1
|
Proksch J, Dal Colle MCS, Heinz F, Schmidt RF, Gottwald J, Delbianco M, Keller BG, Gradzielski M, Alexiev U, Koksch B. Impact of glycan nature on structure and viscoelastic properties of glycopeptide hydrogels. J Pept Sci 2024; 30:e3599. [PMID: 38567550 DOI: 10.1002/psc.3599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/06/2024] [Accepted: 03/07/2024] [Indexed: 04/04/2024]
Abstract
Mucus is a complex biological hydrogel that acts as a barrier for almost everything entering or exiting the body. It is therefore of emerging interest for biomedical and pharmaceutical applications. Besides water, the most abundant components are the large and densely glycosylated mucins, glycoproteins of up to 20 MDa and carbohydrate content of up to 80 wt%. Here, we designed and explored a library of glycosylated peptides to deconstruct the complexity of mucus. Using the well-characterized hFF03 coiled-coil system as a hydrogel-forming peptide scaffold, we systematically probed the contribution of single glycans to the secondary structure as well as the formation and viscoelastic properties of the resulting hydrogels. We show that glycan-decoration does not affect α-helix and coiled-coil formation while it alters gel stiffness. By using oscillatory macrorheology, dynamic light scattering microrheology, and fluorescence lifetime-based nanorheology, we characterized the glycopeptide materials over several length scales. Molecular simulations revealed that the glycosylated linker may extend into the solvent, but more frequently interacts with the peptide, thereby likely modifying the stability of the self-assembled fibers. This systematic study highlights the interplay between glycan structure and hydrogel properties and may guide the development of synthetic mucus mimetics.
Collapse
Affiliation(s)
- Jonas Proksch
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Marlene C S Dal Colle
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| | - Frederick Heinz
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Robert F Schmidt
- Stranski-Laboratorium für Physikalische und Theoretische Chemie, Institut für Chemie, Technische Universität Berlin, Berlin, Germany
| | | | - Martina Delbianco
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| | - Bettina G Keller
- Stranski-Laboratorium für Physikalische und Theoretische Chemie, Institut für Chemie, Technische Universität Berlin, Berlin, Germany
| | - Michael Gradzielski
- Stranski-Laboratorium für Physikalische und Theoretische Chemie, Institut für Chemie, Technische Universität Berlin, Berlin, Germany
| | - Ulrike Alexiev
- Department of Physics, Freie Universität Berlin, Berlin, Germany
| | - Beate Koksch
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
2
|
Tsirigoni AM, Goktas M, Atris Z, Valleriani A, Vila Verde A, Blank KG. Chain Sliding versus β-Sheet Formation upon Shearing Single α-Helical Coiled Coils. Macromol Biosci 2023; 23:e2200563. [PMID: 36861255 DOI: 10.1002/mabi.202200563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/20/2023] [Indexed: 03/03/2023]
Abstract
Coiled coils (CCs) are key building blocks of biogenic materials and determine their mechanical response to large deformations. Of particular interest is the observation that CC-based materials display a force-induced transition from α-helices to mechanically stronger β-sheets (αβT). Steered molecular dynamics simulations predict that this αβT requires a minimum, pulling speed-dependent CC length. Here, de novo designed CCs with a length between four to seven heptads are utilized to probe if the transition found in natural CCs can be mimicked with synthetic sequences. Using single-molecule force spectroscopy and molecular dynamics simulations, these CCs are mechanically loaded in shear geometry and their rupture forces and structural responses to the applied load are determined. Simulations at the highest pulling speed (0.01 nm ns-1 ) show the appearance of β-sheet structures for the five- and six-heptad CCs and a concomitant increase in mechanical strength. The αβT is less probable at a lower pulling speed of 0.001 nm ns-1 and is not observed in force spectroscopy experiments. For CCs loaded in shear geometry, the formation of β-sheets competes with interchain sliding. β-sheet formation is only possible in higher-order CC assemblies or in tensile-loading geometries where chain sliding and dissociation are prohibited.
Collapse
Affiliation(s)
- Anna-Maria Tsirigoni
- Max Planck Institute of Colloids and Interfaces, Mechano(bio)chemistry, Am Mühlenberg 1, 14476, Potsdam, Germany.,Max Planck Institute of Colloids and Interfaces, Department of Biomaterials, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Melis Goktas
- Max Planck Institute of Colloids and Interfaces, Mechano(bio)chemistry, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Zeynep Atris
- Max Planck Institute of Colloids and Interfaces, Mechano(bio)chemistry, Am Mühlenberg 1, 14476, Potsdam, Germany.,Max Planck Institute of Colloids and Interfaces, Department of Biomaterials, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Angelo Valleriani
- Max Planck Institute of Colloids and Interfaces, Department of Biomaterials, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Ana Vila Verde
- University of Duisburg-Essen, Faculty of Physics, Lotharstrasse 1, 47057, Duisburg, Germany
| | - Kerstin G Blank
- Max Planck Institute of Colloids and Interfaces, Mechano(bio)chemistry, Am Mühlenberg 1, 14476, Potsdam, Germany.,Johannes Kepler University Linz, Institute of Experimental Physics, Department of Biomolecular & Selforganizing Matter, Altenberger Strasse 69, Linz, 4040, Austria
| |
Collapse
|
3
|
Fernandes R, Chowdhary S, Mikula N, Saleh N, Kanevche K, Berlepsch HV, Hosogi N, Heberle J, Weber M, Böttcher C, Koksch B. Cyanine Dye Coupling Mediates Self-assembly of a pH Sensitive Peptide into Novel 3D Architectures. Angew Chem Int Ed Engl 2022; 61:e202208647. [PMID: 36161448 PMCID: PMC9828782 DOI: 10.1002/anie.202208647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Indexed: 01/12/2023]
Abstract
Synthetic multichromophore systems are of great importance in artificial light harvesting devices, organic optoelectronics, tumor imaging and therapy. Here, we introduce a promising strategy for the construction of self-assembled peptide templated dye stacks based on coupling of a de novo designed pH sensitive peptide with a cyanine dye Cy5 at its N-terminus. Microscopic techniques, in particular cryogenic TEM (cryo-TEM) and cryo-electron tomography technique (cryo-ET), reveal two types of highly ordered three-dimensional assembly structures on the micrometer scale. Unbranched compact layered rods are observed at pH 7.4 and two-dimensional membrane-like assemblies at pH 3.4, both species displaying spectral features of H-aggregates. Molecular dynamics simulations reveal that the coupling of Cy5 moieties promotes the formation of both ultrastructures, whereas the protonation states of acidic and basic amino acid side chains dictates their ultimate three-dimensional organization.
Collapse
Affiliation(s)
- Rita Fernandes
- Department of Chemistry and BiochemistryFreie Universität BerlinArnimallee 2014195BerlinGermany
| | - Suvrat Chowdhary
- Department of Chemistry and BiochemistryFreie Universität BerlinArnimallee 2014195BerlinGermany
| | - Natalia Mikula
- Mathematics for Life and Materials SciencesZuse Institute BerlinTakustraße 714195BerlinGermany
| | - Noureldin Saleh
- Mathematics for Life and Materials SciencesZuse Institute BerlinTakustraße 714195BerlinGermany
| | - Katerina Kanevche
- Department of PhysicsExperimental Molecular BiophysicsFreie Universität BerlinArnimallee 1414195BerlinGermany
| | - Hans v. Berlepsch
- Research Center for Electron Microscopy and Core Facility BioSupraMolFreie Universität BerlinFabeckstraße 36a14195BerlinGermany
| | | | - Joachim Heberle
- Department of PhysicsExperimental Molecular BiophysicsFreie Universität BerlinArnimallee 1414195BerlinGermany
| | - Marcus Weber
- Mathematics for Life and Materials SciencesZuse Institute BerlinTakustraße 714195BerlinGermany
| | - Christoph Böttcher
- Research Center for Electron Microscopy and Core Facility BioSupraMolFreie Universität BerlinFabeckstraße 36a14195BerlinGermany
| | - Beate Koksch
- Department of Chemistry and BiochemistryFreie Universität BerlinArnimallee 2014195BerlinGermany
| |
Collapse
|
4
|
Torner JM, Arora PS. Conformational control in a photoswitchable coiled coil. Chem Commun (Camb) 2021; 57:1442-1445. [PMID: 33514971 DOI: 10.1039/d0cc08318f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The coiled coil is a common protein tertiary structure intimately involved in mediating protein recognition and function. Due to their structural simplicity, coiled coils have served as attractive scaffolds for the development of functional biomaterials. Herein we describe the design of conformationally-defined coiled coil photoswitches as potential environmentally-sensitive biomaterials.
Collapse
Affiliation(s)
- Justin M Torner
- Department of Chemistry, New York University, 100 Washington Square East, New York, NY 10003, USA.
| | - Paramjit S Arora
- Department of Chemistry, New York University, 100 Washington Square East, New York, NY 10003, USA.
| |
Collapse
|
5
|
Caporale A, Adorinni S, Lamba D, Saviano M. Peptide-Protein Interactions: From Drug Design to Supramolecular Biomaterials. Molecules 2021; 26:1219. [PMID: 33668767 PMCID: PMC7956380 DOI: 10.3390/molecules26051219] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/15/2021] [Accepted: 02/17/2021] [Indexed: 02/06/2023] Open
Abstract
The self-recognition and self-assembly of biomolecules are spontaneous processes that occur in Nature and allow the formation of ordered structures, at the nanoscale or even at the macroscale, under thermodynamic and kinetic equilibrium as a consequence of specific and local interactions. In particular, peptides and peptidomimetics play an elected role, as they may allow a rational approach to elucidate biological mechanisms to develop new drugs, biomaterials, catalysts, or semiconductors. The forces that rule self-recognition and self-assembly processes are weak interactions, such as hydrogen bonding, electrostatic attractions, and van der Waals forces, and they underlie the formation of the secondary structure (e.g., α-helix, β-sheet, polyproline II helix), which plays a key role in all biological processes. Here, we present recent and significant examples whereby design was successfully applied to attain the desired structural motifs toward function. These studies are important to understand the main interactions ruling the biological processes and the onset of many pathologies. The types of secondary structure adopted by peptides during self-assembly have a fundamental importance not only on the type of nano- or macro-structure formed but also on the properties of biomaterials, such as the types of interaction, encapsulation, non-covalent interaction, or covalent interaction, which are ultimately useful for applications in drug delivery.
Collapse
Affiliation(s)
- Andrea Caporale
- IC-CNR, c/o Area Science Park, S.S. 14 Km 163.5 Basovizza, 34149 Trieste, Italy;
| | - Simone Adorinni
- Dipartimento di Scienze Chimiche e Farmaceutiche di Università di Trieste, Via L. Giorgieri 1, 34127 Trieste, Italy;
| | - Doriano Lamba
- IC-CNR, c/o Area Science Park, S.S. 14 Km 163.5 Basovizza, 34149 Trieste, Italy;
- Istituto Nazionale Biostrutture e Biosistemi, Consorzio Interuniversitario, Viale delle Medaglie d’Oro 305, I-00136 Roma, Italy
| | - Michele Saviano
- Istituto di Cristallografia, Consiglio Nazionale delle Ricerche (IC-CNR), Via Giovanni Amendola 122/O, 70126 Bari, Italy
| |
Collapse
|
6
|
Hellmund KS, Lospichl B, Böttcher C, Ludwig K, Keiderling U, Noirez L, Weiß A, Mikolajczak DJ, Gradzielski M, Koksch B. Functionalized peptide hydrogels as tunable extracellular matrix mimics for biological applications. Pept Sci (Hoboken) 2020. [DOI: 10.1002/pep2.24201] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Katharina S. Hellmund
- Department of Biology, Chemistry, Pharmacy Institute of Chemistry and Biochemistry–Organic Chemistry, Freie Universität Berlin Berlin Germany
| | - Benjamin Lospichl
- Stranski‐Laboratory of Physical and Theoretical Chemistry Institute of Chemistry, Technische Universität Berlin Berlin Germany
| | - Christoph Böttcher
- Center of Electron Microscopy at Freie Universität Berlin Institute of Chemistry and Biochemistry and CoreFacility BioSupraMol Freie Universität Berlin Berlin Germany
| | - Kai Ludwig
- Center of Electron Microscopy at Freie Universität Berlin Institute of Chemistry and Biochemistry and CoreFacility BioSupraMol Freie Universität Berlin Berlin Germany
| | - Uwe Keiderling
- Department Experiment Control and Data Acquisition Helmholtz‐Zentrum Berlin für Materialien und Energie Berlin Germany
| | - Laurence Noirez
- Laboratoire Léon Brillouin (CEA‐CNRS) Université Paris‐Saclay Gif‐sur‐Yvette Cédex France
| | - Annika Weiß
- Department of Biology, Chemistry, Pharmacy Institute of Chemistry and Biochemistry–Organic Chemistry, Freie Universität Berlin Berlin Germany
| | - Dorian J. Mikolajczak
- Department of Biology, Chemistry, Pharmacy Institute of Chemistry and Biochemistry–Organic Chemistry, Freie Universität Berlin Berlin Germany
| | - Michael Gradzielski
- Stranski‐Laboratory of Physical and Theoretical Chemistry Institute of Chemistry, Technische Universität Berlin Berlin Germany
| | - Beate Koksch
- Department of Biology, Chemistry, Pharmacy Institute of Chemistry and Biochemistry–Organic Chemistry, Freie Universität Berlin Berlin Germany
| |
Collapse
|
7
|
Nagarkar RP, Fichman G, Schneider JP. Engineering and characterization of apH‐sensitive homodimeric antiparallel coiled coil. Pept Sci (Hoboken) 2020. [DOI: 10.1002/pep2.24180] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Radhika P. Nagarkar
- Department of Chemistry and Biochemistry University of Delaware Newark Delaware USA
| | - Galit Fichman
- Chemical Biology Laboratory, National Cancer Institute, National Institutes of Health Frederick Maryland USA
| | - Joel P. Schneider
- Chemical Biology Laboratory, National Cancer Institute, National Institutes of Health Frederick Maryland USA
| |
Collapse
|
8
|
Ji W, Yuan C, Chakraborty P, Makam P, Bera S, Rencus-Lazar S, Li J, Yan X, Gazit E. Coassembly-Induced Transformation of Dipeptide Amyloid-Like Structures into Stimuli-Responsive Supramolecular Materials. ACS NANO 2020; 14:7181-7190. [PMID: 32427482 PMCID: PMC7616928 DOI: 10.1021/acsnano.0c02138] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Conformational transition of proteins and peptides into highly stable, β-sheet-rich structures is observed in many amyloid-associated neurodegenerative disorders, yet the precise mechanism of amyloid formation at the molecular level remains poorly understood due to the complex molecular structures. Short peptides provide simplified models for studying the molecular basis of the assembly mechanism that governs β-sheet fibrillation processes underlying the formation and inhibition of amyloid-like structures. Herein, we report a supramolecular coassembly strategy for the inhibition and transformation of stable β-sheet-rich amyloid-derived dipeptide self-assemblies into adaptable secondary structural fibrillar assemblies by mixing with bipyridine derivatives. The interplay between the type and mixing ratio of bipyridine derivatives allowed the variable coassembly process with stimuli-responsive functional properties, studied by various experimental characterizations and computational methods. Furthermore, the resulting coassemblies showed functional redox- and photoresponsive properties, making them promising candidates for controllable drug release and fluorescent imprint. This work presents a coassembly strategy not only to explore the mechanism of amyloid-like structure formation and inhibition at the molecular level but also to manipulate amyloid-like structures into responsive supramolecular coassemblies for material science and biotechnology applications.
Collapse
Affiliation(s)
- Wei Ji
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Chengqian Yuan
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences 100190 Beijing, China
| | - Priyadarshi Chakraborty
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Pandeeswar Makam
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Santu Bera
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Sigal Rencus-Lazar
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Junbai Li
- Beijing National Laboratory for Molecular Sciences, CAS Key Lab of Colloid Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Xuehai Yan
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences 100190 Beijing, China
| | - Ehud Gazit
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
- Department of Materials Science and Engineering Iby and Aladar Fleischman Faculty of Engineering Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
9
|
Zamora-Carreras H, Maestro B, Sanz JM, Jiménez MA. Turncoat Polypeptides: We Adapt to Our Environment. Chembiochem 2019; 21:432-441. [PMID: 31456307 DOI: 10.1002/cbic.201900446] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Indexed: 01/25/2023]
Abstract
A common interpretation of Anfinsen's hypothesis states that one amino acid sequence should fold into a single, native, ordered state, or a highly similar set thereof, coinciding with the global minimum in the folding-energy landscape, which, in turn, is responsible for the function of the protein. However, this classical view is challenged by many proteins and peptide sequences, which can adopt exchangeable, significantly dissimilar conformations that even fulfill different biological roles. The similarities and differences of concepts related to these proteins, mainly chameleon sequences, metamorphic proteins, and switch peptides, which are all denoted herein "turncoat" polypeptides, are reviewed. As well as adding a twist to the conventional view of protein folding, the lack of structural definition adds clear versatility to the activity of proteins and can be used as a tool for protein design and further application in biotechnology and biomedicine.
Collapse
Affiliation(s)
- Héctor Zamora-Carreras
- Instituto de Química-Física Rocasolano (IQFR), Consejo Superior de Investigaciones Científicas (CSIC), Serrano 119, 28006, Madrid, Spain
| | - Beatriz Maestro
- Centro de Investigaciones Biológicas (CIB), Consejo Superior de Investigaciones Científicas (CSIC), Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Jesús M Sanz
- Centro de Investigaciones Biológicas (CIB), Consejo Superior de Investigaciones Científicas (CSIC), Ramiro de Maeztu 9, 28040, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Av. Monforte de Lemos, 3-5. Pabellón, 28029, Madrid, Spain
| | - M Angeles Jiménez
- Instituto de Química-Física Rocasolano (IQFR), Consejo Superior de Investigaciones Científicas (CSIC), Serrano 119, 28006, Madrid, Spain
| |
Collapse
|
10
|
Ji W, Yuan C, Chakraborty P, Gilead S, Yan X, Gazit E. Stoichiometry-controlled secondary structure transition of amyloid-derived supramolecular dipeptide co-assemblies. Commun Chem 2019; 2:s42004-019-0170-z. [PMID: 39651426 PMCID: PMC7617032 DOI: 10.1038/s42004-019-0170-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Accepted: 05/21/2019] [Indexed: 02/07/2023] Open
Abstract
Conformational transitions of secondary structures are a crucial factor in many protein misfolding diseases. However, the actual transition of folded proteins into β-sheet-rich structures is not fully understood. Inhibition of aggregate formation, mediated by the β-sheet conformation, and control of the secondary structural transition of proteins and peptides could potentially attenuate the development of amyloid-associated diseases. Here we describe a stoichiometry-controlled secondary structure transition of amyloid-derived dipeptide assemblies from a β-sheet to supramolecular helix conformation through coassembly with a bipyridine derivative. The transition is mainly mediated by the intermolecular hydrogen bonds and π-π interactions between the two components, which induce the altered stacking and conformation of the co-assemblies, as confirmed by experimental results and computational simulations. This work not only exemplifies a feasible strategy to disrupt the β-sheet conformation, underlying amyloid-like fibril formation, but also provides a conceptual basis for the future utilization of the helical nanostructures in various biological applications.
Collapse
Affiliation(s)
- Wei Ji
- George S. Wise Faculty of Life Sciences, Department of Molecular Microbiology and Biotechnology, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Chengqian Yuan
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Priyadarshi Chakraborty
- George S. Wise Faculty of Life Sciences, Department of Molecular Microbiology and Biotechnology, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Sharon Gilead
- George S. Wise Faculty of Life Sciences, Department of Molecular Microbiology and Biotechnology, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Xuehai Yan
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Ehud Gazit
- George S. Wise Faculty of Life Sciences, Department of Molecular Microbiology and Biotechnology, Tel Aviv University, Tel Aviv 6997801, Israel
- Iby and Aladar Fleischman Faculty of Engineering, Department of Materials Science and Engineering, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
11
|
Wilson CJ, Bommarius AS, Champion JA, Chernoff YO, Lynn DG, Paravastu AK, Liang C, Hsieh MC, Heemstra JM. Biomolecular Assemblies: Moving from Observation to Predictive Design. Chem Rev 2018; 118:11519-11574. [PMID: 30281290 PMCID: PMC6650774 DOI: 10.1021/acs.chemrev.8b00038] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Biomolecular assembly is a key driving force in nearly all life processes, providing structure, information storage, and communication within cells and at the whole organism level. These assembly processes rely on precise interactions between functional groups on nucleic acids, proteins, carbohydrates, and small molecules, and can be fine-tuned to span a range of time, length, and complexity scales. Recognizing the power of these motifs, researchers have sought to emulate and engineer biomolecular assemblies in the laboratory, with goals ranging from modulating cellular function to the creation of new polymeric materials. In most cases, engineering efforts are inspired or informed by understanding the structure and properties of naturally occurring assemblies, which has in turn fueled the development of predictive models that enable computational design of novel assemblies. This Review will focus on selected examples of protein assemblies, highlighting the story arc from initial discovery of an assembly, through initial engineering attempts, toward the ultimate goal of predictive design. The aim of this Review is to highlight areas where significant progress has been made, as well as to outline remaining challenges, as solving these challenges will be the key that unlocks the full power of biomolecules for advances in technology and medicine.
Collapse
Affiliation(s)
- Corey J. Wilson
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Andreas S. Bommarius
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Julie A. Champion
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Yury O. Chernoff
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- Laboratory of Amyloid Biology & Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg 199034, Russia
| | - David G. Lynn
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Anant K. Paravastu
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Chen Liang
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Ming-Chien Hsieh
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Jennifer M. Heemstra
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| |
Collapse
|
12
|
de Freitas MS, Rezaei Araghi R, Brandenburg E, Leiterer J, Emmerling F, Folmert K, Gerling-Driessen UIM, Bardiaux B, Böttcher C, Pagel K, Diehl A, Berlepsch HV, Oschkinat H, Koksch B. The protofilament architecture of a de novo designed coiled coil-based amyloidogenic peptide. J Struct Biol 2018; 203:263-272. [PMID: 29857134 DOI: 10.1016/j.jsb.2018.05.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Revised: 05/25/2018] [Accepted: 05/28/2018] [Indexed: 01/15/2023]
Abstract
Amyloid fibrils are polymers formed by proteins under specific conditions and in many cases they are related to pathogenesis, such as Parkinson's and Alzheimer's diseases. Their hallmark is the presence of a β-sheet structure. High resolution structural data on these systems as well as information gathered from multiple complementary analytical techniques is needed, from both a fundamental and a pharmaceutical perspective. Here, a previously reported de novo designed, pH-switchable coiled coil-based peptide that undergoes structural transitions resulting in fibril formation under physiological conditions has been exhaustively characterized by transmission electron microscopy (TEM), cryo-TEM, atomic force microscopy (AFM), wide-angle X-ray scattering (WAXS) and solid-state NMR (ssNMR). Overall, a unique 2-dimensional carpet-like assembly composed of large coexisiting ribbon-like, tubular and funnel-like structures with a clearly resolved protofilament substructure is observed. Whereas electron microscopy and scattering data point somewhat more to a hairpin model of β-fibrils, ssNMR data obtained from samples with selectively labelled peptides are in agreement with both, hairpin structures and linear arrangements.
Collapse
Affiliation(s)
- Mônica Santos de Freitas
- Leibniz-Institut für Molekulare Pharmakologie, Department NMR-Supported Structural Biology, Robert-Rössle-Strasse 10, 13125 Berlin, Germany; Freie Universität Berlin, Department of Chemistry and Biochemistry, Takustrasse 3, 14195 Berlin, Germany; Universidade Federal do Rio de Janeiro, Instituto de Bioquímica Médica Leopoldo de Meis, Centro Nacional de Biologia Estrutural e Bioimagem, Av. Carlos Chagas Filho 373, Rio de Janeiro, Brazil
| | - Raheleh Rezaei Araghi
- Freie Universität Berlin, Department of Chemistry and Biochemistry, Takustrasse 3, 14195 Berlin, Germany
| | - Enrico Brandenburg
- Freie Universität Berlin, Department of Chemistry and Biochemistry, Takustrasse 3, 14195 Berlin, Germany
| | - Jork Leiterer
- BAM Federal Institute for Materials Research and Testing, Richard-Willstätter-Str. 11, 12489 Berlin, Germany
| | - Franziska Emmerling
- BAM Federal Institute for Materials Research and Testing, Richard-Willstätter-Str. 11, 12489 Berlin, Germany
| | - Kristin Folmert
- Freie Universität Berlin, Department of Chemistry and Biochemistry, Takustrasse 3, 14195 Berlin, Germany
| | - Ulla I M Gerling-Driessen
- Freie Universität Berlin, Department of Chemistry and Biochemistry, Takustrasse 3, 14195 Berlin, Germany
| | - Benjamin Bardiaux
- Institut Pasteur, Unité de Bioinformatique Structurale, CNRS UMR 3528, 75015 Paris, France
| | - Christoph Böttcher
- Freie Universität Berlin, Research Center for Electron Microscopy, Fabeckstrasse 36a, 14195 Berlin, Germany
| | - Kevin Pagel
- Freie Universität Berlin, Department of Chemistry and Biochemistry, Takustrasse 3, 14195 Berlin, Germany
| | - Anne Diehl
- Leibniz-Institut für Molekulare Pharmakologie, Department NMR-Supported Structural Biology, Robert-Rössle-Strasse 10, 13125 Berlin, Germany
| | - Hans V Berlepsch
- Freie Universität Berlin, Research Center for Electron Microscopy, Fabeckstrasse 36a, 14195 Berlin, Germany
| | - Hartmut Oschkinat
- Leibniz-Institut für Molekulare Pharmakologie, Department NMR-Supported Structural Biology, Robert-Rössle-Strasse 10, 13125 Berlin, Germany; Freie Universität Berlin, Department of Chemistry and Biochemistry, Takustrasse 3, 14195 Berlin, Germany.
| | - Beate Koksch
- Freie Universität Berlin, Department of Chemistry and Biochemistry, Takustrasse 3, 14195 Berlin, Germany.
| |
Collapse
|
13
|
Zamora-Carreras H, Maestro B, Strandberg E, Ulrich AS, Sanz JM, Jiménez MÁ. Roles of Amphipathicity and Hydrophobicity in the Micelle-Driven Structural Switch of a 14-mer Peptide Core from a Choline-Binding Repeat. Chemistry 2018; 24:5825-5839. [PMID: 29369425 DOI: 10.1002/chem.201704802] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Indexed: 01/16/2023]
Abstract
Choline-binding repeats (CBRs) are ubiquitous sequences with a β-hairpin core that are found in the surface proteins of several microorganisms such as S. pneumoniae (pneumococcus). Previous studies on a 14-mer CBR sequence derived from the pneumoccal LytA autolysin (LytA239-252 peptide) have demonstrated a switch behaviour for this peptide, so that it acquires a stable, native-like β-hairpin conformation in aqueous solution but is reversibly transformed into an amphipathic α-helix in the presence of detergent micelles. With the aim of understanding the factors responsible for this unusual β-hairpin to α-helix transition, and to specifically assess the role of peptide hydrophobicity and helical amphipathicity in the process, we designed a series of LytA239-252 variants affecting these two parameters and studied their interaction with dodecylphosphocholine (DPC) micelles by solution NMR, circular dichroism and fluorescence spectroscopies. Our results indicate that stabilising cross-strand interactions become essential for β-hairpin stability in the absence of optimal turn sequences. Moreover, both amphipathicity and hydrophobicity display comparable importance for helix stabilisation of CBR-derived peptides in micelles, indicating that these sequences represent a novel class of micelle/membrane-interacting peptides.
Collapse
Affiliation(s)
- Héctor Zamora-Carreras
- Instituto de Química Física Rocasolano (IQFR), Consejo Superior de Investigaciones Científicas (CSIC), Serrano 119, 28006, Madrid, Spain
| | - Beatriz Maestro
- Instituto de Biología MolecularyCelular, Universidad Miguel Hernández, Elche, 03202, Alicante, Spain
| | - Erik Strandberg
- Institute of Biological Interfaces (IBG-2), Karlsruhe Institute of Technology (KIT), P.O. Box 3640, 76021, Karlsruhe, Germany
| | - Anne S Ulrich
- Institute of Biological Interfaces (IBG-2), Karlsruhe Institute of Technology (KIT), P.O. Box 3640, 76021, Karlsruhe, Germany.,Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, 76131, Karlsruhe, Germany
| | - Jesús M Sanz
- Instituto de Biología MolecularyCelular, Universidad Miguel Hernández, Elche, 03202, Alicante, Spain.,Biological Research Centre (CIB), Consejo Superior de Investigaciones Científicas (CSIC), Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - M Ángeles Jiménez
- Instituto de Química Física Rocasolano (IQFR), Consejo Superior de Investigaciones Científicas (CSIC), Serrano 119, 28006, Madrid, Spain
| |
Collapse
|
14
|
Seoudi RS, Mechler A. Design Principles of Peptide Based Self-Assembled Nanomaterials. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1030:51-94. [DOI: 10.1007/978-3-319-66095-0_4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
15
|
Folmert K, Broncel M, V Berlepsch H, Ullrich CH, Siegert MA, Koksch B. Inhibition of peptide aggregation by means of enzymatic phosphorylation. Beilstein J Org Chem 2017; 12:2462-2470. [PMID: 28144314 PMCID: PMC5238555 DOI: 10.3762/bjoc.12.240] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 11/03/2016] [Indexed: 11/30/2022] Open
Abstract
As is the case in numerous natural processes, enzymatic phosphorylation can be used in the laboratory to influence the conformational populations of proteins. In nature, this information is used for signal transduction or energy transfer, but has also been shown to play an important role in many diseases like tauopathies or diabetes. With the goal of determining the effect of phosphorylation on amyloid fibril formation, we designed a model peptide which combines structural characteristics of α-helical coiled-coils and β-sheets in one sequence. This peptide undergoes a conformational transition from soluble structures into insoluble amyloid fibrils over time and under physiological conditions and contains a recognition motif for PKA (cAMP-dependent protein kinase) that enables enzymatic phosphorylation. We have analyzed the pathway of amyloid formation and the influence of enzymatic phosphorylation on the different states along the conformational transition from random-coil to β-sheet-rich oligomers to protofilaments and on to insoluble amyloid fibrils, and we found a remarkable directing effect from β-sheet-rich structures to unfolded structures in the initial growth phase, in which small oligomers and protofilaments prevail if the peptide is phosphorylated.
Collapse
Affiliation(s)
- Kristin Folmert
- Department of Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany
| | | | - Hans V Berlepsch
- Department of Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany
| | | | - Mary-Ann Siegert
- Department of Organic Chemistry, Technische Universität Berlin, Strasse des 17. Juni 124, 10623 Berlin, Germany
| | - Beate Koksch
- Department of Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany
| |
Collapse
|
16
|
Abstract
α-Helical coiled coils are ubiquitous protein-folding and protein-interaction domains in which two or more α-helical chains come together to form bundles. Through a combination of bioinformatics analysis of many thousands of natural coiled-coil sequences and structures, plus empirical protein engineering and design studies, there is now a deep understanding of the sequence-to-structure relationships for this class of protein architecture. This has led to considerable success in rational design and what might be termed in biro de novo design of simple coiled coils, which include homo- and hetero-meric parallel dimers, trimers and tetramers. In turn, these provide a toolkit for directing the assembly of both natural proteins and more complex designs in protein engineering, materials science and synthetic biology. Moving on, the increased and improved use of computational design is allowing access to coiled-coil structures that are rare or even not observed in nature, for example α-helical barrels, which comprise five or more α-helices and have central channels into which different functions may be ported. This chapter reviews all of these advances, outlining improvements in our knowledge of the fundamentals of coiled-coil folding and assembly, and highlighting new coiled coil-based materials and applications that this new understanding is opening up. Despite considerable progress, however, challenges remain in coiled-coil design, and the next decade promises to be as productive and exciting as the last.
Collapse
Affiliation(s)
- Derek N Woolfson
- School of Chemistry, University of Bristol, BS8 1TS, Bristol, UK.
- School of Biochemistry, University of Bristol, BS8 1TD, Bristol, UK.
- BrisSynBio, Life Sciences Building, University of Bristol, BS8 1TQ, Bristol, UK.
| |
Collapse
|
17
|
Zacco E, Hütter J, Heier JL, Mortier J, Seeberger PH, Lepenies B, Koksch B. Tailored Presentation of Carbohydrates on a Coiled Coil-Based Scaffold for Asialoglycoprotein Receptor Targeting. ACS Chem Biol 2015; 10:2065-72. [PMID: 26057877 DOI: 10.1021/acschembio.5b00435] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The coiled-coil folding motif represents an ideal scaffold for the defined presentation of ligands due to the possibility of positioning them at specific distances along the axis. We created a coiled-coil glycopeptide library to characterize the distances between the carbohydrate-binding sites of the asialoglycoprotein receptors (ASGPR) on hepatocytes. The components of the glycopeptide library vary for the number of displayed ligands (galactose), their position on the peptide sequence, and the space between peptide backbone and carbohydrate. We determined the binding of the glycopeptides to the hepatocytes, and we established the optimal distance and orientation of the galactose moieties for interaction with the ASGPR using flow cytometry. We confirmed that the binding occurs through endocytosis mediated by ASGPR via inhibition studies with cytochalasin D; fluorescence microscopy studies display the uptake of the carrier peptides inside the cell. Thus, this study demonstrates that the coiled-coil motif can be used as reliable scaffold for the rational presentation of ligands.
Collapse
Affiliation(s)
- Elsa Zacco
- Institute of Chemistry
and Biochemistry, Freie Universität Berlin, Takustrasse 3, 14195 Berlin, Germany
| | - Julia Hütter
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14424 Potsdam, Germany
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany
| | - Jason L. Heier
- Institute of Chemistry
and Biochemistry, Freie Universität Berlin, Takustrasse 3, 14195 Berlin, Germany
| | - Jérémie Mortier
- Institute of Chemistry
and Biochemistry, Freie Universität Berlin, Takustrasse 3, 14195 Berlin, Germany
- Institute of Pharmacy, Freie Universität Berlin, Königin-Luisestrasse
2, 14195 Berlin, Germany
| | - Peter H. Seeberger
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14424 Potsdam, Germany
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany
| | - Bernd Lepenies
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14424 Potsdam, Germany
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany
| | - Beate Koksch
- Institute of Chemistry
and Biochemistry, Freie Universität Berlin, Takustrasse 3, 14195 Berlin, Germany
| |
Collapse
|
18
|
Yan J, Liu K, Zhang X, Li W, Zhang A. Dynamic covalent polypeptides showing tunable secondary structures and thermoresponsiveness. ACTA ACUST UNITED AC 2014. [DOI: 10.1002/pola.27433] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Jiatao Yan
- Laboratory of Polymer Chemistry; Department of Polymer Materials; College of Materials Science and Engineering, Shanghai University; Nanchen Road 333 Shanghai 200444 China
| | - Kun Liu
- Laboratory of Polymer Chemistry; Department of Polymer Materials; College of Materials Science and Engineering, Shanghai University; Nanchen Road 333 Shanghai 200444 China
| | - Xiuqiang Zhang
- Laboratory of Polymer Chemistry; Department of Polymer Materials; College of Materials Science and Engineering, Shanghai University; Nanchen Road 333 Shanghai 200444 China
| | - Wen Li
- Laboratory of Polymer Chemistry; Department of Polymer Materials; College of Materials Science and Engineering, Shanghai University; Nanchen Road 333 Shanghai 200444 China
| | - Afang Zhang
- Laboratory of Polymer Chemistry; Department of Polymer Materials; College of Materials Science and Engineering, Shanghai University; Nanchen Road 333 Shanghai 200444 China
| |
Collapse
|
19
|
Gerling UIM, Miettinen MS, Koksch B. Concluding the amyloid formation pathway of a coiled-coil-based peptide from the size of the critical nucleus. Chemphyschem 2014; 16:108-14. [PMID: 25257178 DOI: 10.1002/cphc.201402400] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Indexed: 01/03/2023]
Abstract
The size of the critical nucleus acting as intermediate in the amyloid formation of a model peptide is calculated. The theoretical approach is based on experimentally determined amyloid formation rates and gives new insights into the amyloid formation pathway.
Collapse
Affiliation(s)
- Ulla I M Gerling
- Department of Chemistry and Biochemistry-Organic Chemistry, Freie Universität Berlin, Takustrasse 3, 14195 Berlin (Germany)
| | | | | |
Collapse
|
20
|
Kuo HT, Yang PA, Wang WR, Hsu HC, Wu CH, Ting YT, Weng MH, Kuo LH, Cheng RP. Effect of side chain length on intrahelical interactions between carboxylate- and guanidinium-containing amino acids. Amino Acids 2014; 46:1867-83. [DOI: 10.1007/s00726-014-1737-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 03/21/2014] [Indexed: 01/29/2023]
|
21
|
Gerling UIM, Salwiczek M, Cadicamo CD, Erdbrink H, Czekelius C, Grage SL, Wadhwani P, Ulrich AS, Behrends M, Haufe G, Koksch B. Fluorinated amino acids in amyloid formation: a symphony of size, hydrophobicity and α-helix propensity. Chem Sci 2014. [DOI: 10.1039/c3sc52932k] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
22
|
Börner HG, Sütterlin RI, Theato P, Wiss KT. Topology-Dependent Swichability of Peptide Secondary Structures in Bioconjugates with Complex Architectures. Macromol Rapid Commun 2013; 35:180-185. [DOI: 10.1002/marc.201300808] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 11/06/2013] [Indexed: 12/27/2022]
Affiliation(s)
- Hans G. Börner
- Humboldt-Universität zu Berlin; Department of Chemistry, Laboratory for Organic Synthesis of Functional Systems; D-12489 Berlin Germany
| | - Romina I. Sütterlin
- Humboldt-Universität zu Berlin; Department of Chemistry, Laboratory for Organic Synthesis of Functional Systems; D-12489 Berlin Germany
| | - Patrick Theato
- University of Mainz; Institute of Organic Chemistry; Duesbergweg 10-14 D-55099 Mainz Germany
- University of Hamburg; Institute for Technical and Macromolecular Chemistry, Bundesstr 45; D-20146 Hamburg Germany
| | - Kerstin T. Wiss
- University of Mainz; Institute of Organic Chemistry; Duesbergweg 10-14 D-55099 Mainz Germany
| |
Collapse
|
23
|
Kaur H, Sasidhar YU. Molecular dynamics study of an insertion/duplication mutant of bacteriophage T4 lysozyme reveals the nature of α→β transition in full protein context. Phys Chem Chem Phys 2013; 15:7819-30. [PMID: 23598905 DOI: 10.1039/c3cp44327b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
An α→β transition underlies the first step of disease causing amyloidogenesis in many proteins. In view of this, many studies have been carried out using peptide models to characterize these secondary structural transitions. In this paper we show that an insertion/duplication mutant 'L20' of bacteriophage T4 lysozyme (M. Sagermann, W. A. Baase and B. W. Matthews, Proc. Natl. Acad. Sci. U.S.A., 1999, 96, 6078) displays an α→β transition. We performed molecular dynamics (MD) simulation of L20, using the GROMACS package of programs and united atom GROMOS 53a6 force field for a time period of 600 ns at 300 K, in explicit water. Our MD simulation demonstrated that the transition occurs in a duplicated α-helical region inserted tandemly at the N-terminus of the 'parent' helix. We show that a C-terminal β-sheet anchors the parent helix while the loosely held N-terminal loop in the duplicate region is vulnerable to solvent attack and thus undergoes an α→β transition. Main chain-solvent interactions were seen to stabilize the observed β-structure. Thus L20 serves as a good protein model for characterization of α→β transition in a full length protein.
Collapse
Affiliation(s)
- Harpreet Kaur
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400 076, India
| | | |
Collapse
|
24
|
Brandenburg E, Berlepsch HV, Leiterer J, Emmerling F, Koksch B. Formation of α-helical nanofibers by mixing β-structured and α-helical coiled coil peptides. Biomacromolecules 2012; 13:3542-51. [PMID: 22946440 DOI: 10.1021/bm300882d] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The helical coiled coil is a well-studied folding motif that can be used for the design of nanometer-sized bioinspired fibrous structures with potential applications as functional materials. A two-component system of coiled coil based model peptides is investigated, which forms, under acidic conditions, uniform, hundreds of nanometers long, and ~2.6 nm thick trimeric α-helical fibers. In the absence of the other component and under the same solvent conditions, one model peptide forms β-sheet-rich amyloid fibrils and the other forms stable trimeric α-helical coiled coils, respectively. These observations reveal that the complementary interactions driving helical folding are much stronger here than those promoting the intermolecular β-sheet formation. The results of this study are important in the context of amyloid inhibition but also open up new avenues for the design of novel fibrous peptidic materials.
Collapse
Affiliation(s)
- Enrico Brandenburg
- Department of Chemistry and Biochemistry, Freie Universität Berlin, Takustrasse 3, 14195 Berlin, Germany
| | | | | | | | | |
Collapse
|
25
|
Wang X, Bergenfeld I, Arora PS, Canary JW. Reversible Redox Reconfiguration of Secondary Structures in a Designed Peptide. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201206009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
26
|
Wang X, Bergenfeld I, Arora PS, Canary JW. Reversible Redox Reconfiguration of Secondary Structures in a Designed Peptide. Angew Chem Int Ed Engl 2012; 51:12099-101. [DOI: 10.1002/anie.201206009] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Indexed: 01/30/2023]
|
27
|
Cheng RP, Wang WR, Girinath P, Yang PA, Ahmad R, Li JH, Hart P, Kokona B, Fairman R, Kilpatrick C, Argiros A. Effect of Glutamate Side Chain Length on Intrahelical Glutamate–Lysine Ion Pairing Interactions. Biochemistry 2012; 51:7157-72. [DOI: 10.1021/bi300655z] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Richard P. Cheng
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Wei-Ren Wang
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Prashant Girinath
- Department of Chemistry, University
at Buffalo, The State University of New York, Buffalo, New York 14260-3000, United States
| | - Po-An Yang
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Raheel Ahmad
- Department of Chemistry, University
at Buffalo, The State University of New York, Buffalo, New York 14260-3000, United States
| | - Jhe-Hao Li
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Pier Hart
- Department of Biology, Haverford College, Haverford, Pennsylvania 19041, United
States
| | - Bashkim Kokona
- Department of Biology, Haverford College, Haverford, Pennsylvania 19041, United
States
| | - Robert Fairman
- Department of Biology, Haverford College, Haverford, Pennsylvania 19041, United
States
| | - Casey Kilpatrick
- Department of Chemistry, University
at Buffalo, The State University of New York, Buffalo, New York 14260-3000, United States
| | - Annmarie Argiros
- Department of Chemistry, University
at Buffalo, The State University of New York, Buffalo, New York 14260-3000, United States
| |
Collapse
|
28
|
Azuma Y, Imai H, Yoshimura T, Kawabata T, Imanishi M, Futaki S. Dipicolylamine as a unique structural switching element for helical peptides. Org Biomol Chem 2012; 10:6062-8. [DOI: 10.1039/c2ob07118e] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
29
|
Brandenburg E, Berlepsch HV, Koksch B. Specific in situ discrimination of amyloid fibrilsversus α-helical fibres by the fluorophore NIAD-4. ACTA ACUST UNITED AC 2012; 8:557-64. [DOI: 10.1039/c1mb05370a] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
30
|
Deeg AA, Schrader TE, Kempter S, Pfizer J, Moroder L, Zinth W. Light‐Triggered Aggregation and Disassembly of Amyloid‐Like Structures. Chemphyschem 2010; 12:559-62. [DOI: 10.1002/cphc.201001012] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2010] [Indexed: 11/11/2022]
Affiliation(s)
- Andreas A. Deeg
- BioMolecular Optic and Munich Center for Integrated Protein Science CIPSM, Ludwig‐Maximilians‐Universität München, Oettingenstr. 67, 80538 Munich (Germany), Fax: (+49) 89‐2180‐9202
| | - Tobias E. Schrader
- Jülich Centre for Neutron Science, Lichtenbergstr. 1, 85747 Garching, (Germany)
| | - Susanne Kempter
- Center for Nanoscience, LMU Munich, Geschwister‐Scholl‐Platz 1, 80539 Munich, (Germany)
| | - Jose Pfizer
- Bioorganic Chemistry, Max‐Planck‐Institut für Biochemie, Am Klopferspitz 18, 82152 Martinsried, (Germany)
| | - Luis Moroder
- Bioorganic Chemistry, Max‐Planck‐Institut für Biochemie, Am Klopferspitz 18, 82152 Martinsried, (Germany)
| | - Wolfgang Zinth
- BioMolecular Optic and Munich Center for Integrated Protein Science CIPSM, Ludwig‐Maximilians‐Universität München, Oettingenstr. 67, 80538 Munich (Germany), Fax: (+49) 89‐2180‐9202
| |
Collapse
|
31
|
Riemen AJ, Waters ML. Dueling post-translational modifications trigger folding and unfolding of a beta-hairpin peptide. J Am Chem Soc 2010; 132:9007-13. [PMID: 20536234 DOI: 10.1021/ja101079z] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Protein post-translational modifications (PTMs) are used in nature as a means of turning on or off a myriad of biological events. Methylation of lysine and phosphorylation of serine are important PTMs in the histone code found to modulate chromatin packing, which in turn affects gene expression. The design of peptides that fold into secondary structures can help to further our understanding of complex protein interactions. Here we report the design of the Trpswitch peptide sequence that folds into a moderately stable beta-hairpin structure in aqueous solution and show that the stability of the structure can be tuned by incorporation of dimethyllysine or phosphoserine. Dimethylated Trpswitch results in an increase in beta-hairpin stability, while phosphorylated Trpswitch is unstructured at neutral pH. When both modifications are incorporated into Trpswitch, a less stable beta-hairpin structure is observed. This system provides a model to demonstrate how multiple PTMs may work in concert or against each other to influence structure.
Collapse
Affiliation(s)
- Alexander J Riemen
- Department of Chemistry, CB 3290, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | | |
Collapse
|
32
|
Robson Marsden H, Kros A. Self-assembly of coiled coils in synthetic biology: inspiration and progress. Angew Chem Int Ed Engl 2010; 49:2988-3005. [PMID: 20474034 DOI: 10.1002/anie.200904943] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Biological self-assembly is very complex and results in highly functional materials. In effect, it takes a bottom-up approach using biomolecular building blocks of precisely defined shape, size, hydrophobicity, and spatial distribution of functionality. Inspired by, and drawing lessons from self-assembly processes in nature, scientists are learning how to control the balance of many small forces to increase the complexity and functionality of self-assembled nanomaterials. The coiled-coil motif, a multipurpose building block commonly found in nature, has great potential in synthetic biology. In this review we examine the roles that the coiled-coil peptide motif plays in self-assembly in nature, and then summarize the advances that this has inspired in the creation of functional units, assemblies, and systems.
Collapse
Affiliation(s)
- Hana Robson Marsden
- Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA, Leiden, The Netherlands
| | | |
Collapse
|
33
|
Shlizerman C, Atanassov A, Berkovich I, Ashkenasy G, Ashkenasy N. De novo designed coiled-coil proteins with variable conformations as components of molecular electronic devices. J Am Chem Soc 2010; 132:5070-6. [PMID: 20235538 DOI: 10.1021/ja907902h] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Conformational changes of proteins are widely used in nature for controlling cellular functions, including ligand binding, oligomerization, and catalysis. Despite the fact that different proteins and artificial peptides have been utilized as electron-transfer mediators in electronic devices, the unique propensity of proteins to switch between different conformations has not been used as a mechanism to control device properties and performance. Toward this aim, we have designed and prepared new dimeric coiled-coil proteins that adopt different conformations due to parallel or antiparallel relative orientations of their monomers. We show here that controlling the conformation of these proteins attached as monolayers to gold, which dictates the direction and magnitude of the molecular dipole relative to the surface, results in quantitative modulation of the gold work function. Furthermore, charge transport through the proteins as molecular bridges is controlled by the different protein conformations, producing either rectifying or ohmic-like behavior.
Collapse
Affiliation(s)
- Clara Shlizerman
- Department of Chemistry, Ben Gurion University of the Negev, Beer Sheva, Israel
| | | | | | | | | |
Collapse
|
34
|
Wagner SC, Roskamp M, Pallerla M, Araghi RR, Schlecht S, Koksch B. Nanoparticle-induced folding and fibril formation of coiled-coil-based model peptides. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2010; 6:1321-1328. [PMID: 20517875 DOI: 10.1002/smll.200902067] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Nanomedicine is a rapidly growing field that has the potential to deliver treatments for many illnesses. However, relatively little is known about the biological risks of nanoparticles. Some studies have shown that nanoparticles can have an impact on the aggregation properties of proteins, including fibril formation. Moreover, these studies also show that the capacity of nanoscale objects to induce or prevent misfolding of the proteins strongly depends on the primary structure of the protein. Herein, light is shed on the role of the peptide primary structure in directing nanoparticle-induced misfolding by means of two model peptides. The design of these peptides is based on the alpha-helical coiled-coil folding motif, but also includes features that enable them to respond to pH changes, thus allowing pH-dependent beta-sheet formation. Previous studies showed that the two peptides differ in the pH range required for beta-sheet folding. Time-dependent circular dichroism spectroscopy and transmission electron microscopy are used to characterize peptide folding and aggregate morphology in the presence of negatively charged gold nanoparticles (AuNPs). Both peptides are found to undergo nanoparticle-induced fibril formation. The determination of binding parameters by isothermal titration calorimetry further reveals that the different propensities of both peptides to form amyloid-like structures in the presence of AuNPs is primarily due to the binding stoichiometry to the AuNPs. Modification of one of the peptide sequences shows that AuNP-induced beta-sheet formation is related to the structural propensity of the primary structure and is not a generic feature of peptide sequences with a sufficiently high binding stoichiometry to the nanoparticles.
Collapse
Affiliation(s)
- Sara C Wagner
- Department of Organic Chemistry, Freie Universität Berlin, Berlin, Germany
| | | | | | | | | | | |
Collapse
|
35
|
Broncel M, Falenski J, Wagner S, Hackenberger C, Koksch B. How Post-Translational Modifications Influence Amyloid Formation: A Systematic Study of Phosphorylation and Glycosylation in Model Peptides. Chemistry 2010; 16:7881-8. [DOI: 10.1002/chem.200902452] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
36
|
Robson Marsden H, Kros A. Selbstorganisation von Coiled-Coils in der synthetischen Biologie: Inspiration und Fortschritt. Angew Chem Int Ed Engl 2010. [DOI: 10.1002/ange.200904943] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
37
|
Rezaei Araghi R, Jäckel C, Cölfen H, Salwiczek M, Völkel A, Wagner SC, Wieczorek S, Baldauf C, Koksch B. A β/γ Motif to Mimic α-Helical Turns in Proteins. Chembiochem 2010; 11:335-9. [DOI: 10.1002/cbic.200900700] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
38
|
Broncel M, Wagner SC, Hackenberger CPR, Koksch B. Enzymatically triggered amyloid formation: an approach for studying peptide aggregation. Chem Commun (Camb) 2010; 46:3080-2. [DOI: 10.1039/c001460e] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
39
|
Broncel M, Wagner SC, Paul K, Hackenberger CPR, Koksch B. Towards understanding secondary structure transitions: phosphorylation and metal coordination in model peptides. Org Biomol Chem 2010; 8:2575-9. [DOI: 10.1039/c001458c] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
40
|
Verch A, Hahn H, Krause E, Cölfen H, Börner HG. A modular approach towards functional decoration of peptide–polymer nanotapes. Chem Commun (Camb) 2010; 46:8938-40. [DOI: 10.1039/c0cc03364b] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
41
|
Börner HG, Kühnle H, Hentschel J. Making “smart polymers” smarter: Modern concepts to regulate functions in polymer science. ACTA ACUST UNITED AC 2009. [DOI: 10.1002/pola.23727] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
42
|
Börner HG. Strategies exploiting functions and self-assembly properties of bioconjugates for polymer and materials sciences. Prog Polym Sci 2009. [DOI: 10.1016/j.progpolymsci.2009.05.001] [Citation(s) in RCA: 178] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
43
|
Vagt T, Jäckel C, Samsonov S, Teresa Pisabarro M, Koksch B. Selection of a buried salt bridge by phage display. Bioorg Med Chem Lett 2009; 19:3924-7. [DOI: 10.1016/j.bmcl.2009.03.062] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2009] [Accepted: 03/17/2009] [Indexed: 11/30/2022]
|
44
|
Hansen M, Ruizendaal L, Löwik D, van Hest J. Switchable peptides. DRUG DISCOVERY TODAY. TECHNOLOGIES 2009; 6:e1-e40. [PMID: 24128990 DOI: 10.1016/j.ddtec.2009.03.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
|