1
|
Xu JH, Xu XY, Huang XY, Chen KX, Wen H, Li M, Liu JS. Long-term fasting induced basal thermogenesis flexibility in female Japanese quails. Comp Biochem Physiol A Mol Integr Physiol 2024; 292:111611. [PMID: 38432457 DOI: 10.1016/j.cbpa.2024.111611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 02/28/2024] [Accepted: 02/28/2024] [Indexed: 03/05/2024]
Abstract
Male Japanese quails (Coturnix japonica) have been found to exhibit a three-phase metabolic change when subjected to prolonged fasting, during which basal thermogenesis is significantly reduced. A study had shown that there is a significant difference in the body temperature between male and female Japanese quails. However, whether female Japanese quails also show the same characteristic three-phase metabolic change during prolonged fasting and the underlying thermogenesis mechanisms associated with such changes are still unclear. In this study, female Japanese quails were subjected to prolonged starvation, and the body mass, basal metabolic rate (BMR), body temperature, mass of tissues and organs, body fat content, the state-4 respiration (S4R) and cytochrome c oxidase (CCO) activity in the muscle and liver of these birds were measured to determine the status of metabolic changes triggered by the starvation. In addition, the levels of glucose, triglyceride (TG) and uric acid, and thyroid hormones (T3 and T4) in the serum and the mRNA levels of myostatin (MSTN) and avian uncoupling protein (av-UCP) in the muscle were also measured. The results revealed the existence of a three-phase stage similar to that found in male Japanese quails undergoing prolonged starvation. Fasting resulted in significantly lower body mass, BMR, body temperature, tissues masses and most organs masses, as well as S4R and CCO activity in the muscle and liver. The mRNA level of av-UCP decreased during fasting, while that of MSTN increased but only during Phase I and II and decreased significantly during Phase III. Fasting also significantly lowered the T3 level and the ratio of T3/T4 in the serum. These results indicated that female Japanese quails showed an adaptive response in basal thermogenesis at multiple hierarchical levels, from organismal to biochemical, enzyme and cellular level, gene and endocrine levels and this integrated adjustment could be a part of the adaptation used by female quails to survive long-term fasting.
Collapse
Affiliation(s)
- Jie-Heng Xu
- School of Life and Environmental Sciences, Wenzhou University Chashan University Town, Wenzhou 325035, China; Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou, China
| | - Xin-Yu Xu
- School of Life and Environmental Sciences, Wenzhou University Chashan University Town, Wenzhou 325035, China; Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou, China
| | - Xing-Yu Huang
- School of Life and Environmental Sciences, Wenzhou University Chashan University Town, Wenzhou 325035, China; Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou, China
| | - Ke-Xin Chen
- School of Life and Environmental Sciences, Wenzhou University Chashan University Town, Wenzhou 325035, China; Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou, China
| | - He Wen
- School of Life and Environmental Sciences, Wenzhou University Chashan University Town, Wenzhou 325035, China; Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou, China
| | - Ming Li
- School of Life and Environmental Sciences, Wenzhou University Chashan University Town, Wenzhou 325035, China; Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou, China.
| | - Jin-Song Liu
- School of Life and Environmental Sciences, Wenzhou University Chashan University Town, Wenzhou 325035, China; Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou, China.
| |
Collapse
|
2
|
Persson E, Ó Cuív C, Nord A. Thermoregulatory consequences of growing up during a heatwave or a cold snap in Japanese quail. J Exp Biol 2024; 227:jeb246876. [PMID: 38073475 PMCID: PMC10906667 DOI: 10.1242/jeb.246876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 12/06/2023] [Indexed: 01/26/2024]
Abstract
Changes in environmental temperature during development can affect growth, metabolism and temperature tolerance of the offspring. We know little about whether such changes remain to adulthood, which is important to understand the links between climate change, development and fitness. We investigated whether phenotypic consequences of the thermal environment in early life remained in adulthood in two studies on Japanese quail (Coturnix japonica). Birds were raised under simulated heatwave, cold snap or control conditions, from hatching until halfway through the growth period, and then in common garden conditions until reproductively mature. We measured biometric and thermoregulatory [metabolic heat production (MHP), evaporative water and heat loss (EWL, EHL) and body temperature] responses to variation in submaximal air temperature at the end of the thermal acclimation period and in adulthood. Warm birds had lower MHP than control birds at the end of the thermal acclimation period and, in the warmest temperature studied (40°C), also had higher evaporative cooling capacity compared with controls. No analogous responses were recorded in cold birds, although they had higher EWL than controls in all but the highest test temperature. None of the effects found at the end of the heatwave or cold snap period remained until adulthood. This implies that chicks exposed to higher temperatures could be more prepared to counter heat stress as juveniles but that they do not enjoy any advantages of such developmental conditions when facing high temperatures as adults. Conversely, cold temperature does not seem to confer any priming effects in adolescence.
Collapse
Affiliation(s)
- Elin Persson
- Lund University, Department of Biology, Section for Evolutionary Ecology, Sölvegatan 37, SE-223 63 Lund, Sweden
| | - Ciarán Ó Cuív
- Lund University, Department of Biology, Section for Evolutionary Ecology, Sölvegatan 37, SE-223 63 Lund, Sweden
| | - Andreas Nord
- Lund University, Department of Biology, Section for Evolutionary Ecology, Sölvegatan 37, SE-223 63 Lund, Sweden
| |
Collapse
|
3
|
Goda T, Umezaki Y, Hamada FN. Molecular and Neural Mechanisms of Temperature Preference Rhythm in Drosophila melanogaster. J Biol Rhythms 2023; 38:326-340. [PMID: 37222551 PMCID: PMC10330063 DOI: 10.1177/07487304231171624] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Temperature influences animal physiology and behavior. Animals must set an appropriate body temperature to maintain homeostasis and maximize survival. Mammals set their body temperatures using metabolic and behavioral strategies. The daily fluctuation in body temperature is called the body temperature rhythm (BTR). For example, human body temperature increases during wakefulness and decreases during sleep. BTR is controlled by the circadian clock, is closely linked with metabolism and sleep, and entrains peripheral clocks located in the liver and lungs. However, the underlying mechanisms of BTR are largely unclear. In contrast to mammals, small ectotherms, such as Drosophila, control their body temperatures by choosing appropriate environmental temperatures. The preferred temperature of Drosophila increases during the day and decreases at night; this pattern is referred to as the temperature preference rhythm (TPR). As flies are small ectotherms, their body temperature is close to that of the surrounding environment. Thus, Drosophila TPR produces BTR, which exhibits a pattern similar to that of human BTR. In this review, we summarize the regulatory mechanisms of TPR, including recent studies that describe neuronal circuits relaying ambient temperature information to dorsal neurons (DNs). The neuropeptide diuretic hormone 31 (DH31) and its receptor (DH31R) regulate TPR, and a mammalian homolog of DH31R, the calcitonin receptor (CALCR), also plays an important role in mouse BTR regulation. In addition, both fly TPR and mammalian BTR are separately regulated from another clock output, locomotor activity rhythms. These findings suggest that the fundamental mechanisms of BTR regulation may be conserved between mammals and flies. Furthermore, we discuss the relationships between TPR and other physiological functions, such as sleep. The dissection of the regulatory mechanisms of Drosophila TPR could facilitate an understanding of mammalian BTR and the interaction between BTR and sleep regulation.
Collapse
Affiliation(s)
- Tadahiro Goda
- Department of Neurobiology, Physiology & Behavior, University of California, Davis, Davis, California
| | - Yujiro Umezaki
- Department of Neurobiology, Physiology & Behavior, University of California, Davis, Davis, California
| | - Fumika N. Hamada
- Department of Neurobiology, Physiology & Behavior, University of California, Davis, Davis, California
| |
Collapse
|
4
|
Uyanga VA, Wang M, Tong T, Zhao J, Wang X, Jiao H, Onagbesan OM, Lin H. L-Citrulline Influences the Body Temperature, Heat Shock Response and Nitric Oxide Regeneration of Broilers Under Thermoneutral and Heat Stress Condition. Front Physiol 2021; 12:671691. [PMID: 34456742 PMCID: PMC8385788 DOI: 10.3389/fphys.2021.671691] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 07/21/2021] [Indexed: 12/29/2022] Open
Abstract
Heat stress (HS) adversely affects several physiological responses in organisms, but the underlying molecular mechanisms involved are yet to be fully understood. L-Citrulline (L-Cit) is a nutraceutical amino acid that is gaining research interest for its role in body temperature regulation and nitric oxide synthesis. This study investigated whether dietary supplementation with L-Cit (1% of basal diet) could ameliorate the effects of acute HS on thermotolerance, redox balance, and inflammatory responses of broilers. Ross 308 broilers (288 chicks) were subjected to two environments; thermoneutral at 24°C (TNZ) or HS at 35°C for 5 h, and fed two diets; control or L-Cit. The results showed that HS increased the ear, rectal (RT), and core body (CBT) temperatures of broilers, along with higher respiratory rate. The RT and CBT readings were intermittently affected with time effect, whereas, L-Cit supplementation lowered the mean CBT than the control diet. Antioxidant assays showed that superoxide dismutase was increased during HS, while, catalase was promoted by L-Cit supplementation. In addition, L-Cit induced glutathione peroxidase activity compared to the control diet during HS. Hypothalamic heat shock protein (HSP)-90 was upregulated by HS, but L-Cit downregulated heat shock factor (HSF)-1, and HSP 60 mRNA expressions. HSF 3 mRNA expression was downregulated by L-Cit under TNZ condition. More so, HS increased the plasma nitric oxide (NO) concentration but lowered the total NO synthase (tNOS) activity. In contrast, L-Cit supplementation limited NO production but increased the tNOS activity. Arginase activity was increased in the control fed group during HS but L-Cit supplementation lowered this effect. The NOS-COX pathway was significantly affected under TNZ condition, since L-Cit supplementation downregulated the mRNA expression of iNOS-COX2 in the hypothalamus, and further reduced the serum PGE2 concentration. Together, these data indicates that L-Cit influenced the antioxidant defense, heat shock response and nitric oxide regeneration both under thermoneutral and HS conditions; and that L-Cit may be directly and/or indirectly involved in the central regulation of body temperature.
Collapse
Affiliation(s)
- Victoria A. Uyanga
- Department of Animal Science, College of Animal Science and Veterinary Medicine, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control, Shandong Agricultural University, Tai’an, China
| | - Minghui Wang
- Department of Animal Science, College of Animal Science and Veterinary Medicine, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control, Shandong Agricultural University, Tai’an, China
| | - Tian Tong
- Department of Animal Science, College of Animal Science and Veterinary Medicine, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control, Shandong Agricultural University, Tai’an, China
| | - Jingpeng Zhao
- Department of Animal Science, College of Animal Science and Veterinary Medicine, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control, Shandong Agricultural University, Tai’an, China
| | - Xiaojuan Wang
- Department of Animal Science, College of Animal Science and Veterinary Medicine, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control, Shandong Agricultural University, Tai’an, China
| | - Hongchao Jiao
- Department of Animal Science, College of Animal Science and Veterinary Medicine, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control, Shandong Agricultural University, Tai’an, China
| | | | - Hai Lin
- Department of Animal Science, College of Animal Science and Veterinary Medicine, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control, Shandong Agricultural University, Tai’an, China
| |
Collapse
|
5
|
Dawson A. Both Low Temperature and Shorter Duration of Food Availability Delay Testicular Regression and Affect the Daily Cycle in Body Temperature in a Songbird. Physiol Biochem Zool 2018; 91:917-924. [DOI: 10.1086/698109] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
6
|
McCue MD, Terblanche JS, Benoit JB. Learning to starve: impacts of food limitation beyond the stress period. J Exp Biol 2017; 220:4330-4338. [DOI: 10.1242/jeb.157867] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
ABSTRACT
Starvation is common among wild animal populations, and many individuals experience repeated bouts of starvation over the course of their lives. Although much information has been gained through laboratory studies of acute starvation, little is known about how starvation affects an animal once food is again available (i.e. during the refeeding and recovery phases). Many animals exhibit a curious phenomenon – some seem to ‘get better’ at starving following exposure to one or more starvation events – by this we mean that they exhibit potentially adaptive responses, including reduced rates of mass loss, reduced metabolic rates, and lower costs of digestion. During subsequent refeedings they may also exhibit improved digestive efficiency and more rapid mass gain. Importantly, these responses can last until the next starvation bout or even be inherited and expressed in the subsequent generation. Currently, however, little is known about the molecular regulation and physiological mechanisms underlying these changes. Here, we identify areas of research that can fill in the most pressing knowledge gaps. In particular, we highlight how recently refined techniques (e.g. stable isotope tracers, quantitative magnetic resonance and thermal measurement) as well as next-generation sequencing approaches (e.g. RNA-seq, proteomics and holobiome sequencing) can address specific starvation-focused questions. We also describe outstanding unknowns ripe for future research regarding the timing and severity of starvation, and concerning the persistence of these responses and their interactions with other ecological stressors.
Collapse
Affiliation(s)
- Marshall D. McCue
- Department of Biological Sciences, St Mary's University, San Antonio, TX 78228, USA
| | - John S. Terblanche
- Department of Conservation Ecology and Entomology, Stellenbosch University, Stellenbosch 7602, South Africa
| | - Joshua B. Benoit
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
| |
Collapse
|
7
|
Monternier PA, Teulier L, Drai J, Bourguignon A, Collin-Chavagnac D, Hervant F, Rouanet JL, Roussel D. Mitochondrial oxidative phosphorylation efficiency is upregulated during fasting in two major oxidative tissues of ducklings. Comp Biochem Physiol A Mol Integr Physiol 2017. [DOI: 10.1016/j.cbpa.2017.06.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
8
|
McCue MD, Albach A, Salazar G. Previous Repeated Exposure to Food Limitation Enables Rats to Spare Lipid Stores during Prolonged Starvation. Physiol Biochem Zool 2017; 90:63-74. [PMID: 28051943 DOI: 10.1086/689323] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The risk of food limitation and, ultimately, starvation dates back to the dawn of heterotrophy in animals, yet starvation remains a major factor in the regulation of modern animal populations. Researchers studying starvation more than a century ago suggested that animals subjected to sublethal periods of food limitation are somehow more tolerant of subsequent starvation events. This possibility has received little attention over the past decades, yet it is highly relevant to modern science for two reasons. First, animals in natural populations are likely to be exposed to bouts of food limitation once or more before they face prolonged starvation, during which the risk of mortality becomes imminent. Second, our current approach to studying starvation physiology in the laboratory focuses on nourished animals with no previous exposure to nutritional stress. We examined the relationship between previous exposure to food limitation and potentially adaptive physiological responses to starvation in adult rats and found several significant differences. On two occasions, rats were fasted until they lost 20% of their body mass maintained lower body temperatures, and had presumably lower energy requirements when subjected to prolonged starvation than their naive cohort that never experienced food limitation. These rats that were trained in starvation also had lower plasma glucose set -points and reduced their reliance on endogenous lipid oxidation. These findings underscore (1) the need for biologists to revisit the classic hypothesis that animals can become habituated to starvation, using a modern set of research tools; and (2) the need to design controlled experiments of starvation physiology that more closely resemble the dynamic nature of food availability.
Collapse
|
9
|
Tattersall GJ, Roussel D, Voituron Y, Teulier L. Novel energy-saving strategies to multiple stressors in birds: the ultradian regulation of body temperature. Proc Biol Sci 2016; 283:20161551. [PMID: 27655770 PMCID: PMC5046907 DOI: 10.1098/rspb.2016.1551] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 08/25/2016] [Indexed: 11/12/2022] Open
Abstract
This study aimed to examine thermoregulatory responses in birds facing two commonly experienced stressors, cold and fasting. Logging devices allowing long-term and precise access to internal body temperature were placed within the gizzards of ducklings acclimated to cold (CA) (5°C) or thermoneutrality (TN) (25°C). The animals were then examined under three equal 4-day periods: ad libitum feeding, fasting and re-feeding. Through the analysis of daily as well as short-term, or ultradian, variations of body temperature, we showed that while ducklings at TN show only a modest decline in daily thermoregulatory parameters when fasted, they exhibit reduced surface temperatures from key sites of vascular heat exchange during fasting. The CA birds, on the other hand, significantly reduced their short-term variations of body temperature while increasing long-term variability when fasting. This phenomenon would allow the CA birds to reduce the energetic cost of body temperature maintenance under fasting. By analysing ultradian regulation of body temperature, we describe a means by which an endotherm appears to lower thermoregulatory costs in response to the combined stressors of cold and fasting.
Collapse
Affiliation(s)
- Glenn J Tattersall
- Department of Biological Sciences, Brock University, St Catharines, ON, Canada L2S3A1
| | - Damien Roussel
- Université de Lyon, UMR 5023 Écologie des Hydrosystèmes Naturels et Anthropisés, Université Lyon 1, ENTPE, CNRS, 69622 Villeurbanne, France
| | - Yann Voituron
- Université de Lyon, UMR 5023 Écologie des Hydrosystèmes Naturels et Anthropisés, Université Lyon 1, ENTPE, CNRS, 69622 Villeurbanne, France
| | - Loïc Teulier
- Université de Lyon, UMR 5023 Écologie des Hydrosystèmes Naturels et Anthropisés, Université Lyon 1, ENTPE, CNRS, 69622 Villeurbanne, France
| |
Collapse
|
10
|
Ben-Ezra N, Burness G. Constant and Cycling Incubation Temperatures Have Long-Term Effects on the Morphology and Metabolic Rate of Japanese Quail. Physiol Biochem Zool 2016; 90:96-105. [PMID: 28051937 DOI: 10.1086/688383] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Incubation temperature can have profound effects on growth and development of embryos and young birds. However, few studies have examined the role that cycling incubation temperature may play in phenotypic variation and whether these effects persist to adulthood. We incubated Japanese quail eggs at control temperatures (37.5°C), at low temperatures (36.0°C), and under a cyclical treatment that maintained the same average temperature as the low treatment (36.0°C) with high temperatures that were the same as the control (37.5°C) and low temperatures that still allowed for development of the embryo (28.0°C). Individuals in the low treatment group were smaller in mass and size than individuals in the control group but had an increased basal metabolic rate relative to individuals in the cyclical treatment group. Temperature cycling offset the effects of low incubation temperatures on metabolic rate and embryonic development but not the effects on adult mass and size. Although Japanese quail are sexually size dimorphic, with females larger than males, we could detect no evidence of sex-specific sensitivity to suboptimal incubation temperatures. These results highlight the importance of incubation temperature and pattern as sources of morphological and physiological variation of adult birds.
Collapse
|
11
|
Pick JL, Hutter P, Ebneter C, Ziegler AK, Giordano M, Tschirren B. Artificial selection reveals the energetic expense of producing larger eggs. Front Zool 2016; 13:38. [PMID: 27559356 PMCID: PMC4995767 DOI: 10.1186/s12983-016-0172-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 08/18/2016] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND The amount of resources provided by the mother before birth has important and long-lasting effects on offspring fitness. Despite this, there is a large amount of variation in maternal investment seen in natural populations. Life-history theory predicts that this variation is maintained through a trade-off between the benefits of high maternal investment for the offspring and the costs of high investment for the mother. However, the proximate mechanisms underlying these costs of reproduction are not well understood. Here we used artificial selection for high and low maternal egg investment in a precocial bird, the Japanese quail (Coturnix japonica) to quantify costs of maternal reproductive investment. RESULTS We show that females from the high maternal investment lines had significantly larger reproductive organs, which explained their overall larger body mass, and resulted in a higher resting metabolic rate (RMR). Contrary to our expectations, this increase in metabolic activity did not lead to a higher level of oxidative damage. CONCLUSIONS This study is the first to provide experimental evidence for metabolic costs of increased per offspring investment.
Collapse
Affiliation(s)
- Joel L. Pick
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Pascale Hutter
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Christina Ebneter
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Ann-Kathrin Ziegler
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Marta Giordano
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Barbara Tschirren
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| |
Collapse
|
12
|
Giraudeau M, Ziegler AK, Pick JL, Ducatez S, Canale CI, Tschirren B. Interactive effects of yolk testosterone and carotenoid on prenatal growth and offspring physiology in a precocial bird. Behav Ecol 2016. [DOI: 10.1093/beheco/arw127] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
13
|
Tschirren B, Ziegler AK, Canale CI, Okuliarová M, Zeman M, Giraudeau M. High Yolk Testosterone Transfer Is Associated with an Increased Female Metabolic Rate. Physiol Biochem Zool 2016; 89:448-52. [PMID: 27617364 DOI: 10.1086/687571] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Yolk androgens of maternal origin are important mediators of prenatal maternal effects. Although in many species short-term benefits of exposure to high yolk androgen concentrations for the offspring have been observed, females differ substantially in the amount of androgens they transfer to their eggs. It suggests that costs for the offspring or the mother constrain the evolution of maternal hormone transfer. However, to date, the nature of these costs remains poorly understood. Unlike most previous work that focused on potential costs for the offspring, we here investigated whether high yolk testosterone transfer is associated with metabolic costs (i.e., a higher metabolic rate) for the mother. We show that Japanese quail (Coturnix japonica) females that deposit higher testosterone concentrations into their eggs have a higher resting metabolic rate. Because a higher metabolic rate is often associated with a shorter life span, this relationship may explain the negative association between yolk testosterone transfer and female longevity observed in the wild. Our results suggest that metabolic costs for the mother can balance the short-term benefits of yolk testosterone exposure for the offspring, thereby contributing to the maintenance of variation in maternal yolk hormone transfer in natural populations.
Collapse
|
14
|
Singh O, Kumar S, Singh U, Kumar V, Lechan RM, Singru PS. Cocaine- and amphetamine-regulated transcript peptide (CART) in the brain of zebra finch,Taeniopygia guttata: Organization, interaction with neuropeptide Y, and response to changes in energy status. J Comp Neurol 2016; 524:3014-41. [DOI: 10.1002/cne.24004] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 03/21/2016] [Accepted: 03/24/2016] [Indexed: 01/21/2023]
Affiliation(s)
- Omprakash Singh
- School of Biological Sciences; National Institute of Science Education and Research (NISER)-Bhubaneswar; Odisha India
| | - Santosh Kumar
- School of Biological Sciences; National Institute of Science Education and Research (NISER)-Bhubaneswar; Odisha India
| | - Uday Singh
- School of Biological Sciences; National Institute of Science Education and Research (NISER)-Bhubaneswar; Odisha India
| | - Vinod Kumar
- DST-IRHPA Centre for Excellence in Biological Rhythms Research and Indo-US Centre for Biological Timing, Department of Zoology; University of Delhi; Delhi India
| | - Ronald M. Lechan
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Tupper Research Institute; Tufts Medical Center; Boston Massachusetts USA
- Department of Neuroscience; Tufts University School of Medicine; Boston Massachusetts USA
| | - Praful S. Singru
- School of Biological Sciences; National Institute of Science Education and Research (NISER)-Bhubaneswar; Odisha India
| |
Collapse
|
15
|
Monternier PA, Fongy A, Hervant F, Drai J, Collin-Chavagnac D, Rouanet JL, Roussel D. Skeletal muscle heterogeneity in fasting-induced mitochondrial oxidative phosphorylation flexibility in cold-acclimated ducklings. J Exp Biol 2015; 218:2427-34. [DOI: 10.1242/jeb.122671] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 05/20/2015] [Indexed: 11/20/2022]
Abstract
Starvation remains particularly challenging for endotherms that remain active in cold environments or during winter. The aim of this study was to determine whether fasting-induced mitochondrial coupling flexibility depends upon the phenotype of skeletal muscles. The rates of oxidative phosphorylation and mitochondrial efficiency were measured in pectoralis (glycolytic) and gastrocnemius (oxidative) muscles from cold-acclimated ducklings (Cairina moschata). Pyruvate and palmitoyl-L-carnitine were used in the presence of malate as respiratory substrates. Plasma metabolites, skeletal muscle concentrations of triglycerides, glycogen and total protein and mitochondrial levels of oxidative phosphorylation complexes were also quantified. Results from fed ad libitum ducklings were compared to ducklings allowed to fast for 4 days. During the 4 days of nutritional treatment, birds remained in the cold, at 4°C. It is reported that 4 days of starvation preferentially affected the pectoralis muscles, inducing an up-regulation of mitochondrial efficiency, which was associated with a reduction of both total muscle and mitochondrial oxidative phosphorylation protein and an increase of intramuscular lipid concentrations. By contrast, fasting decreased the activity of oxidative phosphorylation but did not alter the coupling efficiency and protein expressions of mitochondria isolated from the gastrocnemius muscles. Hence, the adjustment of mitochondrial efficiency to fasting depends upon the muscle phenotype of cold-acclimated birds. Furthermore, these results suggest that the reduced cost of mitochondrial ATP production in pectoralis muscles may triggers lipid storage within this tissue and help to sustain an important metabolic homeostatic function of skeletal muscles, which is to maintain levels of amino acids in the circulation during the fast.
Collapse
Affiliation(s)
- Pierre-Axel Monternier
- Laboratoire d'Ecologie des Hydrosystèmes Naturels et Anthropisés, UMR 5023 CNRS, Université de Lyon, ENTPE, Lyon, France
| | - Anaïs Fongy
- Laboratoire d'Ecologie des Hydrosystèmes Naturels et Anthropisés, UMR 5023 CNRS, Université de Lyon, ENTPE, Lyon, France
| | - Frédéric Hervant
- Laboratoire d'Ecologie des Hydrosystèmes Naturels et Anthropisés, UMR 5023 CNRS, Université de Lyon, ENTPE, Lyon, France
| | - Jocelyne Drai
- Service de Biochimie, CHU Lyon Sud, CarMeN, UMR 1060 INSERM, Université de Lyon, France
| | | | - Jean-Louis Rouanet
- Laboratoire d'Ecologie des Hydrosystèmes Naturels et Anthropisés, UMR 5023 CNRS, Université de Lyon, ENTPE, Lyon, France
| | - Damien Roussel
- Laboratoire d'Ecologie des Hydrosystèmes Naturels et Anthropisés, UMR 5023 CNRS, Université de Lyon, ENTPE, Lyon, France
| |
Collapse
|
16
|
Targeted 13C enrichment of lipid and protein pools in the body reveals circadian changes in oxidative fuel mixture during prolonged fasting: A case study using Japanese quail. Comp Biochem Physiol A Mol Integr Physiol 2013; 166:546-54. [DOI: 10.1016/j.cbpa.2013.08.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Revised: 08/15/2013] [Accepted: 08/16/2013] [Indexed: 11/21/2022]
|
17
|
Carr JM, Lima SL. Nocturnal hypothermia impairs flight ability in birds: a cost of being cool. Proc Biol Sci 2013; 280:20131846. [PMID: 24107528 DOI: 10.1098/rspb.2013.1846] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Many birds use regulated drops in night-time body temperature (Tb) to conserve energy critical to winter survival. However, a significant degree of hypothermia may limit a bird's ability to respond to predatory attack. Despite this likely energy-predation trade-off, the behavioural costs of avian hypothermia have yet to be examined. We thus monitored the nocturnal hypothermia of mourning doves (Zenaida macroura) in a laboratory setting in response to food deprivation. Nocturnal flight tests were used to quantify the flight ability of hypothermic doves. Many hypothermic doves (39% of tests) could not fly while carrying a small weight, but could do so after quickly warming up to typical daytime Tb. Doves that were unable to fly during their first test were more hypothermic than those that could fly, with average Tb reductions of 5.3°C and 3.3°C, respectively, but there was no overall indication of a threshold Tb reduction beyond which doves were consistently incapable of flight. These results suggest that energy-saving hypothermia interferes with avian antipredator behaviour via a reduction in flight ability, likely leading to a trade-off between energy-saving hypothermia and the risk of predation.
Collapse
Affiliation(s)
- Jennie M Carr
- Department of Biology, Indiana State University, , Terre Haute, IN 47809, USA
| | | |
Collapse
|
18
|
Ben-Hamo M, McCue MD, Khozin-Goldberg I, McWilliams SR, Pinshow B. Ambient temperature and nutritional stress influence fatty acid composition of structural and fuel lipids in Japanese quail (Coturnix japonica) tissues. Comp Biochem Physiol A Mol Integr Physiol 2013; 166:244-50. [DOI: 10.1016/j.cbpa.2013.06.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Revised: 06/11/2013] [Accepted: 06/17/2013] [Indexed: 01/15/2023]
|
19
|
Chin EH, Storm-Suke AL, Kelly RJ, Burness G. Catch-up growth in Japanese quail (Coturnix Japonica): relationships with food intake, metabolic rate and sex. J Comp Physiol B 2013; 183:821-31. [PMID: 23535902 DOI: 10.1007/s00360-013-0751-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Revised: 03/01/2013] [Accepted: 03/04/2013] [Indexed: 11/28/2022]
Abstract
The effects of early environmental conditions can profoundly affect individual development and adult phenotype. In birds, limiting resources can affect growth as nestlings, but also fitness and survival as adults. Following periods of food restriction, individuals may accelerate development, undergoing a period of rapid "catch-up" growth, in an attempt to reach the appropriate size at adulthood. Previous studies of altricial birds have shown that catch-up growth can have negative consequences in adulthood, although this has not been explored in species with different developmental strategies. Here, we investigated the effects of resource limitation and the subsequent period of catch-up growth, on the morphological and metabolic phenotype of adult Japanese quail (Coturnix japonica), a species with a precocial developmental strategy. Because males and females differ in adult body size, we also test whether food restriction had sex-specific effects. Birds that underwent food restriction early in development had muscles of similar size and functional maturity, but lower adult body mass than controls. There was no evidence of sex-specific sensitivity of food restriction on adult body mass; however, there was evidence for body size. Females fed ad lib were larger than males fed ad lib, while females subjected to food restriction were of similar size to males. Adults that had previously experienced food restriction did not have an elevated metabolic rate, suggesting that in contrast to altricial nestlings, there was no metabolic carry-over effect of catch-up growth into adulthood. While Japanese quail can undergo accelerated growth after re-feeding, timing of food restriction may be important to adult size, particularly in females. However, greater developmental flexibility compared to altricial birds may contribute to the lack of metabolic carryover effects at adulthood.
Collapse
Affiliation(s)
- Eunice H Chin
- Environmental and Life Sciences Graduate Program, Trent University, 1600 West Bank Drive, Peterborough, ON K9J 7B8, Canada.
| | | | | | | |
Collapse
|
20
|
Ben-Hamo M, McCue MD, McWilliams SR, Pinshow B. Dietary fatty acid composition influences tissue lipid profiles and regulation of body temperature in Japanese quail. J Comp Physiol B 2011; 181:807-16. [PMID: 21328066 DOI: 10.1007/s00360-011-0558-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2010] [Revised: 01/27/2011] [Accepted: 01/31/2011] [Indexed: 11/30/2022]
Abstract
Many avian species reduce their body temperature (T(b)) to conserve energy during periods of inactivity, and we recently characterized how ambient temperature (T(a)) and nutritional stress interact with one another to influence physiologically controlled hypothermic responses in Japanese quail (Coturnix japonica). In the present study, we examined how the fatty acid (FA) composition of the diet influences the FA composition of phospholipids in major organs and how these affect controlled hypothermic responses and metabolic rates in fasted birds. For 5 weeks prior to fasting, quail were fed a standard diet and gavaged each morning with 0.7 ml of water (control), or a vegetable oil comprising saturated fatty acids (SFA; coconut oil), or unsaturated fatty acids (UFA; canola oil). Birds were then fasted for 4 days at a T(a) of 15°C. We found that, while fasting, both photophase and scotophase T(b) decreased significantly more in the SFA treatment group than in the control group; apparently the former down-regulated their T(b) set point. This deeper hypothermic response was correlated with changes in the phospholipid composition of the skeletal muscle and liver, which contained significantly more oleic acid (18:1) and less arachidonic acid (20:4), respectively. Our data imply that these two FAs may be associated with thermoregulation.
Collapse
Affiliation(s)
- Miriam Ben-Hamo
- Mitrani Department of Desert Ecology, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion, Israel.
| | | | | | | |
Collapse
|
21
|
Ontogeny and Nutritional Status Influence Oxidative Kinetics of Nutrients and Whole-Animal Bioenergetics in Zebra Finches,Taeniopygia guttata: New Applications for13C Breath Testing. Physiol Biochem Zool 2011; 84:32-42. [DOI: 10.1086/657285] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
22
|
McCue MD. Starvation physiology: reviewing the different strategies animals use to survive a common challenge. Comp Biochem Physiol A Mol Integr Physiol 2010; 156:1-18. [PMID: 20060056 DOI: 10.1016/j.cbpa.2010.01.002] [Citation(s) in RCA: 433] [Impact Index Per Article: 30.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2009] [Revised: 12/30/2009] [Accepted: 01/03/2010] [Indexed: 11/26/2022]
Abstract
All animals face the possibility of limitations in food resources that could ultimately lead to starvation-induced mortality. The primary goal of this review is to characterize the various physiological strategies that allow different animals to survive starvation. The ancillary goals of this work are to identify areas in which investigations of starvation can be improved and to discuss recent advances and emerging directions in starvation research. The ubiquity of food limitation among animals, inconsistent terminology associated with starvation and fasting, and rationale for scientific investigations into starvation are discussed. Similarities and differences with regard to carbohydrate, lipid, and protein metabolism during starvation are also examined in a comparative context. Examples from the literature are used to underscore areas in which reporting and statistical practices, particularly those involved with starvation-induced changes in body composition and starvation-induced hypometabolism can be improved. The review concludes by highlighting several recent advances and promising research directions in starvation physiology. Because the hundreds of studies reviewed here vary so widely in their experimental designs and treatments, formal comparisons of starvation responses among studies and taxa are generally precluded; nevertheless, it is my aim to provide a starting point from which we may develop novel approaches, tools, and hypotheses to facilitate meaningful investigations into the physiology of starvation in animals.
Collapse
Affiliation(s)
- Marshall D McCue
- Mitrani Department of Desert Ecology, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion, Israel.
| |
Collapse
|