1
|
Harvey-Carroll J, Stevenson TJ, Bussière LF, Spencer KA. Pre-natal exposure to glucocorticoids causes changes in developmental circadian clock gene expression and post-natal behaviour in the Japanese quail. Horm Behav 2024; 163:105562. [PMID: 38810363 DOI: 10.1016/j.yhbeh.2024.105562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/11/2024] [Accepted: 05/13/2024] [Indexed: 05/31/2024]
Abstract
The embryonic environment is critical in shaping developmental trajectories and consequently post-natal phenotypes. Exposure to elevated stress hormones during this developmental stage is known to alter a variety of post-natal phenotypic traits, and it has been suggested that pre-natal stress can have long term effects on the circadian rhythm of glucocorticoid hormone production. Despite the importance of the circadian system, the potential impact of developmental glucocorticoid exposure on circadian clock genes, has not yet been fully explored. Here, we showed that pre-natal exposure to corticosterone (CORT, a key glucocorticoid) resulted in a significant upregulation of two key hypothalamic circadian clock genes during the embryonic period in the Japanese quail (Coturnix japonica). Altered expression was still present 10 days into post-natal life for both genes, but then disappeared by post-natal day 28. At post-natal day 28, however, diel rhythms of eating and resting were influenced by exposure to pre-natal CORT. Males exposed to pre-natal CORT featured an earlier acrophase, alongside spending a higher proportion of time feeding. Females exposed to pre-natal CORT featured a less pronounced shift in acrophase and spent less time eating. Both males and females exposed to pre-natal CORT spent less time inactive during the day. Pre-natal CORT males appeared to feature a delay in peak activity levels. Our novel data suggest that these circadian clock genes and aspects of diurnal behaviours are highly susceptible to glucocorticoid disruption during embryonic development, and these effects are persistent across developmental stages, at least into early post-natal life.
Collapse
Affiliation(s)
- Jessica Harvey-Carroll
- School of Psychology and Neuroscience, University of St Andrews, Scotland; Department of Biological and Environmental Sciences & Gothenburg Global Biodiversity Centre, University of Gothenburg, Sweden.
| | - Tyler J Stevenson
- Institute of Biodiversity, Animal Health & Comparative Medicine, University of Glasgow, United Kingdom of Great Britain and Northern Ireland
| | - Luc F Bussière
- Department of Biological and Environmental Sciences & Gothenburg Global Biodiversity Centre, University of Gothenburg, Sweden
| | - Karen A Spencer
- School of Psychology and Neuroscience, University of St Andrews, Scotland
| |
Collapse
|
2
|
Embryonic Development of Avian Pineal Secretory Activity-A Lesson from the Goose Pineal Organs in Superfusion Culture. Molecules 2021; 26:molecules26216329. [PMID: 34770737 PMCID: PMC8588208 DOI: 10.3390/molecules26216329] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/11/2021] [Accepted: 10/16/2021] [Indexed: 12/02/2022] Open
Abstract
The embryonic ontogeny of pineal secretory activity in birds has been investigated almost exclusively in chickens. This study aimed to characterize this process in domestic geese. The pineal organs of embryos aged 18–28 days were incubated in superfusion culture under different light conditions for 4–5 days and treated with norepinephrine (NE). Melatonin (MLT) was measured by radioimmunoassay and other indoles by HPLC with fluorescence detection. Additionally, pineal organs were collected from embryos at 14–28 days of age and used to measure catecholamines by HPLC with electrochemical detection. MLT secretion increased with embryo age, most intensively between the 22nd and 24th days of life. The daily changes in MLT secretion under the 12 L:12D cycle occurred on the first day of culture, starting from an embryonic age of 24 days. MLT secretion was controlled by the light-dark cycle in all age groups studied. However, exposure to light during the scotophase did not alter the secretion of MLT. The endogenous oscillator expressed its activity in regulating MLT secretion in the pineal organs of embryos aged 24 days and older but could not generate a rhythm after one cycle. The rhythm of 5-hydroxytryptophan release during the first day of culture was found in the pineal organs of all embryos, while the rhythmic release of N-acetylserotonin and 5-methoxyindole acetic acid started at the age of 24 days. The proportion of released indoles changed with embryo age. NE caused a decrease in MLT secretion and provoked an increase in serotonin release. Incubation of the pineal organs induced the development of MLT secretory machinery and its diurnal rhythmicity. The pineal content of catecholamines increased prominently at the end of embryonic development.
Collapse
|
3
|
Charton C, Youm DJ, Ko BJ, Seol D, Kim B, Chai HH, Lim D, Kim H. The transcriptomic blueprint of molt in rooster using various tissues from Ginkkoridak (Korean long-tailed chicken). BMC Genomics 2021; 22:594. [PMID: 34348642 PMCID: PMC8340483 DOI: 10.1186/s12864-021-07903-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 07/13/2021] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Annual molt is a critical stage in the life cycle of birds. Although the most extensively documented aspects of molt are the renewing of plumage and the remodeling of the reproductive tract in laying hens, in chicken, molt deeply affects various tissues and physiological functions. However, with exception of the reproductive tract, the effect of molt on gene expression across the tissues known to be affected by molt has to date never been investigated. The present study aimed to decipher the transcriptomic effects of molt in Ginkkoridak, a Korean long-tailed chicken. Messenger RNA data available across 24 types of tissue samples (9 males) and a combination of mRNA and miRNA data on 10 males and 10 females blood were used. RESULTS The impact of molt on gene expression and gene transcript usage appeared to vary substantially across tissues types in terms of histological entities or physiological functions particularly related to nervous system. Blood was the tissue most affected by molt in terms of differentially expressed genes in both sexes, closely followed by meninges, bone marrow and heart. The effect of molt in blood appeared to differ between males and females, with a more than fivefold difference in the number of down-regulated genes between both sexes. The blueprint of molt in roosters appeared to be specific to tissues or group of tissues, with relatively few genes replicating extensively across tissues, excepted for the spliceosome genes (U1, U4) and the ribosomal proteins (RPL21, RPL23). By integrating miRNA and mRNA data, when chickens molt, potential roles of miRNA were discovered such as regulation of neurogenesis, regulation of immunity and development of various organs. Furthermore, reliable candidate biomarkers of molt were found, which are related to cell dynamics, nervous system or immunity, processes or functions that have been shown to be extensively modulated in response to molt. CONCLUSIONS Our results provide a comprehensive description at the scale of the whole organism deciphering the effects of molt on the transcriptome in chicken. Also, the conclusion of this study can be used as a valuable resource in transcriptome analyses of chicken in the future and provide new insights related to molt.
Collapse
Affiliation(s)
- Clémentine Charton
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Dong-Jae Youm
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Byung June Ko
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Donghyeok Seol
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
- eGnome, Inc, Seoul, Republic of Korea
| | - Bongsang Kim
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
- eGnome, Inc, Seoul, Republic of Korea
| | - Han-Ha Chai
- Animal Genomics & Bioinformatics Division, National Institute of Animal Science, RDA, 1500, Wanju, Republic of Korea
| | - Dajeong Lim
- Animal Genomics & Bioinformatics Division, National Institute of Animal Science, RDA, 1500, Wanju, Republic of Korea
| | - Heebal Kim
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea.
- eGnome, Inc, Seoul, Republic of Korea.
| |
Collapse
|
4
|
Jiang N, Cao J, Wang Z, Dong Y, Chen Y. Effect of monochromatic light on the temporal expression of N-acetyltransferase in chick pineal gland. Chronobiol Int 2020; 37:1140-1150. [PMID: 32308045 DOI: 10.1080/07420528.2020.1754846] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The avian pineal gland is an independent molecular oscillator that receives external light information that regulates the synthesis and secretion of melatonin. Arylalkylamine N-acetyltransferase plays an important role in the pineal gland by controlling the rhythmic production of melatonin. Previous study showed that monochromatic light influences the secretion of melatonin, which is regulated by the molecular circadian clock genes in chick pineal gland. This study was designed to investigate the effect of monochromatic light on the circadian rhythm of levels of cAanat, clock protein (CLOCK and BMAL1), cCreb, and opsins (cOpnp, Pinopsin; cOpn4-1, Melanopsin-1; cOpn4-2, Melanopsin-2) in chick pineal gland. A total of 240 post-hatching day (P) 0 broiler chickens were reared under white (WL), red (RL), green (GL), and blue light (BL) with light (L)-dark (D) cycle of 12L:12D for 14 d. The results show significant circadian rhythms in the expression of cAanat, CLOCK, BMAL1, cCreb, cOpnp, cOpn4-1, and cOpn4-2, but not for cOpnp under RL. Compared with WL, GL increased the level of cAanat mRNA, while RL decreased it. Meanwhile, CLOCK and BMAL1 proteins were expressed at high levels in GL. Furthermore, the peak of the 24 h pattern of cOpnp mRNA in GL was earlier than that of in WL, RL, and BL. These results demonstrated that monochromatic light affects the daily expression of cAanat in the chick pineal gland via the biological clock. GL activates the transcription of cAanat, while RL suppresses the transcription of cAanat. Meanwhile, GL appears to induce the peak of cOpnp mRNA in advance to affect the transmission of light. Thus, monochromatic light regulates cAanat in the chick pineal gland by affecting the levels of clock regulators via entraining the expression of pineal gland opsins.
Collapse
Affiliation(s)
- Nan Jiang
- Laboratory of Anatomy of Domestic Animals, College of Veterinary Medicine, China Agricultural University , Haidian, Beijing, China.,Laboratory of Anatomy of Domestic Animals, College of Veterinary Medicine, Qingdao Agricultural University , Qingdao, China
| | - Jing Cao
- Laboratory of Anatomy of Domestic Animals, College of Veterinary Medicine, China Agricultural University , Haidian, Beijing, China
| | - Zixu Wang
- Laboratory of Anatomy of Domestic Animals, College of Veterinary Medicine, China Agricultural University , Haidian, Beijing, China
| | - Yulan Dong
- Laboratory of Anatomy of Domestic Animals, College of Veterinary Medicine, China Agricultural University , Haidian, Beijing, China
| | - Yaoxing Chen
- Laboratory of Anatomy of Domestic Animals, College of Veterinary Medicine, China Agricultural University , Haidian, Beijing, China
| |
Collapse
|
5
|
Embryonic Ontogeny of 5-Hydroxyindoles and 5-Methoxyindoles Synthesis Pathways in the Goose Pineal Organ. Int J Mol Sci 2019; 20:ijms20163948. [PMID: 31416134 PMCID: PMC6719024 DOI: 10.3390/ijms20163948] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 08/09/2019] [Accepted: 08/13/2019] [Indexed: 12/14/2022] Open
Abstract
The aim of this study was to characterize the embryonic ontogeny of 5-hydroxyindoles and 5-methoxyindoles synthesis pathways in the goose pineal organ. The study was performed on embryos aged 14–28 days, which have been incubated under a 12L:12D cycle. The pineal organs were collected for measurements of indole content by HPLC every 6 h on embryonic day (ED) 14, ED 16, ED 18 and ED 22 or every 2 h on ED 24, ED 26 and ED 28. The level of tryptophan showed no significant changes during development and no day-night variations. The content of 5-hydroxytryptophan increased between ED 14 and ED 26. It was significantly higher during scotophase than during photophase starting from ED 14. The serotonin content was low during the early stages of development (ED 14–ED 18) and prominently increased from ED 20. The serotonin levels also showed day-night differences; however, they were less conspicuous than those of 5-hydroxytryptophan. The changes in the level of 5-hydroxyindole acetic acid were similar to those of serotonin. 5-Hydroxytryptophol was measurable from ED 18. Levels of N-acetylserotonin, which were detectable for the first time on ED 16, prominently increased between ED 22 and ED 28 and showed significant day–night differences from ED 20. Melatonin was detectable from ED 18. Like N-acetylserotonin, its content increased rapidly between ED 22 and ED 28, and from ED 20 showed diurnal variations. 5-Methoxyindole acetic acid and 5-methoxytryptophol occurred at measurable levels from ED 18 and ED 26, respectively. The obtained results showed that embryonic development of indole metabolism in the goose pineal organ starts with the beginning of serotonin synthesis. The processes of serotonin acetylation and 5-hydroxyindoles methylation were turned on later. Diurnal rhythmicity develops very early in the embryonic pineal organ of the goose when the eggs are incubated under a 12 h light: 12 h dark schedule. Two processes are responsible for generation of the diurnal rhythms of 5-hydroxyindoles and 5-methoxyindoles: (i) hydroxylation of tryptophan and (ii) acetylation of serotonin.
Collapse
|
6
|
The effect of different wavelengths of light during incubation on the development of rhythmic pineal melatonin biosynthesis in chick embryos. Animal 2019; 13:1635-1640. [PMID: 30614433 DOI: 10.1017/s1751731118003695] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Rhythmic pineal melatonin biosynthesis develops in chick embryos incubated under a light (L)-dark (D) cycle of polychromatic white light. The spectral sensitivity of the embryonic pineal gland is not known and was investigated in this study. Broiler breeder eggs (Ross 308, n=450) were incubated under white, red, green or blue light under the 12L : 12D cycle. Melatonin was measured in extracts of pineal glands by radioimmunoassay. The daily rhythm of pineal melatonin levels in 20-day-old chick embryos was confirmed during the final stages of embryonic life under all four wavelengths of light with expected higher concentrations during dark- than light-times. The highest pineal melatonin levels were determined in chick embryos incubated under red and white light and lower levels under green light. The incubation under blue light resulted in the lowest melatonin biosynthesis. Pineal melatonin concentrations increased substantially on post-hatching day two compared with pre-hatching levels and we did not find differences between birds incubated and kept in either white or green light. Our results demonstrate a selective sensitivity of the chick embryo pineal gland to different wavelengths of light. Rhythmic melatonin production is suggested as a possible mechanism, which transfers information about the quality of ambient light to the developing avian embryo.
Collapse
|
7
|
Turkowska E, Pietruszka D, Skwarlo-Sonta K. Thymic E4bp4 gene transcription is up-regulated in the chicken during experimental peritonitis modified by the season-related lighting conditions. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 65:309-313. [PMID: 27502572 DOI: 10.1016/j.dci.2016.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 08/04/2016] [Accepted: 08/04/2016] [Indexed: 06/06/2023]
Abstract
Immunity, like other vertebrate processes, undergoes the diurnal and seasonal rhythmicity generated and synchronized by the endogenous clock. In the present study a transcription of the selected clock genes was evaluated in the chicken thymus to verify its supposed role as a peripheral clock and to check its relation with the seasonality of immune function. Chickens kept from hatch in the season-related lighting conditions (LD 16:8 in summer vs 8:16 in winter) and in a controlled temperature were exposed to the experimental peritonitis elicited by i.p. thioglycollate injection. Previously described seasonality of the inflammatory response has been confirmed and the diurnal rhythms of a core clock gene Per3 and its repressor E4bp4 in the thymus has been evidenced. E4bp4 transcription was up-regulated in inflamed chickens while that of Per3 appeared independent of the locally induced inflammation. Our results suggest an interconnecting role of E4BP4 between molecular clock and immunity in the chicken.
Collapse
Affiliation(s)
- Elzbieta Turkowska
- Department of Animal Physiology, Institute of Zoology, Faculty of Biology, University of Warsaw, ul. Miecznikowa 1, 02-096 Warsaw, Poland.
| | - Dominika Pietruszka
- Department of Animal Physiology, Institute of Zoology, Faculty of Biology, University of Warsaw, ul. Miecznikowa 1, 02-096 Warsaw, Poland
| | - Krystyna Skwarlo-Sonta
- Department of Animal Physiology, Institute of Zoology, Faculty of Biology, University of Warsaw, ul. Miecznikowa 1, 02-096 Warsaw, Poland
| |
Collapse
|
8
|
Jiang N, Wang Z, Cao J, Dong Y, Chen Y. Role of monochromatic light on daily variation of clock gene expression in the pineal gland of chick. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2016; 164:57-64. [PMID: 27643985 DOI: 10.1016/j.jphotobiol.2016.09.020] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 09/12/2016] [Indexed: 10/21/2022]
Abstract
The avian pineal gland is a master clock that can receive external photic cues and translate them into output rhythms. To clarify whether a shift in light wavelength can influence the circadian expression in chick pineal gland, a total of 240 Arbor Acre male broilers were exposed to white light (WL), red light (RL), green light (GL) or blue light (BL). After 2weeks light illumination, circadian expressions of seven core clock genes in pineal gland and the level of melatonin in plasma were examined. The results showed after illumination with monochromatic light, 24h profiles of all clock gene mRNAs retained circadian oscillation, except that RL tended to disrupt the rhythm of cCry2. Compared to WL, BL advanced the acrophases of the negative elements (cCry1, cCry2, cPer2 and cPer3) by 0.1-1.5h and delayed those of positive elements (cClock, cBmal1 and cBmal2) by 0.2-0.8h. And, RL advanced all clock genes except cClock and cPer2 by 0.3-2.1h, while GL delayed all clock genes by 0.5-1.5h except cBmal2. Meanwhile, GL increased the amplitude and mesor of positive and reduced both parameters of negative clock genes, but RL showed the opposite pattern. Although the acrophase of plasma melatonin was advanced by both GL and RL, the melatonin level was significantly increased in GL and decreased in RL. This tendency was consistent with the variations in the positive clock gene mRNA levels under monochromatic light and contrasted with those of negative clock genes. Therefore, we speculate that GL may enhance positive clock genes expression, leading to melatonin synthesis, whereas RL may enhance negative genes expression, suppressing melatonin synthesis.
Collapse
Affiliation(s)
- Nan Jiang
- Laboratory of Anatomy of Domestic Animals, College of Animal Medicine, China Agricultural University, Haidian, Beijing 100193, China
| | - Zixu Wang
- Laboratory of Anatomy of Domestic Animals, College of Animal Medicine, China Agricultural University, Haidian, Beijing 100193, China
| | - Jing Cao
- Laboratory of Anatomy of Domestic Animals, College of Animal Medicine, China Agricultural University, Haidian, Beijing 100193, China
| | - Yulan Dong
- Laboratory of Anatomy of Domestic Animals, College of Animal Medicine, China Agricultural University, Haidian, Beijing 100193, China
| | - Yaoxing Chen
- Laboratory of Anatomy of Domestic Animals, College of Animal Medicine, China Agricultural University, Haidian, Beijing 100193, China.
| |
Collapse
|
9
|
Stimulation with monochromatic green light during incubation alters satellite cell mitotic activity and gene expression in relation to embryonic and posthatch muscle growth of broiler chickens. Animal 2014; 8:86-93. [DOI: 10.1017/s1751731113001882] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
10
|
Gonçalves L, Vinhas M, Pereira R, Pais De Azevedo T, Bajanca F, Palmeirim I. Circadian clock genes Bmal1 and Clock during early chick development. Dev Dyn 2012; 241:1365-73. [DOI: 10.1002/dvdy.23821] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
11
|
Reed WL, Clark ME. Beyond Maternal Effects in Birds: Responses of the Embryo to the Environment. Integr Comp Biol 2011; 51:73-80. [DOI: 10.1093/icb/icr032] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
12
|
Zeman M, Herichová I. Circadian melatonin production develops faster in birds than in mammals. Gen Comp Endocrinol 2011; 172:23-30. [PMID: 21199656 DOI: 10.1016/j.ygcen.2010.12.022] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2010] [Accepted: 12/24/2010] [Indexed: 11/17/2022]
Abstract
The development of circadian rhythmicity of melatonin biosynthesis in the pineal gland starts during embryonic period in birds while it is delayed to the postnatal life in mammals. Daily rhythms of melatonin in isolated pinealocytes and in intact pineal glands under in vivo conditions were demonstrated during the last third of embryonic development in chick embryos, with higher levels during the dark (D) than during the light (L) phase. In addition to the LD cycle, rhythmic temperature changes with the amplitude of 4.5°C can entrain rhythmic melatonin biosynthesis in chick embryos, with higher concentrations found during the low-temperature phase (33.0 vs 37.5°C). Molecular clockwork starts to operate during the embryonic life in birds in line with the early development of melatonin rhythmicity. Expression of per2 and cry genes is rhythmic at least at day 16 and 18, respectively, and the circadian system operates in a mature-like manner soon after hatching. Rhythmic oscillations are detected earlier in the central oscillator (the pineal gland) than in the peripheral structures, reflecting the synchronization of individual cells which is necessary for detection of the rhythm. The early development of the circadian system in birds reflects an absence of rhythmic maternal melatonin which in mammals synchronizes physiological processes of offspring. Developmental consequences of modified development of circadian system for its stability later in development are not known and should be studied.
Collapse
Affiliation(s)
- Michal Zeman
- Department of Animal Physiology and Ethology, Faculty of Natural Sciences, Comenius University, Bratislava, Slovak Republic.
| | | |
Collapse
|
13
|
Tischkau SA, Howell RE, Hickok JR, Krager SL, Bahr JM. The Luteinizing Hormone Surge Regulates Circadian Clock Gene Expression in the Chicken Ovary. Chronobiol Int 2010; 28:10-20. [DOI: 10.3109/07420528.2010.530363] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
14
|
Ontogeny of circadian oscillations in the heart and liver in chicken. Comp Biochem Physiol A Mol Integr Physiol 2009; 154:78-83. [DOI: 10.1016/j.cbpa.2009.05.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2009] [Revised: 04/30/2009] [Accepted: 05/06/2009] [Indexed: 11/18/2022]
|
15
|
Nagy AD, Kommedal S, Seomangal K, Csernus VJ. Circadian expression of clock genes clock and Cry1 in the embryonic chicken pineal gland. Ann N Y Acad Sci 2009; 1163:484-7. [PMID: 19456394 DOI: 10.1111/j.1749-6632.2008.03639.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Clock and Cry1 expression were examined in the pineal gland of chicken embryos incubated under constant darkness from embryonic day (ED) 0. From ED13, Clock and Cry1 mRNA levels showed episodic alterations. After ED17, circadian pattern of clock gene expression was seen both in vivo and in vitro. Our results support the idea that rhythmic environmental factors are not necessary for the generation of circadian patterns of clock gene expression during development.
Collapse
Affiliation(s)
- Andras D Nagy
- University of Pécs, Medical School, Department of Anatomy, Pécs, Hungary.
| | | | | | | |
Collapse
|
16
|
Rodríguez H, Tamayo C, Vacarisas P, Inostroza J, Carlos Araya J, Suazo I, Sánchez P, Olías B, Espinoza-Navarro O. Glándula pineal humana, factores reguladores de la producción de melatonina: morfometría, celularidad y células c-kit. Rev Int Androl 2007. [DOI: 10.1016/s1698-031x(07)74079-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|