1
|
Scheun J, Venter L, Ganswindt A. A frog in hot water: the effect of temperature elevation on the adrenal stress response of an African amphibian. PeerJ 2024; 12:e17847. [PMID: 39157773 PMCID: PMC11328835 DOI: 10.7717/peerj.17847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 07/10/2024] [Indexed: 08/20/2024] Open
Abstract
Amphibians, with their unique physiology and habitat requirements, are especially vulnerable to changes in environmental temperatures. While the activation of the physiological stress response can help to mitigate the impact of such habitat alteration, chronic production of elevated glucocorticoid levels can be deleterious in nature. There is no empirical evidence indicating the physiological response of African amphibians to temperature changes, where individuals are unable to emigrate away from potential stressors. To rectify this, we used the edible bullfrog (Pyxicephalus edulis) as a model species to determine the effect of elevated temperature on the adrenocortical response of the species using a recently established matrix. While a control group was kept at a constant temperature (25 °C) throughout the study period, an experimental group was exposed to control (25 °C) and elevated temperatures (30 °C). Mucous swabs were collected throughout the study period to determine dermal glucocorticoid (dGC) concentrations, as a proxy for physiological stress. In addition to this, individual body mass measurements were collected. The results showed that individuals within the experimental group who experienced increased temperatures had significantly elevated dGC levels compared to the control animals. Furthermore, there was a significant difference in the percentage mass change between experimental and control animals . These findings indicate the physiological sensitivity of the edible bullfrog to a thermal stressor in captivity. While this study shows the importance of proper amphibian management within the captive environment, it also highlights the coming danger of global climate change to this and similar amphibian species.
Collapse
Affiliation(s)
- Juan Scheun
- Department Nature Conservation, Faculty of Science, Tshwane University of Pretoria, Pretoria, Gauteng, South Africa
- Mammal Research Institute, Department Zoology and Entomology, University of Pretoria, Pretoria, Gauteng, South Africa
| | - Leanne Venter
- Department Nature Conservation, Faculty of Science, Tshwane University of Pretoria, Pretoria, Gauteng, South Africa
| | - Andre Ganswindt
- Mammal Research Institute, Department Zoology and Entomology, University of Pretoria, Pretoria, Gauteng, South Africa
| |
Collapse
|
2
|
Usategui-Martín A, Liria-Loza A, Valverde RA, Tort L, Tuya F, Montero D. Husbandry Protocols for Juvenile Loggerhead Sea Turtles ( Caretta caretta) Based on Stress Response to Stocking Density and Dry-Dock Time. J APPL ANIM WELF SCI 2024:1-13. [PMID: 38368563 DOI: 10.1080/10888705.2024.2315048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2024]
Abstract
When necessary, sea turtles are held captive for veterinarian care and research purposes. Protocols and basic guidelines have been described for husbandry of sea turtles with veterinarian needs but not considering physiological indicators of animal welfare. Because all sea turtle are imperiled species, monitoring their welfare is important. The aim of this study was to standardize husbandry protocols for loggerhead (Caretta caretta) juveniles held under seminatural conditions, based on circulating concentration of plasma corticosterone (Cort) and behavior. Two experiments were performed to analyze physiological and behavioral responses of the animals facing changes in stocking density and different dry-docking times. Cort analyses suggested that the number of animals per tank can be modified occasionally, without affecting their health and welfare. However, dry-docking time should be < 30 min, as indicated by the significant elevation of circulating Cort at ≥ 30 min, rising from 1.51- ng/ml to 5.28-ng/ml. Protocols tested did not affect behavioral responses, except for the breaths per move, which increased while Cort increased, despite differences exhibited by experimental animals in behavioral responses according to daily times (morning vs afternoon) and the sex of the animals.
Collapse
Affiliation(s)
- Alejandro Usategui-Martín
- IU-ECOAQUA, Universidad de Las Palmas de Gran Canaria, Parque Científico Tecnológico Marino, Las Palmas, Spain
- NGO ADS Biodiversidad, Las Palmas, Spain
| | - Ana Liria-Loza
- IU-ECOAQUA, Universidad de Las Palmas de Gran Canaria, Parque Científico Tecnológico Marino, Las Palmas, Spain
- NGO ADS Biodiversidad, Las Palmas, Spain
| | - Roldán A Valverde
- Department of Biological Sciences, Southeastern Louisiana University, Hammond, LA, USA
- Sea Turtle Conservancy, Gainesville, FL, USA
| | - Lluis Tort
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Fernando Tuya
- IU-ECOAQUA, Universidad de Las Palmas de Gran Canaria, Parque Científico Tecnológico Marino, Las Palmas, Spain
| | - Daniel Montero
- IU-ECOAQUA, Universidad de Las Palmas de Gran Canaria, Parque Científico Tecnológico Marino, Las Palmas, Spain
| |
Collapse
|
3
|
Ruthsatz K, Schwarz A, Gomez-Mestre I, Meyer R, Domscheit M, Bartels F, Schaeffer SM, Engelkes K. Life in plastic, it's not fantastic: Sublethal effects of polyethylene microplastics ingestion throughout amphibian metamorphosis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 885:163779. [PMID: 37146798 DOI: 10.1016/j.scitotenv.2023.163779] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/11/2023] [Accepted: 04/23/2023] [Indexed: 05/07/2023]
Abstract
Microplastics (MP) are an abundant, long-lasting, and widespread type of environmental pollution that is of increasing concern as it might pose a serious threat to ecosystems and species. However, these threats are still largely unknown for amphibians. Here, we used the African clawed frog (Xenopus laevis) as a model species to investigate whether polyethylene MP ingestion affects amphibian growth and development and leads to metabolic changes across two consecutive life stages (larvae and juveniles). Furthermore, we examined whether MP effects were more pronounced at higher rearing temperatures. Larval growth, development, and body condition were recorded, and standard metabolic rate (SMR) and levels of stress hormone (corticosterone, CORT) were measured. We determined variation in size, morphology, and hepatosomatic index in juveniles to identify any potential consequences of MP ingestion across metamorphosis. In both life stages, MP accumulation in the body was assessed. MP ingestion was found to result in sublethal effects on larval growth, development, and metabolism, to lead to allometric carry-over effects on juvenile morphology, and to accumulate in the specimens at both life stages. In larvae, SMR and developmental rate increased in response to MP ingestion; there additionally was a significant interaction of MP ingestion and temperature on development. CORT levels were higher in larvae that ingested MP, except at higher temperature. In juveniles, body was wider, and extremities were longer in animals exposed to MP during the larval stage; a high rearing temperature in combination with MP ingestion counteracted this effect. Our results provide first insights into the effects of MP on amphibians throughout metamorphosis and demonstrate that juvenile amphibians may act as a pathway for MP from freshwater to terrestrial environments. To allow for generalizations across amphibian species, future experiments need to consider the field prevalence and abundance of different MP in amphibians at various life stages.
Collapse
Affiliation(s)
- Katharina Ruthsatz
- Zoological Institute, Technische Universität Braunschweig, Mendelssohnstraße 4, 38106 Braunschweig, Germany.
| | - Anja Schwarz
- Institute of Geosystems and Bioindication, Technische Universität Braunschweig, Langer Kamp 19c, 38106 Braunschweig, Germany
| | - Ivan Gomez-Mestre
- Ecology, Evolution, and Development Group, Department Ecology and Evolution, Doñana Biological Station, CSIC, 41092 Seville, Spain
| | - Ruth Meyer
- Institute of Geosystems and Bioindication, Technische Universität Braunschweig, Langer Kamp 19c, 38106 Braunschweig, Germany
| | - Marie Domscheit
- Zoological Institute, Technische Universität Braunschweig, Mendelssohnstraße 4, 38106 Braunschweig, Germany
| | - Fabian Bartels
- Zoological Institute, Technische Universität Braunschweig, Mendelssohnstraße 4, 38106 Braunschweig, Germany
| | - Sarah-Maria Schaeffer
- Institute of Geosystems and Bioindication, Technische Universität Braunschweig, Langer Kamp 19c, 38106 Braunschweig, Germany
| | - Karolin Engelkes
- Leibniz Institute for the Analysis of Biodiversity Change, Martin-Luther-King-Platz 3, 20146 Hamburg, Germany; Institute of Evolutionary Biology and Ecology, University of Bonn, An der Immenburg 1, 53121 Bonn, Germany
| |
Collapse
|
4
|
Rollins-Smith LA, Le Sage EH. Heat stress and amphibian immunity in a time of climate change. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220132. [PMID: 37305907 PMCID: PMC10258666 DOI: 10.1098/rstb.2022.0132] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 03/28/2023] [Indexed: 06/13/2023] Open
Abstract
As a class of vertebrates, amphibians, are at greater risk for declines or extinctions than any other vertebrate group, including birds and mammals. There are many threats, including habitat destruction, invasive species, overuse by humans, toxic chemicals and emerging diseases. Climate change which brings unpredictable temperature changes and rainfall constitutes an additional threat. Survival of amphibians depends on immune defences functioning well under these combined threats. Here, we review the current state of knowledge of how amphibians respond to some natural stressors, including heat and desiccation stress, and the limited studies of the immune defences under these stressful conditions. In general, the current studies suggest that desiccation and heat stress can activate the hypothalamus pituitary-interrenal axis, with possible suppression of some innate and lymphocyte-mediated responses. Elevated temperatures can alter microbial communities in amphibian skin and gut, resulting in possible dysbiosis that fosters reduced resistance to pathogens. This article is part of the theme issue 'Amphibian immunity: stress, disease and ecoimmunology'.
Collapse
Affiliation(s)
- Louise A. Rollins-Smith
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Emily H. Le Sage
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| |
Collapse
|
5
|
Turriago JL, Tejedo M, Hoyos JM, Camacho A, Bernal MH. The time course of acclimation of critical thermal maxima is modulated by the magnitude of temperature change and thermal daily fluctuations. J Therm Biol 2023; 114:103545. [PMID: 37290261 DOI: 10.1016/j.jtherbio.2023.103545] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/09/2023] [Accepted: 03/12/2023] [Indexed: 06/10/2023]
Abstract
Plasticity in the critical thermal maximum (CTmax) helps ectotherms survive in variable thermal conditions. Yet, little is known about the environmental mechanisms modulating its time course. We used the larvae of three neotropical anurans (Boana platanera, Engystomops pustulosus and Rhinella horribilis) to test whether the magnitude of temperature changes and the existence of fluctuations in the thermal environment affected both the amount of change in CTmax and its acclimation rate (i.e., its time course). For that, we transferred tadpoles from a pre-treatment temperature (23 °C, constant) to two different water temperatures: mean (28 °C) and hot (33 °C), crossed with constant and daily fluctuating thermal regimes, and recorded CTmax values, daily during six days. We modeled changes in CTmax as an asymptotic function of time, temperature, and the daily thermal fluctuation. The fitted function provided the asymptotic CTmax value (CTmax∞) and CTmax acclimation rate (k). Tadpoles achieved their CTmax∞ between one and three days. Transferring tadpoles to the hot treatment generated higher CTmax∞ at earlier times, inducing faster acclimation rates in tadpoles. In contrast, thermal fluctuations equally led to higher CTmax∞ values but tadpoles required longer times to achieve CTmax∞ (i.e., slower acclimation rates). These thermal treatments interacted differently with the studied species. In general, the thermal generalist Rhinella horribilis showed the most plastic acclimation rates whereas the ephemeral-pond breeder Engystomops pustulosus, more exposed to heat peaks during larval development, showed less plastic (i.e., canalized) acclimation rates. Further comparative studies of the time course of CTmax acclimation should help to disentangle the complex interplay between the thermal environment and species ecology, to understand how tadpoles acclimate to heat stress.
Collapse
Affiliation(s)
- Jorge L Turriago
- Grupo de Herpetología, Eco-Fisiología & Etología, Department of Biology, Universidad del Tolima, Tolima, 730006299, Colombia; Programa Doctorado en Ciencias Biológicas, Pontificia Universidad Javeriana, Bogotá, 11001000, Colombia.
| | - Miguel Tejedo
- Department of Evolutionary Ecology, Estación Biológica de Doñana, CSIC, Sevilla, 41092, Spain.
| | - Julio M Hoyos
- Grupo UNESIS, Department of Biology, Pontificia Universidad Javeriana, Bogotá, 11001000, Colombia.
| | - Agustín Camacho
- Department of Evolutionary Ecology, Estación Biológica de Doñana, CSIC, Sevilla, 41092, Spain.
| | - Manuel H Bernal
- Grupo de Herpetología, Eco-Fisiología & Etología, Department of Biology, Universidad del Tolima, Tolima, 730006299, Colombia.
| |
Collapse
|
6
|
Culbert BM, Border SE, Fialkowski RJ, Bolitho I, Dijkstra PD. Social status influences relationships between hormones and oxidative stress in a cichlid fish. Horm Behav 2023; 152:105365. [PMID: 37119610 DOI: 10.1016/j.yhbeh.2023.105365] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 04/11/2023] [Accepted: 04/12/2023] [Indexed: 05/01/2023]
Abstract
An individual's social environment can have widespread effects on their physiology, including effects on oxidative stress and hormone levels. Many studies have suggested that variation in oxidative stress experienced by individuals of different social statuses might be due to endocrine differences, however, few studies have evaluated this hypothesis. Here, we assessed whether a suite of markers associated with oxidative stress in different tissues (blood/plasma, liver, and gonads) had social status-specific relationships with circulating testosterone or cortisol levels in males of a cichlid fish, Astatotilapia burtoni. Across all fish, blood DNA damage (a global marker of oxidative stress) and gonadal synthesis of reactive oxygen species [as indicated by NADPH-oxidase (NOX) activity] were lower when testosterone was high. However, high DNA damage in both the blood and gonads was associated with high cortisol in subordinates, but low cortisol in dominants. Additionally, high cortisol was associated with greater production of reactive oxygen species (greater NOX activity) in both the gonads (dominants only) and liver (dominants and subordinates). In general, high testosterone was associated with lower oxidative stress across both social statuses, whereas high cortisol was associated with lower oxidative stress in dominants and higher oxidative stress in subordinates. Taken together, our results show that differences in the social environment can lead to contrasting relationships between hormones and oxidative stress.
Collapse
Affiliation(s)
- Brett M Culbert
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada.
| | - Shana E Border
- Department of Biology, Central Michigan University, Mount Pleasant, MI, USA; Illinois State University, School of Biological Sciences, Normal, IL, USA
| | | | - Isobel Bolitho
- University of Manchester, Department of Earth and Environmental Sciences, Manchester, UK
| | - Peter D Dijkstra
- Department of Biology, Central Michigan University, Mount Pleasant, MI, USA; Neuroscience Program, Central Michigan University, Mount Pleasant, MI, USA; Institute for Great Lakes Research, Central Michigan University, Mount Pleasant, MI, USA.
| |
Collapse
|
7
|
Madelaire CB, Gomes FR. Relationships between hormone levels, metabolism and immune response in toads from a semi-arid region. Gen Comp Endocrinol 2023; 338:114263. [PMID: 36931441 DOI: 10.1016/j.ygcen.2023.114263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 03/09/2023] [Accepted: 03/11/2023] [Indexed: 03/17/2023]
Abstract
Steroid hormones (e.g. androgens [AN] and corticosterone [CORT]) modulate complex physiological functions such as reproduction, energy mobilization, metabolism, and immunity. Fluctuations in environmental resource availability along with other factors, such as parasitism, can interact with the effects of these steroids, modifying aspects of immunocompetence and its metabolic costs. To understand these possible interactions, we studied AN and CORT, immune response [swelling response to phytohemagglutinin (PHA) injection and bacterial killing ability (BKA)], parasite load, resting metabolic rate (RMR) and rates of oxygen consumption after PHA injection, in two different phases of the annual cycle of a toad (Rhinella jimi) from a highly seasonal environment (Brazilian semi-arid, Caatinga). We observed increased rates of O2 consumption after both PHA and the control (saline) injection, indicating a metabolic response to adverse stimuli but not the immune challenge. Toads showing higher RMR and VO2 after the adverse stimuli (PHA/saline injection) had lower field AN and CORT plasma levels, suggesting these hormones might mediate a metabolic energy conservation strategy both at baseline levels and after adverse stimuli. Parasite load seem to impose an energetic constrain to the metabolic response to PHA and saline injection. Also, individuals showing higher PHA swelling response had higher field CORT plasma levels (particularly when males are breeding) which opposes the idea of a possible trade-off between reproductive activity and other physiological traits and indicate the immunoenhancing effects CORT elevated at physiological levels. BKA did not show a seasonal variation or correlation with body condition nor hormone levels, indicating that the immune surveillance mediated by the complement remains constant despite other ecological and physiological changes.
Collapse
Affiliation(s)
- Carla B Madelaire
- Biodiversity and Conservation Genetics, San Diego Zoo Wildlife Alliance, Escondido, CA, 92027, United States.
| | - Fernando R Gomes
- University of São Paulo, Institute of Biosciences, Trav. 14 da Rua do Matão, 321, São Paulo, SP, 05508-090, Brazil.
| |
Collapse
|
8
|
Ruthsatz K, Eterovick PC, Bartels F, Mausbach J. Contributions of water-borne corticosterone as one non-invasive biomarker in assessing nitrate pollution stress in tadpoles of Rana temporaria. Gen Comp Endocrinol 2023; 331:114164. [PMID: 36400158 DOI: 10.1016/j.ygcen.2022.114164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 10/24/2022] [Accepted: 11/02/2022] [Indexed: 11/17/2022]
Abstract
Among a multitude of stressors to which wildlife is exposed, environmental pollution is a pervasive one that poses a serious threat. The permeable skin of amphibians is likely to increase direct contact of the body with pollutants, making them a group worth studying to access environmental quality. Consequently, finding reliable and complementary biomarkers that will present detectable and predictable changes in response to pollutants is essential to identify pollution sublethal effects on amphibians and to investigate whether these are in part responsible for population declines. The glucocorticoid hormone corticosterone (CORT), involved in many metabolic functions, is often used to measure the physiological stress response to environmental stressors in amphibians. In this study, we evaluated whether water-borne CORT can serve as a non-invasive biomarker for nitrate pollution stress in the European common frog (Rana temporaria) by comparing the effect of nitrate exposure on hormone release rates and on other physiological downstream biomarkers, i.e., ultimate physiological effects of the stressor. Specifically, we investigated the effect of different nitrate concentrations (0, 10, 50, and 100 mg/L) on water-borne CORT release rates, age, size, and body condition. Exposure to nitrate pollution significantly increased age at metamorphosis and water-borne CORT release rates, and led to reduced mass and body condition, but only at higher nitrate concentrations (i.e., 50 and 100 mg/L). Considering this similar sensitivity to other acknowledged biomarkers, water-borne CORT was a reliable biomarker of physiological stress in R. temporaria exposed to nitrate pollution stress in a controlled single-stressor laboratory approach. Thus, water-borne CORT is a promising method to be included in more holistic approaches. We recommend that such approaches keep testing multiple biomarker combinations, as species are exposed to several stressors likely to interact and produce varied outcomes in different biomarkers in their natural habitats.
Collapse
Affiliation(s)
- Katharina Ruthsatz
- Zoological Institute, Technische Universität Braunschweig, Mendelssohnstraße 4, 38106 Braunschweig, Germany.
| | - Paula C Eterovick
- Zoological Institute, Technische Universität Braunschweig, Mendelssohnstraße 4, 38106 Braunschweig, Germany
| | - Fabian Bartels
- Zoological Institute, Technische Universität Braunschweig, Mendelssohnstraße 4, 38106 Braunschweig, Germany
| | - Jelena Mausbach
- Eawag & ETH Zurich,Überlandstrasse 133, 8600 Dübendorf, Switzerland
| |
Collapse
|
9
|
Assis VR, Titon SCM, Titon B, Gomes FR. The Impacts of Transdermal Application of Corticosterone on Toad (Rhinella icterica) Immunity. Integr Comp Biol 2022; 62:1640-1653. [PMID: 35902322 DOI: 10.1093/icb/icac130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 07/23/2022] [Accepted: 07/24/2022] [Indexed: 01/05/2023] Open
Abstract
Recent studies have shown that acute physiological increases in endogenous glucocorticoid levels have immunostimulatory effects. Although post-acute stress immunosuppressive effects have also been described, the difference between enhancing and suppressing the immune response seems mediated by the stressor's duration, intensity, and the immune component under analysis. To elicit physiologically relevant corticosterone levels that can be found in Rhinella icterica toads after stressful events (e.g., restraint or captivity) and understand how acute increased glucocorticoid levels of different intensities affect corticosterone and testosterone plasma levels and immune parameters (in vitro plasma bacterial killing ability, neutrophil-to-lymphocyte ratio, and in vivo phagocytosis of peritoneal leukocytes), we submitted toads to the transdermal application of two corticosterone doses (1 and 10 μg). Corticosterone transdermal application increased corticosterone plasma levels with different intensities: 3 times for 1 μg and fourteen times for 10 μg, compared to the vehicle, and the neutrophil-to-lymphocyte ratio increased regardless of the corticosterone dose. However, there was no effect on testosterone levels and bacterial killing ability. Interestingly, both corticosterone doses promoted immunosuppression, decreasing peritoneal leukocytes' phagocytosis activity by 60% for toads receiving the dose of 1µg and 40% for those receiving 10 μg. Our results show the complexity of the relationship between increased corticosterone levels and immunomodulation. The different corticosterone doses promoted increases of distinct magnitudes in corticosterone plasma levels, with the less intense increase in corticosterone levels generating greater cell-mediated immunosuppression. Future studies using different corticosterone doses to achieve and compare physiological vs. pharmacological hormone levels are imperative to understanding these interrelationships between corticosterone and immune response.
Collapse
Affiliation(s)
- Vania Regina Assis
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, trav. 14, 101, São Paulo, SP 05508-090, Brazil
| | - Stefanny Christie Monteiro Titon
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, trav. 14, 101, São Paulo, SP 05508-090, Brazil
| | - Braz Titon
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, trav. 14, 101, São Paulo, SP 05508-090, Brazil
| | - Fernando Ribeiro Gomes
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, trav. 14, 101, São Paulo, SP 05508-090, Brazil
| |
Collapse
|
10
|
McClelland SJ, Woodley SK. Developmental Exposure to Trace Concentrations of Chlorpyrifos Results in Nonmonotonic Changes in Brain Shape and Behavior in Amphibians. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:9379-9386. [PMID: 35704902 DOI: 10.1021/acs.est.2c01039] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Despite regulations and improved design, pesticides remain ubiquitous in the environment at relatively low, trace concentrations. To understand how prolonged exposure to trace pesticide concentrations impacts vertebrate brain development and behavior, we raised larval amphibians (northern leopard frogs, Lithobates pipiens) in 0, 1, or 10 μg/L of the organophosphorus pesticide chlorpyrifos (CPF) from hatching to metamorphosis. Tadpoles exposed to 1 μg/L CPF, but not 10 μg/L CPF, had changes in relative brain mass, relative telencephalon shape, and behavioral responses to a novel visual cue. Tadpoles exposed to 10 μg/L CPF had altered behavioral responses to predator-associated olfactory cues. After metamorphosis, frogs raised in 1 μg/L CPF, but not 10 μg/L CPF, had changes in the shape of their optic tectum and medulla. Thus, we provide robust evidence that even trace, yet ecologically realistic, concentrations of CPF have neurodevelopmental and behavioral effects that carry over to later life-history stages, further emphasizing the potent effects of trace levels of CPF on vertebrate development. Also, some but not all effects were nonmonotonic, meaning that effects were evident at the lowest but not at the higher concentration of CPF.
Collapse
Affiliation(s)
- Sara J McClelland
- Duquesne University, Pittsburgh, Pennsylvania 15217, United States
- Moravian University, Bethlehem, Pennsylvania 18018, United States
| | - Sarah K Woodley
- Duquesne University, Pittsburgh, Pennsylvania 15217, United States
| |
Collapse
|
11
|
Bryant AR, Gabor CR, Swartz LK, Wagner R, Cochrane MM, Lowe WH. Differences in Corticosterone Release Rates of Larval Spring Salamanders ( Gyrinophilus porphyriticus) in Response to Native Fish Presence. BIOLOGY 2022; 11:484. [PMID: 35453684 PMCID: PMC9030379 DOI: 10.3390/biology11040484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/11/2022] [Accepted: 03/17/2022] [Indexed: 11/16/2022]
Abstract
Invasive fish predators are an important factor causing amphibian declines and may have direct and indirect effects on amphibian survival. For example, early non-lethal exposure to these stressors may reduce survival in later life stages, especially in biphasic species. In amphibians, the glucocorticoid hormone corticosterone is released by the hypothalamo-pituitary-interrenal axis (HPI), as an adaptive physiological response to environmental stressors. The corticosterone response (baseline and response to acute stressors) is highly flexible and context dependent, and this variation can allow individuals to alter their phenotype and behavior with environmental changes, ultimately increasing survival. We sampled larvae of the spring salamander (Gyrinophilus porphyriticus) from two streams that each contained predatory brook trout (Slavelinus fontinalis) in the lower reaches and no predatory brook trout in the upper reaches. We measured baseline and stress-induced corticosterone release rates of larvae from the lower and upper reaches using a non-invasive water-borne hormone assay. We hypothesized that corticosterone release rates would differ between larvae from fish-present reaches and larvae from fish-free reaches. We found that baseline and stressor-induced corticosterone release rates were downregulated in larvae from reaches with fish predators. These results indicate that individuals from reaches with predatory trout are responding to fish predators by downregulating corticosterone while maintaining an active HPI axis. This may allow larvae more time to grow before metamorphosing, while also allowing them to physiologically respond to novel stressors. However, prolonged downregulation of corticosterone release rates can impact growth in post-metamorphic individuals.
Collapse
Affiliation(s)
- Amanda R. Bryant
- Department of Biology, Texas State University, San Marcos, TX 78666, USA;
| | - Caitlin R. Gabor
- Department of Biology, Texas State University, San Marcos, TX 78666, USA;
| | | | - Ryan Wagner
- School of Environment and Natural Resources, The Ohio State University Columbus, Columbus, OH 43210, USA;
| | - Madaline M. Cochrane
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA; (M.M.C.); (W.H.L.)
| | - Winsor H. Lowe
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA; (M.M.C.); (W.H.L.)
| |
Collapse
|
12
|
C de Figueiredo A, A K Nogueira L, C M Titon S, R Gomes F, E de Carvalho J. Immune and hormonal regulation of the Boa constrictor (Serpentes; Boidae) in response to feeding. Comp Biochem Physiol A Mol Integr Physiol 2021; 264:111119. [PMID: 34793953 DOI: 10.1016/j.cbpa.2021.111119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/09/2021] [Accepted: 11/11/2021] [Indexed: 11/17/2022]
Abstract
Feeding upregulates immune function and the systemic and local (gastrointestinal tract) concentrations of some immunoregulatory hormones, as corticosterone (CORT) and melatonin (MEL), in mammals and anurans. However, little is known about the immune and hormonal regulation in response to feeding in other ectothermic vertebrates, especially snakes, in which the postprandial metabolic changes are pronounced. Here, we investigated the effects feeding have on hormonal and innate immune responses in the snake, Boa constrictor. We divided juvenile males into two groups: fasting and fed with mice (30% of body mass). We measured the rates of oxygen consumption, plasma CORT levels, heterophil/lymphocyte ratio (HL ratio), plasma bacterial killing ability (BKA), and stomach and intestine MEL in fasting snakes and 48 h after meal intake. We observed increased rates of oxygen consumption, plasma CORT levels, and HL ratio, along with a tendency of decreased stomach and intestine MEL in fed snakes compared to fasting ones. BKA was not affected by feeding. Overall, we found that feeding modulates metabolic rates, CORT levels, and immune cell distribution in boas. Increased baseline CORT may be important to mobilize energy to support the metabolic increment during the postprandial period. Increased HL ratio might be an immunoregulatory effect of increased CORT, which has been shown in different physiological situations such as in response to immune challenge. Our results suggest that feeding activates the hypothalamic-pituitary-adrenal axis and modulates immune cell redistribution, possibly contributing to fighting potential injuries and infections derived from predation and from pathogens present in ingested food.
Collapse
Affiliation(s)
- Aymam C de Figueiredo
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, Rua do Matão - Travessa 14 - N 101, Cidade Universitária, CEP 05508-900, São Paulo, SP, Brazil.
| | - Letícia A K Nogueira
- Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, Campus Diadema, CEP 09972-270, Diadema, SP, Brazil
| | - Stefanny C M Titon
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, Rua do Matão - Travessa 14 - N 101, Cidade Universitária, CEP 05508-900, São Paulo, SP, Brazil
| | - Fernando R Gomes
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, Rua do Matão - Travessa 14 - N 101, Cidade Universitária, CEP 05508-900, São Paulo, SP, Brazil
| | - José E de Carvalho
- Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, Campus Diadema, CEP 09972-270, Diadema, SP, Brazil
| |
Collapse
|
13
|
de Figueiredo AC, Titon SCM, Cyrino JC, Nogueira LAK, Gomes FR. Immune and hormonal modulation in the postprandial period of bullfrogs (Lithobates catesbeianus). J Exp Biol 2021; 224:272629. [PMID: 34704595 DOI: 10.1242/jeb.243153] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 10/25/2021] [Indexed: 11/20/2022]
Abstract
Mammals show immune up-regulation and increased plasma and local (gastrointestinal tract) concentrations of some immunoregulatory hormones, such as corticosterone and melatonin, after feeding. However, little is known about the endocrine and immune modulation in the postprandial period of ectothermic animals. This study investigated the effects of feeding on endocrine and immune responses in the bullfrog (Lithobates catesbeianus). Frogs were fasted for 10 days and divided into two groups: fasted and fed with fish feed (5% of body mass). Blood and gastrointestinal tract tissues (stomach and intestine) were collected at 6, 24, 48, 96 and 168 h to measure neutrophil/lymphocyte ratio, plasma bacterial killing ability, phagocytosis of blood leukocytes, plasma corticosterone and melatonin, and stomach and intestine melatonin. Feeding increased plasma corticosterone at 24 h and decreased it at 168 h, and increased neutrophil/lymphocyte ratio at 6, 24 and 96 h. We also observed decreased bacterial killing ability 48 h after feeding. Stomach melatonin increased after 17 days of fasting. We show that feeding activates the hypothalamic-pituitary-interrenal axis and promotes transient immunosuppression, without stimulating an inflammatory response. Increased corticosterone may mobilize energy to support digestive processes and melatonin may protect the stomach during fasting. We conclude that feeding modulates secretion of immunoregulatory hormones, initially increasing plasma corticosterone levels, followed by a decrease at the end of meal digestion, and causes systemic immune cell redistribution, increasing neutrophil/lymphocyte ratio for almost the entire period of meal digestion in bullfrogs. Also, fasting modulates secretion of melatonin in the stomach.
Collapse
Affiliation(s)
- Aymam C de Figueiredo
- Department of Physiology, Institute of Biosciences, Universidade de São Paulo, São Paulo, Rua do Matão - Travessa 14 - N 101, Cidade Universitária - CEP 05508-900, São Paulo, SP, Brazil
| | - Stefanny C M Titon
- Department of Physiology, Institute of Biosciences, Universidade de São Paulo, São Paulo, Rua do Matão - Travessa 14 - N 101, Cidade Universitária - CEP 05508-900, São Paulo, SP, Brazil
| | - João C Cyrino
- Department of Physiology, Institute of Biosciences, Universidade de São Paulo, São Paulo, Rua do Matão - Travessa 14 - N 101, Cidade Universitária - CEP 05508-900, São Paulo, SP, Brazil
| | - Letícia A K Nogueira
- Institute of Environmental, Chemical, and Pharmaceutical Sciences, Universidade Federal de São Paulo, Campus Diadema- CEP 09972-270, Diadema, Brazil
| | - Fernando R Gomes
- Department of Physiology, Institute of Biosciences, Universidade de São Paulo, São Paulo, Rua do Matão - Travessa 14 - N 101, Cidade Universitária - CEP 05508-900, São Paulo, SP, Brazil
| |
Collapse
|
14
|
MacLeod KJ, Langkilde T, Heppner JJ, Howey CAF, Sprayberry K, Tylan C, Sheriff MJ. Compensating for a stressful pregnancy? Glucocorticoid treatment during gravidity reduces metabolic rate in female fence lizards post-parturition. Horm Behav 2021; 136:105072. [PMID: 34628291 DOI: 10.1016/j.yhbeh.2021.105072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 07/26/2021] [Accepted: 09/23/2021] [Indexed: 11/23/2022]
Abstract
Reproduction is a critical part of an animal's life history, but one which incurs significant costs to survival and future reproductive potential. These physiological consequences are likely to be influenced by context - for example, if an individual is subject to environmental stressors, physiological and behavioral changes associated with reproduction may be altered. Glucocorticoids, hormones produced as part of the physiological response to stressors, may alter how reproduction affects female physiology and behavior, and therefore the outcomes of reproductive trade-offs. Glucocorticoids prioritize immediate survival over reproduction, for example through changes in immune function, metabolic rate, and foraging, which may reduce energy expenditure or increase energy gain. However, we previously found that female eastern fence lizards (Sceloporus undulatus) experiencing elevated glucocorticoid levels during gestation were nevertheless able to maintain reproductive output and body condition. Here we investigate compensatory mechanisms by which eastern fence lizard females may maintain reproduction under experimental increases in a glucocorticoid, corticosterone (CORT). We found that, although CORT-treated females had similar immune function and behavior, they had reduced metabolic rates 3-5 days post-parturition compared to control females. Given that CORT-treated females spent a similar time basking and had equal food intake compared to control females, we suggest that the reduced metabolic rate is a mechanism by which CORT-treated females maintain their energy balance and reduce the energetic costs of gestation during periods of stress. This study suggests that physiological responses to reproduction may be context-dependent and could act to minimize costs of reproduction in situations where CORT is elevated (such as during periods of environmental stress).
Collapse
Affiliation(s)
- K J MacLeod
- Department of Ecosystem Science and Management, Pennsylvania State University, Forest Resources Building, University Park, PA 16802, USA; Department of Biology, Pennsylvania State University, Mueller Laboratory, University Park, PA 16802, USA; Department of Biology, Lund University, Sölvegatan 37, Lund 223 62, Sweden.
| | - T Langkilde
- Department of Biology, Pennsylvania State University, Mueller Laboratory, University Park, PA 16802, USA
| | - J J Heppner
- Department of Ecosystem Science and Management, Pennsylvania State University, Forest Resources Building, University Park, PA 16802, USA; Department of Biology, University of Nevada, Reno, Reno, NV 89557, USA
| | - C A F Howey
- Department of Biology, Pennsylvania State University, Mueller Laboratory, University Park, PA 16802, USA; Department of Biology, University of Scranton, Loyola Science Center, Scranton, PA 18510, USA
| | - K Sprayberry
- Department of Biology, Pennsylvania State University, Mueller Laboratory, University Park, PA 16802, USA
| | - C Tylan
- Department of Biology, Pennsylvania State University, Mueller Laboratory, University Park, PA 16802, USA
| | - M J Sheriff
- Department of Ecosystem Science and Management, Pennsylvania State University, Forest Resources Building, University Park, PA 16802, USA; Biology Department, University of Massachusetts Dartmouth, Dartmouth, MA 02747, USA
| |
Collapse
|
15
|
Combined Effects of Experimentally Elevated CORT and Predation Threat on Exploratory and Foraging Behavior of Desmognathus ochrophaeus. J HERPETOL 2021. [DOI: 10.1670/20-077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
16
|
Ashley EA, Davis AK, Terrell VK, Lake C, Carden C, Head L, Choe R, Maerz JC. Effects of Salinity on Hatchling Diamond-Backed Terrapin ( Malaclemys terrapin) Growth, Behavior, and Stress Physiology. HERPETOLOGICA 2021; 77:45-55. [PMID: 35356092 PMCID: PMC8963197 DOI: 10.1655/herpetologica-d-20-00028.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Diamond-backed Terrapins inhabit coastal salt marshes along the eastern and Gulf coasts of North America. Terrapins are adapted to intermediate salinities yet frequently face saltwater-inundated marsh habitat exceeding 25 ppt (or grams/kilogram). We investigated the effect of salinity on the growth of hatchling terrapins and on their compensatory responses to salinity stress. We randomly assigned 30 terrapin hatchlings each to one of five salinity treatments (1, 5, 10, 20, or 35 ppt). Over 75 d, we regularly monitored behavior, appetite, and changes in growth; and calculated ratios of heterophils to lymphocytes (H:L ratio) to assess responses to prolonged salinity stress. Consistent with prior studies, chronic exposure to high salinity significantly reduced hatchling growth. Hatchlings in 20-ppt and 35-ppt salinities exhibited appetite suppression and saltwater avoidance and were more likely to show freshwater-seeking behaviors. H:L ratios were higher among hatchlings in 20-and 35-ppt salinities, consistent with a corticosterone-driven stress response to sustained high-salinity exposure, which may play a role in limiting growth. Our findings suggest hatchling growth and distribution among local habitats will vary spatially depending on habitat salinity and freshwater accessibility. The growth-limiting effects of chronically high salinity or limited access to freshwater could therefore increase hatchling mortality and be an important driver of spatial variation in terrapin demography and abundance. However, when freshwater sources are available, compensatory behaviors might reduce growth-limiting effects. Terrapin recruitment is likely to be impacted as rising sea levels, increased human water use, land development, and other anthropogenic changes alter freshwater inputs to coastal marshes.
Collapse
Affiliation(s)
- Elizabeth A. Ashley
- Warnell School of Forestry and Natural Resources, University of Georgia, 180 East Green Street, Athens, GA 30602, USA
- Odum School of Ecology, University of Georgia, 140 East Green Street, Athens, GA 30602, USA
| | - Andrew K. Davis
- Odum School of Ecology, University of Georgia, 140 East Green Street, Athens, GA 30602, USA
| | - Vanessa K. Terrell
- Warnell School of Forestry and Natural Resources, University of Georgia, 180 East Green Street, Athens, GA 30602, USA
| | - Connor Lake
- Warnell School of Forestry and Natural Resources, University of Georgia, 180 East Green Street, Athens, GA 30602, USA
| | - Cady Carden
- Warnell School of Forestry and Natural Resources, University of Georgia, 180 East Green Street, Athens, GA 30602, USA
| | - Lauren Head
- Warnell School of Forestry and Natural Resources, University of Georgia, 180 East Green Street, Athens, GA 30602, USA
| | - Rebacca Choe
- Warnell School of Forestry and Natural Resources, University of Georgia, 180 East Green Street, Athens, GA 30602, USA
| | - John C. Maerz
- Warnell School of Forestry and Natural Resources, University of Georgia, 180 East Green Street, Athens, GA 30602, USA
| |
Collapse
|
17
|
Woodley SK, Staub NL. Pheromonal communication in urodelan amphibians. Cell Tissue Res 2021; 383:327-345. [PMID: 33427952 DOI: 10.1007/s00441-020-03408-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 12/15/2020] [Indexed: 01/24/2023]
Abstract
Pheromonal communication is an ancient and pervasive sensory modality in urodelan amphibians. One family of salamander pheromones (the sodefrin precursor-like factor (SPF) family) originated 300 million years ago, at the origin of amphibians. Although salamanders are often thought of as relatively simple animals especially when compared to mammals, the pheromonal systems are varied and complex with nuanced effects on behavior. Here, we review the function and evolution of pheromonal signals involved in male-female reproductive interactions. After describing common themes of salamander pheromonal communication, we describe what is known about the rich diversity of pheromonal communication in each salamander family. Several pheromones have been described, ranging from simple, invariant molecules to complex, variable blends of pheromones. While some pheromones elicit overt behavioral responses, others have more nuanced effects. Pheromonal signals have diversified within salamander lineages and have experienced rapid evolution. Once receptors have been matched to pheromonal ligands, rapid advance can be made to better understand the olfactory detection and processing of salamander pheromones. In particular, a large number of salamander species deliver pheromones across the skin of females, perhaps reflecting a novel mode of pheromonal communication. At the end of our review, we list some of the many intriguing unanswered questions. We hope that this review will inspire a new generation of scientists to pursue work in this rewarding field.
Collapse
Affiliation(s)
- Sarah K Woodley
- Department of Biological Sciences, Duquesne University, 600 Forbes Avenue, Pittsburgh, PA, 15282, USA.
| | - Nancy L Staub
- Biology Department, Gonzaga University, Spokane, WA, 99203, USA
| |
Collapse
|
18
|
Burns SM, Bonier F. A comparison of sex, morphology, physiology and behavior of black-capped chickadees trapped using two common capture methods. PeerJ 2020; 8:e10037. [PMID: 33024645 PMCID: PMC7518160 DOI: 10.7717/peerj.10037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 09/03/2020] [Indexed: 11/20/2022] Open
Abstract
Many biological studies require the capture of individuals for sampling, for example for measurement of morphological or physiological traits, or for marking individuals for later observations. Capture methods employed often vary both within and between studies, and these differing methods could be more or less effective in capture of different individuals based on their morphology or behavior. If individuals that are prone to capture by the selected method differ with respect to traits of interest, such sampling bias could generate misleading or simply inaccurate results. The selection of capture methods could introduce two different forms of sampling bias, with the individuals that are sampled differing from the population at large or with individuals sampled via one method differing from individuals that could be sampled using a different method. We investigated this latter form of sampling bias by comparing individual birds sampled using two common capture techniques. We caught free-ranging black-capped chickadees (Poecile atricapillus) using walk-in traps baited with seed and mist nets paired with playback of an audio stimulus (conspecific mobbing calls). We measured 18 traits that we expect might vary among birds that are trappable by these differing methods—one that targets birds that are food motivated and potentially less neophobic and another that targets birds that respond readily to a perceived predation risk. We found no differences in the sex, morphology, initial and stress-induced corticosterone concentrations, behavioral response to a novel object, or behavioral response to a predator between individuals captured by these two methods. Individual variation in the behavioral response to a novel object was greater among birds caught by mist nets, suggesting this method might provide a sample that better reflects population-level individual variation. We do not know if the birds caught by these two methods provide a representative sample of the population at large, but can conclude that selection of either of these two common capture methods can similarly sample mean trait values of a population of interest. To accurately assess individual variation, particularly in behavior, mist nets might be preferable.
Collapse
Affiliation(s)
- Sara M Burns
- Department of Biology, Queen's University, Kingston, ON, Canada
| | - Frances Bonier
- Department of Biology, Queen's University, Kingston, ON, Canada
| |
Collapse
|
19
|
Marvin G. Acute physiological response by the plethodontid salamander Eurycea cirrigera (Southern Two-lined Salamander) to predation stress from alarm chemicals and predator kairomones. CAN J ZOOL 2020. [DOI: 10.1139/cjz-2019-0203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Plethodontid salamanders may reduce predation risk via behavioral responses to predator kairomones and alarm chemicals from injured salamanders. However, it not known whether such predator cues prompt acute physiological responses, which may enhance arousal and the physical ability to escape from a predator. I examined whether predator chemical cues elicit an acute cardiac response in Eurycea cirrigera (Green, 1831) (Southern Two-lined Salamander). I compared heart rates before and after exposure to the odor of the large predatory Pseudotriton ruber (Sonnini de Manoncourt and Latreille, 1801) (Red Salamander) and exposure to alarm chemicals from homogenized skin of conspecifics. For two controls, I compared heart rates before and after exposure to the odor of live conspecifics and the odor of the large non-predatory Plethodon mississippi Highton in Highton, Maha and Maxson, 1989 (Mississippi Slimy Salamander). Compared with resting values, heart rates significantly increased in response to predator kairomones (mean rate increased 10.9% after 2 min and 12.7% after 5 min) and alarm chemicals from conspecifics (mean rate increased 12.0% after 2 min and 14.5% after 5 min). In contrast, heart rates after exposure to each control odor did not significantly differ from resting values. Results demonstrate an acute cardiac response to chemical cues indicative of either a predator or a predation event.
Collapse
Affiliation(s)
- G.A. Marvin
- Department of Biology, University of North Alabama, Box 5048, 1 Harrison Plaza, Florence, AL 35632-0002, USA
- Department of Biology, University of North Alabama, Box 5048, 1 Harrison Plaza, Florence, AL 35632-0002, USA
| |
Collapse
|
20
|
Lewis JL, Sullivan AM. Salamander stress and duress: the relationship between CORT, autotomy and regeneration, and exploratory behaviour. ZOOLOGY 2020; 139:125751. [PMID: 32070799 DOI: 10.1016/j.zool.2020.125751] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 01/20/2020] [Accepted: 01/22/2020] [Indexed: 01/23/2023]
Abstract
Responses to stress are generally mediated through the production of glucocorticoids by the hypothalamic-pituitary-adrenal (or -interrenal) axis. The prolonged production of stress hormones can contribute to delayed wound healing and growth, but little is known about their influence on regeneration following tail autotomy, or exploratory behaviour in autotomized individuals. Here we examined the relationship between stress, regeneration, and exploratory behaviour in Allegheny Mountain dusky salamanders (Desmognathus ochrophaeus) by manipulating corticosterone (CORT) levels via cutaneous patch. First, we measured tail regeneration in salamanders with elevated CORT for 13 weeks after the induction of tail autotomy. Test subjects received a weekly patch to wear for one hour that was saturated with either a low CORT (0.25 mg/ml) or high CORT (0.50 mg/ml) solution. Individuals receiving CORT patches regenerated significantly less of their tail length and volume (versus control), but without exhibiting dose-dependent effects. Second, we used a factorial design to evaluate the effects of autotomy and elevated CORT on exploration within a test arena consisting of low barriers arrayed in concentric rings. Individuals experiencing tail autotomy exhibited significantly less exploratory behaviour indicated by an increased latency to cross first barrier and a decreased number of barriers crossed. Neither elevated CORT (0.50 mg/ml), nor the interaction between elevated CORT and tail autotomy significantly affected salamander activity within the array. Although CORT did not have a direct effect on explorative behaviour, a delay in regeneration attributed to CORT could lead to changes in patterns of movement in autotomized individuals.
Collapse
Affiliation(s)
- Jacquelyn L Lewis
- Department of Biology, Houghton College, Houghton, NY 14744, USA; Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, USA.
| | - Aaron M Sullivan
- Department of Biology, Houghton College, Houghton, NY 14744, USA
| |
Collapse
|
21
|
Clay TA, Steffen MA, Treglia ML, Torres CD, Trujano-Alvarez AL, Bonett RM. Multiple stressors produce differential transcriptomic patterns in a stream-dwelling salamander. BMC Genomics 2019; 20:482. [PMID: 31185901 PMCID: PMC6560913 DOI: 10.1186/s12864-019-5814-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 05/20/2019] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Global biodiversity is decreasing at an alarming rate and amphibians are at the forefront of this crisis. Understanding the factors that negatively impact amphibian populations and effectively monitoring their health are fundamental to addressing this epidemic. Plasma glucocorticoids are often used to assess stress in amphibians and other vertebrates, but these hormones can be extremely dynamic and impractical to quantify in small organisms. Transcriptomic responses to stress hormones in amphibians have been largely limited to laboratory models, and there have been few studies on vertebrates that have evaluated the impact of multiple stressors on patterns of gene expression. Here we examined the gene expression patterns in tail tissues of stream-dwelling salamanders (Eurycea tynerensis) chronically exposed to the stress hormone corticosterone under different temperature regimes. RESULTS We found unique transcriptional signatures for chronic corticosterone exposure that were independent of temperature variation. Several of the corticosterone responsive genes are known to be involved in immune system response (LY-6E), oxidative stress (GSTM2 and TRX), and tissue repair (A2M and FX). We also found many genes to be influenced by temperature (CIRBP, HSC71, HSP40, HSP90, HSP70, ZNF593). Furthermore, the expression patterns of some genes (GSTM2, LY-6E, UMOD, ZNF593, CIRBP, HSP90) show interactive effects of temperature and corticosterone exposure, compared to each treatment alone. Through a series of experiments we also showed that stressor induced patterns of expression were largely consistent across ages, life cycle modes, and tissue regeneration. CONCLUSIONS Outside of thermal stressors, the application of transcriptomes to monitor the health of non-human vertebrate systems has been vastly underinvestigated. Our study suggests that transcriptomic patterns harbor stressor specific signatures that can be highly informative for monitoring the diverse stressors of amphibian populations.
Collapse
Affiliation(s)
- Timothy A Clay
- Department of Biological Science, University of Tulsa, Tulsa, OK, 74104, USA. .,Present Address: Department of Biological Sciences, Nicholls State University, Thibodaux, LA, 70310, USA.
| | - Michael A Steffen
- Department of Biological Science, University of Tulsa, Tulsa, OK, 74104, USA.,Present Address: Department of Biological Sciences, University of New Hampshire, Durham, NH, 03824, USA
| | - Michael L Treglia
- Department of Biological Science, University of Tulsa, Tulsa, OK, 74104, USA.,Present Address: The Nature Conservancy, New York, NY, 10001, USA
| | - Carolyn D Torres
- Department of Biological Science, University of Tulsa, Tulsa, OK, 74104, USA
| | | | - Ronald M Bonett
- Department of Biological Science, University of Tulsa, Tulsa, OK, 74104, USA.
| |
Collapse
|
22
|
Payette W, Sullivan A. The effect of predator kairomones on caudal regeneration by Allegheny Mountain Dusky Salamanders (Desmognathus ochrophaeus). CAN J ZOOL 2019. [DOI: 10.1139/cjz-2018-0225] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Many prey use autotomy as an antipredator mechanism. Rapid regeneration of autotomized appendages is beneficial because forfeited tissues may serve as organs for energy storage, accessories for locomotion, or indicators of social status. We monitored levels of caudal regeneration by Allegheny Mountain Dusky Salamanders (Desmognathus ochrophaeus Cope, 1859) exposed to kairomones from predatory Eastern Garter Snakes (Thamnophis sirtalis (Linnaeus, 1758)). After the induction of autotomy, salamanders were exposed to one of three treatment regimens: blank (water), or acute (30 min per week) or chronic (constant) exposure to predator kairomones during a 12-week study period. Overall, the mean volume of regenerated tissue, as a percentage of the original tail volume, was highest for individuals exposed to the blank versus predator kairomones. When the combined effects of time elapsed since the induction of caudal autotomy and the different treatment regimens were considered, we found that the mean volume of regenerated tissue was significantly greater for control salamanders beginning 8 weeks after autotomy. The mechanism contributing to the differential rates of regeneration among individuals in our treatment groups is unknown, but previous work suggests that elevated stress related to predation threat can have detrimental effects on wound healing and growth in amphibians.
Collapse
Affiliation(s)
- W.I. Payette
- Department of Biology, Houghton College, Houghton, NY 14744, USA
| | - A.M. Sullivan
- Department of Biology, Houghton College, Houghton, NY 14744, USA
- Department of Biology, Houghton College, Houghton, NY 14744, USA
| |
Collapse
|
23
|
Assis VR, Titon SCM, Gomes FR. Acute stress, steroid plasma levels, and innate immunity in Brazilian toads. Gen Comp Endocrinol 2019; 273:86-97. [PMID: 29750968 DOI: 10.1016/j.ygcen.2018.05.008] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 04/20/2018] [Accepted: 05/07/2018] [Indexed: 10/17/2022]
Abstract
Stress from habitat fragmentation has been shown to impact amphibian declines. Studies from a variety of vertebrates indicate that stressed animals exhibit an acute increase in circulating plasma glucocorticoid (GC) levels and consequent immunomodulation. To further explore the relationship between GCs and immunity, we subjected three species of newly captured Brazilian toads, Rhinella ornata, R. icterica and R. schneideri to restraint with or without movement restriction (maintenance in a moistened cloth bag vs. maintenance in a bin) for 24 h. We compared various parameters from baseline (field conditions) with values after restraint, including those associated with stress (corticosterone [CORT] plasma levels), and the neutrophil/lymphocyte ratio [N:L ratio]), potential reproduction (testosterone [T] plasma levels), and innate immunity (bacterial killing ability [BKA]). General responses to the restraint challenge (baseline vs. restraint) included increased CORT levels and N:L ratio, and decreased T levels and BKA. Additionally, CORT levels and N:L ratio tended to increase more from restraint with movement restriction than to restraint without movement restriction, indicating toads showed increased stress response to the more intense stressor. All variables showed interspecific variation at baseline conditions: R. ornata had higher CORT levels when compared to the other two species, while R. icterica had the highest BKA values. After restraint (with or without movement restriction), R. ornata displayed higher values for T and N:L ratio, and showed higher CORT values after restraint without movement restriction; however, the CORT values were similar among species after restraint with movement restriction. In terms of immunity, in response to restraint, BKA was different among species only after restraint with movement restriction, with R. schneideri showing the lowest BKA values. Our results show that restraint increases common markers of the stress response, and could reduce potential reproduction and innate immune responses in toads from all studied species. Our results also showed variation at the interspecific level, with the amplitude of change in the studied variables being consistent and more pronounced following restraint with movement restriction for the three-studied species.
Collapse
Affiliation(s)
- Vania Regina Assis
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, trav. 14, 101, 05508-900, São Paulo, SP, Brazil.
| | - Stefanny Christie Monteiro Titon
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, trav. 14, 101, 05508-900, São Paulo, SP, Brazil
| | - Fernando Ribeiro Gomes
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, trav. 14, 101, 05508-900, São Paulo, SP, Brazil
| |
Collapse
|
24
|
Nagel AH, Beshel M, DeChant CJ, Huskisson SM, Campbell MK, Stoops MA. Non-invasive methods to measure inter-renal function in aquatic salamanders-correlating fecal corticosterone to the environmental and physiologic conditions of captive Necturus. CONSERVATION PHYSIOLOGY 2019; 7:coz074. [PMID: 31737273 PMCID: PMC6845813 DOI: 10.1093/conphys/coz074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 08/14/2019] [Accepted: 08/23/2019] [Indexed: 05/08/2023]
Abstract
This study sought to develop non-invasive techniques to monitor glucocorticoids in captive Necturus as a means to correlate inter-renal gland function in relation to environmental and physiological changes. Six individually housed breeding pairs of captive Necturus beyeri were subjected to seasonal changes in water temperature (30°F temperature differential) to stimulate natural breeding, specifically spermatophore deposition and oviposition. An enzyme immunoassay was validated for the measurement of N. beyeri faecal corticosterone metabolites (fCMs) by exhibiting parallelism and accuracy to the standard curve. Longitudinal (December 2016-October 2017) assessment of fCM concentrations and pattern of excretion from samples collected from the six breeding pairs revealed a seasonal inter-renal effect with higher concentrations (P < 0.05) excreted during months (December-March) of the year associated with breeding activity and when water temperatures were lowest. Males from each pair produced spermatophores starting on 08 December 8 2016 and ending on 05 April 2017. Females from four of the six pairs went on to successfully oviposit eggs in mid-late April 2017. One clutch was fertile, and three were non-fertile. No differences (P > 0.05) were detected in fCM concentrations between pairs in which oviposition did or did not occur. In addition, a novel waterborne corticosterone metabolite (wCM) assay was validated to overcome challenges associated with faecal collection in a group-housed amphibian. An adrenocorticotropic hormone (ACTH) challenge performed in an adult male Necturus maculosus resulted in a 50-fold increase in wCM at 4 h post-injection and marked the first demonstration of a waterborne inter-renal response to ACTH in Necturus. This study not only provides insight into inter-renal function in an aquatic salamander that exhibits marked reproductive seasonality but also confirms utility of fCM and wCM measurements as non-invasive means of assessment.
Collapse
Affiliation(s)
- Andrew H Nagel
- Center for Conservation and Research of Endangered Wildlife, Cincinnati Zoo & Botanical Garden, 3400 Vine Street, Cincinnati, OH 45220, USA
| | - Mark Beshel
- Jacksonville Zoo and Gardens, 370 Zoo Parkway, Jacksonville, FL 32218, USA
| | | | - Sarah M Huskisson
- Center for Conservation and Research of Endangered Wildlife, Cincinnati Zoo & Botanical Garden, 3400 Vine Street, Cincinnati, OH 45220, USA
| | - Mark K Campbell
- Center for Conservation and Research of Endangered Wildlife, Cincinnati Zoo & Botanical Garden, 3400 Vine Street, Cincinnati, OH 45220, USA
| | - Monica A Stoops
- Center for Conservation and Research of Endangered Wildlife, Cincinnati Zoo & Botanical Garden, 3400 Vine Street, Cincinnati, OH 45220, USA
- Omaha’s Henry Doorly Zoo and Aquarium, 3701 South 10th Street, Omaha, NE 68107, USA
- Corresponding author: Omaha’s Henry Doorly Zoo and Aquarium, 3701 South 10th Street, Omaha, NE 68107, USA. Tel: 402-557-6927.
| |
Collapse
|
25
|
Touzot M, Teulier L, Lengagne T, Secondi J, Théry M, Libourel PA, Guillard L, Mondy N. Artificial light at night disturbs the activity and energy allocation of the common toad during the breeding period. CONSERVATION PHYSIOLOGY 2019; 7:coz002. [PMID: 30746151 PMCID: PMC6364289 DOI: 10.1093/conphys/coz002] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 12/17/2018] [Accepted: 01/15/2019] [Indexed: 05/15/2023]
Abstract
The presence of artificial light at night (ALAN) is currently a global phenomenon. By altering the photoperiod, ALAN may directly affect the physiology and behaviour of many organisms, such as the timing of daily rhythms, hormonal regulation, food intake, metabolism, migration and reproduction. Surprisingly while it is known that ALAN exposure strongly influences health of humans and laboratory animals, studies on wildlife remain scarce. Amphibians are one of the most nocturnal groups of vertebrates and exhibit an unfavourable conservation status in most parts of the world. In order to gain insight into the consequences of ALAN, we experimentally exposed 36 adult breeding male common toads, Bufo bufo, to a light intensity of 0.1, 5 or 20 lux for 20 days, to investigate the activity using infrared cameras and the whole-body oxygen consumption by respirometry, as well as body mass and food intake. ALAN reduced toad activity over 24 h by 56% at 5 lux and by 73% at 20 lux. It did not affect the total energy expenditure but altered energy allocation. Indeed, standard energy expenditure increased by 28% at 5 lux and by 58% at 20 lux, while activity energy expenditure decreased by 18% at 5 lux and 38% at 20 lux. Finally, body mass and food intake were not affected. This study suggests that ALAN plays a large role in the activity and energy metabolism of common toads, which may have a long-term negative effect on the fitness of common toad populations. Generalizing these results to other taxa is crucial for conservation of biodiversity in an increasingly light world.
Collapse
Affiliation(s)
- Morgane Touzot
- University of Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR5023 LEHNA, Villeurbanne, France
- Corresponding author:
| | - Loïc Teulier
- University of Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR5023 LEHNA, Villeurbanne, France
| | - Thierry Lengagne
- University of Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR5023 LEHNA, Villeurbanne, France
| | - Jean Secondi
- University of Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR5023 LEHNA, Villeurbanne, France
| | - Marc Théry
- Centre National de la Recherche Scientifique, Muséum National d’Histoire Naturelle (MNHN), UMR 7179, Brunoy, France
| | - Paul-Antoine Libourel
- Centre de Recherche en Neurosciences de Lyon (CRNL)—CNRS UMR 5292, Faculté de Médecine Laennec, Lyon Cedex, France
| | - Ludovic Guillard
- University of Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR5023 LEHNA, Villeurbanne, France
| | - Nathalie Mondy
- University of Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR5023 LEHNA, Villeurbanne, France
| |
Collapse
|
26
|
Jessop TS, Webb J, Dempster T, Feit B, Letnic M. Interactions between corticosterone phenotype, environmental stressor pervasiveness and irruptive movement-related survival in the cane toad. J Exp Biol 2018; 221:jeb.187930. [PMID: 30352824 DOI: 10.1242/jeb.187930] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Accepted: 10/19/2018] [Indexed: 11/20/2022]
Abstract
Animals use irruptive movement to avoid exposure to stochastic and pervasive environmental stressors that impact fitness. Beneficial irruptive movements transfer individuals from high-stress areas (conferring low fitness) to alternative localities that may improve survival or reproduction. However, being stochastic, environmental stressors can limit an animal's preparatory capacity to enhance irruptive movement performance. Thus individuals must rely on pre-existing, or rapidly induced, physiological and behavioural responses. Rapid elevation of glucocorticoid hormones in response to environmental stressors are widely implicated in adjusting physiological and behaviour processes that could influence irruptive movement capacity. However, there remains little direct evidence demonstrating that corticosterone-regulated movement performance or interaction with pervasiveness of environmental stress, confers adaptive movement outcomes. Here, we compared how movement-related survival of cane toads (Rhinella marina) varied with three different experimental corticosterone phenotypes across four increments of increasing environmental stressor pervasiveness (i.e. distance from water in a semi-arid landscape). Our results indicated that toads with phenotypically increased corticosterone levels attained higher movement-related survival compared with individuals with control or lowered corticosterone phenotypes. However, the effects of corticosterone phenotypes on movement-related survival to some extent co-varied with stressor pervasiveness. Thus, our study demonstrates how the interplay between an individual's corticosterone phenotype and movement capacity alongside the arising costs of movement and the pervasiveness of the environmental stressor can affect survival outcomes.
Collapse
Affiliation(s)
- Tim S Jessop
- Centre for Integrative Ecology, Deakin University, Victoria, 3220, Australia
| | - Jonathan Webb
- School of the Environment, University of Technology Sydney, NSW 2007, Australia
| | - Tim Dempster
- School of Biosciences, University of Melbourne, Victoria, 3010, Australia
| | - Benjamin Feit
- Department of Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden.,School of Biological, Earth and Environmental Sciences, University of New South Wales, NSW 2052, Australia
| | - Mike Letnic
- School of Biological, Earth and Environmental Sciences, University of New South Wales, NSW 2052, Australia
| |
Collapse
|
27
|
Brischoux F, Lourdais O, Boissinot A, Angelier F. Influence of temperature, size and confinement on testosterone and corticosterone levels in breeding male spined toads (Bufo spinosus). Gen Comp Endocrinol 2018; 269:75-80. [PMID: 30125573 DOI: 10.1016/j.ygcen.2018.08.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 08/09/2018] [Accepted: 08/16/2018] [Indexed: 11/28/2022]
Abstract
Winter breeding amphibians opportunistically engage in reproductive behaviour when environmental conditions become favourable. In such explosive breeding systems, males strongly compete for reproductive females. Although most research has been oriented on species in which males use mating calls to attract females, many high-density explosive breeding amphibians do not rely on mating calls. In such systems, larger and stronger males are thought to have significant advantages to access reproductive females. Testosterone (T) is expected to increase with the physical attributes that facilitate access to females, while increased corticosterone levels (CORT) are needed to sustain the energetic requirements associated with mating behaviour. In this study, we investigated how environmental temperature, and body size influence testosterone and corticosterone in males of an explosive winter-breeding species with low investment in mating call, the spined toad (Bufo spinosus). We found that both baseline CORT and T were positively correlated with environmental temperature. Interestingly, despite a remarkable range of variation in CORT and T, there was no evidence that either hormone was correlated with body size. Finally, we found no effect of confinement (13 h of captivity) on circulating CORT and T levels. This suggests that breeding male toads may be relatively insensitive to stress in order to maintain reproductive effort during their short mating period. Future studies should investigate both the influence of the phenology of breeding and the social interactions on these hormonal levels.
Collapse
Affiliation(s)
- François Brischoux
- Centre d'Etudes Biologiques de Chizé, CEBC-CNRS, UMR 7372, 79360 Villiers en Bois, France.
| | - Olivier Lourdais
- Centre d'Etudes Biologiques de Chizé, CEBC-CNRS, UMR 7372, 79360 Villiers en Bois, France
| | - Alexandre Boissinot
- Centre d'Etudes Biologiques de Chizé, CEBC-CNRS, UMR 7372, 79360 Villiers en Bois, France
| | - Frédéric Angelier
- Centre d'Etudes Biologiques de Chizé, CEBC-CNRS, UMR 7372, 79360 Villiers en Bois, France
| |
Collapse
|
28
|
Gastón MS, Pereyra LC, Vaira M. Artificial light at night and captivity induces differential effects on leukocyte profile, body condition, and erythrocyte size of a diurnal toad. JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2018; 331:93-102. [PMID: 30320969 DOI: 10.1002/jez.2240] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 09/11/2018] [Accepted: 09/19/2018] [Indexed: 01/27/2023]
Abstract
Light pollution or artificial lighting at night (ALAN) is an emerging threat to biodiversity that can disrupt physiological processes and behaviors. Because ALAN stressful effects are little studied in diurnal amphibian species, we investigated if chronic ALAN exposure affects the leukocyte profile, body condition, and blood cell sizes of a diurnal toad. We hand-captured male toads of Melanophryniscus rubriventris in Angosto de Jaire (Jujuy, Argentina). We prepared blood smears from three groups of toads: "field" (toads processed in the field immediately after capture), "natural light" (toads kept in the laboratory under captivity with natural photoperiod), and "constant light" (toads kept in the laboratory under captivity with constant photoperiod/ALAN). We significantly observed higher neutrophil proportions and neutrophils to lymphocytes ratio in toads under constant light treatment. In addition, we observed significantly better body condition and higher erythrocyte size in field toads compared with captive toads. In summary, ALAN can trigger a leukocyte response to stress in males of the diurnal toad M. rubriventris. In addition, captivity can affect the body condition and erythrocyte size of these toads.
Collapse
Affiliation(s)
- María S Gastón
- Instituto de Ecorregiones Andinas (INECOA), Universidad Nacional de Jujuy, CONICET, San Salvador de Jujuy, Argentina
| | - Laura C Pereyra
- Instituto de Ecorregiones Andinas (INECOA), Universidad Nacional de Jujuy, CONICET, San Salvador de Jujuy, Argentina
| | - Marcos Vaira
- Instituto de Ecorregiones Andinas (INECOA), Universidad Nacional de Jujuy, CONICET, San Salvador de Jujuy, Argentina
| |
Collapse
|
29
|
Ensminger DC, Langkilde T, Owen DAS, MacLeod KJ, Sheriff MJ. Maternal stress alters the phenotype of the mother, her eggs and her offspring in a wild-caught lizard. J Anim Ecol 2018; 87:1685-1697. [PMID: 30074248 DOI: 10.1111/1365-2656.12891] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 07/22/2018] [Indexed: 01/05/2023]
Abstract
While biomedical researchers have long appreciated the influence of maternally derived glucocorticoids (GCs) on offspring phenotype, ecologists have only recently begun exploring its impact in wild animals. Interpreting biomedical findings within an ecological context has posited that maternal stress, mediated by elevations of maternal GCs, may play an adaptive role preparing offspring for a stressful or rigorous environment. Yet, the influence of maternal stress on offspring phenotype has been little studied in wild animals. We experimentally elevated GCs to ecologically relevant levels (mimicking increases in maternal stress hormones following a nonlethal predator encounter, a heat challenge, or a chasing or confinement stressor) in female eastern fence lizards Sceloporus undulatus during gestation. We tested the hypothesis that maternally derived stress hormones themselves are sufficient to alter offspring phenotype. Specifically, we examined the effects of experimentally elevated maternal GCs on fitness-relevant traits of the mother, her eggs and her subsequent offspring. We found that daily maternal GC elevation: (a) increased maternal antipredator behaviours and postlaying glucose levels; (b) had no effect on egg morphology or caloric value, but altered yolk hormone (elevated GC) and nutrient content; and (c) altered offspring phenotype including stress-relevant physiology, morphology and behaviour. These findings reveal that maternally derived GCs alone can alter offspring phenotype in a wild animal, changes that may be mediated via maternal behaviour, and egg hormone and nutrient content. Understanding the ecological consequences of these effects under different environmental conditions will be critical for determining the adaptive significance of elevated maternal GCs for offspring.
Collapse
Affiliation(s)
- David C Ensminger
- Department of Ecosystem Science and Management, Pennsylvania State University, University Park, Pennsylvania.,Department of Biology, Mueller Laboratory, Pennsylvania State University, University Park, Pennsylvania
| | - Tracy Langkilde
- Department of Biology, Mueller Laboratory, Pennsylvania State University, University Park, Pennsylvania
| | - Dustin A S Owen
- Department of Ecosystem Science and Management, Pennsylvania State University, University Park, Pennsylvania.,Department of Biology, Mueller Laboratory, Pennsylvania State University, University Park, Pennsylvania.,Intercollege Graduate Degree Program in Ecology, Pennsylvania State University, University Park, Pennsylvania
| | - Kirsty J MacLeod
- Department of Ecosystem Science and Management, Pennsylvania State University, University Park, Pennsylvania.,Department of Biology, Mueller Laboratory, Pennsylvania State University, University Park, Pennsylvania.,Intercollege Graduate Degree Program in Ecology, Pennsylvania State University, University Park, Pennsylvania
| | - Michael J Sheriff
- Department of Ecosystem Science and Management, Pennsylvania State University, University Park, Pennsylvania.,Intercollege Graduate Degree Program in Ecology, Pennsylvania State University, University Park, Pennsylvania
| |
Collapse
|
30
|
Johnson MA, Francis CD, Miller ET, Downs CJ, Vitousek MN. Detecting Bias in Large-Scale Comparative Analyses: Methods for Expanding the Scope of Hypothesis-Testing with HormoneBase. Integr Comp Biol 2018; 58:720-728. [DOI: 10.1093/icb/icy045] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Michele A Johnson
- Department of Biology, Trinity University, San Antonio, TX 78212, USA
| | - Clinton D Francis
- Biological Sciences Department, California Polytechnic State University, San Luis Obispo, CA 93407, USA
| | | | - Cynthia J Downs
- Department of Biology, Hamilton College, Clinton, NY 13323, USA
| | - Maren N Vitousek
- Cornell Lab of Ornithology, Ithaca, NY 14850, USA
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14850, USA
| |
Collapse
|
31
|
Novarro AJ, Gabor CR, Goff CB, Mezebish TD, Thompson LM, Grayson KL. Physiological responses to elevated temperature across the geographic range of a terrestrial salamander. J Exp Biol 2018; 221:jeb.178236. [DOI: 10.1242/jeb.178236] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Accepted: 07/31/2018] [Indexed: 01/18/2023]
Abstract
Widespread species often possess physiological mechanisms for coping with thermal heterogeneity, and uncovering these mechanisms provides insight into species responses to climate change. The emergence of non-invasive corticosterone (CORT) assays allows us to rapidly assess physiological responses to environmental change on a large scale. We lack, however, a basic understanding of how temperature affects CORT, and whether temperature and CORT interactively affect performance. Here, we examine the effects of elevated temperature on CORT and whole-organism performance in a terrestrial salamander, Plethodon cinereus, across a latitudinal gradient. Using water-borne hormone assays, we found that raising ambient temperature from 15 to 25°C increased CORT release at a similar rate for salamanders from all sites. However, CORT release rate was higher overall in the warmest, southernmost site. Elevated temperatures also affected physiological performance, but the effects differed among sites. Ingestion rate increased in salamanders from the warmer sites but remained the same for those from cooler sites. Mass gain was reduced for most individuals, though this reduction was more dramatic in salamanders from the cooler sites. We also found a temperature-dependent relationship between CORT and food conversion efficiency (i.e., the amount of mass gained per unit food ingested). CORT was negatively related to food conversion efficiency at 25°C but was unrelated at 15°C. Thus, the energetic gains of elevated ingestion rates may be counteracted by elevated CORT release rates experienced by salamanders in warmer environments. By integrating multiple physiological metrics, we highlight the complex relationships between temperature and individual responses to warming climates.
Collapse
Affiliation(s)
| | - Caitlin R. Gabor
- Department of Biology, Texas State University, San Marcos, TX 78666, USA
| | - Cory B. Goff
- Department of Biology, Texas State University, San Marcos, TX 78666, USA
| | - Tori D. Mezebish
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742, USA
| | - Lily M. Thompson
- Department of Biology, University of Richmond, Richmond, VA 23173, USA
| | | |
Collapse
|
32
|
Jones DK, Hintz WD, Schuler MS, Yates EK, Mattes BM, Relyea RA. Inducible Tolerance to Agrochemicals Was Paved by Evolutionary Responses to Predators. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:13913-13919. [PMID: 29087697 DOI: 10.1021/acs.est.7b03816] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Recent research has reported increased tolerance to agrochemicals in target and nontarget organisms following acute physiological changes induced through phenotypic plasticity. Moreover, the most inducible populations are those from more pristine locations, far from agrochemical use. We asked why do populations with no known history of pesticide exposure have the ability to induce adaptive responses to novel agrochemicals? We hypothesized that increased pesticide tolerance results from a generalized stressor response in organisms, and would be induced following sublethal exposure to natural and anthropogenic stressors. We exposed larval wood frogs (Lithobates sylvaticus) to one of seven natural or anthropogenic stressors (predator cue (Anax spp.), 0.5 or 1.0 mg carbaryl/L, road salt (200 or 1000 mg Cl-/L), ethanol-vehicle control, or no-stressor control) and subsequently tested their tolerance to a lethal carbaryl concentration using time-to-death assays. We observed induced carbaryl tolerance in tadpoles exposed to 0.5 mg/L carbaryl and also in tadpoles exposed to predator cues. Our results suggest that the ability to induce pesticide tolerance likely arose through evolved antipredator responses. Given that antipredator responses are widespread among species, many animals might possess inducible pesticide tolerance, buffering them from agrochemical exposure.
Collapse
Affiliation(s)
- Devin K Jones
- Darrin Fresh Water Institute, Department of Biological Sciences, Rensselaer Polytechnic Institute , Troy, New York 12180, United States
| | - William D Hintz
- Darrin Fresh Water Institute, Department of Biological Sciences, Rensselaer Polytechnic Institute , Troy, New York 12180, United States
| | - Matthew S Schuler
- Darrin Fresh Water Institute, Department of Biological Sciences, Rensselaer Polytechnic Institute , Troy, New York 12180, United States
| | - Erika K Yates
- Darrin Fresh Water Institute, Department of Biological Sciences, Rensselaer Polytechnic Institute , Troy, New York 12180, United States
| | - Brian M Mattes
- Darrin Fresh Water Institute, Department of Biological Sciences, Rensselaer Polytechnic Institute , Troy, New York 12180, United States
| | - Rick A Relyea
- Darrin Fresh Water Institute, Department of Biological Sciences, Rensselaer Polytechnic Institute , Troy, New York 12180, United States
| |
Collapse
|
33
|
Kulkarni SS, Denver RJ, Gomez-Mestre I, Buchholz DR. Genetic accommodation via modified endocrine signalling explains phenotypic divergence among spadefoot toad species. Nat Commun 2017; 8:993. [PMID: 29051478 PMCID: PMC5648835 DOI: 10.1038/s41467-017-00996-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2016] [Accepted: 08/08/2017] [Indexed: 11/13/2022] Open
Abstract
Phenotypic differences among species may evolve through genetic accommodation, but mechanisms accounting for this process are poorly understood. Here we compare hormonal variation underlying differences in the timing of metamorphosis among three spadefoot toads with different larval periods and responsiveness to pond drying. We find that, in response to pond drying, Pelobates cultripes and Spea multiplicata accelerate metamorphosis, increase standard metabolic rate (SMR), and elevate whole-body content of thyroid hormone (the primary morphogen controlling metamorphosis) and corticosterone (a stress hormone acting synergistically with thyroid hormone to accelerate metamorphosis). In contrast, Scaphiopus couchii has the shortest larval period, highest whole-body thyroid hormone and corticosterone content, and highest SMR, and these trait values are least affected by pond drying among the three species. Our findings support that the atypically rapid and canalized development of S. couchii evolved by genetic accommodation of endocrine pathways controlling metamorphosis, showing how phenotypic plasticity within species may evolve into trait variation among species. Genetic accommodation is a potential mechanism for the phenotypic divergence of species. Here, Kulkarni et al. compare endocrine responses of three spadefoot toad species to pond drying and suggest how evolution of mechanisms of developmental plasticity may account for trait variation among species.
Collapse
Affiliation(s)
- Saurabh S Kulkarni
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, 45221, USA.,Department of Pediatrics, Yale School of Medicine, New Haven, CT, 06520, USA
| | - Robert J Denver
- Department of Molecular, Cellular and Developmental Biology (MCDB), University of Michigan, Ann Arbor, MI, 48109, USA.,Department of Ecology and Evolutionary Biology (EEB), University of Michigan, Ann Arbor, MI, 48109, USA
| | - Ivan Gomez-Mestre
- Ecology, Evolution and Development Group, Doñana Biological Station, CSIC, Almonte, E-41092, Spain.
| | - Daniel R Buchholz
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, 45221, USA.
| |
Collapse
|
34
|
Affiliation(s)
- Sarah K. Woodley
- Department of Biological Sciences, 600 Forbes Avenue, Duquesne University, Pittsburgh, Pennsylvania 15282, USA
| |
Collapse
|
35
|
Costly neighbours: Heterospecific competitive interactions increase metabolic rates in dominant species. Sci Rep 2017; 7:5177. [PMID: 28701786 PMCID: PMC5507852 DOI: 10.1038/s41598-017-05485-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 06/07/2017] [Indexed: 11/16/2022] Open
Abstract
The energy costs of self-maintenance (standard metabolic rate, SMR) vary substantially among individuals within a population. Despite the importance of SMR for understanding life history strategies, ecological sources of SMR variation remain only partially understood. Stress-mediated increases in SMR are common in subordinate individuals within a population, while the direction and magnitude of the SMR shift induced by interspecific competitive interactions is largely unknown. Using laboratory experiments, we examined the influence of con- and heterospecific pairing on SMR, spontaneous activity, and somatic growth rates in the sympatrically living juvenile newts Ichthyosaura alpestris and Lissotriton vulgaris. The experimental pairing had little influence on SMR and growth rates in the smaller species, L. vulgaris. Individuals exposed to con- and heterospecific interactions were more active than individually reared newts. In the larger species, I. alpestris, heterospecific interactions induced SMR to increase beyond values of individually reared counterparts. Individuals from heterospecific pairs and larger conspecifics grew faster than did newts in other groups. The plastic shift in SMR was independent of the variation in growth rate and activity level. These results reveal a new source of individual SMR variation and potential costs of co-occurrence in ecologically similar taxa.
Collapse
|
36
|
Burraco P, Valdés AE, Johansson F, Gomez-Mestre I. Physiological mechanisms of adaptive developmental plasticity in Rana temporaria island populations. BMC Evol Biol 2017; 17:164. [PMID: 28683754 PMCID: PMC5501514 DOI: 10.1186/s12862-017-1004-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 06/21/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Adaptive plasticity is essential for many species to cope with environmental heterogeneity. In particular, developmental plasticity allows organisms with complex life cycles to adaptively adjust the timing of ontogenetic switch points. Size at and time to metamorphosis are reliable fitness indicators in organisms with complex cycles. The physiological machinery of developmental plasticity commonly involves the activation of alternative neuroendocrine pathways, causing metabolic alterations. Nevertheless, we have still incomplete knowledge about how these mechanisms evolve under environments that select for differences in adaptive plasticity. In this study, we investigate the physiological mechanisms underlying divergent degrees of developmental plasticity across Rana temporaria island populations inhabiting different types of pools in northern Sweden. METHODS In a laboratory experiment we estimated developmental plasticity of amphibian larvae from six populations coming from three different island habitats: islands with only permanent pools, islands with only ephemeral pools, and islands with a mixture of both types of pools. We exposed larvae of each population to either constant water level or simulated pool drying, and estimated their physiological responses in terms of corticosterone levels, oxidative stress, and telomere length. RESULTS We found that populations from islands with only temporary pools had a higher degree of developmental plasticity than those from the other two types of habitats. All populations increased their corticosterone levels to a similar extent when subjected to simulated pool drying, and therefore variation in secretion of this hormone does not explain the observed differences among populations. However, tadpoles from islands with temporary pools showed lower constitutive activities of catalase and glutathione reductase, and also showed overall shorter telomeres. CONCLUSIONS The observed differences are indicative of physiological costs of increased developmental plasticity, suggesting that the potential for plasticity is constrained by its costs. Thus, high levels of responsiveness in the developmental rate of tadpoles have evolved in islands with pools at high but variable risk of desiccation. Moreover, the physiological alterations observed may have important consequences for both short-term odds of survival and long term effects on lifespan.
Collapse
Affiliation(s)
- Pablo Burraco
- Ecology, Evolution, and Development Group, Department of Wetland Ecology, Doñana Biological Station, CSIC, E-41092, Seville, Spain
| | - Ana Elisa Valdés
- Department of Organismal Biology, Physiological Botany, Uppsala University, SE-75651, Uppsala, Sweden
- Department of Ecology, Environment and Plant Sciences, Stockholm University, SE-10691, Stockholm, Sweden
- Department of Ecology, Environment and Plant Sciences, Stockholm University, SE-10691, Stockholm, Sweden
| | - Frank Johansson
- Department of Ecology and Genetics, Uppsala University, SE-75236, Uppsala, Sweden
| | - Ivan Gomez-Mestre
- Ecology, Evolution, and Development Group, Department of Wetland Ecology, Doñana Biological Station, CSIC, E-41092, Seville, Spain.
| |
Collapse
|
37
|
Titon SCM, Assis VR, Titon Junior B, Cassettari BDO, Fernandes PACM, Gomes FR. Captivity effects on immune response and steroid plasma levels of a Brazilian toad (Rhinella schneideri). JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2017; 327:127-138. [DOI: 10.1002/jez.2078] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 04/30/2017] [Accepted: 06/11/2017] [Indexed: 02/05/2023]
Affiliation(s)
- Stefanny Christie Monteiro Titon
- Laboratório de Comportamento e Fisiologia Evolutiva; Departamento de Fisiologia, Instituto de Biociências; Universidade de São Paulo; São Paulo Brazil
| | - Vania Regina Assis
- Laboratório de Comportamento e Fisiologia Evolutiva; Departamento de Fisiologia, Instituto de Biociências; Universidade de São Paulo; São Paulo Brazil
| | - Braz Titon Junior
- Laboratório de Comportamento e Fisiologia Evolutiva; Departamento de Fisiologia, Instituto de Biociências; Universidade de São Paulo; São Paulo Brazil
| | - Bruna de Oliveira Cassettari
- Laboratório de Comportamento e Fisiologia Evolutiva; Departamento de Fisiologia, Instituto de Biociências; Universidade de São Paulo; São Paulo Brazil
| | - Pedro Augusto Carlos Magno Fernandes
- Laboratório de Comportamento e Fisiologia Evolutiva; Departamento de Fisiologia, Instituto de Biociências; Universidade de São Paulo; São Paulo Brazil
| | - Fernando Ribeiro Gomes
- Laboratório de Comportamento e Fisiologia Evolutiva; Departamento de Fisiologia, Instituto de Biociências; Universidade de São Paulo; São Paulo Brazil
| |
Collapse
|
38
|
Fonner CW, Patel SA, Boord SM, Venesky MD, Woodley SK. Effects of corticosterone on infection and disease in salamanders exposed to the amphibian fungal pathogen Batrachochytrium dendrobatidis. DISEASES OF AQUATIC ORGANISMS 2017; 123:159-171. [PMID: 28262636 DOI: 10.3354/dao03089] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Although it is well established that glucocorticoid hormones (GCs) alter immune function and disease resistance in humans and laboratory animal models, fewer studies have linked elevated GCs to altered immune function and disease resistance in wild animals. The chytrid fungal pathogen Batrachochytrium dendrobatidis (Bd) infects amphibians and can cause the disease chytridiomycosis, which is responsible for worldwide amphibian declines. It is hypothesized that long-term exposure to environmental stressors reduces host resistance to Bd by suppressing host immunity via stress-induced release of GCs such as corticosterone (CORT). We tested whether elevation of CORT would reduce resistance to Bd and chytridiomycosis development in the red-legged salamander Plethodon shermani. Plasma CORT was elevated daily in animals for 9 d, after which animals were inoculated with Bd and subsequently tested for infection loads and clinical signs of disease. On average, Bd-inoculated animals treated with CORT had higher infection abundance compared to Bd-inoculated animals not treated with CORT. However, salamanders that received CORT prior to Bd did not experience any increase in clinical signs of chytridiomycosis compared to salamanders not treated with CORT. The lack of congruence between CORT effects on infection abundance versus disease may be due to threshold effects. Nonetheless, our results show that elevation of plasma CORT prior to Bd inoculation decreases resistance to infection by Bd. More studies are needed to better understand the effects of CORT on animals exposed to Bd and whether CORT variation contributes to differential responses to Bd observed across amphibian species and populations.
Collapse
Affiliation(s)
- Chris W Fonner
- Department of Biological Sciences, Duquesne University, Pittsburgh, PA 15282, USA
| | | | | | | | | |
Collapse
|
39
|
Geographic variation and within-individual correlations of physiological stress markers in a widespread reptile, the common garter snake (Thamnophis sirtalis). Comp Biochem Physiol A Mol Integr Physiol 2017; 205:68-76. [DOI: 10.1016/j.cbpa.2016.12.019] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 12/16/2016] [Accepted: 12/16/2016] [Indexed: 01/14/2023]
|
40
|
Haase CG, Long AK, Gillooly JF. Energetics of stress: linking plasma cortisol levels to metabolic rate in mammals. Biol Lett 2017; 12:20150867. [PMID: 26740562 DOI: 10.1098/rsbl.2015.0867] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Physiological stress may result in short-term benefits to organismal performance, but also long-term costs to health or longevity. Yet, we lack an understanding of the variation in stress hormone levels (i.e. glucocorticoids) that exist within and across species. Here, we present comparative analyses that link the primary stress hormone in most mammals (i.e. cortisol) to metabolic rate. We show that baseline concentrations of plasma cortisol vary with mass-specific metabolic rate among cortisol-dominant mammals, and both baseline and elevated concentrations scale predictably with body mass. The results quantitatively link a classical measure of physiological stress to whole-organism energetics, providing a point of departure for cross-species comparisons of stress levels among mammals.
Collapse
Affiliation(s)
- Catherine G Haase
- School of Natural Resources and Environment, University of Florida, Gainesville, FL 32611, USA
| | - Andrea K Long
- Department of Biology, University of North Georgia, Dahlonega, GA 30597, USA
| | - James F Gillooly
- Department of Biology, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
41
|
Jimeno B, Hau M, Verhulst S. Strong association between corticosterone and temperature dependent metabolic rate in individual zebra finches. J Exp Biol 2017; 220:4426-4431. [DOI: 10.1242/jeb.166124] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 09/26/2017] [Indexed: 12/22/2022]
Abstract
Glucocorticoid hormones (GCs) are often assumed to be indicators of stress. At the same time, one of their fundamental roles is to facilitate metabolic processes to accommodate changes in energetic demands. While the metabolic function of GCs is thought to be ubiquitous across vertebrates, we are not aware of experiments which tested this directly, i.e., in which metabolic rate was manipulated and measured together with GCs. We therefore tested for a relationship between plasma corticosterone (CORT, ln transformed) and metabolic rate (MR, measured using indirect calorimetry) in a between- and within-individual design in captive zebra finches (Taeniopygia guttata) of both sexes. In each individual, CORT and MR were measured at two different temperature levels: ‘warm’ (22°C) and ‘cold’ (12 °C). CORT and MR were both increased in colder compared to warmer conditions, within individuals, but also across individuals. At the between-individual level, we found a positive relationship between CORT and MR, with an accelerating slope towards higher MR and CORT values. In contrast, the within individual changes in CORT and MR in response to colder conditions were linearly correlated between individuals. The CORT-MR relationship did not differ between the sexes. Our results illustrate the importance of including variation at different levels to better understand physiological modulation. Furthermore, our findings support the interpretation of CORT variation as indicator of metabolic needs.
Collapse
Affiliation(s)
- Blanca Jimeno
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, the Netherlands
- Max Planck Institute for Ornithology, Seewiesen, Germany
| | - Michaela Hau
- Max Planck Institute for Ornithology, Seewiesen, Germany
- University of Konstanz, Germany
| | - Simon Verhulst
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, the Netherlands
| |
Collapse
|
42
|
Thomas JR, Magyan AJ, Freeman PE, Woodley SK. Testing hypotheses about individual variation in plasma corticosterone in free-living salamanders. J Exp Biol 2017; 220:1210-1221. [DOI: 10.1242/jeb.149765] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 01/09/2017] [Indexed: 01/23/2023]
Abstract
In vertebrates, many responses to stress as well as homeostatic maintenance of basal metabolism are regulated by plasma glucocorticoid hormones (GCs). Despite having crucial functions, levels of GCs are typically variable among individuals. We examined the contribution of several physiological factors to individual variation in plasma corticosterone (CORT) and the number of corticotropin-releasing hormone (CRH) neurons in the magnocellular preoptic area of the brain in free-living Allegheny Mountain dusky salamanders. We addressed three hypotheses: the current-condition hypothesis, the facilitation hypothesis, and the trade-off hypothesis. Differential white blood cell counts were identified as strong contributors to individual variation in baseline CORT, stress-induced CORT, and the number of CRH neurons. In contrast, we found no relationship between corticosterone (or CRH) and body condition, energy stores, or reproductive investment, providing no support for the current-condition hypothesis or the trade-off hypothesis involving reproduction. Due to the difficulties of interpreting the functional consequences of differences in white blood cell differentials, we were unable to distinguish between the facilitation hypothesis or the trade-off hypothesis related to immune function. However, the strong association between white blood cell differentials and HPA/I activation suggests that a more thorough examination of immune profiles is critical to understanding variation in HPA/I activation.
Collapse
Affiliation(s)
- Jessica R. Thomas
- Department of Biological Sciences, Duquesne University, 600 Forbes Avenue, Pittsburgh, PA 15282, USA
| | - Andrew J. Magyan
- Department of Biological Sciences, Duquesne University, 600 Forbes Avenue, Pittsburgh, PA 15282, USA
| | - Peter E. Freeman
- Department of Statistics, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Sarah K. Woodley
- Department of Biological Sciences, Duquesne University, 600 Forbes Avenue, Pittsburgh, PA 15282, USA
| |
Collapse
|
43
|
Exposure to Corticosterone Affects Host Resistance, but Not Tolerance, to an Emerging Fungal Pathogen. PLoS One 2016; 11:e0163736. [PMID: 27690360 PMCID: PMC5045185 DOI: 10.1371/journal.pone.0163736] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 09/13/2016] [Indexed: 11/19/2022] Open
Abstract
Host responses to pathogens include defenses that reduce infection burden (i.e., resistance) and traits that reduce the fitness consequences of an infection (i.e., tolerance). Resistance and tolerance are affected by an organism's physiological status. Corticosterone (“CORT”) is a hormone that is associated with the regulation of many physiological processes, including metabolism and reproduction. Because of its role in the stress response, CORT is also considered the primary vertebrate stress hormone. When secreted at high levels, CORT is generally thought to be immunosuppressive. Despite the known association between stress and disease resistance in domesticated organisms, it is unclear whether these associations are ecologically and evolutionary relevant in wildlife species. We conducted a 3x3 fully crossed experiment in which we exposed American toads (Anaxyrus [Bufo] americanus) to one of three levels of exogenous CORT (no CORT, low CORT, or high CORT) and then to either low or high doses of the pathogenic chytrid fungus Batrachochytrium dendrobatidis (“Bd”) or a sham exposure treatment. We assessed Bd infection levels and tested how CORT and Bd affected toad resistance, tolerance, and mortality. Exposure to the high CORT treatment significantly elevated CORT release in toads; however, there was no difference between toads given no CORT or low CORT. Exposure to CORT and Bd each increased toad mortality, but they did not interact to affect mortality. Toads that were exposed to CORT had higher Bd resistance than toads exposed to ethanol controls/low CORT, a pattern opposite that of most studies on domesticated animals. Exposure to CORT did not affect toad tolerance to Bd. Collectively, these results show that physiological stressors can alter a host’s response to a pathogen, but that the outcome might not be straightforward. Future studies that inhibit CORT secretion are needed to better our understanding of the relationship between stress physiology and disease resistance and tolerance in wild vertebrates.
Collapse
|
44
|
Burraco P, Gomez-Mestre I. Physiological Stress Responses in Amphibian Larvae to Multiple Stressors Reveal Marked Anthropogenic Effects even below Lethal Levels. Physiol Biochem Zool 2016; 89:462-472. [PMID: 27792531 DOI: 10.1086/688737] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
Natural and anthropogenic disturbances cause profound alterations in organisms, inducing physiological adjustments to avoid, reduce, or remedy the impact of disturbances. In vertebrates, the stress response is regulated via neuroendocrine pathways, including the hypothalamic-pituitary-interrenal axis that regulates the secretion of glucocorticoids. Glucocorticoids have cascading effects on multiple physiological pathways, affecting the metabolic rate, reactive oxygen species production, or immune system. Determining the extent to which natural and anthropogenic environmental factors induce stress responses in vertebrates is of great importance in ecology and conservation biology. Here we study the physiological stress response in spadefoot toad tadpoles (Pelobates cultripes) against three levels of a series of natural and anthropogenic stressors common to many aquatic systems: salinity (0, 6, and 9 ppt), herbicide (0, 1, and 2 mg/L acid equivalent of glyphosate), water acidity (pH 4.5, 7.0, and 9.5), predators (absent, native, and invasive), and temperature (21°, 25°, and 29°C). The physiological stress response was assessed examining corticosterone levels, standard metabolic rate, activity of antioxidant enzymes, oxidative cellular damage in lipids, and immunological status. We found that common stressors substantially altered the physiological state of tadpoles. In particular, salinity and herbicides cause dramatic physiological changes in tadpoles. Moreover, tadpoles reduced corticosterone levels in the presence of natural predators but did not do so against invasive predators, indicating a lack of innate recognition. Corticosterone and the antioxidant enzyme glutathione reductase were the most sensitive parameters to stress in this study. Anthropogenic perturbations of aquatic systems pose serious threats to larval amphibians even at nonlethal concentrations, judging from the marked physiological stress responses generated, and reveal the importance of incorporating physiological information onto conservation, ecological, and evolutionary studies.
Collapse
|
45
|
Lifetime variation in feather corticosterone levels in a long-lived raptor. Oecologia 2016; 183:315-326. [DOI: 10.1007/s00442-016-3708-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 08/16/2016] [Indexed: 10/21/2022]
|
46
|
Garratt M, Kee AJ, Palme R, Brooks RC. Male Presence can Increase Body Mass and Induce a Stress-Response in Female Mice Independent of Costs of Offspring Production. Sci Rep 2016; 6:23538. [PMID: 27004919 PMCID: PMC4804214 DOI: 10.1038/srep23538] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 03/07/2016] [Indexed: 11/11/2022] Open
Abstract
Sexual reproduction in animals requires close interactions with the opposite sex. These interactions may generate costs of reproduction, because mates can induce detrimental physiological or physical effects on one another, due to their interest in maximising their own fitness. To understand how a male’s presence influences aspects of female physiology implicated in reproductive costs in mice, independent of offspring production, we paired females with vasectomised, castrated or intact males, or other females. Being paired with a male, irrespective of his gonadal status, increased female weight. This effect was transient in females paired with castrated males but more persistent in those with vasectomised males. Those paired with males also showed an increase in corticosterone, suggesting an increased stress response. However, this was dependent on the gonadal status of the male housing partner, since those housed with vasectomised males had lower corticosterone than those with castrated males. Altered energy metabolism was only detectable in pregnant females, and oxidative stress was not consistently affected by a female’s housing partner. These results suggest that a male’s presence alters female weight, and stresses associated with reproduction could be induced by simply the presence of a male, but reduced by mating and/or being solicited to mate.
Collapse
Affiliation(s)
- Michael Garratt
- Evolution and Ecology Research Group and School of Biological, Earth and Environmental Sciences, The University of New South Wales, Sydney, NSW 2052, Australia.,Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, United States
| | - Anthony J Kee
- Neuromuscular and Regenerative Medicine Unit, School of Medical Sciences, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Rupert Palme
- Department of Biomedical Sciences/Unit of Physiology, Pathophysiology and Experimental Endocrinology, University of Veterinary Medicine Vienna, A-1210 Vienna, Austria
| | - Robert C Brooks
- Evolution and Ecology Research Group and School of Biological, Earth and Environmental Sciences, The University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
47
|
|
48
|
Angelier F, Parenteau C, Ruault S, Angelier N. Endocrine consequences of an acute stress under different thermal conditions: A study of corticosterone, prolactin, and thyroid hormones in the pigeon (Columbia livia). Comp Biochem Physiol A Mol Integr Physiol 2016; 196:38-45. [PMID: 26924044 DOI: 10.1016/j.cbpa.2016.02.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 02/17/2016] [Accepted: 02/17/2016] [Indexed: 12/01/2022]
Abstract
In the context of global change, the physiological and hormonal stress responses have received much attention because of their implications in terms of allostasis. However, most studies have focused on glucocorticoids only as the "common" response to stressors while neglecting other endocrine axes and hormones (e.g. prolactin, thyroid hormones) that play a crucial role in metabolic adjustments. Interestingly, the responsiveness of all these endocrine axes to stress may depend on the energetic context and this context-dependent stress response has been overlooked so far. In the wild, temperature can vary to a large extent within a short time window and ambient temperature may affect these metabolic-related endocrine axes, and potentially, their responsiveness to an acute stressor. Here, we explicitly tested this hypothesis by examining the effect of a standardized stress protocol on multiple hormonal responses in the rock pigeon (Columbia livia). We tested the effect of an acute restraint stress on (1) corticosterone levels, (2) prolactin levels, and (3) thyroid hormone levels (triiodothyronine, thyroxine) in pigeons that were held either at cool temperature (experimental birds) or at room temperature (control birds) during the stress protocol. Although we found a significant influence of restraint stress on most hormone levels (corticosterone, prolactin, and thyroxine), triiodothyronine levels were not affected by the restraint stress. This demonstrates that stressors can have significant impact on multiple endocrine mechanisms. Importantly, all of these hormonal responses to stress were not affected by temperature, demonstrating that the exposure to cold temperature does not affect the way these hormone levels change in response to handling stress. This suggests that some endocrine responses to temperature decreases may be overridden by the endocrine responses to an acute restraint stress.
Collapse
Affiliation(s)
- Frédéric Angelier
- Centre d'Etudes Biologiques de Chizé, CNRS-Université de La Rochelle, UMR 7372, 79360 Villiers en Bois, France.
| | - Charline Parenteau
- Centre d'Etudes Biologiques de Chizé, CNRS-Université de La Rochelle, UMR 7372, 79360 Villiers en Bois, France
| | - Stéphanie Ruault
- Centre d'Etudes Biologiques de Chizé, CNRS-Université de La Rochelle, UMR 7372, 79360 Villiers en Bois, France
| | - Nicole Angelier
- Centre d'Etudes Biologiques de Chizé, CNRS-Université de La Rochelle, UMR 7372, 79360 Villiers en Bois, France
| |
Collapse
|
49
|
Narayan EJ, Gramapurohit NP. Sexual dimorphism in baseline urinary corticosterone metabolites and their association with body-condition indices in a peri-urban population of the common Asian toad (Duttaphrynus melanostictus). Comp Biochem Physiol A Mol Integr Physiol 2015; 191:174-179. [PMID: 26478192 DOI: 10.1016/j.cbpa.2015.10.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Revised: 10/02/2015] [Accepted: 10/11/2015] [Indexed: 11/29/2022]
Abstract
Field endocrinology research through the quantification of glucocorticoids or stress hormones in free-living wildlife is crucial for assessing their physiological responses towards pervasive environmental changes. Urinary corticosterone metabolite (UCM) enzyme-immunoassay (EIA) has been validated for numerous amphibian species as a non-invasive measure of physiological stress. Body-condition indices (BCIs) have also been widely used in amphibians as an indirect measure of animal health. Field endocrinology research on amphibian species in Asia is limited. In this study, we validated a UCM EIA in a peri-urban sub-population of the common Asian toad (Duttaphrynus melanostictus) in Pune, Maharashtra, India. We determined the baseline levels of UCMs in male (n=39) and female (n=19) toads. Secondly, we used a standard capture handling protocol to quantify changes in UCMs during short-term captivity. We also determined BCIs in the male and female toads using Fulton's index (K) and residual condition index (RCI). The results showed that mean baseline levels of UCMs were significantly higher in male toads than in females. There was no significant change in mean levels of UCMs of males and females between capture and captivity (0-12h). This highlights plausible habituation of the species to the peri-urban environment. Associations between UCMs with BCIs (K and R) were positive in male toads but negative in females. In conclusion, our UCMs EIA can be applied with BCIs to assess health of the Asian toads. We also suggest that direct fitness parameters such as sperm and oocyte quality, reproductive ecology and immunocompetence measurements should be applied in combination with these conservation physiology tools to quantify the fitness consequences of pervasive environmental changes on native amphibians.
Collapse
Affiliation(s)
- Edward J Narayan
- School of Animal and Veterinary Sciences, Faculty of Science, Charles Sturt University, Wagga Wagga, NSW 2678, Australia.
| | | |
Collapse
|
50
|
López‐Jiménez L, Blas J, Tanferna A, Cabezas S, Marchant T, Hiraldo F, Sergio F. Ambient temperature, body condition and sibling rivalry explain feather corticosterone levels in developing black kites. Funct Ecol 2015. [DOI: 10.1111/1365-2435.12539] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Lidia López‐Jiménez
- Estación Biológica de Doñana Consejo Superior de Investigaciones Científicas (CSIC) C/Américo Vespucio Seville 41092 Spain
| | - Julio Blas
- Estación Biológica de Doñana Consejo Superior de Investigaciones Científicas (CSIC) C/Américo Vespucio Seville 41092 Spain
| | - Alessandro Tanferna
- Estación Biológica de Doñana Consejo Superior de Investigaciones Científicas (CSIC) C/Américo Vespucio Seville 41092 Spain
| | - Sonia Cabezas
- Estación Biológica de Doñana Consejo Superior de Investigaciones Científicas (CSIC) C/Américo Vespucio Seville 41092 Spain
| | - Tracy Marchant
- Department of Biology University of Saskatchewan SK S7N 5E2 Saskatoon Canada
| | - Fernando Hiraldo
- Estación Biológica de Doñana Consejo Superior de Investigaciones Científicas (CSIC) C/Américo Vespucio Seville 41092 Spain
| | - Fabrizio Sergio
- Estación Biológica de Doñana Consejo Superior de Investigaciones Científicas (CSIC) C/Américo Vespucio Seville 41092 Spain
| |
Collapse
|