1
|
Compans B, Camus C, Kallergi E, Sposini S, Martineau M, Butler C, Kechkar A, Klaassen RV, Retailleau N, Sejnowski TJ, Smit AB, Sibarita JB, Bartol TM, Perrais D, Nikoletopoulou V, Choquet D, Hosy E. NMDAR-dependent long-term depression is associated with increased short term plasticity through autophagy mediated loss of PSD-95. Nat Commun 2021; 12:2849. [PMID: 33990590 PMCID: PMC8121912 DOI: 10.1038/s41467-021-23133-9] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 04/07/2021] [Indexed: 01/27/2023] Open
Abstract
Long-term depression (LTD) of synaptic strength can take multiple forms and contribute to circuit remodeling, memory encoding or erasure. The generic term LTD encompasses various induction pathways, including activation of NMDA, mGlu or P2X receptors. However, the associated specific molecular mechanisms and effects on synaptic physiology are still unclear. We here compare how NMDAR- or P2XR-dependent LTD affect synaptic nanoscale organization and function in rodents. While both LTDs are associated with a loss and reorganization of synaptic AMPARs, only NMDAR-dependent LTD induction triggers a profound reorganization of PSD-95. This modification, which requires the autophagy machinery to remove the T19-phosphorylated form of PSD-95 from synapses, leads to an increase in AMPAR surface mobility. We demonstrate that these post-synaptic changes that occur specifically during NMDAR-dependent LTD result in an increased short-term plasticity improving neuronal responsiveness of depressed synapses. Our results establish that P2XR- and NMDAR-mediated LTD are associated to functionally distinct forms of LTD.
Collapse
Affiliation(s)
- Benjamin Compans
- Interdisciplinary Institute for Neuroscience, CNRS, Univ. Bordeaux, IINS, UMR 5297, Bordeaux, France
| | - Come Camus
- Interdisciplinary Institute for Neuroscience, CNRS, Univ. Bordeaux, IINS, UMR 5297, Bordeaux, France
| | - Emmanouela Kallergi
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| | - Silvia Sposini
- Interdisciplinary Institute for Neuroscience, CNRS, Univ. Bordeaux, IINS, UMR 5297, Bordeaux, France
| | - Magalie Martineau
- Interdisciplinary Institute for Neuroscience, CNRS, Univ. Bordeaux, IINS, UMR 5297, Bordeaux, France
| | - Corey Butler
- Interdisciplinary Institute for Neuroscience, CNRS, Univ. Bordeaux, IINS, UMR 5297, Bordeaux, France
| | - Adel Kechkar
- Interdisciplinary Institute for Neuroscience, CNRS, Univ. Bordeaux, IINS, UMR 5297, Bordeaux, France
| | - Remco V Klaassen
- Department Molecular and Cellular Neurobiology, Amsterdam, HV, The Netherlands
| | - Natacha Retailleau
- Interdisciplinary Institute for Neuroscience, CNRS, Univ. Bordeaux, IINS, UMR 5297, Bordeaux, France
| | - Terrence J Sejnowski
- Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - August B Smit
- Department Molecular and Cellular Neurobiology, Amsterdam, HV, The Netherlands
| | - Jean-Baptiste Sibarita
- Interdisciplinary Institute for Neuroscience, CNRS, Univ. Bordeaux, IINS, UMR 5297, Bordeaux, France
| | - Thomas M Bartol
- Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - David Perrais
- Interdisciplinary Institute for Neuroscience, CNRS, Univ. Bordeaux, IINS, UMR 5297, Bordeaux, France
| | | | - Daniel Choquet
- Interdisciplinary Institute for Neuroscience, CNRS, Univ. Bordeaux, IINS, UMR 5297, Bordeaux, France
- Univ. Bordeaux, CNRS, INSERM, Bordeaux Imaging Center, BIC, UMS 3420, Bordeaux, France
| | - Eric Hosy
- Interdisciplinary Institute for Neuroscience, CNRS, Univ. Bordeaux, IINS, UMR 5297, Bordeaux, France.
| |
Collapse
|
2
|
A super-resolution platform for correlative live single-molecule imaging and STED microscopy. Nat Methods 2019; 16:1263-1268. [DOI: 10.1038/s41592-019-0611-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 08/30/2019] [Accepted: 09/13/2019] [Indexed: 11/09/2022]
|
3
|
Haas KT, Compans B, Letellier M, Bartol TM, Grillo-Bosch D, Sejnowski TJ, Sainlos M, Choquet D, Thoumine O, Hosy E. Pre-post synaptic alignment through neuroligin-1 tunes synaptic transmission efficiency. eLife 2018; 7:e31755. [PMID: 30044218 PMCID: PMC6070337 DOI: 10.7554/elife.31755] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 07/24/2018] [Indexed: 12/25/2022] Open
Abstract
The nanoscale organization of neurotransmitter receptors regarding pre-synaptic release sites is a fundamental determinant of the synaptic transmission amplitude and reliability. How modifications in the pre- and post-synaptic machinery alignments affects synaptic currents, has only been addressed with computer modelling. Using single molecule super-resolution microscopy, we found a strong spatial correlation between AMPA receptor (AMPAR) nanodomains and the post-synaptic adhesion protein neuroligin-1 (NLG1). Expression of a truncated form of NLG1 disrupted this correlation without affecting the intrinsic AMPAR organization, shifting the pre-synaptic release machinery away from AMPAR nanodomains. Electrophysiology in dissociated and organotypic hippocampal rodent cultures shows these treatments significantly decrease AMPAR-mediated miniature and EPSC amplitudes. Computer modelling predicts that ~100 nm lateral shift between AMPAR nanoclusters and glutamate release sites induces a significant reduction in AMPAR-mediated currents. Thus, our results suggest the synapses necessity to release glutamate precisely in front of AMPAR nanodomains, to maintain a high synaptic responses efficiency.
Collapse
Affiliation(s)
- Kalina T Haas
- Interdisciplinary Institute for NeuroscienceUniversity of Bordeaux, UMR 5297, F-33000BordeauxFrance
- Interdisciplinary Institute for NeuroscienceCNRS, UMR 5297, F-33000BordeauxFrance
| | - Benjamin Compans
- Interdisciplinary Institute for NeuroscienceUniversity of Bordeaux, UMR 5297, F-33000BordeauxFrance
- Interdisciplinary Institute for NeuroscienceCNRS, UMR 5297, F-33000BordeauxFrance
| | - Mathieu Letellier
- Interdisciplinary Institute for NeuroscienceUniversity of Bordeaux, UMR 5297, F-33000BordeauxFrance
- Interdisciplinary Institute for NeuroscienceCNRS, UMR 5297, F-33000BordeauxFrance
| | - Thomas M Bartol
- Howard Hughes Medical InstituteSalk Institute for Biological StudiesLa JollaUnited States
| | - Dolors Grillo-Bosch
- Interdisciplinary Institute for NeuroscienceUniversity of Bordeaux, UMR 5297, F-33000BordeauxFrance
- Interdisciplinary Institute for NeuroscienceCNRS, UMR 5297, F-33000BordeauxFrance
| | - Terrence J Sejnowski
- Howard Hughes Medical InstituteSalk Institute for Biological StudiesLa JollaUnited States
| | - Matthieu Sainlos
- Interdisciplinary Institute for NeuroscienceUniversity of Bordeaux, UMR 5297, F-33000BordeauxFrance
- Interdisciplinary Institute for NeuroscienceCNRS, UMR 5297, F-33000BordeauxFrance
| | - Daniel Choquet
- Interdisciplinary Institute for NeuroscienceUniversity of Bordeaux, UMR 5297, F-33000BordeauxFrance
- Interdisciplinary Institute for NeuroscienceCNRS, UMR 5297, F-33000BordeauxFrance
- Bordeaux Imaging CenterUMS 3420 CNRS, Université de Bordeaux, US4 INSERM, F-33000BordeauxFrance
| | - Olivier Thoumine
- Interdisciplinary Institute for NeuroscienceUniversity of Bordeaux, UMR 5297, F-33000BordeauxFrance
- Interdisciplinary Institute for NeuroscienceCNRS, UMR 5297, F-33000BordeauxFrance
| | - Eric Hosy
- Interdisciplinary Institute for NeuroscienceUniversity of Bordeaux, UMR 5297, F-33000BordeauxFrance
- Interdisciplinary Institute for NeuroscienceCNRS, UMR 5297, F-33000BordeauxFrance
| |
Collapse
|
4
|
Gupta R. Self-crowding of AMPA receptors in the excitatory postsynaptic density can effectuate anomalous receptor sub-diffusion. PLoS Comput Biol 2018; 14:e1005984. [PMID: 29444074 PMCID: PMC5812565 DOI: 10.1371/journal.pcbi.1005984] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 01/15/2018] [Indexed: 12/03/2022] Open
Abstract
AMPA receptors (AMPARs) and their associations with auxiliary transmembrane proteins are bulky structures with large steric-exclusion volumes. Hence, self-crowding of AMPARs, depending on the local density, may affect their lateral diffusion in the postsynaptic membrane as well as in the highly crowded postsynaptic density (PSD) at excitatory synapses. Earlier theoretical studies considered only the roles of transmembrane obstacles and the AMPAR-binding submembranous scaffold proteins in shaping receptor diffusion within PSD. Using lattice model of diffusion, the present study investigates the additional impacts of self-crowding on the anomalousity and effective diffusion coefficient (Deff) of AMPAR diffusion. A recursive algorithm for avoiding false self-blocking during diffusion simulation is also proposed. The findings suggest that high density of AMPARs in the obstacle-free membrane itself engenders strongly anomalous diffusion and severe decline in Deff. Adding transmembrane obstacles to the membrane accentuates the anomalousity arising from self-crowding due to the reduced free diffusion space. Contrarily, enhanced AMPAR-scaffold binding, either through increase in binding strength or scaffold density or both, ameliorates the anomalousity resulting from self-crowding. However, binding has differential impacts on Deff depending on the receptor density. Increase in binding causes consistent decrease in Deff for low and moderate receptor density. For high density, binding increases Deff as long as it reduces anomalousity associated with intense self-crowding. Given a sufficiently strong binding condition when diffusion acquires normal behavior, further increase in binding causes decrease in Deff. Supporting earlier experimental observations are mentioned and implications of present findings to the experimental observations on AMPAR diffusion are also drawn. The transmembrane AMPA receptors (AMPARs) prominently exhibit lateral diffusion in the postsynaptic membrane at excitatory synapses. Steric obstructions to AMPAR diffusion due to the crowd of other relatively static transmembrane proteins and binding of AMPARs to the submembranous scaffold proteins in the specialized region of postsynaptic density (PSD) are well known to retard receptor diffusion, which causes receptor trapping and accumulation within PSD. However, AMPARs are significantly bulky structures and may also obstruct their own diffusion paths in the presence of their high density. It is shown here that intense self-crowding of AMPARs may lead to highly obstructed and confined receptor diffusion even in the obstacle-free medium, and the presence of other obstacles further aggravates this effect. AMPAR-scaffold binding reduces confined diffusion arising from self-crowding and strong binding engenders normal diffusion even at high receptor density. However, it overall causes reduction in the effective diffusion coefficient of the receptor diffusion.
Collapse
Affiliation(s)
- Rahul Gupta
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
- * E-mail:
| |
Collapse
|
5
|
Heller JP, Rusakov DA. The Nanoworld of the Tripartite Synapse: Insights from Super-Resolution Microscopy. Front Cell Neurosci 2017; 11:374. [PMID: 29225567 PMCID: PMC5705901 DOI: 10.3389/fncel.2017.00374] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 11/10/2017] [Indexed: 12/17/2022] Open
Abstract
Synaptic connections between individual nerve cells are fundamental to the process of information transfer and storage in the brain. Over the past decades a third key partner of the synaptic machinery has been unveiled: ultrathin processes of electrically passive astroglia which often surround pre- and postsynaptic structures. The recent advent of super-resolution (SR) microscopy has begun to uncover the dynamic nanoworld of synapses and their astroglial environment. Here we overview and discuss the current progress in our understanding of the synaptic nanoenvironment, as gleaned from the imaging methods that go beyond the diffraction limit of conventional light microscopy. We argue that such methods are essential to achieve a new level of comprehension pertinent to the principles of signal integration in the brain.
Collapse
Affiliation(s)
- Janosch P Heller
- UCL Institute of Neurology, University College London, London, United Kingdom
| | - Dmitri A Rusakov
- UCL Institute of Neurology, University College London, London, United Kingdom.,Institute of Neuroscience, University of Nizhny Novgorod, Nizhny Novgorod, Russia
| |
Collapse
|
6
|
Chamma I, Levet F, Sibarita JB, Sainlos M, Thoumine O. Nanoscale organization of synaptic adhesion proteins revealed by single-molecule localization microscopy. NEUROPHOTONICS 2016; 3:041810. [PMID: 27872870 PMCID: PMC5093229 DOI: 10.1117/1.nph.3.4.041810] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 10/11/2016] [Indexed: 06/06/2023]
Abstract
The advent of superresolution imaging has created a strong need for both optimized labeling strategies and analysis methods to probe the nanoscale organization of complex biological structures. We present a thorough description of the distribution of synaptic adhesion proteins at the nanoscopic scale, namely presynaptic neurexin-[Formula: see text] ([Formula: see text]), and its two postsynaptic binding partners neuroligin-1 (Nlg1) and leucine-rich-repeat transmembrane protein 2 (LRRTM2). We monitored these proteins in the membrane of neurons by direct stochastic optical reconstruction microscopy, after live surface labeling with Alexa647-conjugated monomeric streptavidin. The small probe ([Formula: see text]) efficiently penetrates into crowded synaptic junctions and reduces the distance to target. We quantified the organization of the single-molecule localization data using a tesselation-based analysis technique. We show that Nlg1 exhibits a fairly disperse organization within dendritic spines, while LRRTM2 is organized in compact domains, and [Formula: see text] in presynaptic terminals displays a dual-organization pattern intermediate between that of Nlg1 and LRRTM2. These results suggest that part of [Formula: see text] interacts transsynaptically with Nlg1 and the other part with LRRTM2.
Collapse
Affiliation(s)
- Ingrid Chamma
- Centre National de la Recherche Scientifique, Interdisciplinary Institute for Neuroscience, UMR 5297, 147 rue Léo-Saignat, Bordeaux Cedex 33077, France
- University of Bordeaux, Interdisciplinary Institute for Neuroscience, 147 rue Léo-Saignat, Bordeaux Cedex 33077, France
| | - Florian Levet
- Centre National de la Recherche Scientifique, Interdisciplinary Institute for Neuroscience, UMR 5297, 147 rue Léo-Saignat, Bordeaux Cedex 33077, France
- University of Bordeaux, Interdisciplinary Institute for Neuroscience, 147 rue Léo-Saignat, Bordeaux Cedex 33077, France
| | - Jean-Baptiste Sibarita
- Centre National de la Recherche Scientifique, Interdisciplinary Institute for Neuroscience, UMR 5297, 147 rue Léo-Saignat, Bordeaux Cedex 33077, France
- University of Bordeaux, Interdisciplinary Institute for Neuroscience, 147 rue Léo-Saignat, Bordeaux Cedex 33077, France
| | - Matthieu Sainlos
- Centre National de la Recherche Scientifique, Interdisciplinary Institute for Neuroscience, UMR 5297, 147 rue Léo-Saignat, Bordeaux Cedex 33077, France
- University of Bordeaux, Interdisciplinary Institute for Neuroscience, 147 rue Léo-Saignat, Bordeaux Cedex 33077, France
| | - Olivier Thoumine
- Centre National de la Recherche Scientifique, Interdisciplinary Institute for Neuroscience, UMR 5297, 147 rue Léo-Saignat, Bordeaux Cedex 33077, France
- University of Bordeaux, Interdisciplinary Institute for Neuroscience, 147 rue Léo-Saignat, Bordeaux Cedex 33077, France
| |
Collapse
|
7
|
Compans B, Choquet D, Hosy E. Review on the role of AMPA receptor nano-organization and dynamic in the properties of synaptic transmission. NEUROPHOTONICS 2016; 3:041811. [PMID: 27981061 PMCID: PMC5109202 DOI: 10.1117/1.nph.3.4.041811] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 10/19/2016] [Indexed: 06/06/2023]
Abstract
Receptor trafficking and its regulation have appeared in the last two decades to be a major controller of basal synaptic transmission and its activity-dependent plasticity. More recently, considerable advances in super-resolution microscopy have begun deciphering the subdiffraction organization of synaptic elements and their functional roles. In particular, the dynamic nanoscale organization of neurotransmitter receptors in the postsynaptic membrane has recently been suggested to play a major role in various aspects of synapstic function. We here review the recent advances in our understanding of alpha-amino-3-hydroxy-5-méthyl-4-isoxazolepropionic acid subtype glutamate receptors subsynaptic organization and their role in short- and long-term synaptic plasticity.
Collapse
Affiliation(s)
- Benjamin Compans
- University of Bordeaux, Interdisciplinary Institute for Neuroscience, UMR 5297, Bordeaux F-33000, France
- Interdisciplinary Institute for Neuroscience, CNRS, UMR 5297, Bordeaux F-33000, France
| | - Daniel Choquet
- University of Bordeaux, Interdisciplinary Institute for Neuroscience, UMR 5297, Bordeaux F-33000, France
- Interdisciplinary Institute for Neuroscience, CNRS, UMR 5297, Bordeaux F-33000, France
- University of Bordeaux, Bordeaux Imaging Center, UMS 3420 CNRS, US4 INSERM, France
| | - Eric Hosy
- University of Bordeaux, Interdisciplinary Institute for Neuroscience, UMR 5297, Bordeaux F-33000, France
- Interdisciplinary Institute for Neuroscience, CNRS, UMR 5297, Bordeaux F-33000, France
| |
Collapse
|
8
|
Koldsø H, Sansom MSP. Organization and Dynamics of Receptor Proteins in a Plasma Membrane. J Am Chem Soc 2015; 137:14694-704. [PMID: 26517394 DOI: 10.1021/jacs.5b08048] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The interactions of membrane proteins are influenced by their lipid environment, with key lipid species able to regulate membrane protein function. Advances in high-resolution microscopy can reveal the organization and dynamics of proteins and lipids within living cells at resolutions <200 nm. Parallel advances in molecular simulations provide near-atomic-resolution models of the dynamics of the organization of membranes of in vivo-like complexity. We explore the dynamics of proteins and lipids in crowded and complex plasma membrane models, thereby closing the gap in length and complexity between computations and experiments. Our simulations provide insights into the mutual interplay between lipids and proteins in determining mesoscale (20-100 nm) fluctuations of the bilayer, and in enabling oligomerization and clustering of membrane proteins.
Collapse
Affiliation(s)
- Heidi Koldsø
- Department of Biochemistry, University of Oxford , South Parks Road, Oxford OX1 3QU, United Kingdom
| | - Mark S P Sansom
- Department of Biochemistry, University of Oxford , South Parks Road, Oxford OX1 3QU, United Kingdom
| |
Collapse
|
9
|
Levet F, Hosy E, Kechkar A, Butler C, Beghin A, Choquet D, Sibarita JB. SR-Tesseler: a method to segment and quantify localization-based super-resolution microscopy data. Nat Methods 2015; 12:1065-71. [DOI: 10.1038/nmeth.3579] [Citation(s) in RCA: 290] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 07/03/2015] [Indexed: 12/18/2022]
|