1
|
Lemos LS, Manfrin da Silva E, Steinman KJ, Robeck TR, Quinete N. Assessment of per- and poly-fluoroalkyl substances and physiological biomarkers in aquarium-based bottlenose dolphins and killer whales. CHEMOSPHERE 2024; 364:143038. [PMID: 39117081 DOI: 10.1016/j.chemosphere.2024.143038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 07/24/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024]
Abstract
Environmental concerns about per- and polyfluoroalkyl substances (PFAS) are considerably increasing due to their extensive use in commercial and consumer products. PFAS bioaccumulate and biomagnify throughout the food chain, and their toxicity and potential adverse health effects can potentially represent a threat to living organisms. In this study, we described PFAS profiles in the serum of two species of zoo-based bottlenose dolphins (Tursiops truncatus, n = 14 individuals) and killer whales (Orcinus orca, n = 14 individuals) from three locations (California, Florida, and Texas, USA), from 1994 to 2020. Potential physiological effects of PFAS were also explored by measuring different biomarkers (cortisol, corticosterone, aldosterone, TBARS, and hydrogen peroxide) while accounting for individual age, sex, and reproductive stage. All PFAS were detected in at least one of the individuals, considering both species. ΣPFAS reached 496 ng mL-1 in bottlenose dolphins and 230 ng mL-1 in killer whales. In both species, the PFAS with higher mean concentrations were PFOS (108.0-183.0 ng ml-1) and PFNA (14.40-85.50 ng ml-1), which are long-chain compounds. Newborn individuals of both species were also exposed to PFAS, indicating transference via placenta and lactation. Linear mixed model analyses indicated significant correlations between aldosterone, month, year, location, and status; and between hydrogen peroxide, month, year, age, status, ΣPFAS, and Σ short-chain PFAS in killer whales suggesting seasonal variations related to the animal's physiological state (e.g., reproductive cycles, stress responses, weaning events) and increased reactive oxygen species formation due to PFAS exposure. Given our results, other contaminant classes should be investigated in cetaceans as they might have additive and synergistic detrimental effects on these individuals. This study lays the foundation to guide future researchers and highlights the importance of such assessments for animal welfare, and species conservation. Our results may inform management decisions regarding regulations of contaminant thresholds in delphinids.
Collapse
Affiliation(s)
- Leila S Lemos
- Institute of Environment, Florida International University, North Miami, FL, 33181, USA; Emerging Contaminants of Concern Research Laboratory, Department of Chemistry & Biochemistry, College of Arts, Sciences, and Education, Florida International University, North Miami, FL, 33181, USA.
| | - Estela Manfrin da Silva
- Emerging Contaminants of Concern Research Laboratory, Department of Chemistry & Biochemistry, College of Arts, Sciences, and Education, Florida International University, North Miami, FL, 33181, USA
| | - Karen J Steinman
- Species Preservation Laboratory, SeaWorld Parks and Entertainment, San Diego, CA, 92109, USA
| | - Todd R Robeck
- Species Preservation Laboratory, SeaWorld Parks and Entertainment, San Diego, CA, 92109, USA; SeaWorld Parks and Entertainment, 7007 Sea Harbor Drive, Orlando, FL, 32821, USA
| | - Natalia Quinete
- Institute of Environment, Florida International University, North Miami, FL, 33181, USA; Emerging Contaminants of Concern Research Laboratory, Department of Chemistry & Biochemistry, College of Arts, Sciences, and Education, Florida International University, North Miami, FL, 33181, USA.
| |
Collapse
|
2
|
Transcriptome profiling of blood from common bottlenose dolphins (Tursiops truncatus) in the northern Gulf of Mexico to enhance health assessment capabilities. PLoS One 2022; 17:e0272345. [PMID: 36001538 PMCID: PMC9401185 DOI: 10.1371/journal.pone.0272345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 07/18/2022] [Indexed: 12/01/2022] Open
Abstract
Following the 2010 Deepwater Horizon disaster and subsequent unusual mortality event, adverse health impacts have been reported in bottlenose dolphins in Barataria Bay, LA including impaired stress response and reproductive, pulmonary, cardiac, and immune function. These conditions were primarily diagnosed through hands-on veterinary examinations and analysis of standard diagnostic panels. In human and veterinary medicine, gene expression profiling has been used to identify molecular mechanisms underlying toxic responses and disease states. Identification of molecular markers of exposure or disease may enable earlier detection of health effects or allow for health evaluation when the use of specialized methodologies is not feasible. To date this powerful tool has not been applied to augment the veterinary data collected concurrently during dolphin health assessments. This study examined transcriptomic profiles of blood from 76 dolphins sampled in health assessments during 2013–2018 in the waters near Barataria Bay, LA and Sarasota Bay, FL. Gene expression was analyzed in conjunction with the substantial suite of health data collected using principal component analysis, differential expression testing, over-representation analysis, and weighted gene co-expression network analysis. Broadly, transcript profiles of Barataria Bay dolphins indicated a shift in immune response, cytoskeletal alterations, and mitochondrial dysfunction, most pronounced in dolphins likely exposed to Deepwater Horizon oiling. While gene expression profiles in Barataria Bay dolphins were altered compared to Sarasota Bay for all years, profiles from 2013 exhibited the greatest alteration in gene expression. Differentially expressed transcripts included genes involved in immunity, inflammation, reproductive failure, and lung or cardiac dysfunction, all of which have been documented in dolphins from Barataria Bay following the Deepwater Horizon oil spill. The genes and pathways identified in this study may, with additional research and validation, prove useful as molecular markers of exposure or disease to assist wildlife veterinarians in evaluating the health of dolphins and other cetaceans.
Collapse
|
3
|
Comparative Analysis of Blood Transcriptome in the Yangtze Finless Porpoise (Neophocaena asiaeorientalis). FISHES 2022. [DOI: 10.3390/fishes7020061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The Yangtze finless porpoise (Neophocaena asiaeorientalis) is the sole freshwater subspecies of Neophocaenaphocaenoides, and there is a lack of data on its transcriptome. In this study, we applied RNA-seq technology to assemble, de novo, a transcriptome and analyzed differential expressed genes (DEGs). About 6 Gb of clean data was generated for the Yangtze finless porpoise blood (n = 6) through de novo sequencing. In total, 151,211 unigenes were generated and a total of 119,039 of these unigenes (78.72%) were functionally annotated when searched for within the NCBI Nr, SwissProt, GO, COG, and KEGG databases. Diverse and extensive expressed gene catalogs were sampled for the Yangtze finless porpoise. DESeq2 was used to analyze the differential expression genes (DEGs) obtained from the assembled transcriptome. The results indicated that DEGs have close relationships with the Yangtze finless porpoise’s development, evolution and adaptation. Further, we found that genes involved in cetacean TAG synthesis might directly explain the molecular basis of cetacean blubber thickening. These transcriptome data will assist in understanding molecular mechanisms of Yangtze finless porpoise adaptation.
Collapse
|
4
|
Meza Cerda MI, Gray R, Higgins DP. Cytokine RT-qPCR and ddPCR for immunological investigations of the endangered Australian sea lion ( Neophoca cinerea) and other mammals. PeerJ 2020; 8:e10306. [PMID: 33240637 PMCID: PMC7668205 DOI: 10.7717/peerj.10306] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 10/15/2020] [Indexed: 01/23/2023] Open
Abstract
Measurement of cytokine gene expression by reverse transcription quantitative polymerase chain reaction (RT-qPCR) is used widely to assess the immune system of animals and to identify biomarkers of disease, but its application is limited in wildlife species due to a lack of species-specific reagents. The free-ranging endangered Australian sea lion (Neophoca cinerea) experiences significant clinical disease and high pup mortality due to intestinal hookworm infection. Developing immunological tools specific to the species will aid in the assessment of drivers of disease and its impact in population demographics. This study describes the development and validation of cross-reactive RT-qPCR assays to measure five important cytokines involved in innate and Th1/Th2 responses (IL-6, TNFα, IFNγ, IL-4 and IL-10) in unstimulated blood samples from a range of different mammalian species including the Australian sea lion. All RT-qPCR assays efficiencies ranged between 87% (Ovis aries TNFα) and 111% (Bos taurus IL-10) and had strong linearity (R2). IL-4 and IFNγ gene expression for N. cinerea fell below the dynamic range (and therefore quantifiable limits) of RT-qPCR assays but were able to be quantified using the novel droplet digital PCR (ddPCR). This study delivers new immunological tools for eco-immunologists studying cytokine gene expression in wildlife species and is to our knowledge, the first cytokine ddPCR approach to be reported in a pinniped species.
Collapse
Affiliation(s)
- María-Ignacia Meza Cerda
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Camperdown, NSW, Australia
| | - Rachael Gray
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Camperdown, NSW, Australia
| | - Damien P Higgins
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Camperdown, NSW, Australia
| |
Collapse
|
5
|
Nabi G, Li Y, McLaughlin RW, Mei Z, Wang K, Hao Y, Zheng J, Wang D. Immune Responses of the Critically Endangered Yangtze Finless Porpoises ( Neophocaena asiaeorientalis ssp. asiaeorientalis) to Escalating Anthropogenic Stressors in the Wild and Seminatural Environments. Front Physiol 2020; 10:1594. [PMID: 32116734 PMCID: PMC7010939 DOI: 10.3389/fphys.2019.01594] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 12/19/2019] [Indexed: 01/03/2023] Open
Abstract
Increasing anthropogenic stressors are potential threats to biodiversity conservation and management of Yangtze finless porpoises (YFPs). The objective of this study was to indirectly compare the habitat quality of a natural reserve, Poyang Lake and a seminatural reserve, the Tian-E-Zhou Oxbow (TZO) in terms of anthropogenic stressors by investigating different stress and immunological parameters in the blood of YFPs. Samples from a total of 74 YFPs from the TZO (n = 43) and Poyang Lake (n = 31) were collected and analyzed. The animals were divided into ontogenetic groups: male calf, female calf, juvenile female, juvenile male, and adult male, and reproductive groups: pregnant female, lactating female, and pregnant plus lactating. The blood from all the animals was analyzed for general stress (HSP14, SOD1, TXN, and FTL), metabolic stress (ACAT2 and THRA), and immunity-related genes (IL12p40, IFNγ, TNFα; IL1α, IL1ra, COX2, CRPL, IL4, and IL8) using qPCR. YFPs living in Poyang Lake showed an increased relative expression pattern for IFNγ, IL1ra, IL4, ACAT2, and CRPL across all the ontogenetic groups with significantly higher expression in adult males. In contrast, YFPs living in the TZO showed a significantly higher expression in 13 of 15 genes analyzed in the male calf group. Across the reproductive states for porpoises living in Poyang Lake, eight of the 15 genes in the pregnant female and three of the 15 genes in the pregnant plus lactating group had a significantly higher expression level. However, in YFPs living in the TZO, eight of the 15 genes showed significantly higher expression in the pregnant and lactating groups. There was significantly a higher expression of most of the genes in porpoises living in the TZO compared to the age-matched groups from porpoises living in Poyang Lake. The exception was the pregnant female group. The higher relative expression of stress and immune genes in the TZO porpoise population compared to porpoises living in Poyang Lake suggests the effects of worsening habitat quality, possibly indicating water pollution and lack of feeding resources.
Collapse
Affiliation(s)
- Ghulam Nabi
- The Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China.,Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Science, Hebei Normal University, Shijiazhuang, China
| | - Ying Li
- The Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | | | - Zhigang Mei
- The Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Kexiong Wang
- The Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Yujiang Hao
- The Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Jinsong Zheng
- The Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Ding Wang
- The Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
6
|
Lemos LS, Olsen A, Smith A, Chandler TE, Larson S, Hunt K, Torres LG. Assessment of fecal steroid and thyroid hormone metabolites in eastern North Pacific gray whales. CONSERVATION PHYSIOLOGY 2020; 8:coaa110. [PMID: 33304590 PMCID: PMC7720082 DOI: 10.1093/conphys/coaa110] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 10/22/2020] [Accepted: 12/03/2020] [Indexed: 05/08/2023]
Abstract
Baleen whale fecal samples have high potential for endocrine monitoring, which can be used as a non-invasive tool to identify the physiological response to disturbance events and describe population health and vital rates. In this study, we used commercial enzyme-linked immunosorbent assays to validate and quantify fecal steroid (progestins, androgens and glucocorticoids) and thyroid hormone metabolite concentrations in eastern North Pacific gray whales (Eschrichtius robustus) along the Oregon coast, USA, from May to October of 2016-2018. Higher mean progestin metabolite concentrations were observed in postweaning females, followed by pregnant females. Mean androgen, glucocorticoid and thyroid metabolites were higher in mature males. Progestin, glucocorticoids and thyroid fecal metabolites varied significantly by year, with positive correlations between progestin and androgen, and between glucocorticoid and thyroid metabolites. We also present two case studies of a documented injured whale and a mature male displaying reproductive competitive behavior, which provide reference points for physiologically stressed individuals and adult breeding males, respectively. Our methods and findings advance the knowledge of baleen whale physiology, can help guide future research on whale physiology and can inform population management and conservation efforts regarding minimizing the impact of anthropogenic stressors on whales.
Collapse
Affiliation(s)
- Leila S Lemos
- Fisheries and Wildlife Department, Marine Mammal Institute, Oregon State University, 2030 SE Marine Science Dr, Newport, OR 97365, USA
- Corresponding author: Fisheries and Wildlife Department, Marine Mammal Institute, Oregon State University, 2030 SE Marine Science Dr, Newport, OR 97365, USA. Tel: +1 (971) 3409610.
| | - Amy Olsen
- Conservation Programs and Partnerships, Seattle Aquarium, 1483 Alaskan Way, Seattle, WA 98101, USA
| | - Angela Smith
- Conservation Programs and Partnerships, Seattle Aquarium, 1483 Alaskan Way, Seattle, WA 98101, USA
| | - Todd E Chandler
- Fisheries and Wildlife Department, Marine Mammal Institute, Oregon State University, 2030 SE Marine Science Dr, Newport, OR 97365, USA
| | - Shawn Larson
- Conservation Programs and Partnerships, Seattle Aquarium, 1483 Alaskan Way, Seattle, WA 98101, USA
| | - Kathleen Hunt
- Smithsonian-Mason School of Conservation, 1500 Remount Road, Front Royal, VA 22630, USA
| | - Leigh G Torres
- Fisheries and Wildlife Department, Marine Mammal Institute, Oregon State University, 2030 SE Marine Science Dr, Newport, OR 97365, USA
| |
Collapse
|
7
|
Kim BM, Jeong J, Jo E, Ahn DH, Kim JH, Rhee JS, Park H. Blood transcriptome resources of chinstrap (Pygoscelis antarcticus) and gentoo (Pygoscelis papua) penguins from the South Shetland Islands, Antarctica. Genomics Inform 2019; 17:e5. [PMID: 30929406 PMCID: PMC6459169 DOI: 10.5808/gi.2019.17.1.e5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 02/01/2019] [Indexed: 12/19/2022] Open
Abstract
The chinstrap (Pygoscelis antarcticus) and gentoo (P. papua) penguins are distributed throughout Antarctica and the sub-Antarctic islands. In this study, high-quality de novo assemblies of blood transcriptomes from these penguins were generated using the Illumina MiSeq platform. A total of 22.2 and 21.8 raw reads were obtained from chinstrap and gentoo penguins, respectively. These reads were assembled using the Oases assembly platform and resulted in 26,036 and 21,854 contigs with N50 values of 929 and 933 base pairs, respectively. Functional gene annotations through pathway analyses of the Gene Ontology, EuKaryotic Orthologous Groups, and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases were performed for each blood transcriptome, resulting in a similar compositional order between the two transcriptomes. Ortholog comparisons with previously published transcriptomes from the Adélie (P. adeliae) and emperor (Aptenodytes forsteri) penguins revealed that a high proportion of the four penguins’ transcriptomes had significant sequence homology. Because blood and tissues of penguins have been used to monitor pollution in Antarctica, immune parameters in blood could be important indicators for understanding the health status of penguins and other Antarctic animals. In the blood transcriptomes, KEGG analyses detected many essential genes involved in the major innate immunity pathways, which are key metabolic pathways for maintaining homeostasis against exogenous infections or toxins. Blood transcriptome studies such as this may be useful for checking the immune and health status of penguins without sacrifice.
Collapse
Affiliation(s)
- Bo-Mi Kim
- Unit of Polar Genomics, Korea Polar Research Institute, Incheon 21990, Korea
| | - Jihye Jeong
- Unit of Polar Genomics, Korea Polar Research Institute, Incheon 21990, Korea
| | - Euna Jo
- Unit of Polar Genomics, Korea Polar Research Institute, Incheon 21990, Korea
| | - Do-Hwan Ahn
- Unit of Polar Genomics, Korea Polar Research Institute, Incheon 21990, Korea
| | - Jeong-Hoon Kim
- Department of Polar Life Science, Korea Polar Research Institute, Incheon 21990, Korea
| | - Jae-Sung Rhee
- Department of Marine Science, College of Natural Sciences, Incheon National University, Incheon 22012, Korea.,Research Institute of Basic Sciences, Incheon National University, Incheon 22012, Korea
| | - Hyun Park
- Unit of Polar Genomics, Korea Polar Research Institute, Incheon 21990, Korea.,Polar Sciences, University of Science & Technology, Daejeon 34113, Korea
| |
Collapse
|
8
|
Sattler R, Polasek L. Serum estradiol and progesterone profiles during estrus, pseudopregnancy, and active gestation in Steller sea lions. Zoo Biol 2017; 36:323-331. [PMID: 28901587 DOI: 10.1002/zoo.21381] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 08/24/2017] [Accepted: 08/24/2017] [Indexed: 12/29/2022]
Abstract
While the proximate driver behind the decline of the Western stock of Steller sea lions (Eumetopias jubatus, >80% since 1970s) is likely multifactorial, the population reduction may have been powered by a decrease in fecundity. A harvest of Steller sea lions in the 1970s and 80s revealed a 30% reduction in the proportion of pregnant females from early (October-November) to late gestation (April-May). Identification and quantification of these reproductive failures are difficult when we lack species-specific data on endocrinology associated with discrete stages of the reproductive cycle (i.e., estrus, implantation, and gestation). We tracked changes in serum estradiol and progesterone in three adult female Steller sea lions from 2011 to 2015. In all years and most females, a discrete increase in estradiol was observed during the breeding season (June-August), indicative of estrus. Estradiol concentrations from October to May in a pregnant female compared to her corresponding values when non-pregnant did not consistently differ through gestation. An elevation in progesterone was observed in all females and all years beginning approximately in June and lasting through November. This likely results from progesterone production by the corpus luteum in both pregnant and pseudopregnant females. Serum progesterone shows promise as a diagnostic tool to identify pregnancy during months 3-5 (December-February) of the 8-month active gestation following embryonic implantation. This study provides ranges of key hormones during estrus, embryonic diapause/pseudopregnancy, and gestation in pregnant and non-pregnant females for studying reproduction in Steller sea lions.
Collapse
Affiliation(s)
| | - Lori Polasek
- Alaska Sea Life Center, Seward, Alaska.,Institute of Marine Science, School of Fisheries and Ocean Sciences, University of Alaska Fairbanks, Fairbanks, Alaska
| |
Collapse
|
9
|
Morey JS, Burek Huntington KA, Campbell M, Clauss TM, Goertz CE, Hobbs RC, Lunardi D, Moors AJ, Neely MG, Schwacke LH, Van Dolah FM. De novo transcriptome assembly and RNA-Seq expression analysis in blood from beluga whales of Bristol Bay, AK. Mar Genomics 2017; 35:77-92. [PMID: 28802692 DOI: 10.1016/j.margen.2017.08.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 08/01/2017] [Accepted: 08/02/2017] [Indexed: 11/18/2022]
Abstract
Assessing the health of marine mammal sentinel species is crucial to understanding the impacts of environmental perturbations on marine ecosystems and human health. In Arctic regions, beluga whales, Delphinapterus leucas, are upper level predators that may serve as a sentinel species, potentially forecasting impacts on human health. While gene expression profiling from blood transcriptomes has widely been used to assess health status and environmental exposures in human and veterinary medicine, its use in wildlife has been limited due to the lack of available genomes and baseline data. To this end we constructed the first beluga whale blood transcriptome de novo from samples collected during annual health assessments of the healthy Bristol Bay, AK stock during 2012-2014 to establish baseline information on the content and variation of the beluga whale blood transcriptome. The Trinity transcriptome assembly from beluga was comprised of 91,325 transcripts that represented a wide array of cellular functions and processes and was extremely similar in content to the blood transcriptome of another cetacean, the bottlenose dolphin. Expression of hemoglobin transcripts was much lower in beluga (25.6% of TPM, transcripts per million) than has been observed in many other mammals. A T12A amino acid substitution in the HBB sequence of beluga whales, but not bottlenose dolphins, was identified and may play a role in low temperature adaptation. The beluga blood transcriptome was extremely stable between sex and year, with no apparent clustering of samples by principle components analysis and <4% of genes differentially expressed (EBseq, FDR<0.05). While the impacts of season, sexual maturity, disease, and geography on the beluga blood transcriptome must be established, the presence of transcripts involved in stress, detoxification, and immune functions indicate that blood gene expression analyses may provide information on health status and exposure. This study provides a wealth of transcriptomic data on beluga whales and provides a sizeable pool of preliminary data for comparison with other studies in beluga whale.
Collapse
Affiliation(s)
- Jeanine S Morey
- Hollings Marine Laboratory, National Centers for Coastal Ocean Science, National Ocean Service, NOAA, 331 Fort Johnson Road, Charleston, SC 29412, USA; Jardon and Howard Technologies Incorporated, 2710 Discovery Drive, Orlando, FL 32826, USA.
| | | | | | - Tonya M Clauss
- Georgia Aquarium, 225 Baker Street, Atlanta, GA 30313, USA
| | | | - Roderick C Hobbs
- National Marine Mammal Laboratory, Alaska Fisheries Science Center, National Marine Fisheries Service, NOAA, 7600 Sand Point Way N.E., Seattle, WA 95115, USA
| | - Denise Lunardi
- Department of Life Sciences and Biotechnology, University of Ferrara, via L. Borsari 46, 44121 Ferrara, Italy
| | - Amanda J Moors
- Hollings Marine Laboratory, National Institute of Standards and Technology, 331 Fort Johnson Road, Charleston, SC 29412, USA
| | - Marion G Neely
- Hollings Marine Laboratory, National Centers for Coastal Ocean Science, National Ocean Service, NOAA, 331 Fort Johnson Road, Charleston, SC 29412, USA; Jardon and Howard Technologies Incorporated, 2710 Discovery Drive, Orlando, FL 32826, USA
| | - Lori H Schwacke
- Hollings Marine Laboratory, National Centers for Coastal Ocean Science, National Ocean Service, NOAA, 331 Fort Johnson Road, Charleston, SC 29412, USA
| | - Frances M Van Dolah
- Hollings Marine Laboratory, National Centers for Coastal Ocean Science, National Ocean Service, NOAA, 331 Fort Johnson Road, Charleston, SC 29412, USA
| |
Collapse
|
10
|
Morey JS, Neely MG, Lunardi D, Anderson PE, Schwacke LH, Campbell M, Van Dolah FM. RNA-Seq analysis of seasonal and individual variation in blood transcriptomes of healthy managed bottlenose dolphins. BMC Genomics 2016; 17:720. [PMID: 27608714 PMCID: PMC5016863 DOI: 10.1186/s12864-016-3020-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Accepted: 08/16/2016] [Indexed: 11/30/2022] Open
Abstract
Background The blood transcriptome can reflect both systemic exposures and pathological changes in other organs of the body because immune cells recirculate through the blood, lymphoid tissues, and affected sites. In human and veterinary medicine, blood transcriptome analysis has been used successfully to identify markers of disease or pathological conditions, but can be confounded by large seasonal changes in expression. In comparison, the use of transcriptomic based analyses in wildlife has been limited. Here we report a longitudinal study of four managed bottlenose dolphins located in Waikoloa, Hawaii, serially sampled (approximately monthly) over the course of 1 year to establish baseline information on the content and variation of the dolphin blood transcriptome. Results Illumina based RNA-seq analyses were carried out using both the Ensembl dolphin genome and a de novo blood transcriptome as guides. Overall, the blood transcriptome encompassed a wide array of cellular functions and processes and was relatively stable within and between animals over the course of 1 year. Principal components analysis revealed moderate clustering by sex associated with the variation among global gene expression profiles (PC1, 22 % of variance). Limited seasonal change was observed, with < 2.5 % of genes differentially expressed between winter and summer months (FDR < 0.05). Among the differentially expressed genes, cosinor analysis identified seasonal rhythmicity for the observed changes in blood gene expression, consistent with studies in humans. While the proportion of seasonally variant genes in these dolphins is much smaller than that reported in humans, the majority of those identified in dolphins were also shown to vary with season in humans. Gene co-expression network analysis identified several gene modules with significant correlation to age, sex, or hematological parameters. Conclusions This longitudinal analysis of healthy managed dolphins establishes a preliminary baseline for blood transcriptome analysis in this species. Correlations with hematological parameters, distinct from muted seasonal effects, suggest that the otherwise relatively stable blood transcriptome may be a useful indicator of health and exposure. A robust database of gene expression in free-ranging and managed dolphins across seasons with known adverse health conditions or contaminant exposures will be needed to establish predictive gene expression profiles suitable for biomonitoring. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-3020-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jeanine S Morey
- National Centers for Coastal Ocean Sciences, National Ocean Service, NOAA, 331 Fort Johnson Rd, Charleston, SC, 29412, USA.
| | - Marion G Neely
- National Centers for Coastal Ocean Sciences, National Ocean Service, NOAA, 331 Fort Johnson Rd, Charleston, SC, 29412, USA
| | - Denise Lunardi
- Department of Life Sciences and Biotechnology, University of Ferrara, via L. Borsari 46, 44121, Ferrara, Italy
| | - Paul E Anderson
- Department of Computer Science, College of Charleston, Charleston, SC, 29424, USA
| | - Lori H Schwacke
- National Centers for Coastal Ocean Sciences, National Ocean Service, NOAA, 331 Fort Johnson Rd, Charleston, SC, 29412, USA
| | | | - Frances M Van Dolah
- National Centers for Coastal Ocean Sciences, National Ocean Service, NOAA, 331 Fort Johnson Rd, Charleston, SC, 29412, USA. .,Present Address: Graduate Program in Marine Biology, University of Charleston, Charleston, SC, 29412, USA.
| |
Collapse
|
11
|
Meise K, von Engelhardt N, Forcada J, Hoffman JI. Offspring Hormones Reflect the Maternal Prenatal Social Environment: Potential for Foetal Programming? PLoS One 2016; 11:e0145352. [PMID: 26761814 PMCID: PMC4711963 DOI: 10.1371/journal.pone.0145352] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 12/02/2015] [Indexed: 12/23/2022] Open
Abstract
Females of many species adaptively program their offspring to predictable environmental conditions, a process that is often mediated by hormones. Laboratory studies have shown, for instance, that social density affects levels of maternal cortisol and testosterone, leading to fitness-relevant changes in offspring physiology and behaviour. However, the effects of social density remain poorly understood in natural populations due to the difficulty of disentangling confounding influences such as climatic variation and food availability. Colonially breeding marine mammals offer a unique opportunity to study maternal effects in response to variable colony densities under similar ecological conditions. We therefore quantified maternal and offspring hormone levels in 84 Antarctic fur seals (Arctocephalus gazella) from two closely neighbouring colonies of contrasting density. Hair samples were used as they integrate hormone levels over several weeks or months and therefore represent in utero conditions during foetal development. We found significantly higher levels of cortisol and testosterone (both P < 0.001) in mothers from the high density colony, reflecting a more stressful and competitive environment. In addition, offspring testosterone showed a significant positive correlation with maternal cortisol (P < 0.05). Although further work is needed to elucidate the potential consequences for offspring fitness, these findings raise the intriguing possibility that adaptive foetal programming might occur in fur seals in response to the maternal social environment. They also lend support to the idea that hormonally mediated maternal effects may depend more strongly on the maternal regulation of androgen rather than cortisol levels.
Collapse
Affiliation(s)
- Kristine Meise
- Department of Animal Behaviour, University of Bielefeld, Morgenbreede 45, 33615, Bielefeld, Germany
| | - Nikolaus von Engelhardt
- Department of Animal Behaviour, University of Bielefeld, Morgenbreede 45, 33615, Bielefeld, Germany
| | - Jaume Forcada
- British Antarctic Survey, High Cross, Madingley Road, Cambridge, CB3 OET, United Kingdom
| | - Joseph Ivan Hoffman
- Department of Animal Behaviour, University of Bielefeld, Morgenbreede 45, 33615, Bielefeld, Germany
| |
Collapse
|