile stages of air-breathing stinging catfish (Heteropneustes fossilis). A total of 8 mRNA transcripts for different isoforms of AQPs and their translated proteins could be detected in the anterior and posterior regions of S1, S2, and S3 stages of juveniles of stinging catfish at variable levels. In general, more expression of mRNAs for different aqp genes was seen in the S2 and S3 juveniles than in the S1 juveniles. Most interestingly, exposure to hypertonicity of S2 juveniles for a period of 48 h led to increased expression of most of the aqp genes both at transcriptional and translational levels, except for aqp3 in the anterior and posterior regions and aqp1 in the anterior region, showing maximum expression at later stages of hypertonic exposure. Thus, it is evident that AQPs play crucial roles in maintaining the water and ionic balances under anisotonic conditions even at the early developmental stages of stinging catfish as a biochemical adaptational strategy to survive and grow in anisotonic environment.
Collapse
Affiliation(s)
- Priyambada Chutia
- Animal Physiology and Biochemistry Laboratory, Department of Zoology, Gauhati University, Guwahati 781014, India; Department of Zoology, S.B. Deorah College, Ulubari, Guwahati 781007, India
| | - Nirmalendu Saha
- Biochemical Adaptation Laboratory, Department of Zoology, North-Eastern Hill University, Shillong 793022, India.
| | - Manas Das
- Animal Physiology and Biochemistry Laboratory, Department of Zoology, Gauhati University, Guwahati 781014, India.
| | | |
Collapse
|
6
|
Tang C, Xu Y, Yu D, Xia W. Label-free quantification proteomics reveals potential proteins associated with the freshness status of crayfish (Procambarus clarkii) as affected by cooking. Food Res Int 2022; 160:111717. [DOI: 10.1016/j.foodres.2022.111717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/09/2022] [Accepted: 07/19/2022] [Indexed: 11/04/2022]
|
7
|
Breves JP, Puterbaugh KM, Bradley SE, Hageman AE, Verspyck AJ, Shaw LH, Danielson EC, Hou Y. Molecular targets of prolactin in mummichogs (Fundulus heteroclitus): Ion transporters/channels, aquaporins, and claudins. Gen Comp Endocrinol 2022; 325:114051. [PMID: 35533740 DOI: 10.1016/j.ygcen.2022.114051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/25/2022] [Accepted: 05/02/2022] [Indexed: 11/30/2022]
Abstract
Prolactin (Prl) was identified over 60 years ago in mummichogs (Fundulus heteroclitus) as a "freshwater (FW)-adapting hormone", yet the cellular and molecular targets of Prl in this model teleost have remained unknown. Here, we conducted a phylogenetic analysis of two mummichog Prl receptors (Prlrs), designated Prlra and Prlrb, prior to describing the tissue- and salinity-dependent expression of their associated mRNAs. We then administered ovine Prl (oPrl) to mummichogs held in brackish water and characterized the expression of genes associated with FW- and seawater (SW)-type ionocytes. Within FW-type ionocytes, oPrl stimulated the expression of Na+/Cl- cotransporter 2 (ncc2) and aquaporin 3 (aqp3). Alternatively, branchial Na+/H+ exchanger 2 and -3 (nhe2 and -3) expression did not respond to oPrl. Gene transcripts associated with SW-type ionocytes, including Na+/K+/2Cl- cotransporter 1 (nkcc1), cystic fibrosis transmembrane regulator 1 (cftr1), and claudin 10f (cldn10f) were reduced by oPrl. Isolated gill filaments incubated with oPrl in vitro exhibited elevated ncc2 and prlra expression. Given the role of Aqps in supporting gastrointestinal fluid absorption, we assessed whether several intestinal aqp transcripts were responsive to oPrl and found that aqp1a and -8 levels were reduced by oPrl. Our collective data indicate that Prl promotes FW-acclimation in mummichogs by orchestrating the expression of solute transporters/channels, water channels, and tight-junction proteins across multiple osmoregulatory organs.
Collapse
Affiliation(s)
- Jason P Breves
- Department of Biology, Skidmore College, 815 N. Broadway, Saratoga Springs, NY 12866, USA.
| | - Katie M Puterbaugh
- Department of Biology, Skidmore College, 815 N. Broadway, Saratoga Springs, NY 12866, USA
| | - Serena E Bradley
- Department of Biology, Skidmore College, 815 N. Broadway, Saratoga Springs, NY 12866, USA
| | - Annie E Hageman
- Department of Biology, Skidmore College, 815 N. Broadway, Saratoga Springs, NY 12866, USA
| | - Adrian J Verspyck
- Department of Biology, Skidmore College, 815 N. Broadway, Saratoga Springs, NY 12866, USA
| | - Lydia H Shaw
- Department of Biology, Skidmore College, 815 N. Broadway, Saratoga Springs, NY 12866, USA
| | - Elizabeth C Danielson
- Department of Biology, Skidmore College, 815 N. Broadway, Saratoga Springs, NY 12866, USA
| | - Yubo Hou
- Department of Biology, Skidmore College, 815 N. Broadway, Saratoga Springs, NY 12866, USA
| |
Collapse
|
8
|
Molecular Characterization of Aquaporins Genes from the Razor Clam Sinonovacula constricta and Their Potential Role in Salinity Tolerance. FISHES 2022. [DOI: 10.3390/fishes7020069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Aquaporins (AQPs) play crucial roles in osmoregulation, but the knowledge about the functions of AQPs in Sinonovacula constricta is unclear. In this study, Sc-AQP1, Sc-AQP8, and Sc-AQP11 were identified from S. constricta, and the three Sc-AQPs are highly conserved compared to the known AQPs. The qRT-PCR analysis revealed that the highest mRNA expressions of Sc-AQP1, Sc-AQP8, and Sc-AQP11 were detected in the gill, digestive gland, and adductor muscle, respectively. In addition, the highest mRNA expression of Sc-AQP1 and Sc-AQP11 was detected in the D-shaped larvae stage, whereas that of SC-AQP8 was observed in the umbo larvae stage. The mRNA expression of Sc-AQP1, Sc-AQP8, and Sc-AQP11 significantly increased to 12.45-, 12.36-, and 27.44-folds post-exposure of low salinity (3.5 psu), while only Sc-AQP1 and Sc-AQP11 significantly increased post-exposure of high salinity (35 psu) (p < 0.01). The fluorescence in situ hybridization also showed that the salinity shift led to the boost of Sc-AQP1, Sc-AQP8, and Sc-AQP11 mRNA expression in gill filament, digestive gland, and adductor muscle, respectively. Knockdown of the Sc-AQP1 and Sc-AQP8 led to the decreased osmotic pressure in the hemolymph. Overall, these findings would contribute to the comprehension of the osmoregulation pattern of AQPs in S. constricta.
Collapse
|
9
|
Chutia P, Das M, Goswami N, Choudhury M, Saha N, Sarma K. Deciphering the role of aquaporin 1 in the adaptation of the stinging catfish Heteropneustes fossilis to environmental hypertonicity by molecular dynamics simulation studies. J Biomol Struct Dyn 2022; 41:2075-2089. [PMID: 35040369 DOI: 10.1080/07391102.2022.2027272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
A thorough investigation of the water permeability of H. fossilis aquaporin 1 (hfAQP1) in a hypertonic environment can provide a useful insight into the understanding of the underlying molecular mechanism of its high tolerance to salinity. Here, we constructed a 3 D homology model of hfAQP1 by taking Bos taurus AQP1, AQP0, and human AQP2 as templates using I-TASSER. The model obtained has similar structural organizations with mammalian AQP1s in all aspects. We investigated the water permeability of the modeled hfAQP1 in a 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) membrane under neutral and 100 mM hypersalinity by subjecting each system to a 100 ns molecular dynamics simulation. Our results show that hypersalinity hinders water permeation across the membrane through the hfAQP1 channel. A change in the intermolecular distance between key residues of the ar/R selectivity filter along with charge redistribution resulted in the accommodation of only 2-6 water molecules inside the channel at once under hypersaline conditions. We investigated the mRNA expression pattern of hfaqp1 in osmoregulatory organs of H. fossilis in response to 100 mM hypertonicity by using qPCR analysis. The transcript was downregulated in kidney and GI tract, but upregulated in the Gills. Thus, the catfish survive in a hypertonic environment by reducing the transport of water in its cellular systems and downregulating the expression of the hfaqp1 gene. The results observed in our study can shed more light on the functionality of AQP1 in catfishes under salinity stress and aid in future researches on solving more gating mechanisms involved in its regulation.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Priyambada Chutia
- Animal Physiology and Biochemistry Laboratory, Department of Zoology, Gauhati University, Guwahati, Assam, India
| | - Manas Das
- Animal Physiology and Biochemistry Laboratory, Department of Zoology, Gauhati University, Guwahati, Assam, India.,Bioinformatics Infrastructure Facility, Gauhati University, Guwahati, Assam, India
| | - Nabajyoti Goswami
- Bioinformatics Infrastructure Facility, Assam Agriculture University, College of Veterinary Science, Khanapara, Guwahati, Assam, India
| | - Manisha Choudhury
- Bioinformatics Infrastructure Facility, Gauhati University, Guwahati, Assam, India.,Department of Biosciences and Bioengineering, IIT Bombay, Mumbai, Maharashtra, India
| | - Nirmalendu Saha
- Biochemical Adaptation Laboratory, Department of Zoology, North Eastern Hill University, Meghalaya, Shillong, India
| | - Kishore Sarma
- Bioinformatics Infrastructure Facility, Gauhati University, Guwahati, Assam, India
| |
Collapse
|
10
|
Cao Q, Blondeau-Bidet E, Lorin-Nebel C. Intestinal osmoregulatory mechanisms differ in Mediterranean and Atlantic European sea bass: A focus on hypersalinity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 804:150208. [PMID: 34798741 DOI: 10.1016/j.scitotenv.2021.150208] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/01/2021] [Accepted: 09/03/2021] [Indexed: 06/13/2023]
Abstract
European sea bass (Dicentrarchus labrax) migrate towards habitats where salinity can reach levels over 60‰, notably in Mediterranean lagoons. D. labrax are genetically subdivided in Atlantic and Mediterranean lineages and have evolved in slightly different salinities. We compared Atlantic and West-Mediterranean populations regarding their capacity to tolerate hypersalinity with a focus on the involvement of the intestine in solute-driven water reabsorption. Fish were analyzed following a two-week transfer from seawater (SW, 36‰) to either SW or hypersaline water (HW, 55‰). Differences among lineages were observed in posterior intestines of fish maintained in SW regarding NKA activities and mRNA expressions of nkaα1a, aqp8b, aqp1a and aqp1b with systematic higher levels in Mediterranean sea bass. High salinity transfer triggered similar responses in both lineages but at different magnitudes which may indicate slight different physiological strategies between lineages. High salinity transfer did not significantly affect the phenotypic traits measured in the anterior intestine. In the posterior intestine however, the size of enterocytes and NKA activity were higher in HW compared to SW. In this tissue, nka-α1a, nkcc2, aqp8ab and aqp8aa mRNA levels were higher in HW compared to SW as well as relative protein expression of AQP8ab. For aqp1a, 1b, 8aa and 8b, an opposite trend was observed. The sub-apical localization of AQP8ab in enterocytes suggests its role in transepithelial water reabsorption. Strong apical NKCC2/NCC staining indicates an increased Na+ and Cl- reuptake by enterocytes which could contribute to solute-coupled water reuptake in cells where AQP8ab is expressed.
Collapse
Affiliation(s)
- Quanquan Cao
- Univ Montpellier, MARBEC (CNRS, IFREMER, IRD, UM), 34095 Montpellier, France
| | - Eva Blondeau-Bidet
- Univ Montpellier, MARBEC (CNRS, IFREMER, IRD, UM), 34095 Montpellier, France
| | | |
Collapse
|
11
|
Zhang X, Yu P, Wen H, Qi X, Tian Y, Zhang K, Fu Q, Li Y, Li C. Genome-Wide Characterization of Aquaporins (aqps) in Lateolabrax maculatus: Evolution and Expression Patterns During Freshwater Acclimation. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2021; 23:696-709. [PMID: 34595589 DOI: 10.1007/s10126-021-10057-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 08/16/2021] [Indexed: 06/13/2023]
Abstract
Aquaporin (aqp) proteins are a group of small integral membrane proteins that play crucial roles as pore channels for the transport of water and other small solutes across the cell membrane. In our study, we identified 17 aqp genes from the spotted sea bass (Lateolabrax maculatus) genomic database. Gene organization, motif distribution, and selection pressure analyses were performed to investigate their evolutionary characteristics. The aqp mRNA displayed tissue-specific expression pattern in ten selected tissues of healthy spotted sea bass. To investigate the potential involvement of spotted sea bass aqps in osmoregulation, the expression profiles of aqp genes in gills were examined during freshwater (FW) acclimation using qRT-PCR. The mRNA level of aqp3a was dramatically induced during 1-3 day of the FW transition period (77-fold and 15-fold upregulated on 1 day and 3 day than in the control group), indicating that aqp3a may play an important hypo-osmoregulatory role in spotted sea bass. In addition, the expression levels of aqp1aa, aqp1ab, aqp3b, aqp7, and aqp9b increased to various degrees at 1 day after transferring to FW, suggesting their potential involvement in the FW acclimation process. Our study provides a valuable foundation for future studies aimed at uncovering the specific roles of aqp genes during salinity acclimation in spotted sea bass and other teleost species.
Collapse
Affiliation(s)
- Xiaoyan Zhang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Peng Yu
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China), Ocean University of China, Qingdao, 266003, China
| | - Haishen Wen
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China), Ocean University of China, Qingdao, 266003, China
| | - Xin Qi
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China), Ocean University of China, Qingdao, 266003, China
| | - Yuan Tian
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China), Ocean University of China, Qingdao, 266003, China
| | - Kaiqiang Zhang
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China), Ocean University of China, Qingdao, 266003, China
| | - Qiang Fu
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Yun Li
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China), Ocean University of China, Qingdao, 266003, China
| | - Chao Li
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
12
|
Takei Y. The digestive tract as an essential organ for water acquisition in marine teleosts: lessons from euryhaline eels. ZOOLOGICAL LETTERS 2021; 7:10. [PMID: 34154668 PMCID: PMC8215749 DOI: 10.1186/s40851-021-00175-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 04/16/2021] [Indexed: 05/17/2023]
Abstract
Adaptation to a hypertonic marine environment is one of the major topics in animal physiology research. Marine teleosts lose water osmotically from the gills and compensate for this loss by drinking surrounding seawater and absorbing water from the intestine. This situation is in contrast to that in mammals, which experience a net osmotic loss of water after drinking seawater. Water absorption in fishes is made possible by (1) removal of monovalent ions (desalinization) by the esophagus, (2) removal of divalent ions as carbonate (Mg/CaCO3) precipitates promoted by HCO3- secretion, and (3) facilitation of NaCl and water absorption from diluted seawater by the intestine using a suite of unique transporters. As a result, 70-85% of ingested seawater is absorbed during its passage through the digestive tract. Thus, the digestive tract is an essential organ for marine teleost survival in the hypertonic seawater environment. The eel is a species that has been frequently used for osmoregulation research in laboratories worldwide. The eel possesses many advantages as an experimental animal for osmoregulation studies, one of which is its outstanding euryhalinity, which enables researchers to examine changes in the structure and function of the digestive tract after direct transfer from freshwater to seawater. In recent years, the molecular mechanisms of ion and water transport across epithelial cells (the transcellular route) and through tight junctions (the paracellular route) have been elucidated for the esophagus and intestine. Thanks to the rapid progress in analytical methods for genome databases on teleosts, including the eel, the molecular identities of transporters, channels, pumps and junctional proteins have been clarified at the isoform level. As 10 y have passed since the previous reviews on this subject, it seems relevant and timely to summarize recent progress in research on the molecular mechanisms of water and ion transport in the digestive tract in eels and to compare the mechanisms with those of other teleosts and mammals from comparative and evolutionary viewpoints. We also propose future directions for this research field to achieve integrative understanding of the role of the digestive tract in adaptation to seawater with regard to pathways/mechanisms including the paracellular route, divalent ion absorption, metabolon formation and cellular trafficking of transporters. Notably, some of these have already attracted practical attention in laboratories.
Collapse
Affiliation(s)
- Yoshio Takei
- Laboratory of Physiology, Department of Marine Bioscience, Atmosphere and Ocean Research Institute, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8564, Japan.
| |
Collapse
|
13
|
Herrera F, Bondarenko O, Boryshpolets S. Osmoregulation in fish sperm. FISH PHYSIOLOGY AND BIOCHEMISTRY 2021; 47:785-795. [PMID: 34076793 DOI: 10.1007/s10695-021-00958-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 04/27/2021] [Indexed: 06/12/2023]
Abstract
In most fish exhibiting external fertilization, spermatozoa become motile after release into water, triggered by differences between intracellular and extracellular conditions such as osmotic pressure, ion composition, and pH. The rapid change in osmolarity initiating spermatozoon motility induces osmotic pressure, resulting in active water movement across the cell membrane. Mechanisms of ion and water transport across the plasma membrane and cell volume regulation are important in maintaining structure and functional integrity of the cell. The capacity of the fish spermatozoon plasma membrane to adapt to dramatic environmental changes is an essential prerequisite for motility and successful fertilization. Adaptation to change in external osmolality may be the basis of spermatozoon function and an indicator of sperm quality. The involvement of specific water channels (aquaporins) in cell volume regulation and motility is highly likely. The goal of this review is to describe basic mechanisms of water transport and their role in fish spermatozoon physiology, focusing on osmoresistance, cell volume regulation, motility, and survival.
Collapse
Affiliation(s)
- Fabio Herrera
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, University of South Bohemia in České Budějovice, Zátiší 728/II, 389 25, Vodňany, Czech Republic.
| | - Olga Bondarenko
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, University of South Bohemia in České Budějovice, Zátiší 728/II, 389 25, Vodňany, Czech Republic
| | - Sergii Boryshpolets
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, University of South Bohemia in České Budějovice, Zátiší 728/II, 389 25, Vodňany, Czech Republic
| |
Collapse
|
14
|
Takvam M, Wood CM, Kryvi H, Nilsen TO. Ion Transporters and Osmoregulation in the Kidney of Teleost Fishes as a Function of Salinity. Front Physiol 2021; 12:664588. [PMID: 33967835 PMCID: PMC8098666 DOI: 10.3389/fphys.2021.664588] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 03/24/2021] [Indexed: 12/13/2022] Open
Abstract
Euryhaline teleosts exhibit major changes in renal function as they move between freshwater (FW) and seawater (SW) environments, thus tolerating large fluctuations in salinity. In FW, the kidney excretes large volumes of water through high glomerular filtration rates (GFR) and low tubular reabsorption rates, while actively reabsorbing most ions at high rates. The excreted product has a high urine flow rate (UFR) with a dilute composition. In SW, GFR is greatly reduced, and the tubules reabsorb as much water as possible, while actively secreting divalent ions. The excreted product has a low UFR, and is almost isosmotic to the blood plasma, with Mg2+, SO42–, and Cl– as the major ionic components. Early studies at the organismal level have described these basic patterns, while in the last two decades, studies of regulation at the cell and molecular level have been implemented, though only in a few euryhaline groups (salmonids, eels, tilapias, and fugus). There have been few studies combining the two approaches. The aim of the review is to integrate known aspects of renal physiology (reabsorption and secretion) with more recent advances in molecular water and solute physiology (gene and protein function of transporters). The renal transporters addressed include the subunits of the Na+, K+- ATPase (NKA) enzyme, monovalent ion transporters for Na+, Cl–, and K+ (NKCC1, NKCC2, CLC-K, NCC, ROMK2), water transport pathways [aquaporins (AQP), claudins (CLDN)], and divalent ion transporters for SO42–, Mg2+, and Ca2+ (SLC26A6, SLC26A1, SLC13A1, SLC41A1, CNNM2, CNNM3, NCX1, NCX2, PMCA). For each transport category, we address the current understanding at the molecular level, try to synthesize it with classical knowledge of overall renal function, and highlight knowledge gaps. Future research on the kidney of euryhaline fishes should focus on integrating changes in kidney reabsorption and secretion of ions with changes in transporter function at the cellular and molecular level (gene and protein verification) in different regions of the nephrons. An increased focus on the kidney individually and its functional integration with the other osmoregulatory organs (gills, skin and intestine) in maintaining overall homeostasis will have applied relevance for aquaculture.
Collapse
Affiliation(s)
- Marius Takvam
- Department of Biological Sciences, University of Bergen, Bergen, Norway.,NORCE, Norwegian Research Centre, NORCE Environment, Bergen, Norway
| | - Chris M Wood
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada
| | - Harald Kryvi
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Tom O Nilsen
- Department of Biological Sciences, University of Bergen, Bergen, Norway.,NORCE, Norwegian Research Centre, NORCE Environment, Bergen, Norway
| |
Collapse
|
15
|
Shen Y, Li H, Zhao J, Tang S, Zhao Y, Gu Y, Chen X. Genomic and expression characterization of aquaporin genes from Siniperca chuatsi. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2021; 38:100819. [PMID: 33652294 DOI: 10.1016/j.cbd.2021.100819] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/13/2021] [Accepted: 02/21/2021] [Indexed: 01/07/2023]
Abstract
Aquaporins (AQPs) are major intrinsic proteins that form pores in the membranes of biological cells. We first cloned the full-length sequences of aqp0, 1, 3, 4, 7, 8, 9, 10, 11, and 12 genes in Siniperca chuatsi. The 10 S. chuatsi aqp (Sc-aqp) genes included complete open reading frames and exhibited different exon-intron organizations. Sc-aqp1, 3, 8, 9, 10, and 11 were mostly expressed in the gallbladder, gills, gastric cecum, liver, ovaries, and spleen, respectively; Sc-aqp0 and 4 were mostly expressed in larvae at 1 day after hatching and in gastrula; Sc-aqp7 and 12 were mostly expressed in 2K-cell embryos. The expression levels of Sc-aqp1, 3, 7, 8, 9, and 10 after 10 part per thousand (ppt) salt treatment had significantly changed compared with those after 0 ppt salt treatment. Real-time quantitative PCR analysis further showed that in the intestines, the mRNA levels of Sc-aqp1 and 10 significantly decreased by approximately 2.07- and 2.85-fold, respectively, whereas those of Sc-aqp8 and 9 significantly increased by approximately 7.08- and 4.14-fold, respectively. Sc-aqp1, 8, 9, and 10 showed no significant differences in the gills. Sc-aqp3 significantly decreased by approximately 1.51- and 1.67-fold in the gills and intestines, respectively. Sc-aqp7 significantly increased by approximately 4.18- and 7.04-fold in the gills and intestines, respectively. This study was the first to investigate the tissue expression profiles and response to salt stress of aqp genes in S. chuatsi. Moreover, altering diet and suffering from immune stress could cause changes in the expression level of aqps. This study provided valuable reference information for AQPs' roles in osmoregulation in freshwater fish.
Collapse
Affiliation(s)
- Yawei Shen
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Huiyang Li
- Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai 201306, China
| | - Jinliang Zhao
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China.
| | - Shoujie Tang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Yan Zhao
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Yifeng Gu
- The First Affiliated Hospital, College of Medicine, Zhejiang University, China
| | - Xiaowu Chen
- Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|
16
|
Cloning and Expression of Four Aquaporin Homologs from the Chinese Black Sleeper (Bostrychus sinensis): The Effects of Salinity Acclimation. Biochem Genet 2021; 59:837-855. [PMID: 33544299 DOI: 10.1007/s10528-021-10033-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 01/12/2021] [Indexed: 10/22/2022]
Abstract
Several fish species are known to possess mechanisms that allow them to adapt to environments with different salinities. The aim of this study was to investigate the effects of salinity on the expression of aquaporins (aqp1a, aqp3a, aqp8a, and aqp9a) in the gills and intestines of Chinese black sleeper. After 30 days of acclimation, the expression of aqp1a, aqp3a, and aqp9a in the gills was significantly higher in fish transferred to 5 ppt than in those transferred to 40 ppt seawater, whereas aqp8 expression was lower. In contrast, aqp1a, aqp3a, and aqp8a expression in the intestines was higher in fish acclimated in 40 ppt than in those acclimated in 5 ppt. During abrupt salinity acclimation, the levels of aqp1a and aqp9a in the gills varied over time in fish acclimated in 5 ppt, but not in 40 ppt. The aqp3a levels in gills were higher in the 5 ppt group after 24 h than in the 40 ppt. The expression level of aqp8a in gills was higher in 40 ppt than in 5 ppt, except for that at 12 h. In the intestines, expression level of aqp1a and aqp8a were significantly upregulated from 12 to 48 h following acclimation in 40 ppt and aqp3a was higher in 40 ppt group than in 5 ppt, while aqp9a expression exhibited an opposite trend. These findings suggest that aqp1a, aqp3a, aqp8a and aqp9a may play a major osmoregulatory role in water transport in the gills and intestines during acclimation to different salinity environment.
Collapse
|
17
|
Breves JP, Popp EE, Rothenberg EF, Rosenstein CW, Maffett KM, Guertin RR. Osmoregulatory actions of prolactin in the gastrointestinal tract of fishes. Gen Comp Endocrinol 2020; 298:113589. [PMID: 32827513 DOI: 10.1016/j.ygcen.2020.113589] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 07/17/2020] [Accepted: 08/14/2020] [Indexed: 02/07/2023]
Abstract
In fishes, prolactin (Prl) signaling underlies the homeostatic regulation of hydromineral balance by controlling essential solute and water transporting functions performed by the gill, gastrointestinal tract, kidney, urinary bladder, and integument. Comparative studies spanning over 60 years have firmly established that Prl promotes physiological activities that enable euryhaline and stenohaline teleosts to reside in freshwater environments; nonetheless, the specific molecular and cellular targets of Prl in ion- and water-transporting tissues are still being resolved. In this short review, we discuss how particular targets of Prl (e.g., ion cotransporters, tight-junction proteins, and ion pumps) confer adaptive functions to the esophagus and intestine. Additionally, in some instances, Prl promotes histological and functional transformations within esophageal and intestinal epithelia by regulating cell proliferation. Collectively, the demonstrated actions of Prl in the gastrointestinal tract of teleosts indicate that Prl operates to promote phenotypes supportive of freshwater acclimation and to inhibit phenotypes associated with seawater acclimation. We conclude our review by underscoring that future investigations are warranted to determine how growth hormone/Prl-family signaling evolved in basal fishes to support the gastrointestinal processes underlying hydromineral balance.
Collapse
Affiliation(s)
- Jason P Breves
- Department of Biology, Skidmore College, 815 N. Broadway, Saratoga Springs, NY 12866, USA.
| | - Emily E Popp
- Department of Biology, Skidmore College, 815 N. Broadway, Saratoga Springs, NY 12866, USA
| | - Eva F Rothenberg
- Department of Biology, Skidmore College, 815 N. Broadway, Saratoga Springs, NY 12866, USA
| | - Clarence W Rosenstein
- Department of Biology, Skidmore College, 815 N. Broadway, Saratoga Springs, NY 12866, USA
| | - Kaitlyn M Maffett
- Department of Biology, Skidmore College, 815 N. Broadway, Saratoga Springs, NY 12866, USA
| | - Rebecca R Guertin
- Department of Biology, Skidmore College, 815 N. Broadway, Saratoga Springs, NY 12866, USA
| |
Collapse
|
18
|
Madsen SS, Bollinger RJ, Brauckhoff M, Engelund MB. Gene expression profiling of proximal and distal renal tubules in Atlantic salmon ( Salmo salar) acclimated to fresh water and seawater. Am J Physiol Renal Physiol 2020; 319:F380-F393. [PMID: 32628538 DOI: 10.1152/ajprenal.00557.2019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Euryhaline teleost kidneys undergo a major functional switch from being filtratory in freshwater (FW) to being predominantly secretory in seawater (SW) conditions. The transition involves both vascular and tubular effects. There is consensus that the glomerular filtration rate is greatly reduced upon exposure to hyperosmotic conditions. Yet, regulation at the tubular level has only been examined sporadically in a few different species. This study aimed to obtain a broader understanding of transcriptional regulation in proximal versus distal tubular segments during osmotic transitions. Proximal and distal tubule cells were dissected separately by laser capture microdissection, RNA was extracted, and relative mRNA expression levels of >30 targets involved in solute and water transport were quantified by quantitative PCR in relation to segment type in fish acclimated to FW or SW. The gene categories were aquaporins, solute transporters, fxyd proteins, and tight junction proteins. aqp8bb1, aqp10b1, nhe3, sglt1, slc41a1, cnnm3, fxyd12a, cldn3b, cldn10b, cldn15a, and cldn12 were expressed at a higher level in proximal compared with distal tubules. aqp1aa, aqp1ab, nka-a1a, nka-a1b, nkcc1a, nkcc2, ncc, clc-k, slc26a6C, sglt2, fxyd2, cldn3a, and occln were expressed at a higher level in distal compared with proximal tubules. Expression of aqp1aa, aqp3a1, aqp10b1, ncc, nhe3, cftr, sglt1, slc41a1, fxyd12a, cldn3a, cldn3b, cldn3c, cldn10b, cldn10e, cldn28a, and cldn30c was higher in SW- than in FW-acclimated salmon, whereas the opposite was the case for aqp1ab, slc26a6C, and fxyd2. The data show distinct segmental distribution of transport genes and a significant regulation of tubular transcripts when kidney function is modulated during salinity transitions.
Collapse
Affiliation(s)
- Steffen S Madsen
- Department of Biology, University of Southern Denmark, Odense M, Denmark
| | | | - Melanie Brauckhoff
- Department of Biology, University of Southern Denmark, Odense M, Denmark
| | | |
Collapse
|
19
|
Sun Z, Lou F, Zhang Y, Song N. Gill Transcriptome Sequencing and De Novo Annotation of Acanthogobius ommaturus in Response to Salinity Stress. Genes (Basel) 2020; 11:genes11060631. [PMID: 32521805 PMCID: PMC7349121 DOI: 10.3390/genes11060631] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 05/23/2020] [Accepted: 06/04/2020] [Indexed: 01/17/2023] Open
Abstract
Acanthogobius ommaturus is a euryhaline fish widely distributed in coastal, bay and estuarine areas, showing a strong tolerance to salinity. In order to understand the mechanism of adaptation to salinity stress, RNA-seq was used to compare the transcriptome responses of Acanthogobius ommaturus to the changes of salinity. Four salinity gradients, 0 psu, 15 psu (control), 30 psu and 45 psu were set to conduct the experiment. In total, 131,225 unigenes were obtained from the gill tissue of A. ommaturus using the Illumina HiSeq 2000 platform (San Diego, USA). Compared with the gene expression profile of the control group, 572 differentially expressed genes (DEGs) were screened, with 150 at 0 psu, 170 at 30 psu, and 252 at 45 psu. Additionally, among these DEGs, Gene Ontology (GO) analysis indicated that binding, metabolic processes and cellular processes were significantly enriched. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways analysis detected 3, 5 and 8 pathways related to signal transduction, metabolism, digestive and endocrine systems at 0 psu, 30 psu and 45 psu, respectively. Based on GO enrichment analysis and manual literature searches, the results of the present study indicated that A. ommaturus mainly responded to energy metabolism, ion transport and signal transduction to resist the damage caused by salinity stress. Eight DEGs were randomly selected for further validation by quantitative real-time PCR (qRT-PCR) and the results were consistent with the RNA-seq data.
Collapse
Affiliation(s)
| | | | | | - Na Song
- Correspondence: or ; Tel.: +86-532-820-31658
| |
Collapse
|
20
|
Shen Y, He Y, Bi Y, Chen J, Zhao Z, Li J, Chen X. Transcriptome analysis of gill from Lateolabrax maculatus and aqp3 gene expression. AQUACULTURE AND FISHERIES 2019. [DOI: 10.1016/j.aaf.2019.03.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
21
|
Wang M, Zhu Z. Nrf2 is involved in osmoregulation, antioxidation and immunopotentiation in Coilia nasus under salinity stress. BIOTECHNOL BIOTEC EQ 2019. [DOI: 10.1080/13102818.2019.1673671] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Affiliation(s)
- Meiyao Wang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, P.R. China
- Department of Biotechnology, Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, P.R. China
- Aquatic Animal Genome Center, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, P.R. China
| | - Zhixiang Zhu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, P.R. China
| |
Collapse
|
22
|
Health Impact Assessment of Sulfolane on Embryonic Development of Zebrafish ( Danio rerio). TOXICS 2019; 7:toxics7030042. [PMID: 31450778 PMCID: PMC6789604 DOI: 10.3390/toxics7030042] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 08/20/2019] [Accepted: 08/20/2019] [Indexed: 12/26/2022]
Abstract
Sulfolane is a widely used polar, aprotic solvent that has been detected by chemical analysis in groundwater and creeks around the world including Alberta, Canada (800 µg/mL), Louisiana, USA (2900 µg/mL) and Brisbane, Australia (4344 µg/mL). Previous research provided information on adverse effects of sulfolane on mammals, but relatively little information is available on aquatic organisms. This study tested the effects of sulfolane (0–5000 µg/mL) on early development of zebrafish larvae, using various morphometric (survival, hatching, yolk sac and pericardial oedema, haemorrhaging, spinal malformations, swim bladder inflation), growth (larval length, eye volume, yolk sac utilisation), behavioural (touch response, locomotor activity and transcript abundance parameters (ahr1a, cyp1a, thraa, dio1, dio2, dio3, 11βhsd2, gr, aqp3a, cyp19a1b, ddc, gria2b and hsp70) for 120 h. Embryos were chronically exposed to sulfolane throughout the experimental period. For locomotor activity, however, we also investigated acute response to 2-h sulfolane treatment. Sulfolane sensitivity causing significant impairment in the observed parameters were different depending on parameters measured, including survival (concentrations greater than 800 µg/mL), morphometric and growth (800–1000 µg/mL), behaviour (500–800 µg/mL) and transcript abundance (10 µg/mL). The overall results provide novel information on the adverse health impacts of sulfolane on an aquatic vertebrate species, and an insight into developmental impairments following exposure to environmental levels of sulfolane in fish embryos.
Collapse
|
23
|
Parisi MG, Maisano M, Cappello T, Oliva S, Mauceri A, Toubiana M, Cammarata M. Responses of marine mussel Mytilus galloprovincialis (Bivalvia: Mytilidae) after infection with the pathogen Vibrio splendidus. Comp Biochem Physiol C Toxicol Pharmacol 2019; 221:1-9. [PMID: 30905845 DOI: 10.1016/j.cbpc.2019.03.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 03/14/2019] [Accepted: 03/19/2019] [Indexed: 12/12/2022]
Abstract
Bivalve molluscs possess effective cellular and humoral defence mechanisms against bacterial infection. Although the immune responses of mussels to challenge with pathogenic vibrios have been largely investigated, the effects at the site of injection at the tissue level have not been so far evaluated. To this aim, mussels Mytilus galloprovincialis were herein in vivo challenged with Vibrio splendidus to assess the responses induced in hemolymph and posterior adductor muscle (PAM), being the site of bacterial infection. The number of living intra-hemocyte bacteria increased after the first hour post-injection (p.i.), suggesting the occurrence of an intense phagocytosis, while clearance was observed within 24 h p.i. A recruitment of hemocytes at the injection site was found in mussel PAM, together with marked morphological changes in the volume of muscular fibers, with a recovery of muscle tissue organization after 48 h p.i. A concomitant impairment in the osmoregulatory processes were observed in PAM by an initial inhibition of aquaporins and increased immunopositivity of Na+/K+ ATPase ionic pump, strictly related to the histological alterations and hemocyte infiltration detected in PAM. Accordingly, an intense cell turnover activity was also recorded following the infection event. Overall, results indicated the hemolymph as the system responsible for the physiological adaptations in mussels to stressful factors, such as pathogenicity, for the maintenance of homeostasis and immune defence. Also, the osmotic balance and cell turnover can be used as objective diagnostic criteria to evaluate the physiological state of mussels following bacterial infection, which may be relevant in aquaculture and biomonitoring studies.
Collapse
Affiliation(s)
- Maria Giovanna Parisi
- Marine Immunobiology Laboratory, Dipartimento di Scienze della Terra e del Mare, University of Palermo, Palermo, Italy
| | - Maria Maisano
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy.
| | - Tiziana Cappello
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Sabrina Oliva
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Angela Mauceri
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Mylene Toubiana
- HSM, University of Montpellier, IRD, CNRS, Montpellier, France
| | - Matteo Cammarata
- Marine Immunobiology Laboratory, Dipartimento di Scienze della Terra e del Mare, University of Palermo, Palermo, Italy.
| |
Collapse
|
24
|
Differential Expression and Localization of Branchial AQP1 and AQP3 in Japanese Medaka ( Oryzias latipes). Cells 2019; 8:cells8050422. [PMID: 31072010 PMCID: PMC6562476 DOI: 10.3390/cells8050422] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 05/03/2019] [Accepted: 05/06/2019] [Indexed: 01/08/2023] Open
Abstract
Aquaporins (AQPs) facilitate transmembrane water and solute transport, and in addition to contributing to transepithelial water transport, they safeguard cell volume homeostasis. This study examined the expression and localization of AQP1 and AQP3 in the gills of Japanese medaka (Oryzias latipes) in response to osmotic challenges and osmoregulatory hormones, cortisol, and prolactin (PRL). AQP3 mRNA was inversely regulated in response to salinity with high levels in ion-poor water (IPW), intermediate levels in freshwater (FW), and low levels in seawater (SW). AQP3 protein levels decreased upon SW acclimation. By comparison, AQP1 expression was unaffected by salinity. In ex vivo gill incubation experiments, AQP3 mRNA was stimulated by PRL in a time- and dose-dependent manner but was unaffected by cortisol. In contrast, AQP1 was unaffected by both PRL and cortisol. Confocal microscopy revealed that AQP3 was abundant in the periphery of gill filament epithelial cells and co-localized at low intensity with Na+,K+-ATPase in ionocytes. AQP1 was present at a very low intensity in most filament epithelial cells and red blood cells. No epithelial cells in the gill lamellae showed immunoreactivity to AQP3 or AQP1. We suggest that both AQPs contribute to cellular volume regulation in the gill epithelium and that AQP3 is particularly important under hypo-osmotic conditions, while expression of AQP1 is constitutive.
Collapse
|
25
|
Kokou F, Con P, Barki A, Nitzan T, Slosman T, Mizrahi I, Cnaani A. Short- and long-term low-salinity acclimation effects on the branchial and intestinal gene expression in the European seabass (Dicentrarchus labrax). Comp Biochem Physiol A Mol Integr Physiol 2019; 231:11-18. [DOI: 10.1016/j.cbpa.2019.01.018] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 01/12/2019] [Accepted: 01/14/2019] [Indexed: 12/16/2022]
|
26
|
Lema SC, Carvalho PG, Egelston JN, Kelly JT, McCormick SD. Dynamics of Gene Expression Responses for Ion Transport Proteins and Aquaporins in the Gill of a Euryhaline Pupfish during Freshwater and High-Salinity Acclimation. Physiol Biochem Zool 2019; 91:1148-1171. [PMID: 30334669 DOI: 10.1086/700432] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Pupfishes (genus Cyprinodon) evolved some of the broadest salinity tolerances of teleost fishes, with some taxa surviving in conditions from freshwater to nearly 160 ppt. In this study, we examined transcriptional dynamics of ion transporters and aquaporins in the gill of the desert Amargosa pupfish (Cyprinodon nevadensis amargosae) during rapid salinity change. Pupfish acclimated to 7.5 ppt were exposed to freshwater (0.3 ppt), seawater (35 ppt), or hypersaline (55 ppt) conditions over 4 h and sampled at these salinities over 14 d. Plasma osmolality and Cl- concentration became elevated 8 h after the start of exposure to 35 or 55 ppt but returned to baseline levels after 14 d. Osmolality recovery was paralleled by increased gill Na+/K+-ATPase activity and higher relative levels of messenger RNAs (mRNAs) encoding cystic fibrosis transmembrane conductance regulator (cftr) and Na+/K+/2Cl- cotransporter-1 (nkcc1). Transcripts encoding one Na+-HCO3- cotransporter-1 isoform (nbce1.1) also increased in the gills at higher salinities, while a second isoform (nbce1.2) increased expression in freshwater. Pupfish in freshwater also had lower osmolality and elevated gill mRNAs for Na+/H+ exchanger isoform-2a (nhe2a) and V-type H+-ATPase within 8 h, followed by increases in Na+/H+ exchanger-3 (nhe3), carbonic anhydrase 2 (ca2), and aquaporin-3 (aqp3) within 1 d. Gill mRNAs for Na+/Cl- cotransporter-2 (ncc2) also were elevated 14 d after exposure to 0.3 ppt. These results offer insights into how coordinated transcriptional responses for ion transporters in the gill facilitate reestablishment of osmotic homeostasis after changes in environmental salinity and provide evidence that the teleost gill expresses two Na+-HCO3- cotransporter-1 isoforms with different roles in freshwater and seawater acclimation.
Collapse
|
27
|
Analyses of the molecular mechanisms associated with salinity adaption of Trachidermus fasciatus through combined iTRAQ-based proteomics and RNA sequencing-based transcriptomics. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2018; 136:40-53. [DOI: 10.1016/j.pbiomolbio.2018.02.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 01/30/2018] [Accepted: 02/06/2018] [Indexed: 01/16/2023]
|
28
|
Cao Q, Gu J, Wang D, Liang F, Zhang H, Li X, Yin S. Physiological mechanism of osmoregulatory adaptation in anguillid eels. FISH PHYSIOLOGY AND BIOCHEMISTRY 2018; 44:423-433. [PMID: 29344774 PMCID: PMC5862950 DOI: 10.1007/s10695-018-0464-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 01/03/2018] [Indexed: 06/07/2023]
Abstract
In recent years, the production of eel larvae has dramatic declines due to reductions in spawning stocks, overfishing, growth habitat destruction and access reductions, and pollution. Therefore, it is particularly important and urgent for artificial production of glass eels. However, the technique of artificial hatching and rearing larvae is still immature, which has long been regarded as an extremely difficult task. One of the huge gaps is artificial condition which is far from the natural condition to develop their capability of osmoregulation. Thus, understanding their osmoregulatory mechanisms will help to improve the breed and adapt to the changes in the environment. In this paper, we give a general review for a study progress of osmoregulatory mechanisms in eels from five aspects including tissues and organs, ion transporters, hormones, proteins, and high throughput sequencing methods.
Collapse
Affiliation(s)
- Quanquan Cao
- College of Life Sciences, Key Laboratory of Biodiversity and Biotechnology of Jiangsu Province, Nanjing Normal University, 1 Wenyuan Road, Nanjing, Jiangsu Province, 210023, China
| | - Jie Gu
- Institute of Life Science, Jiangsu University, Zhenjiang, Jiangsu, 212000, China
| | - Dan Wang
- College of Life Sciences, Key Laboratory of Biodiversity and Biotechnology of Jiangsu Province, Nanjing Normal University, 1 Wenyuan Road, Nanjing, Jiangsu Province, 210023, China
| | - Fenfei Liang
- College of Life Sciences, Key Laboratory of Biodiversity and Biotechnology of Jiangsu Province, Nanjing Normal University, 1 Wenyuan Road, Nanjing, Jiangsu Province, 210023, China
| | - Hongye Zhang
- College of Life Sciences, Key Laboratory of Biodiversity and Biotechnology of Jiangsu Province, Nanjing Normal University, 1 Wenyuan Road, Nanjing, Jiangsu Province, 210023, China
| | - Xinru Li
- College of Life Sciences, Key Laboratory of Biodiversity and Biotechnology of Jiangsu Province, Nanjing Normal University, 1 Wenyuan Road, Nanjing, Jiangsu Province, 210023, China
| | - Shaowu Yin
- College of Life Sciences, Key Laboratory of Biodiversity and Biotechnology of Jiangsu Province, Nanjing Normal University, 1 Wenyuan Road, Nanjing, Jiangsu Province, 210023, China.
| |
Collapse
|
29
|
Zhang X, Wen H, Wang H, Ren Y, Zhao J, Li Y. RNA-Seq analysis of salinity stress-responsive transcriptome in the liver of spotted sea bass (Lateolabrax maculatus). PLoS One 2017; 12:e0173238. [PMID: 28253338 PMCID: PMC5333887 DOI: 10.1371/journal.pone.0173238] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 02/18/2017] [Indexed: 12/16/2022] Open
Abstract
Salinity is one of the most prominent abiotic factors, which greatly influence reproduction, development, growth, physiological and metabolic activities of fishes. Spotted sea bass (Lateolabrax maculatus), as a euryhaline marine teleost, has extraordinary ability to deal with a wide range of salinity changes. However, this species is devoid of genomic resources, and no study has been conducted at the transcriptomic level to determine genes responsible for salinity regulation, which impedes the understanding of the fundamental mechanism conferring tolerance to salinity fluctuations. Liver, as the major metabolic organ, is the key source supplying energy for iono- and osmoregulation in fish, however, little attention has been paid to its salinity-related functions but which should not be ignored. In this study, we perform RNA-Seq analysis to identify genes involved in salinity adaptation and osmoregulation in liver of spotted sea bass, generating from the fishes exposed to low and high salinity water (5 vs 30ppt). After de novo assembly, annotation and differential gene expression analysis, a total of 455 genes were differentially expressed, including 184 up-regulated and 271 down-regulated transcripts in low salinity-acclimated fish group compared with that in high salinity-acclimated group. A number of genes with a potential role in salinity adaptation for spotted sea bass were classified into five functional categories based on the gene ontology (GO) and enrichment analysis, which include genes involved in metabolites and ion transporters, energy metabolism, signal transduction, immune response and structure reorganization. The candidate genes identified in L. maculates liver provide valuable information to explore new pathways related to fish salinity and osmotic regulation. Besides, the transcriptomic sequencing data supplies significant resources for identification of novel genes and further studying biological questions in spotted sea bass.
Collapse
Affiliation(s)
- Xiaoyan Zhang
- The Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Ocean University of China, Qingdao, P. R. China
| | - Haishen Wen
- The Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Ocean University of China, Qingdao, P. R. China
| | - Hailiang Wang
- The Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Ocean University of China, Qingdao, P. R. China
| | - Yuanyuan Ren
- The Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Ocean University of China, Qingdao, P. R. China
| | - Ji Zhao
- The Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Ocean University of China, Qingdao, P. R. China
| | - Yun Li
- The Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Ocean University of China, Qingdao, P. R. China
| |
Collapse
|
30
|
Xu BP, Tu DD, Yan MC, Shu MA, Shao QJ. Molecular characterization of a cDNA encoding Na+/K+/2Cl− cotransporter in the gill of mud crab (Scylla paramamosain) during the molt cycle: Implication of its function in osmoregulation. Comp Biochem Physiol A Mol Integr Physiol 2017; 203:115-125. [DOI: 10.1016/j.cbpa.2016.08.019] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2016] [Revised: 08/19/2016] [Accepted: 08/19/2016] [Indexed: 01/17/2023]
|
31
|
Chng YR, Ong JLY, Ching B, Chen XL, Hiong KC, Wong WP, Chew SF, Lam SH, Ip YK. Molecular Characterization of Aquaporin 1 and Aquaporin 3 from the Gills of the African Lungfish, Protopterus annectens, and Changes in Their Branchial mRNA Expression Levels and Protein Abundance during Three Phases of Aestivation. Front Physiol 2016; 7:532. [PMID: 27891097 PMCID: PMC5102888 DOI: 10.3389/fphys.2016.00532] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 10/25/2016] [Indexed: 01/07/2023] Open
Abstract
African lungfishes can undergo long periods of aestivation on land during drought. During aestivation, lungfishes are confronted with desiccation and dehydration, and their gills become non-functional and covered with a thick layer of dried mucus. Aquaporins (Aqps) are a superfamily of integral membrane proteins which generally facilitate the permeation of water through plasma membranes. This study aimed to obtain the complete cDNA coding sequences of aqp1 and aqp3 from the gills of Protopterus annectens, and to determine their branchial mRNA and protein expression levels during the induction, maintenance and arousal phases of aestivation. Dendrogramic analyses of the deduced Aqp1 and Aqp3 amino acid sequences of P. annectens revealed their close relationships with those of Latimeria chalumnae and tetrapods. During the induction phase, there were significant decreases in the transcript levels of aqp1 and aqp3 in the gills of P. annectens, but the branchial Aqp1 and Aqp3 protein abundance remained unchanged. As changes in transcription might precede changes in translation, this could be regarded as an adaptive response to decrease the protein abundance of Aqp1 and Aqp3 in the subsequent maintenance phase of aestivation. As expected, the branchial transcript levels and protein abundance of aqp1/Aqp1 and aqp3/Aqp3 were significantly down-regulated during the maintenance phase, probably attributable to the shutdown of branchial functions and the cessation of volume regulation of branchial epithelial cells. Additionally, these changes could reduce the loss of water through branchial epithelial surfaces, supplementing the anti-desiccating property of the dried mucus. Upon arousal, it was essential for the lungfish to restore branchial functions. Indeed, the protein abundance of Aqp1 recovered partially, with complete recovery of mRNA expression level and protein abundance of Aqp3, in the gills of P. annectens after 3 days of arousal. These results provide insights into how P. annectens regulates branchial Aqp expression to cope with desiccation and rehydration during different phases of aestivation.
Collapse
Affiliation(s)
- You R. Chng
- Department of Biological Sciences, National University of SingaporeSingapore, Singapore
| | - Jasmine L. Y. Ong
- Department of Biological Sciences, National University of SingaporeSingapore, Singapore
| | - Biyun Ching
- Department of Biological Sciences, National University of SingaporeSingapore, Singapore
| | - Xiu L. Chen
- Department of Biological Sciences, National University of SingaporeSingapore, Singapore
| | - Kum C. Hiong
- Department of Biological Sciences, National University of SingaporeSingapore, Singapore
| | - Wai P. Wong
- Department of Biological Sciences, National University of SingaporeSingapore, Singapore
| | - Shit F. Chew
- Natural Sciences and Science Education, National Institute of Education, Nanyang Technological UniversitySingapore, Singapore
| | - Siew H. Lam
- Department of Biological Sciences, National University of SingaporeSingapore, Singapore
- NUS Environmental Research Institute, National University of SingaporeSingapore, Singapore
| | - Yuen K. Ip
- Department of Biological Sciences, National University of SingaporeSingapore, Singapore
| |
Collapse
|
32
|
Aquaporin 1 Is Involved in Acid Secretion by Ionocytes of Zebrafish Embryos through Facilitating CO2 Transport. PLoS One 2015; 10:e0136440. [PMID: 26287615 PMCID: PMC4546062 DOI: 10.1371/journal.pone.0136440] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 08/04/2015] [Indexed: 12/29/2022] Open
Abstract
Mammalian aquaporin 1 (AQP1) is well known to function as a membrane channel for H2O and CO2 transport. Zebrafish AQP1a.1 (the homologue of mammalian AQP1) was recently identified in ionocytes of embryos; however its role in ionocytes is still unclear. In this study, we hypothesized that zebrafish AQP1a.1 is involved in the acid secretion by ionocytes through facilitating H2O and CO2 diffusion. A real-time PCR showed that mRNA levels of AQP1a.1 in embryos were induced by exposure to 1% CO2 hypercapnia for 3 days. In situ hybridization and immunohistochemistry showed that the AQP1a.1 transcript was highly expressed by acid-secreting ionocytes, i.e., H+-ATPase-rich (HR) cells. A scanning ion-selective electrode technique (SIET) was applied to analyze CO2-induced H+ secretion by individual ionocytes in embryos. H+ secretion by HR cells remarkably increased after a transient loading of CO2 (1% for 10 min). AQP1a.1 knockdown with morpholino oligonucleotides decreased the H+ secretion of HR cells by about half and limited the CO2 stimulated increase. In addition, exposure to an AQP inhibitor (PCMB) for 10 min also suppressed CO2-induced H+ secretion. Results from this study support our hypothesis and provide in vivo evidence of the physiological role of AQP1 in CO2 transport.
Collapse
|
33
|
Madsen SS, Engelund MB, Cutler CP. Water transport and functional dynamics of aquaporins in osmoregulatory organs of fishes. THE BIOLOGICAL BULLETIN 2015; 229:70-92. [PMID: 26338871 DOI: 10.1086/bblv229n1p70] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Aquaporins play distinct roles for water transport in fishes as they do in mammals-both at the cellular, organ, and organismal levels. However, with over 32,000 known species of fishes inhabiting almost every aquatic environment, from tidal pools, small mountain streams, to the oceans and extreme salty desert lakes, the challenge to obtain consensus as well as specific knowledge about aquaporin physiology in these vertebrate clades is overwhelming. Because the integumental surfaces of these animals are in intimate contact with the surrounding milieu, passive water loss and uptake represent two of the major osmoregulatory challenges that need compensation. However, neither obligatory nor regulatory water transport nor their mechanisms have been elucidated to the same degree as, for example, ion transport in fishes. Currently fewer than 60 papers address fish aquaporins. Most of these papers identify "what is present" and describe tissue expression patterns in various teleosts. The agnathans, chondrichthyans, and functionality of fish aquaporins generally have received little attention. This review emphasizes the functional physiology of aquaporins in fishes, focusing on transepithelial water transport in osmoregulatory organs in euryhaline species - primarily teleosts, but covering other taxonomic groups as well. Most current knowledge comes from teleosts, and there is a strong need for related information on older fish clades. Our survey aims to stimulate new, original research in this area and to bring together new collaborations across disciplines.
Collapse
Affiliation(s)
- Steffen S Madsen
- Department of Biology, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark;
| | - Morten B Engelund
- Department of Biology, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Christopher P Cutler
- Department of Biology, Georgia Southern University, P.O. Box 8042, Statesboro, Georgia 30460
| |
Collapse
|
34
|
Engelund MB, Madsen SS. Tubular localization and expressional dynamics of aquaporins in the kidney of seawater-challenged Atlantic salmon. J Comp Physiol B 2014; 185:207-23. [PMID: 25491777 DOI: 10.1007/s00360-014-0878-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 11/07/2014] [Accepted: 11/22/2014] [Indexed: 01/05/2023]
Abstract
Most vertebrate nephrons possess an inherited ability to secrete fluid in normal or pathophysiological states. We hypothesized that renal aquaporin expression and localization are functionally regulated in response to seawater and during smoltification in Atlantic salmon and thus reflect a shift in renal function from filtration towards secretion. We localized aquaporins (Aqp) in Atlantic salmon renal tubular segments by immunohistochemistry and monitored their expressional dynamics using RT-PCR and immunoblotting. Three aquaporins: Aqpa1aa, Aqp1ab and Aqp8b and two aquaglyceroporins Aqp3a and Aqp10b were localized in the kidney of salmon. The staining for all aquaporins was most abundant in the proximal kidney tubules and there was no clear effect of salinity or developmental stage on localization pattern. Aqp1aa and Aqp3a were abundant apically but extended throughout the epithelial cells. Aqp10b was expressed apically and along the lateral membrane. Aqp8b was mainly basolateral and Aqp1ab was located in sub-apical intracellular compartments. mRNAs of aqp8b and aqp10b were higher in FW smolts compared to FW parr, whereas the opposite was true for aqp1aa. Aqp mRNA levels changed in response to both SW and sham transfer. Protein levels, however, were stable for most paralogs. In conclusion, aquaporins are abundant in salmon proximal renal tubules and may participate in water secretion and thus urine modification as suggested for other vertebrates. Further studies should seek to couple functional measurements of single nephrons to expression and localization of Aqps in the salmonid kidney.
Collapse
Affiliation(s)
- Morten Buch Engelund
- Department of Biology, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark,
| | | |
Collapse
|
35
|
Profiles of hypothalamus-pituitary-interrenal axis gene expression in the parr and smolt stages of rainbow trout, Oncorhynchus mykiss: effects of recombinant aquaporin 3 and seawater acclimation. Comp Biochem Physiol A Mol Integr Physiol 2014; 182:14-21. [PMID: 25490291 DOI: 10.1016/j.cbpa.2014.12.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 11/11/2014] [Accepted: 12/01/2014] [Indexed: 11/21/2022]
Abstract
The objective of this investigation was to quantify how the hypothalamus-pituitary-interrenal (HPI) axis in the rainbow trout, Oncorhynchus mykiss (parr/smolt), responds to salinity changes during transfer from freshwater (FW) to seawater (SW) and recombinant aquaporin 3 (rAQP3) injection. mRNA expression levels of HPI axis genes [corticotropic-releasing hormone (CRH) and adrenocorticotropic hormone (ACTHα and ACTHβ)] significantly increased when the fish were transferred from FW to SW (parr: 16.4-, 13.2-, 21.4-, and 11.9-fold higher than FW; smolt: 2.3-, 2.7-, 13.6-, and 6.2-fold higher than FW, respectively). Furthermore, and the plasma ACTH, Na(+), Cl(-), and K(+) levels were the highest at 50% SW. Moreover, these parameters were significantly lower in the rAQP3-treated group than those in the control (parr: 2.0-, 2.4-, 2.1-, and 2.0-fold lower than SW; smolt: 4.2-, 1.9-, 2.4-, and 2.3-fold lower than SW, respectively). Hence, HPI axis genes may play a role in SW adaptation during migration from FW to SW environments. We showed that there was a negative correlation between rAQP3, HPI axis genes, and ion levels when the fish were transferred to SW, with levels being significantly lower in the rAQP3-injected group. Hence, cortisol appears to be a stress hormone and plasma Na(+) and Cl(-) levels significantly increased when the fish were transferred to SW, with levels being significantly lower in the rAQP3-treated group. These results indicate that rAQP3 modulates the HPI axis and ion transportation in rainbow trout.
Collapse
|
36
|
Madsen SS, Bujak J, Tipsmark CK. Aquaporin expression in the Japanese medaka (Oryzias latipes) in freshwater and seawater: challenging the paradigm of intestinal water transport? ACTA ACUST UNITED AC 2014; 217:3108-21. [PMID: 24948644 DOI: 10.1242/jeb.105098] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
We investigated the salinity-dependent expression dynamics of seven aquaporin paralogs (aqp1a, aqp3a, aqp7, aqp8ab, aqp10a, aqp10b and aqp11a) in several tissues of euryhaline Japanese medaka (Oryzias latipes). All paralogs except aqp7 and aqp10a had a broad tissue distribution, and several were affected by salinity in both osmoregulatory and non-osmoregulatory tissues. In the intestine, aqp1a, aqp7, aqp8ab and aqp10a decreased upon seawater (SW) acclimation in both long-term acclimated fish and during 1-3 days of the transition period. In the gill, aqp3a was lower and aqp10a higher in SW than in freshwater (FW). In the kidney no aqps were affected by salinity. In the skin, aqp1a and aqp3a were lower in SW than in FW. In the liver, aqp8ab and aqp10a were lower in SW than in FW. Furthermore, six Na(+),K(+)-ATPase α-subunit isoform transcripts were analysed in the intestine but none showed a consistent response to salinity, suggesting that water transport is not regulated at this level. In contrast, mRNA of the Na(+),K(+),2Cl(-)-cotransporter type-2 strongly increased in the intestine in SW compared with FW fish. Using custom-made antibodies, Aqp1a, Aqp8ab and Aqp10a were localized in the apical region of enterocytes of FW fish. Apical staining intensity strongly decreased, vanished or moved to subapical regions, when fish were acclimated to SW, supporting the lower mRNA expression in SW. Western blots confirmed the decrease in Aqp1a and Aqp10a in SW. The strong decrease in aquaporin expression in the intestine of SW fish is surprising, and challenges the paradigm for transepithelial intestinal water absorption in SW fishes.
Collapse
Affiliation(s)
- Steffen S Madsen
- Department of Biology, University of Southern Denmark, DK-5230 Odense M, Denmark Department of Biological Sciences, University of Arkansas, SCEN601, Fayetteville, AR 72701, USA
| | - Joanna Bujak
- Department of Biological Sciences, University of Arkansas, SCEN601, Fayetteville, AR 72701, USA
| | - Christian K Tipsmark
- Department of Biological Sciences, University of Arkansas, SCEN601, Fayetteville, AR 72701, USA
| |
Collapse
|
37
|
Jeong SY, Kim JH, Lee WO, Dahms HU, Han KN. Salinity changes in the anadromous river pufferfish, Takifugu obscurus, mediate gene regulation. FISH PHYSIOLOGY AND BIOCHEMISTRY 2014; 40:205-219. [PMID: 23907526 DOI: 10.1007/s10695-013-9837-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Accepted: 07/24/2013] [Indexed: 06/02/2023]
Abstract
This study aimed to better understand the hydromineral regulatory response of the anadromous river pufferfish, Takifugu obscurus, to salinity changes through real-time RT-PCR. After abrupt transfer from 30 or 5 psu to 5 or 30 psu, respectively, we analyzed the mRNA expression of Na⁺/K⁺ ATPase, prolactin receptor, and aquaporin from osmoregulatory organs of the river pufferfish such as gills, kidney, and intestine. Na⁺/K⁺ ATPase showed notable changes in the gills and kidney when salinity was increased. In the gills, the expression level of Na⁺/K⁺ ATPase suddenly increased within a day after abrupt transfer from 5 to 30 psu and then slightly declined within 2 days after exposure. In the kidney, Na⁺/K⁺ ATPase has shown consistently high mRNA expression after the increase in salinity. Expression levels of the prolactin receptor gene increased when environmental salinity decreased. In the intestine, gene expression of the prolactin receptor remained high, even when salinity decreased. To the contrary, there was a steady increase or decrease in mRNA expression in the kidney in response to salinity decrease or increase, respectively. As for aquaporins, aquaporin 1 was mainly expressed in the intestine and kidney, and aquaporin 3 was mainly expressed in the gills and intestine. In the gills, increased expression of aquaporin 3 was found after transfer to lower salinity and in the intestine and kidney, a decrease in salinity followed by an abrupt decrease in aquaporin 1 and aquaporin 3. Contrastingly, the expression of these genes increased in the intestine after transfer to 30 psu. Osmoregulatory genes were expressed in diverse organs, apparently to overcome an influx or exhaust of water or ions. A superior adaptation ability of the river pufferfish to a wide range of salinities is most reasonably due to active osmoregulatory processes mediated by the genes monitored here.
Collapse
Affiliation(s)
- Su-Young Jeong
- Department of Marine Science, College of Natural Sciences, Inha University, Incheon, 402-751, South Korea
| | | | | | | | | |
Collapse
|
38
|
Isolation and mRNA expression analysis of aquaporin isoforms in marine medaka Oryzias dancena, a euryhaline teleost. Comp Biochem Physiol A Mol Integr Physiol 2014; 171:1-8. [PMID: 24480540 DOI: 10.1016/j.cbpa.2014.01.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Revised: 01/22/2014] [Accepted: 01/23/2014] [Indexed: 12/24/2022]
Abstract
We have identified six putative aquaporin (AQP) genes from marine medaka Oryzias dancena (named odAQPs 1, 3, 8, 10, 11 and 12). The marine medaka AQP cDNAs encode polypeptides of 259-298 amino acids, respectively. Topology predictions showed six transmembrane domains, five connecting loops, and cytoplasmic N- and C-terminal domains, all of which is conserved among AQP molecules. Although asparagine-proline-alanine (NPA) motifs are highly conserved in most odAQP isoforms, several AQPs revealed variant types of motifs such as asparagine-proline-proline (NPP), asparagine-proline-valine (NPV) or/and asparagine-proline-serine (NPS) motifs. The phylogenic analysis showed that marine medaka AQPs had closet relationship with Japanese ricefish (medaka; Oryzias latipes) counterparts. Reverse transcription (RT)-PCR analyses showed that marine medaka AQP transcripts would be expressed in not only osmoregulatory tissues but also nonosmoregulatory tissues, and also that the expression levels of certain AQP isoforms in nonosmoregulatory tissues were readily comparable or even higher than those in typically known osmoregulatory organs. Although the overall tissue distribution patterns of AQPs were not significantly different between 0- and 30-ppt acclimated fish, the expression levels under different salinities were largely variable among isoforms and tissues. This is the first report to investigate tissue expression profiles of teleostean AQPs 11 and 12 during the long-term acclimation to freshwater and salted water.
Collapse
|
39
|
Kwong RWM, Kumai Y, Perry SF. The role of aquaporin and tight junction proteins in the regulation of water movement in larval zebrafish (Danio rerio). PLoS One 2013; 8:e70764. [PMID: 23967101 PMCID: PMC3743848 DOI: 10.1371/journal.pone.0070764] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Accepted: 06/23/2013] [Indexed: 01/17/2023] Open
Abstract
Teleost fish living in freshwater are challenged by passive water influx; however the molecular mechanisms regulating water influx in fish are not well understood. The potential involvement of aquaporins (AQP) and epithelial tight junction proteins in the regulation of transcellular and paracellular water movement was investigated in larval zebrafish (Danio rerio). We observed that the half-time for saturation of water influx (Ku) was 4.3±0.9 min, and reached equilibrium at approximately 30 min. These findings suggest a high turnover rate of water between the fish and the environment. Water influx was reduced by the putative AQP inhibitor phloretin (100 or 500 μM). Immunohistochemistry and confocal microscopy revealed that AQP1a1 protein was expressed in cells on the yolk sac epithelium. A substantial number of these AQP1a1-positive cells were identified as ionocytes, either H+-ATPase-rich cells or Na+/K+-ATPase-rich cells. AQP1a1 appeared to be expressed predominantly on the basolateral membranes of ionocytes, suggesting its potential involvement in regulating ionocyte volume and/or water flux into the circulation. Additionally, translational gene knockdown of AQP1a1 protein reduced water influx by approximately 30%, further indicating a role for AQP1a1 in facilitating transcellular water uptake. On the other hand, incubation with the Ca2+-chelator EDTA or knockdown of the epithelial tight junction protein claudin-b significantly increased water influx. These findings indicate that the epithelial tight junctions normally act to restrict paracellular water influx. Together, the results of the present study provide direct in vivo evidence that water movement can occur through transcellular routes (via AQP); the paracellular routes may become significant when the paracellular permeability is increased.
Collapse
Affiliation(s)
- Raymond W M Kwong
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada.
| | | | | |
Collapse
|
40
|
Lorin-Nebel C, Felten V, Blondeau-Bidet E, Grousset E, Amilhat E, Simon G, Biagianti S, Charmantier G. Individual and combined effects of copper and parasitism on osmoregulation in the European eel Anguilla anguilla. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2013; 130-131:41-50. [PMID: 23340332 DOI: 10.1016/j.aquatox.2012.11.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Revised: 11/19/2012] [Accepted: 11/22/2012] [Indexed: 06/01/2023]
Abstract
The European eel (Anguilla anguilla), a catadromous species, breeds in the sea and migrates to estuarine, lagoon or freshwater habitats for growth and development. Yellow eels, exposed to low or fluctuating salinities, are also exposed to multiple other stressors as pollution, over-fishing and parasitism, which contribute to the dramatic decrease of eel populations in several European countries. The objective of this study was to evaluate the single and combined effects of waterborne copper and experimental infestation of eels with the nematode Anguillicoloides crassus after a salinity challenge from nearly isotonic (18ppt) to hypo- (5ppt) and hypertonic (29ppt) conditions, in order to investigate the osmoregulatory capacity of eels exposed to these stressors. In a nearly isotonic condition (18ppt), blood osmolality remained constant over the 6 weeks contamination to Cu(2+) and Anguillicoloides crassus. In fish exposed to a salinity challenge of 29ppt for 2 weeks, no significant effect was recorded in blood osmolality, Na(+)/K(+)-ATPase (NKA) activity, Na(+) and Cl(-) concentrations. After 2 weeks at 5ppt however, a significant blood osmolality decrease was detected in fish exposed to Anguillicoloides crassus infestation with or without Cu(2+) addition. This decrease may originate from lower Cl(-) levels measured in eels exposed to both stressors. Blood Na(+) levels remained relatively stable in all tested animals, but gill NKA activities were lower in eels exposed to combined stress. No apparent branchial lesions were detected following the different treatments and immunolocalization of NKA revealed well-differentiated ionocytes. Thus, the 5ppt challenge in eels exposed to copper and Anguillicoloides crassus seems to clearly enhance iono/osmoregulatory disturbances. Funded by ANR CES/CIEL 2008-12.
Collapse
Affiliation(s)
- Catherine Lorin-Nebel
- Equipe Adaptation Ecophysiologique et Ontogenèse, UMR 5119 EcoSym (UM2, UM1, CNRS, IRD, IFREMER), Montpellier, France.
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Ip YK, Soh MML, Chen XL, Ong JLY, Chng YR, Ching B, Wong WP, Lam SH, Chew SF. Molecular characterization of branchial aquaporin 1aa and effects of seawater acclimation, emersion or ammonia exposure on its mRNA expression in the gills, gut, kidney and skin of the freshwater climbing perch, Anabas testudineus. PLoS One 2013; 8:e61163. [PMID: 23593418 PMCID: PMC3621907 DOI: 10.1371/journal.pone.0061163] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2012] [Accepted: 03/06/2013] [Indexed: 12/27/2022] Open
Abstract
We obtained a full cDNA coding sequence of aquaporin 1aa (aqp1aa) from the gills of the freshwater climbing perch, Anabas testudineus, which had the highest expression in the gills and skin, suggesting an important role of Aqp1aa in these organs. Since seawater acclimation had no significant effects on the branchial and intestinal aqp1aa mRNA expression, and since the mRNA expression of aqp1aa in the gut was extremely low, it can be deduced that Aqp1aa, despite being a water channel, did not play a significant osmoregulatory role in A. testudineus. However, terrestrial exposure led to significant increases in the mRNA expression of aqp1aa in the gills and skin of A. testudineus. Since terrestrial exposure would lead to evaporative water loss, these results further support the proposition that Aqp1aa did not function predominantly for the permeation of water through the gills and skin. Rather, increased aqp1aa mRNA expression might be necessary to facilitate increased ammonia excretion during emersion, because A. testudineus is known to utilize amino acids as energy sources for locomotor activity with increased ammonia production on land. Furthermore, ammonia exposure resulted in significant decreases in mRNA expression of aqp1aa in the gills and skin of A. testudineus, presumably to reduce ammonia influx during ammonia loading. This corroborates previous reports on AQP1 being able to facilitate ammonia permeation. However, a molecular characterization of Aqp1aa from A. testudineus revealed that its intrinsic aquapore might not facilitate NH3 transport. Hence, ammonia probably permeated the central fifth pore of the Aqp1aa tetramer as suggested previously. Taken together, our results indicate that Aqp1aa might have a greater physiological role in ammonia excretion than in osmoregulation in A. testudineus.
Collapse
Affiliation(s)
- Yuen K Ip
- Department of Biological Science, National University of Singapore, Kent Ridge, Singapore, Republic of Singapore.
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Expression of aquaporin-3 and -8 mRNAs in the parr and smolt stages of sockeye salmon, Oncorhynchus nerka: effects of cortisol treatment and seawater acclimation. Comp Biochem Physiol A Mol Integr Physiol 2013; 165:228-36. [PMID: 23507572 DOI: 10.1016/j.cbpa.2013.03.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Revised: 03/10/2013] [Accepted: 03/10/2013] [Indexed: 12/27/2022]
Abstract
This study aimed to examine the role of 2 aquaporin (AQP) isoforms (AQP3, and -8) in sockeye salmon (Oncorhynchus nerka) in response to a hyperosmotic challenge from freshwater to seawater (SW) during the parr and smoltification (smolt) stages. AQP3 mRNA was primarily detected in the osmoregulatory organs, such as gills, while AQP8 mRNA was primarily found in the intestine. These results suggested that AQP isoforms play a role in osmoregulation in specific osmoregulatory organs. Similarly, AQP3 mRNA expression in the gills (mean values:1.06 ± 0.05 [parr] and 1.29 ± 0.07 [smolt]) was significantly higher than AQP8 mRNA levels (parr: 0.04 ± 0.003; smolt: 0.14 ± 0.004), and in the intestine, AQP8 mRNA expression (parr: 0.89 ± 0.007; smolt: 1.91 ± 0.03) was significantly higher than AQP3 mRNA levels (parr: 0.24 ± 0.006; smolt: 0.83 ± 0.005); these expression patterns were similar in vivo and in vitro. Additionally, AQP mRNA levels were lower in cortisol treated than in control groups. Therefore, these results suggest that AQPs play important roles in the water absorption mechanisms associated with multiple AQP isoforms, and that cortisol enhances the hypo-osmoregulatory capacity of fish in SW, and also controls the expression of AQPs in a hyperosmotic environment.
Collapse
|
43
|
Expression of sodium/hydrogen exchanger 3 and cation-chloride cotransporters in the kidney of Japanese eel acclimated to a wide range of salinities. Comp Biochem Physiol A Mol Integr Physiol 2012. [PMID: 23178812 DOI: 10.1016/j.cbpa.2012.11.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Reabsorption of monovalent ions in the kidney is essential for adaptation to freshwater and seawater in teleosts. To assess a possible role of Na(+)/H(+) exchanger 3 (NHE3) in renal osmoregulation, we first identified a partial sequence of cDNA encoding NHE3 from the Japanese eel kidney. For comparison, we also identified cDNAs encoding kidney specific Na(+)-K(+)-2Cl(-) cotransporter 2 (NKCC2α) and Na(+)-Cl(-) cotransporter (NCCα). In eels acclimated to a wide range of salinities from deionized freshwater to full-strength seawater, the expression of NHE3 in the kidney was the highest in eel acclimated to full-strength seawater. Meanwhile, the NCCα expression exhibited a tendency to increase as the environmental salinity decreased, whereas the NKCC2α expression was not significantly different among the experimental groups. Immunohistochemical studies showed that NHE3 was localized to the apical membrane of epithelial cells composing the second segments of the proximal renal tubule in seawater-acclimated eel. Meanwhile, the apical membranes of epithelial cells in the distal renal tubule and collecting duct showed more intense immunoreactions of NKCC2α and NCCα, respectively, in freshwater eel than in seawater eel. These findings suggest that renal monovalent-ion reabsorption is mainly mediated by NKCC2α and NCCα in freshwater eel and by NHE3 in seawater eel.
Collapse
|
44
|
Chung JS, Maurer L, Bratcher M, Pitula JS, Ogburn MB. Cloning of aquaporin-1 of the blue crab, Callinectes sapidus: its expression during the larval development in hyposalinity. AQUATIC BIOSYSTEMS 2012; 8:21. [PMID: 22943628 PMCID: PMC3489796 DOI: 10.1186/2046-9063-8-21] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Accepted: 07/25/2012] [Indexed: 06/01/2023]
Abstract
BACKGROUND Ontogenetic variation in salinity adaptation has been noted for the blue crab, Callinectes sapidus, which uses the export strategy for larval development: females migrate from the estuaries to the coast to spawn, larvae develop in the ocean, and postlarvae (megalopae) colonize estuarine areas. We hypothesized that C. sapidus larvae may be stenohaline and have limited osmoregulatory capacity which compromises their ability to survive in lower salinity waters. We tested this hypothesis using hatchery-raised larvae that were traceable to specific life stages. In addition, we aimed to understand the possible involvement of AQP-1 in salinity adaptation during larval development and during exposure to hyposalinity. RESULTS A full-length cDNA sequence of aquaporin (GenBank JQ970426) was isolated from the hypodermis of the blue crab, C. sapidus, using PCR with degenerate primers and 5' and 3' RACE. The open reading frame of CasAQP-1 consists of 238 amino acids containing six helical structures and two NPA motifs for the water pore. The expression pattern of CasAQP-1 was ubiquitous in cDNAs from all tissues examined, although higher in the hepatopancreas, thoracic ganglia, abdominal muscle, and hypodermis and lower in the antennal gland, heart, hemocytes, ovary, eyestalk, brain, hindgut, Y-organs, and gill. Callinectes larvae differed in their capacity to molt in hyposalinity, as those at earlier stages from Zoea (Z) 1 to Z4 had lower molting rates than those from Z5 onwards, as compared to controls kept in 30 ppt water. No difference was found in the survival of larvae held at 15 and 30 ppt. CasAQP-1 expression differed with ontogeny during larval development, with significantly higher expression at Z1-2, compared to other larval stages. The exposure to 15 ppt affected larval-stage dependent CasAQP-1 expression which was significantly higher in Z2- 6 stages than the other larval stages. CONCLUSIONS We report the ontogenetic variation in CasAQP-1 expression during the larval development of C. sapidus and the induction of its expression at early larval stages in the exposure of hyposalinity. However, it remains to be determined if the increase in CasAQP-1 expression at later larval stages may have a role in adaptation to hyposalinity.
Collapse
Affiliation(s)
- J Sook Chung
- Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Science, 701 East Pratt Street, Columbus Center, Suite 236, Baltimore, MD, USA
| | - Leah Maurer
- Department of Environmental Science, University of Maryland Baltimore County, Baltimore, MD, USA
| | - Meagan Bratcher
- Department of Natural Sciences, University of Maryland Eastern Shore, Princess Anne, MD, USA
| | - Joseph S Pitula
- Department of Natural Sciences, University of Maryland Eastern Shore, Princess Anne, MD, USA
| | - Matthew B Ogburn
- Department of Natural Sciences, Savannah State University, Savannah, GA, USA
| |
Collapse
|
45
|
Adaptation of teleosts to very high salinity. Comp Biochem Physiol A Mol Integr Physiol 2012; 163:1-6. [DOI: 10.1016/j.cbpa.2012.05.203] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2012] [Revised: 05/22/2012] [Accepted: 05/23/2012] [Indexed: 12/21/2022]
|
46
|
Tipsmark CK, Madsen SS. Tricellulin, occludin and claudin-3 expression in salmon intestine and kidney during salinity adaptation. Comp Biochem Physiol A Mol Integr Physiol 2012; 162:378-85. [PMID: 22561661 DOI: 10.1016/j.cbpa.2012.04.020] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2012] [Revised: 04/18/2012] [Accepted: 04/19/2012] [Indexed: 01/23/2023]
Abstract
Molecular regulation of tight junctions in osmoregulatory epithelia of euryhaline fishes must be extensive during ontogeny and acclimation to salinity changes. In this study, five tight junction proteins were examined in Atlantic salmon (Salmo salar): tight junction associated tricellulin, occludin and claudin-3 isoforms (a, b, c). A survey of tissue distribution in freshwater (FW) salmon showed that tricellulin expression was highest in the intestine. Occludin was detected in tissues with importance for epithelial transport and the order of expression was gill>intestine>kidney. The three claudin-3 isoforms were expressed at highest level in kidney tissue. Transfer of juvenile FW salmon to seawater (SW) elevated intestinal tricellulin and occludin mRNA, and these transcripts were also elevated at the time of best SW-tolerance during the course of smoltification. In the kidney, expression of tricellulin and claudin-3 isoforms was elevated after SW-transfer and tricellulin, occludin, claudin-3a and -3b increased in March before the peak smolt stage. In the gill, none of the examined tight junction proteins were impacted by SW-transfer. The data suggest that expression of tricellulin and occludin is dynamically involved in reorganization of intestinal epithelium and possibly changed paracellular permeability during SW-acclimation. The increased renal tricellulin and claudin-3 expression in SW suggests a role in remodeling of the kidney during SW-acclimation.
Collapse
Affiliation(s)
- C K Tipsmark
- Institute of Biology, University of Southern Denmark, Denmark.
| | | |
Collapse
|
47
|
Czesny S, Epifanio J, Michalak P. Genetic divergence between freshwater and marine morphs of alewife (Alosa pseudoharengus): a 'next-generation' sequencing analysis. PLoS One 2012; 7:e31803. [PMID: 22438868 PMCID: PMC3305293 DOI: 10.1371/journal.pone.0031803] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Accepted: 01/16/2012] [Indexed: 12/24/2022] Open
Abstract
Alewife Alosa pseudoharengus, a small clupeid fish native to Atlantic Ocean, has recently (∼150 years ago) invaded the North American Great Lakes and despite challenges of freshwater environment its populations exploded and disrupted local food web structures. This range expansion has been accompanied by dramatic changes at all levels of organization. Growth rates, size at maturation, or fecundity are only a few of the most distinct morphological and life history traits that contrast the two alewife morphs. A question arises to what extent these rapidly evolving differences between marine and freshwater varieties result from regulatory (including phenotypic plasticity) or structural mutations. To gain insights into expression changes and sequence divergence between marine and freshwater alewives, we sequenced transcriptomes of individuals from Lake Michigan and Atlantic Ocean. Population specific single nucleotide polymorphisms were rare but interestingly occurred in sequences of genes that also tended to show large differences in expression. Our results show that the striking phenotypic divergence between anadromous and lake alewives can be attributed to massive regulatory modifications rather than coding changes.
Collapse
Affiliation(s)
- Sergiusz Czesny
- Lake Michigan Biological Station, Illinois Natural History Survey, University of Illinois, Zion, Illinois, United States of America
| | - John Epifanio
- Illinois Natural History Survey, University of Illinois, Champaign, Illinois, United States of America
| | - Pawel Michalak
- Virginia Bioinformatics Institute and Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, United States of America
- * E-mail:
| |
Collapse
|
48
|
Jung D, MacIver B, Jackson BP, Barnaby R, Sato JD, Zeidel ML, Shaw JR, Stanton BA. A novel aquaporin 3 in killifish (Fundulus heteroclitus) is not an arsenic channel. Toxicol Sci 2012; 127:101-9. [PMID: 22323512 DOI: 10.1093/toxsci/kfs078] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The Atlantic killifish (Fundulus heteroclitus) is a model environmental organism that has an extremely low assimilation rate of environmental arsenic. As a first step in elucidating the mechanism behind this phenomenon, we used quantitative real-time PCR to identify aquaglyceroporins (AQPs), which are arsenite transporters, in the killifish gill. A novel homolog killifish AQP3 (kfAQP3a) was cloned from the killifish gill, and a second homolog was identified as the consensus from a transcriptome database (kfAQP3b). The two were 99% homologous to each other, 98% homologous to a previously identified killifish AQP3 from embryos (kfAQP3ts), and 78% homologous to hAQP3. Expression of kfAQP3a in Xenopus oocytes significantly enhanced water, glycerol, and urea transport. However, kfAQP3a expressed in HEK293T cells did not transport significant amounts of arsenic. All sequence motifs thought to confer the ability of AQP3 to transport solutes were conserved in kfAQP3a, kfAQP3b, and kfAQP3ts; however, the C-terminal amino acids were different in kfAQP3a versus the other two homologs. Replacement of the three C-terminal amino acids of kfAQP3 (GKS) with the three C-terminal amino acids of kfAQP3b and kfAQP3ts (ANC) was sufficient to enable kfAQP3a to robustly transport arsenic. Thus, the C-terminus of kfAQP3b and kfAQP3ts confers arsenic selectivity in kfAQP3. Moreover, kfAQP3a, the only AQP expressed in killifish gill, is the first aquaglyceroporin identified that does not transport arsenic, which may explain, in part, why killifish poorly assimilate arsenic and are highly tolerant to environmental arsenic.
Collapse
Affiliation(s)
- Dawoon Jung
- Department of Microbiology and Immunology, Dartmouth Medical School, Hanover, New Hampshire 03755, USA.
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Jung D, Sato JD, Shaw JR, Stanton BA. Expression of aquaporin 3 in gills of the Atlantic killifish (Fundulus heteroclitus): Effects of seawater acclimation. Comp Biochem Physiol A Mol Integr Physiol 2011; 161:320-6. [PMID: 22193757 DOI: 10.1016/j.cbpa.2011.11.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Revised: 11/28/2011] [Accepted: 11/29/2011] [Indexed: 01/22/2023]
Abstract
Estuarine fish, such as the Atlantic killifish (Fundulus heteroclitus), are constantly and rapidly exposed to changes in salinity. Although ion transport in killifish gills during acclimation to increased salinity has been studied extensively, no studies have examined the role of aquaglyceroporin 3 (AQP3), a water, glycerol, urea, and ammonia transporter, during acclimation to increased salinity in this sentinel environmental model organism. The goal of this study was to test the hypothesis that transfer from freshwater to seawater decreases AQP3 gene and protein expression in the gill of killifish. Transfer from freshwater to seawater decreased AQP3 mRNA in the gill after 1 day, but had no effect on total gill AQP3 protein abundance as determined by western blot. Quantitative confocal immunocytochemistry confirmed western blot studies that transfer from freshwater to seawater did not change total AQP3 abundance in the gill; however, immunocytochemistry revealed that the amount of AQP3 in pillar cells of secondary lamellae decreased in seawater fish, whereas the amount of AQP3 in mitochondrion rich cells (MRC) in primary filaments of the gill increased in seawater fish. This response of AQP3 expression is unique to killifish compared to other teleosts. Although the role of AQP3 in the gill of killifish has not been completely elucidated, these results suggest that AQP3 may play an important role in the ability of killifish to acclimate to increased salinity.
Collapse
Affiliation(s)
- Dawoon Jung
- Department of Microbiology, Dartmouth Medical School, Hanover, NH 03755, USA.
| | | | | | | |
Collapse
|
50
|
De Domenico E, Mauceri A, Giordano D, Maisano M, Gioffrè G, Natalotto A, D'Agata A, Ferrante M, Brundo MV, Fasulo S. Effects of "in vivo" exposure to toxic sediments on juveniles of sea bass (Dicentrarchus labrax). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2011; 105:688-697. [PMID: 21996255 DOI: 10.1016/j.aquatox.2011.08.026] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Revised: 08/29/2011] [Accepted: 08/30/2011] [Indexed: 05/31/2023]
Abstract
Aquatic ecosystems are affected by all the impacts generated by a variety of anthropogenic activities present along coastal environments. The sediment compartment is the final receptor of water-insoluble pollutants, acting both as a sink and as a source of pollutants to the water column, and affecting both nektonic and benthic organisms. The aim of this study is to assess the impact of metals in the sediments collected from two sites in the petrochemical area between Augusta and Priolo (SR, Sicily, Italy) on gills of Dicentrarchus labrax. This was done to enhance the scarce knowledge on the bioavailability of metals bound to sediment and their capacity to interact with the bioindicator species. Various sublethal endpoints were assessed such as histopathological lesions, metallothioneins (MTs) and molecules involved in the homeostasis pathways by immunolocalization and RT-PCR. In the specimens exposed to sediments, the data suggested a reduction of gill cell membrane permeability, which could result in altered osmotic balance and gas exchange. Further, an increase of MT expression was detected, consisted the involvement of this protein in detoxification of toxic non-essential metals. The findings of this study demonstrate that a subchronic test, conducted by using sensitive and sub-lethal endpoints, in combination with chemical analyses, is a powerful tool for early identification of environmental hazards associated with contaminated sediments.
Collapse
Affiliation(s)
- Elena De Domenico
- Department Animal Biology and Marine Ecology, University of Messina, Viale Stagno D'Alcontres 31, 98166 Messina, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|