1
|
Carroll AR, Copp BR, Grkovic T, Keyzers RA, Prinsep MR. Marine natural products. Nat Prod Rep 2025; 42:257-297. [PMID: 39911015 DOI: 10.1039/d4np00067f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2025]
Abstract
Covering: January to the end of December 2023This review covers the literature published in 2023 for marine natural products (MNPs), with 582 citations (541 for the period January to December 2023) referring to compounds isolated from marine microorganisms and phytoplankton, green, brown and red algae, sponges, cnidarians, bryozoans, molluscs, tunicates, echinoderms, the submerged parts of mangroves and other intertidal plants. The emphasis is on new compounds (1220 in 340 papers for 2023), together with the relevant biological activities, source organisms and country of origin. Pertinent reviews, biosynthetic studies, first syntheses, and syntheses that led to the revision of structures or stereochemistries, have been included. An analysis of the progress in the study of prokaryote involvement in macro-invertebrate MNP production is discussed.
Collapse
Affiliation(s)
- Anthony R Carroll
- School of Environment and Science, Griffith University, Gold Coast, Australia.
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, Australia
| | - Brent R Copp
- School of Chemical Sciences, University of Auckland, Auckland, New Zealand
| | - Tanja Grkovic
- Natural Products Branch, Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis, Molecular Targets Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Robert A Keyzers
- Centre for Biodiscovery, School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington, New Zealand
| | | |
Collapse
|
2
|
Chen N, Liu L, Wang J, Mao D, Lu H, Shishido TK, Zhi S, Chen H, He S. Novel Gene Clusters for Secondary Metabolite Synthesis in Mesophotic Sponge-Associated Bacteria. Microb Biotechnol 2025; 18:e70107. [PMID: 39962733 PMCID: PMC11832590 DOI: 10.1111/1751-7915.70107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 01/08/2025] [Accepted: 01/30/2025] [Indexed: 02/21/2025] Open
Abstract
Mesophotic coral ecosystems (MCEs) host a diverse array of sponge species, which represent a promising source of bioactive compounds. Increasing evidence suggests that sponge-associated bacteria may be the primary producers of these compounds. However, cultivating these bacteria under laboratory conditions remains a significant challenge. To investigate the rich resource of bioactive compounds synthesised by mesophotic sponge-associated bacteria, we retrieved 429 metagenome-assembled genomes (MAGs) from 15 mesophotic sponges, revealing a strong correlation between bacterial diversity and sponge species. Furthermore, we identified 1637 secondary metabolite biosynthetic gene clusters (BGCs) within these MAGs. Among the identified BGCs, terpenes were the most abundant (495), followed by 369 polyketide synthases (PKSs), 293 ribosomally synthesised and post-translationally modified peptides (RiPPs) and 135 nonribosomal peptide synthetases (NRPSs). The BGCs were classified into 1086 gene cluster families (GCFs) based on sequence similarity. Notably, only five GCFs included experimentally validated reference BGCs from the Minimum Information about a Biosynthetic Gene cluster database (MIBiG). Additionally, an unusual abundance of BGCs was detected in Entotheonella sp. (s191209.Bin93) from the Tectomicrobia phylum. In contrast, members of Proteobacteria and Acidobacteriota harboured fewer BGCs (6-7 on average), yet their high abundance in MCE sponges suggests a potentially rich reservoir of BGCs. Analysis of the BGC distribution patterns revealed that a subset of BGCs, including terpene GCFs (FAM_00447 and FAM_01046), PKS GCF (FAM_00235), and RiPPs GCF (FAM_01143), were widespread across mesophotic sponges. Furthermore, 32 GCFs were consistently present in the same MAGs across different sponges, highlighting their potential key biological roles and capacity to yield novel bioactive compounds. This study not only underscores the untapped potential of mesophotic sponge-associated bacteria as a source of bioactive compounds but also provides valuable insights into the intricate interactions between sponges and their symbiotic microbial communities.
Collapse
Affiliation(s)
- Nuo Chen
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Health Science CenterNingbo UniversityNingboZhejiangChina
- College of Food Science and EngineeringNingbo UniversityNingboZhejiangChina
| | - Liwei Liu
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Health Science CenterNingbo UniversityNingboZhejiangChina
| | - Jingxuan Wang
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Health Science CenterNingbo UniversityNingboZhejiangChina
- College of Food Science and EngineeringNingbo UniversityNingboZhejiangChina
| | - Deqiang Mao
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Health Science CenterNingbo UniversityNingboZhejiangChina
- College of Food Science and EngineeringNingbo UniversityNingboZhejiangChina
| | - Hongmei Lu
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Health Science CenterNingbo UniversityNingboZhejiangChina
- College of Food Science and EngineeringNingbo UniversityNingboZhejiangChina
| | | | - Shuai Zhi
- School of Public HealthNingbo UniversityNingboZhejiangChina
| | - Hua Chen
- Mingke Biotechnology Co., Ltd.HangzhouChina
| | - Shan He
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Health Science CenterNingbo UniversityNingboZhejiangChina
- Ningbo Institute of Marine MedicinePeking UniversityNingboZhejiangChina
| |
Collapse
|
3
|
Kim H, Ahn J, Kim J, Kang HS. Metagenomic insights and biosynthetic potential of Candidatus Entotheonella symbiont associated with Halichondria marine sponges. Microbiol Spectr 2025; 13:e0235524. [PMID: 39576133 PMCID: PMC11705928 DOI: 10.1128/spectrum.02355-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 10/30/2024] [Indexed: 12/07/2024] Open
Abstract
Korea, being surrounded by the sea, provides a rich habitat for marine sponges, which have been a prolific source of bioactive natural products. Although a diverse array of structurally novel natural products has been isolated from Korean marine sponges, their biosynthetic origins remain largely unknown. To explore the biosynthetic potential of Korean marine sponges, we conducted metagenomic analyses of sponges inhabiting the East Sea of Korea. This analysis revealed a symbiotic association of Candidatus Entotheonella bacteria with Halichondria sponges. Here, we report a new chemically rich Entotheonella variant, which we named Ca. Entotheonella halido. Remarkably, this symbiont makes up 69% of the microbial community in the sponge Halichondira dokdoensis. Genome-resolved metagenomics enabled us to obtain a high-quality Ca. E. halido genome, which represents the largest (12 Mb) and highest quality among previously reported Entotheonella genomes. We also identified the biosynthetic gene cluster (BGC) of the known sponge-derived Halicylindramides from the Ca. E. halido genome, enabling us to determine their biosynthetic origin. This new symbiotic association expands the host diversity and biosynthetic potential of metabolically talented bacterial genus Ca. Entotheonella symbionts.IMPORTANCEOur study reports the discovery of a new bacterial symbiont Ca. Entotheonella halido associated with the Korean marine sponge Halichondria dokdoensis. Using genome-resolved metagenomics, we recovered a high-quality Ca. E. halido MAG (Metagenome-Assembled Genome), which represents the largest and most complete Ca. Entotheonella MAG reported to date. Pangenome and BGC network analyses revealed a remarkably high BGC diversity within the Ca. Entotheonella pangenome, with almost no overlapping BGCs between different MAGs. The cryptic and genetically unique BGCs present in the Ca. Entotheonella pangenome represents a promising source of new bioactive natural products.
Collapse
Affiliation(s)
- Hiyoung Kim
- Department of Biomedical Science and Engineering, Konkuk University, Seoul, South Korea
| | - Jiyeong Ahn
- Department of Biomedical Science and Engineering, Konkuk University, Seoul, South Korea
| | - Jaebum Kim
- Department of Biomedical Science and Engineering, Konkuk University, Seoul, South Korea
| | - Hahk-Soo Kang
- Department of Biomedical Science and Engineering, Konkuk University, Seoul, South Korea
| |
Collapse
|
4
|
Delawská K, Hájek J, Voráčová K, Kuzma M, Mareš J, Vicková K, Kádek A, Tučková D, Gallob F, Divoká P, Moos M, Opekar S, Koch L, Saurav K, Sedlák D, Novák P, Urajová P, Dean J, Gažák R, Niedermeyer TJH, Kameník Z, Šimek P, Villunger A, Hrouzek P. Discovery of nostatin A, an azole-containing proteusin with prominent cytostatic and pro-apoptotic activity. Org Biomol Chem 2025; 23:449-460. [PMID: 39576263 PMCID: PMC11583998 DOI: 10.1039/d4ob01395f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 11/04/2024] [Indexed: 11/24/2024]
Abstract
Ribosomally synthesized and post-translationally modified peptides (RiPPs) are intriguing compounds with potential pharmacological applications. While many RiPPs are known as antimicrobial agents, a limited number of RiPPs with anti-proliferative effects in cancer cells are available. Here we report the discovery of nostatin A (NosA), a highly modified RiPP belonging among nitrile hydratase-like leader peptide RiPPs (proteusins), isolated from a terrestrial cyanobacterium Nostoc sp. Its structure was established based on the core peptide sequence encoded in the biosynthetic gene cluster recovered from the producing strain and subsequent detailed nuclear magnetic resonance and high-resolution mass spectrometry analyses. NosA, composed of a 30 amino-acid peptide core, features a unique combination of moieties previously not reported in RiPPs: the simultaneous presence of oxazole/thiazole heterocycles, dehydrobutyrine/dehydroalanine residues, and a sactionine bond. NosA includes an isobutyl-modified proline residue, highly unusual in natural products. NosA inhibits proliferation of multiple cancer cell lines at low nanomolar concentration while showing no hemolysis. It induces cell cycle arrest in S-phase followed by mitochondrial apoptosis employing a mechanism different from known tubulin binding and DNA damaging compounds. NosA also inhibits Staphylococcus strains while it exhibits no effect in other tested bacteria or yeasts. Due to its novel structure and selective bioactivity, NosA represents an excellent candidate for combinatorial chemistry approaches leading to development of novel NosA-based lead compounds.
Collapse
Affiliation(s)
- Kateřina Delawská
- Centre Algatech, Institute of Microbiology, Czech Academy of Sciences, Novohradká 237, Centre Algatech, Institute of Microbiology, Czech Academy of Sciences, 379 01 Třeboň, Czech Republic.
- Department of Medical Biology, Faculty of Science, University of South Bohemia, Branišovská 1645/31a, 370 05 České Budějovice, Czech Republic
| | - Jan Hájek
- Centre Algatech, Institute of Microbiology, Czech Academy of Sciences, Novohradká 237, Centre Algatech, Institute of Microbiology, Czech Academy of Sciences, 379 01 Třeboň, Czech Republic.
| | - Kateřina Voráčová
- Centre Algatech, Institute of Microbiology, Czech Academy of Sciences, Novohradká 237, Centre Algatech, Institute of Microbiology, Czech Academy of Sciences, 379 01 Třeboň, Czech Republic.
| | - Marek Kuzma
- Laboratory of Molecular Structure Characterization, Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, 142 00 Praha 4, Czech Republic
| | - Jan Mareš
- Centre Algatech, Institute of Microbiology, Czech Academy of Sciences, Novohradká 237, Centre Algatech, Institute of Microbiology, Czech Academy of Sciences, 379 01 Třeboň, Czech Republic.
- Institute of Hydrobiology, Biology Centre of the Czech Academy of Sciences, Na Sádkách 702/7, 370 05 České Budějovice, Czech Republic
| | - Kateřina Vicková
- Centre Algatech, Institute of Microbiology, Czech Academy of Sciences, Novohradká 237, Centre Algatech, Institute of Microbiology, Czech Academy of Sciences, 379 01 Třeboň, Czech Republic.
| | - Alan Kádek
- Laboratory of Structural Biology and Cell Signaling, Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, 142 00 Praha 4, Czech Republic
| | - Dominika Tučková
- Centre Algatech, Institute of Microbiology, Czech Academy of Sciences, Novohradká 237, Centre Algatech, Institute of Microbiology, Czech Academy of Sciences, 379 01 Třeboň, Czech Republic.
- Department of Medical Biology, Faculty of Science, University of South Bohemia, Branišovská 1645/31a, 370 05 České Budějovice, Czech Republic
| | - Filip Gallob
- CeMM - Research Center for Molecular Medicine, Austrian Academy of Sciences, Lazarettgasse 14, 1090 Wien, Austria
| | - Petra Divoká
- Centre Algatech, Institute of Microbiology, Czech Academy of Sciences, Novohradká 237, Centre Algatech, Institute of Microbiology, Czech Academy of Sciences, 379 01 Třeboň, Czech Republic.
- Department of Medical Biology, Faculty of Science, University of South Bohemia, Branišovská 1645/31a, 370 05 České Budějovice, Czech Republic
| | - Martin Moos
- Institute of Entomology, Laboratory of Analytical Biochemistry and Metabolomics, Biology Centre of the Czech Academy of Sciences, Branišovská 1160/31, 370 05, České Budějovice, Czech Republic
| | - Stanislav Opekar
- Institute of Entomology, Laboratory of Analytical Biochemistry and Metabolomics, Biology Centre of the Czech Academy of Sciences, Branišovská 1160/31, 370 05, České Budějovice, Czech Republic
| | - Lukas Koch
- Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Str. 2+4, 14195 Berlin, Germany
- Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Hoher Weg 8, 06120 Halle, (Saale), Germany
| | - Kumar Saurav
- Centre Algatech, Institute of Microbiology, Czech Academy of Sciences, Novohradká 237, Centre Algatech, Institute of Microbiology, Czech Academy of Sciences, 379 01 Třeboň, Czech Republic.
| | - David Sedlák
- Institute of Molecular Genetics, Czech Academy of Sciences, Vídeňská 1083, 142 20 Praha
| | - Petr Novák
- Laboratory of Structural Biology and Cell Signaling, Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, 142 00 Praha 4, Czech Republic
| | - Petra Urajová
- Centre Algatech, Institute of Microbiology, Czech Academy of Sciences, Novohradká 237, Centre Algatech, Institute of Microbiology, Czech Academy of Sciences, 379 01 Třeboň, Czech Republic.
| | - Jason Dean
- Centre Algatech, Institute of Microbiology, Czech Academy of Sciences, Novohradká 237, Centre Algatech, Institute of Microbiology, Czech Academy of Sciences, 379 01 Třeboň, Czech Republic.
| | - Radek Gažák
- Laboratory of Antibiotic Resistance and Microbial Metabolomics, Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, 142 00 Praha 4, Czech Republic
| | - Timo J H Niedermeyer
- Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Str. 2+4, 14195 Berlin, Germany
- Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Hoher Weg 8, 06120 Halle, (Saale), Germany
| | - Zdeněk Kameník
- Laboratory of Antibiotic Resistance and Microbial Metabolomics, Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, 142 00 Praha 4, Czech Republic
| | - Petr Šimek
- Institute of Entomology, Laboratory of Analytical Biochemistry and Metabolomics, Biology Centre of the Czech Academy of Sciences, Branišovská 1160/31, 370 05, České Budějovice, Czech Republic
| | - Andreas Villunger
- CeMM - Research Center for Molecular Medicine, Austrian Academy of Sciences, Lazarettgasse 14, 1090 Wien, Austria
- Institute for Developmental Immunology, Medical University of Innsbruck, Biocenter, Innsbruck, Austria
| | - Pavel Hrouzek
- Centre Algatech, Institute of Microbiology, Czech Academy of Sciences, Novohradká 237, Centre Algatech, Institute of Microbiology, Czech Academy of Sciences, 379 01 Třeboň, Czech Republic.
| |
Collapse
|
5
|
Nguy AKL, Ireland KA, Kayrouz CM, Cáceres JC, Greene BL, Davis KM, Seyedsayamdost MR. Non-Canonical Cytochrome P450 Enzymes in Nature. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.22.630014. [PMID: 39763895 PMCID: PMC11703216 DOI: 10.1101/2024.12.22.630014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/14/2025]
Abstract
Cytochrome P450s (CYPs) are a superfamily of thiolate-ligated heme metalloenzymes principally responsible for the hydroxylation of unactivated C-H bonds. The lower-axial cysteine is an obligatory and universally conserved residue for the CYP enzyme class. Herein, we challenge this paradigm by systematically identifying non-canonical CYPs (ncCYPs) that do not harbor a cysteine ligand. Our bioinformatic search reveals 20 distinct ncCYP families with diverse ligands encoded in microbial genomes. We characterize a native serine-ligated CYP with a high-spin ferric resting state. Its crystal structure clearly shows a typical CYP fold and a serine alkoxide as a lower axial heme ligand. In addition, we report the discovery and characterization of the first native selenocysteine-ligated CYP in nature. Our findings radically expand the CYP metalloenzyme family.
Collapse
Affiliation(s)
- Andy K. L. Nguy
- Department of Chemistry, Princeton University, Princeton, NJ, USA
- These authors contributed equally
| | - Kendra A. Ireland
- Department of Chemistry, Emory University, Atlanta, GA, USA
- These authors contributed equally
| | - Chase M. Kayrouz
- Department of Chemistry, Princeton University, Princeton, NJ, USA
- These authors contributed equally
| | - Juan Carlos Cáceres
- Interdepartmental Program in Quantitative Biosciences, University of California Santa Barbara, Santa Barbara, CA, USA
| | - Brandon L. Greene
- Interdepartmental Program in Quantitative Biosciences, University of California Santa Barbara, Santa Barbara, CA, USA
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, CA, USA
| | | | - Mohammad R. Seyedsayamdost
- Department of Chemistry, Princeton University, Princeton, NJ, USA
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| |
Collapse
|
6
|
Schröder MP, Pfeiffer IPM, Mordhorst S. Methyltransferases from RiPP pathways: shaping the landscape of natural product chemistry. Beilstein J Org Chem 2024; 20:1652-1670. [PMID: 39076295 PMCID: PMC11285071 DOI: 10.3762/bjoc.20.147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 06/28/2024] [Indexed: 07/31/2024] Open
Abstract
This review article aims to highlight the role of methyltransferases within the context of ribosomally synthesised and post-translationally modified peptide (RiPP) natural products. Methyltransferases play a pivotal role in the biosynthesis of diverse natural products with unique chemical structures and bioactivities. They are highly chemo-, regio-, and stereoselective allowing methylation at various positions. The different possible acceptor regions in ribosomally synthesised peptides are described in this article. Furthermore, we will discuss the potential application of these methyltransferases as powerful biocatalytic tools in the synthesis of modified peptides and other bioactive compounds. By providing an overview of the various methylation options available, this review is intended to emphasise the biocatalytic potential of RiPP methyltransferases and their impact on the field of natural product chemistry.
Collapse
Affiliation(s)
- Maria-Paula Schröder
- Pharmaceutical Institute, Department of Pharmaceutical Biology, University of Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| | - Isabel P-M Pfeiffer
- Pharmaceutical Institute, Department of Pharmaceutical Biology, University of Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| | - Silja Mordhorst
- Pharmaceutical Institute, Department of Pharmaceutical Biology, University of Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| |
Collapse
|
7
|
Armstrong DW, Berthod A. Occurrence of D-amino acids in natural products. NATURAL PRODUCTS AND BIOPROSPECTING 2023; 13:47. [PMID: 37932633 PMCID: PMC10628113 DOI: 10.1007/s13659-023-00412-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 10/19/2023] [Indexed: 11/08/2023]
Abstract
Since the identified standard genetic code contains 61 triplet codons of three bases for the 20 L-proteinogenic amino acids (AAs), no D-AA should be found in natural products. This is not what is observed in the living world. D-AAs are found in numerous natural compounds produced by bacteria, algae, fungi, or marine animals, and even vertebrates. A review of the literature indicated the existence of at least 132 peptide natural compounds in which D-AAs are an essential part of their structure. All compounds are listed, numbered and described herein. The two biosynthetic routes leading to the presence of D-AA in natural products are: non-ribosomal peptide synthesis (NRPS), and ribosomally synthesized and post-translationally modified peptide (RiPP) synthesis which are described. The methods used to identify the AA chirality within naturally occurring peptides are briefly discussed. The biological activity of an all-L synthetic peptide is most often completely different from that of the D-containing natural compounds. Analyzing the selected natural compounds showed that D-Ala, D-Val, D-Leu and D-Ser are the most commonly encountered D-AAs closely followed by the non-proteinogenic D-allo-Thr. D-Lys and D-Met were the least prevalent D-AAs in naturally occurring compounds.
Collapse
Affiliation(s)
- Daniel W Armstrong
- Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, TX, 76019, USA.
| | - Alain Berthod
- Institut des Sciences Analytiques, CNRS, University of Lyon 1, 69100, Villeurbanne, France
| |
Collapse
|
8
|
Götze S, Vij R, Burow K, Thome N, Urbat L, Schlosser N, Pflanze S, Müller R, Hänsch VG, Schlabach K, Fazlikhani L, Walther G, Dahse HM, Regestein L, Brunke S, Hube B, Hertweck C, Franken P, Stallforth P. Ecological Niche-Inspired Genome Mining Leads to the Discovery of Crop-Protecting Nonribosomal Lipopeptides Featuring a Transient Amino Acid Building Block. J Am Chem Soc 2023; 145:2342-2353. [PMID: 36669196 PMCID: PMC9897216 DOI: 10.1021/jacs.2c11107] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Indexed: 01/22/2023]
Abstract
Investigating the ecological context of microbial predator-prey interactions enables the identification of microorganisms, which produce multiple secondary metabolites to evade predation or to kill the predator. In addition, genome mining combined with molecular biology methods can be used to identify further biosynthetic gene clusters that yield new antimicrobials to fight the antimicrobial crisis. In contrast, classical screening-based approaches have limitations since they do not aim to unlock the entire biosynthetic potential of a given organism. Here, we describe the genomics-based identification of keanumycins A-C. These nonribosomal peptides enable bacteria of the genus Pseudomonas to evade amoebal predation. While being amoebicidal at a nanomolar level, these compounds also exhibit a strong antimycotic activity in particular against the devastating plant pathogen Botrytis cinerea and they drastically inhibit the infection of Hydrangea macrophylla leaves using only supernatants of Pseudomonas cultures. The structures of the keanumycins were fully elucidated through a combination of nuclear magnetic resonance, tandem mass spectrometry, and degradation experiments revealing an unprecedented terminal imine motif in keanumycin C extending the family of nonribosomal amino acids by a highly reactive building block. In addition, chemical synthesis unveiled the absolute configuration of the unusual dihydroxylated fatty acid of keanumycin A, which has not yet been reported for this lipodepsipeptide class. Finally, a detailed genome-wide microarray analysis of Candida albicans exposed to keanumycin A shed light on the mode-of-action of this potential natural product lead, which will aid the development of new pharmaceutical and agrochemical antifungals.
Collapse
Affiliation(s)
- Sebastian Götze
- Department
of Paleobiotechnology, Leibniz Institute for Natural Product Research
and Infection Biology, Hans Knöll
Institute, Beutenbergstraße 11a, 07745 Jena, Germany
| | - Raghav Vij
- Department
of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural
Product Research and Infection Biology, Hans Knöll Institute, Beutenbergstraße 11a, 07745 Jena, Germany
| | - Katja Burow
- Research
Centre for Horticultural Crops (FGK), Fachhochschule
Erfurt, Kühnhäuser
Straße 101, 99090 Erfurt, Germany
| | - Nicola Thome
- Department
of Paleobiotechnology, Leibniz Institute for Natural Product Research
and Infection Biology, Hans Knöll
Institute, Beutenbergstraße 11a, 07745 Jena, Germany
| | - Lennart Urbat
- Department
of Paleobiotechnology, Leibniz Institute for Natural Product Research
and Infection Biology, Hans Knöll
Institute, Beutenbergstraße 11a, 07745 Jena, Germany
| | - Nicolas Schlosser
- Bio
Pilot Plant, Leibniz Institute for Natural Product Research and Infection
Biology, Hans Knöll Institute, Beutenbergstraße 11a, 07745 Jena, Germany
| | - Sebastian Pflanze
- Department
of Paleobiotechnology, Leibniz Institute for Natural Product Research
and Infection Biology, Hans Knöll
Institute, Beutenbergstraße 11a, 07745 Jena, Germany
| | - Rita Müller
- Department
of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural
Product Research and Infection Biology, Hans Knöll Institute, Beutenbergstraße 11a, 07745 Jena, Germany
| | - Veit G. Hänsch
- Department
of Biomolecular Chemistry, Leibniz Institute for Natural Product Research
and Infection Biology, Hans Knöll
Institute, Beutenbergstraße 11a, 07745 Jena, Germany
| | - Kevin Schlabach
- Department
of Paleobiotechnology, Leibniz Institute for Natural Product Research
and Infection Biology, Hans Knöll
Institute, Beutenbergstraße 11a, 07745 Jena, Germany
| | - Leila Fazlikhani
- Research
Centre for Horticultural Crops (FGK), Fachhochschule
Erfurt, Kühnhäuser
Straße 101, 99090 Erfurt, Germany
| | - Grit Walther
- National
Reference Center for Invasive Fungal Infections, Hans Knöll Institute, Beutenbergstraße 11a, 07745 Jena, Germany
| | - Hans-Martin Dahse
- Department
of Infection Biology, Leibniz Institute for Natural Product Research
and Infection Biology, Hans Knöll
Institute, Beutenbergstraße 11a, 07745 Jena, Germany
| | - Lars Regestein
- Bio
Pilot Plant, Leibniz Institute for Natural Product Research and Infection
Biology, Hans Knöll Institute, Beutenbergstraße 11a, 07745 Jena, Germany
| | - Sascha Brunke
- Department
of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural
Product Research and Infection Biology, Hans Knöll Institute, Beutenbergstraße 11a, 07745 Jena, Germany
| | - Bernhard Hube
- Department
of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural
Product Research and Infection Biology, Hans Knöll Institute, Beutenbergstraße 11a, 07745 Jena, Germany
| | - Christian Hertweck
- Department
of Biomolecular Chemistry, Leibniz Institute for Natural Product Research
and Infection Biology, Hans Knöll
Institute, Beutenbergstraße 11a, 07745 Jena, Germany
| | - Philipp Franken
- Research
Centre for Horticultural Crops (FGK), Fachhochschule
Erfurt, Kühnhäuser
Straße 101, 99090 Erfurt, Germany
- Molecular
Phytopathology, Friedrich Schiller University, 07745 Jena, Germany
| | - Pierre Stallforth
- Department
of Paleobiotechnology, Leibniz Institute for Natural Product Research
and Infection Biology, Hans Knöll
Institute, Beutenbergstraße 11a, 07745 Jena, Germany
- Faculty
of Chemistry and Earth Sciences, Institute of Organic Chemistry and
Macromolecular Chemistry, Friedrich Schiller
University Jena, Humboldtstraße 10, 07743 Jena, Germany
| |
Collapse
|
9
|
Diversity of Bacterial Secondary Metabolite Biosynthetic Gene Clusters in Three Vietnamese Sponges. Mar Drugs 2022; 21:md21010029. [PMID: 36662202 PMCID: PMC9864124 DOI: 10.3390/md21010029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/23/2022] [Accepted: 12/27/2022] [Indexed: 12/31/2022] Open
Abstract
Recent reviews have reinforced sponge-associated bacteria as a valuable source of structurally diverse secondary metabolites with potent biological properties, which makes these microbial communities promising sources of new drug candidates. However, the overall diversity of secondary metabolite biosynthetic potential present in bacteria is difficult to access due to the fact that the majority of bacteria are not readily cultured in the laboratory. Thus, use of cultivation-independent approaches may allow accessing "silent" and "cryptic" secondary metabolite biosynthetic gene clusters present in bacteria that cannot yet be cultured. In the present study, we investigated the diversity of secondary metabolite biosynthetic gene clusters (BGCs) in metagenomes of bacterial communities associated with three sponge species: Clathria reinwardti, Rhabdastrella globostellata, and Spheciospongia sp. The results reveal that the three metagenomes contain a high number of predicted BGCs, ranging from 282 to 463 BGCs per metagenome. The types of BGCs were diverse and represented 12 different cluster types. Clusters predicted to encode fatty acid synthases and polyketide synthases (PKS) were the most dominant BGC types, followed by clusters encoding synthesis of terpenes and bacteriocins. Based on BGC sequence similarity analysis, 363 gene cluster families (GCFs) were identified. Interestingly, no GCFs were assigned to pathways responsible for the production of known compounds, implying that the clusters detected might be responsible for production of several novel compounds. The KS gene sequences from PKS clusters were used to predict the taxonomic origin of the clusters involved. The KS sequences were related to 12 bacterial phyla with Actinobacteria, Proteobacteria, and Firmicutes as the most predominant. At the genus level, the KSs were most related to those found in the genera Mycolicibacterium, Mycobacterium, Burkholderia, and Streptomyces. Phylogenetic analysis of KS sequences resulted in detection of two known 'sponge-specific' BGCs, i.e., SupA and SwfA, as well as a new 'sponge-specific' cluster related to fatty acid synthesis in the phylum Candidatus Poribacteria and composed only by KS sequences of the three sponge-associated bacterial communities assessed here.
Collapse
|
10
|
Sukmarini L. Marine Bacterial Ribosomal Peptides: Recent Genomics- and Synthetic Biology-Based Discoveries and Biosynthetic Studies. Mar Drugs 2022; 20:md20090544. [PMID: 36135733 PMCID: PMC9505594 DOI: 10.3390/md20090544] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/18/2022] [Accepted: 08/21/2022] [Indexed: 11/27/2022] Open
Abstract
Marine biodiversity is represented by an exceptional and ample array of intriguing natural product chemistries. Due to their extensive post-translational modifications, ribosomal peptides—also known as ribosomally synthesized and post-translationally modified peptides (RiPPs)—exemplify a widely diverse class of natural products, endowing a broad range of pharmaceutically and biotechnologically relevant properties for therapeutic or industrial applications. Most RiPPs are of bacterial origin, yet their marine derivatives have been quite rarely investigated. Given the rapid advancement engaged in a more powerful genomics approach, more biosynthetic gene clusters and pathways for these ribosomal peptides continue to be increasingly characterized. Moreover, the genome-mining approach in integration with synthetic biology techniques has markedly led to a revolution of RiPP natural product discovery. Therefore, this present short review article focuses on the recent discovery of RiPPs from marine bacteria based on genome mining and synthetic biology approaches during the past decade. Their biosynthetic studies are discussed herein, particularly the organization of targeted biosynthetic gene clusters linked to the encoded RiPPs with potential bioactivities.
Collapse
Affiliation(s)
- Linda Sukmarini
- Research Center for Applied Microbiology, National Research and Innovation Agency (BRIN), Jl. Raya Bogor, Km. 46, Cibinong 16911, West Java, Indonesia
| |
Collapse
|
11
|
Sugawara K, Kanki D, Watanabe R, Matsushima R, Ise Y, Yokose H, Morii Y, Yamawaki N, Ninomiya A, Okada S, Matsunaga S. Aciculitin D, a cytotoxic heterodetic cyclic peptide from a Poecillastra sp. marine sponge. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.132859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
12
|
Kogawa M, Miyaoka R, Hemmerling F, Ando M, Yura K, Ide K, Nishikawa Y, Hosokawa M, Ise Y, Cahn JKB, Takada K, Matsunaga S, Mori T, Piel J, Takeyama H. Single-cell metabolite detection and genomics reveals uncultivated talented producer. PNAS NEXUS 2022; 1:pgab007. [PMID: 36712793 PMCID: PMC9802089 DOI: 10.1093/pnasnexus/pgab007] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 10/24/2021] [Accepted: 01/03/2022] [Indexed: 02/01/2023]
Abstract
The production of bioactive metabolites is increasingly recognized as an important function of host-associated bacteria. An example is defensive symbiosis that might account for much of the chemical richness of marine invertebrates including sponges (Porifera), 1 of the oldest metazoans. However, most bacterial members of sponge microbiomes have not been cultivated or sequenced, and therefore, remain unrecognized. Unequivocally linking metabolic functions to a cellular source in sponge microbiomes is, therefore, a challenge. Here, we report an analysis pipeline of microfluidic encapsulation, Raman microscopy, and integrated digital genomics (MERMAID) for an efficient identification of uncultivated producers. We applied this method to the chemically rich bacteriosponge (sponge that hosts a rich bacterial community) Theonella swinhoei, previously shown to contain 'Entotheonella' symbionts that produce most of the bioactive substances isolated from the sponge. As an exception, the antifungal aurantosides had remained unassigned to a source. Raman-guided single-bacterial analysis and sequencing revealed a cryptic, distinct multiproducer, 'Candidatus Poriflexus aureus' from a new Chloroflexi lineage as the aurantoside producer. Its exceptionally large genome contains numerous biosynthetic loci and suggested an even higher chemical richness of this sponge than previously appreciated. This study highlights the importance of complementary technologies to uncover microbiome functions, reveals remarkable parallels between distantly related symbionts of the same host, and adds functional support for diverse chemically prolific lineages being present in microbial dark matter.
Collapse
Affiliation(s)
| | | | | | - Masahiro Ando
- Research Organization for Nano and Life Innovation, Waseda University, 513 Wasedatsurumaki-cho, Shinjuku-ku, Tokyo 162–0041, Japan
| | - Kei Yura
- Department of Life Science and Medical Bioscience, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162–8480, Japan,Research Organization for Nano and Life Innovation, Waseda University, 513 Wasedatsurumaki-cho, Shinjuku-ku, Tokyo 162–0041, Japan,Graduate School of Humanities and Sciences, Ochanomizu University, 2-1-1 Otsuka, Bunkyo-ku, Tokyo 112-8610, Japan
| | - Keigo Ide
- Department of Life Science and Medical Bioscience, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162–8480, Japan,Computational Bio Big-Data Open Innovation Laboratory, AIST-Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169–0072, Japan
| | - Yohei Nishikawa
- Department of Life Science and Medical Bioscience, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162–8480, Japan,Computational Bio Big-Data Open Innovation Laboratory, AIST-Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169–0072, Japan
| | - Masahito Hosokawa
- Department of Life Science and Medical Bioscience, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162–8480, Japan,Research Organization for Nano and Life Innovation, Waseda University, 513 Wasedatsurumaki-cho, Shinjuku-ku, Tokyo 162–0041, Japan
| | - Yuji Ise
- Sesoko Station, Tropical Biosphere Research Center, University of the Ryukyus, 3422 Sesoko, Motobu, Kunigami, Okinawa 905-0227, Japan
| | - Jackson K B Cahn
- Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zurich, Vladimir-Prelog-Weg 4, 8093 Zurich, Switzerland
| | - Kentaro Takada
- School of Marine Biosciences, Kitasato University, Minami-ku, Sagamihara, Kanagawa 252-0373, Japan
| | - Shigeki Matsunaga
- Laboratory of Aquatic Natural Products Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Tetsushi Mori
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan
| | - Jörn Piel
- To whom correspondence should be addressed: (JP)
| | | |
Collapse
|
13
|
Dieterich CL, Probst SI, Ueoka R, Sandu I, Schäfle D, Molin MD, Minas HA, Costa R, Oxenius A, Sander P, Piel J. Aquimarins, Peptide Antibiotics with Amino‐Modified C‐Termini from a Sponge‐Derived
Aquimarina
sp. Bacterium. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202115802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Cora L. Dieterich
- Institute of Microbiology Eidgenössische Technische Hochschule (ETH) Zürich Vladimir-Prelog-Weg 4 CH-8093 Zurich Switzerland
| | - Silke I. Probst
- Institute of Microbiology Eidgenössische Technische Hochschule (ETH) Zürich Vladimir-Prelog-Weg 4 CH-8093 Zurich Switzerland
| | - Reiko Ueoka
- Institute of Microbiology Eidgenössische Technische Hochschule (ETH) Zürich Vladimir-Prelog-Weg 4 CH-8093 Zurich Switzerland
- School of Marine Biosciences Kitasato University 1-15-1 Kitasato, Minami-ku Sagamihara Kanagawa 252-0373 Japan
| | - Ioana Sandu
- Institute of Microbiology Eidgenössische Technische Hochschule (ETH) Zürich Vladimir-Prelog-Weg 4 CH-8093 Zurich Switzerland
| | - Daniel Schäfle
- Institut für Medizinische Mikrobiologie University of Zurich Gloriastrasse 28/30 CH-8006 Zurich Switzerland
| | - Michael Dal Molin
- Institut für Medizinische Mikrobiologie University of Zurich Gloriastrasse 28/30 CH-8006 Zurich Switzerland
- Center for Molecular Medicine Cologne University of Cologne Robert-Koch-Str. 21 D-50931 Cologne Germany
| | - Hannah A. Minas
- Institute of Microbiology Eidgenössische Technische Hochschule (ETH) Zürich Vladimir-Prelog-Weg 4 CH-8093 Zurich Switzerland
| | - Rodrigo Costa
- Institute for Bioengineering and Biosciences (iBB) Instituto Superior Técnico Universidade de Lisboa Av. Rovisco Pais 1049-001 Lisboa Portugal
| | - Annette Oxenius
- Institute of Microbiology Eidgenössische Technische Hochschule (ETH) Zürich Vladimir-Prelog-Weg 4 CH-8093 Zurich Switzerland
| | - Peter Sander
- Institut für Medizinische Mikrobiologie University of Zurich Gloriastrasse 28/30 CH-8006 Zurich Switzerland
- Nationales Zentrum für Mykobakterien Gloriastrasse 28/30 CH-8006 Zurich Switzerland
| | - Jörn Piel
- Institute of Microbiology Eidgenössische Technische Hochschule (ETH) Zürich Vladimir-Prelog-Weg 4 CH-8093 Zurich Switzerland
| |
Collapse
|
14
|
Dieterich CL, Probst SI, Ueoka R, Sandu I, Schäfle D, Molin MD, Minas HA, Costa R, Oxenius A, Sander P, Piel J. Aquimarins, Peptide Antibiotics with Amino-Modified C-Termini from a Sponge-Derived Aquimarina sp. Bacterium. Angew Chem Int Ed Engl 2021; 61:e202115802. [PMID: 34918870 DOI: 10.1002/anie.202115802] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Indexed: 11/11/2022]
Abstract
Genome mining and bioactivity studies suggested the sponge-derived bacterium Aquimarina sp. Aq135 as a producer of new antibiotics. Activity-guided isolation identified antibacterial peptides, named aquimarins, featuring a new scaffold with an unusual C-terminal amino group and chlorine moieties. Responsible for the halogenation is the FeII /α-ketoglutarate-dependent chlorinase AqmA that halogenates up to two isoleucine residues in a carrier protein-dependent fashion. Total syntheses of two natural aquimarins and eight non-natural variants were developed. Structure-activity relationship (SAR) studies with these compounds showed that the synthetically more laborious chlorinations are not required for antibacterial activity but enhance cytotoxicity. In contrast, variants lacking the C-terminal amine were virtually inactive, suggesting diamines similar to the terminal aquimarin residue as candidate building blocks for new peptidomimetic antibiotics.
Collapse
Affiliation(s)
- Cora L Dieterich
- Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zürich, Vladimir-Prelog-Weg 4, CH-8093, Zurich, Switzerland
| | - Silke I Probst
- Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zürich, Vladimir-Prelog-Weg 4, CH-8093, Zurich, Switzerland
| | - Reiko Ueoka
- Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zürich, Vladimir-Prelog-Weg 4, CH-8093, Zurich, Switzerland.,School of Marine Biosciences, Kitasato University, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa, 252-0373, Japan
| | - Ioana Sandu
- Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zürich, Vladimir-Prelog-Weg 4, CH-8093, Zurich, Switzerland
| | - Daniel Schäfle
- Institut für Medizinische Mikrobiologie, University of Zurich, Gloriastrasse 28/30, CH-8006, Zurich, Switzerland
| | - Michael Dal Molin
- Institut für Medizinische Mikrobiologie, University of Zurich, Gloriastrasse 28/30, CH-8006, Zurich, Switzerland.,Center for Molecular Medicine Cologne, University of Cologne, Robert-Koch-Str. 21, D-50931, Cologne, Germany
| | - Hannah A Minas
- Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zürich, Vladimir-Prelog-Weg 4, CH-8093, Zurich, Switzerland
| | - Rodrigo Costa
- Institute for Bioengineering and Biosciences (iBB), Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisboa, Portugal
| | - Annette Oxenius
- Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zürich, Vladimir-Prelog-Weg 4, CH-8093, Zurich, Switzerland
| | - Peter Sander
- Institut für Medizinische Mikrobiologie, University of Zurich, Gloriastrasse 28/30, CH-8006, Zurich, Switzerland.,Nationales Zentrum für Mykobakterien, Gloriastrasse 28/30, CH-8006, Zurich, Switzerland
| | - Jörn Piel
- Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zürich, Vladimir-Prelog-Weg 4, CH-8093, Zurich, Switzerland
| |
Collapse
|
15
|
Ansari N, Rokhbakhsh-Zamin F, Hassanshahian M, Hesni MA. The Occurrence of Crude Oil-Degrading Bacteria in Some Sponges Collected at the Persian Gulf: Ecological Importance and Biotechnological Application. Polycycl Aromat Compd 2021. [DOI: 10.1080/10406638.2021.2014529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Nasrin Ansari
- Department of Microbiology, Kerman Branch, Islamic Azad University, Kerman, Iran
| | | | - Mehdi Hassanshahian
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Majid Askari Hesni
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran
| |
Collapse
|
16
|
Zhi N, Zhu H, Qiao J, Dong M. Recent progress in radical SAM enzymes: New reactions and mechanisms. CHINESE SCIENCE BULLETIN-CHINESE 2021. [DOI: 10.1360/tb-2021-1067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
17
|
Shomar H, Bokinsky G. Towards a Synthetic Biology Toolset for Metallocluster Enzymes in Biosynthetic Pathways: What We Know and What We Need. Molecules 2021; 26:molecules26226930. [PMID: 34834021 PMCID: PMC8617995 DOI: 10.3390/molecules26226930] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/14/2021] [Accepted: 11/15/2021] [Indexed: 11/16/2022] Open
Abstract
Microbes are routinely engineered to synthesize high-value chemicals from renewable materials through synthetic biology and metabolic engineering. Microbial biosynthesis often relies on expression of heterologous biosynthetic pathways, i.e., enzymes transplanted from foreign organisms. Metallocluster enzymes are one of the most ubiquitous family of enzymes involved in natural product biosynthesis and are of great biotechnological importance. However, the functional expression of recombinant metallocluster enzymes in live cells is often challenging and represents a major bottleneck. The activity of metallocluster enzymes requires essential supporting pathways, involved in protein maturation, electron supply, and/or enzyme stability. Proper function of these supporting pathways involves specific protein-protein interactions that remain poorly characterized and are often overlooked by traditional synthetic biology approaches. Consequently, engineering approaches that focus on enzymatic expression and carbon flux alone often overlook the particular needs of metallocluster enzymes. This review highlights the biotechnological relevance of metallocluster enzymes and discusses novel synthetic biology strategies to advance their industrial application, with a particular focus on iron-sulfur cluster enzymes. Strategies to enable functional heterologous expression and enhance recombinant metallocluster enzyme activity in industrial hosts include: (1) optimizing specific maturation pathways; (2) improving catalytic stability; and (3) enhancing electron transfer. In addition, we suggest future directions for developing microbial cell factories that rely on metallocluster enzyme catalysis.
Collapse
Affiliation(s)
- Helena Shomar
- INSERM U722, Faculté de Médecine, Université de Paris, Site Xavier Bichat, 75018 Paris, France
- Correspondence: (H.S.); (G.B.)
| | - Gregory Bokinsky
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, 2629 HZ Delft, The Netherlands
- Correspondence: (H.S.); (G.B.)
| |
Collapse
|
18
|
Gogineni V, Chen X, Hanna G, Mayasari D, Hamann MT. Role of symbiosis in the discovery of novel antibiotics. J Antibiot (Tokyo) 2020; 73:490-503. [PMID: 32499556 DOI: 10.1038/s41429-020-0321-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 04/18/2020] [Accepted: 04/26/2020] [Indexed: 12/16/2022]
Abstract
Antibiotic resistance has been an ongoing challenge that has emerged almost immediately after the initial discovery of antibiotics and requires the development of innovative new antibiotics and antibiotic combinations that can effectively mitigate the development of resistance. More than 35,000 people die each year from antibiotic resistant infections in just the United States. This signifies the importance of identifying other alternatives to antibiotics for which resistance has developed. Virtually, all currently used antibiotics can trace their genesis to soil derived bacteria and fungi. The bacteria and fungi involved in symbiosis is an area that still remains widely unexplored for the discovery and development of new antibiotics. This brief review focuses on the challenges and opportunities in the application of symbiotic microbes and also provides an interesting platform that links natural product chemistry with evolutionary biology and ecology.
Collapse
Affiliation(s)
- Vedanjali Gogineni
- Analytical Development Department, Cambrex Pharmaceuticals, Charles City, IA, USA
- Department of Drug Discovery, Biomedical Sciences and Public Health, College of Pharmacy and Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Xiaoyan Chen
- Department of Drug Discovery, Biomedical Sciences and Public Health, College of Pharmacy and Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - George Hanna
- Department of Drug Discovery, Biomedical Sciences and Public Health, College of Pharmacy and Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Dian Mayasari
- Department of Pharmaceutical Biology, Faculty of Pharmacy, University of Gadjah Mada, Yogyakarta, Indonesia
| | - Mark T Hamann
- Department of Drug Discovery, Biomedical Sciences and Public Health, College of Pharmacy and Medicine, Medical University of South Carolina, Charleston, SC, USA.
| |
Collapse
|
19
|
Metagenomic Exploration of the Marine Sponge Mycale hentscheli Uncovers Multiple Polyketide-Producing Bacterial Symbionts. mBio 2020; 11:mBio.02997-19. [PMID: 32209692 PMCID: PMC7157528 DOI: 10.1128/mbio.02997-19] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Marine sponges have been a prolific source of unique bioactive compounds that are presumed to act as a deterrent to predation. Many of these compounds have potential therapeutic applications; however, the lack of efficient and sustainable synthetic routes frequently limits clinical development. Here, we describe a metagenomic investigation of Mycale hentscheli, a chemically gifted marine sponge that possesses multiple distinct chemotypes. We applied shotgun metagenomic sequencing, hybrid assembly of short- and long-read data, and metagenomic binning to obtain a comprehensive picture of the microbiome of five specimens, spanning three chemotypes. Our data revealed multiple producing species, each having relatively modest secondary metabolomes, that contribute collectively to the chemical arsenal of the holobiont. We assembled complete genomes for multiple new genera, including two species that produce the cytotoxic polyketides pateamine and mycalamide, as well as a third high-abundance symbiont harboring a proteusin-type biosynthetic pathway that appears to encode a new polytheonamide-like compound. We also identified an additional 188 biosynthetic gene clusters, including a pathway for biosynthesis of peloruside. These results suggest that multiple species cooperatively contribute to defensive symbiosis in M. hentscheli and reveal that the taxonomic diversity of secondary-metabolite-producing sponge symbionts is larger and richer than previously recognized.IMPORTANCE Mycale hentscheli is a marine sponge that is rich in bioactive small molecules. Here, we use direct metagenomic sequencing to elucidate highly complete and contiguous genomes for the major symbiotic bacteria of this sponge. We identify complete biosynthetic pathways for the three potent cytotoxic polyketides which have previously been isolated from M. hentscheli Remarkably, and in contrast to previous studies of marine sponges, we attribute each of these metabolites to a different producing microbe. We also find that the microbiome of M. hentscheli is stably maintained among individuals, even over long periods of time. Collectively, our data suggest a cooperative mode of defensive symbiosis in which multiple symbiotic bacterial species cooperatively contribute to the defensive chemical arsenal of the holobiont.
Collapse
|
20
|
Bacteria as genetically programmable producers of bioactive natural products. Nat Rev Chem 2020; 4:172-193. [PMID: 37128046 DOI: 10.1038/s41570-020-0176-1] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/21/2020] [Indexed: 12/17/2022]
Abstract
Next to plants, bacteria account for most of the biomass on Earth. They are found everywhere, although certain species thrive only in specific ecological niches. These microorganisms biosynthesize a plethora of both primary and secondary metabolites, defined, respectively, as those required for the growth and maintenance of cellular functions and those not required for survival but offering a selective advantage for the producer under certain conditions. As a result, bacterial fermentation has long been used to manufacture valuable natural products of nutritional, agrochemical and pharmaceutical interest. The interactions of secondary metabolites with their biological targets have been optimized by millions of years of evolution and they are, thus, considered to be privileged chemical structures, not only for drug discovery. During the last two decades, functional genomics has allowed for an in-depth understanding of the underlying biosynthetic logic of secondary metabolites. This has, in turn, paved the way for the unprecedented use of bacteria as programmable biochemical workhorses. In this Review, we discuss the multifaceted use of bacteria as biological factories in diverse applications and highlight recent advances in targeted genetic engineering of bacteria for the production of valuable bioactive compounds. Emphasis is on current advances to access nature's abundance of natural products.
Collapse
|
21
|
Moeller FU, Webster NS, Herbold CW, Behnam F, Domman D, Albertsen M, Mooshammer M, Markert S, Turaev D, Becher D, Rattei T, Schweder T, Richter A, Watzka M, Nielsen PH, Wagner M. Characterization of a thaumarchaeal symbiont that drives incomplete nitrification in the tropical sponge Ianthella basta. Environ Microbiol 2019; 21:3831-3854. [PMID: 31271506 PMCID: PMC6790972 DOI: 10.1111/1462-2920.14732] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 06/14/2019] [Accepted: 06/17/2019] [Indexed: 12/25/2022]
Abstract
Marine sponges represent one of the few eukaryotic groups that frequently harbour symbiotic members of the Thaumarchaeota, which are important chemoautotrophic ammonia-oxidizers in many environments. However, in most studies, direct demonstration of ammonia-oxidation by these archaea within sponges is lacking, and little is known about sponge-specific adaptations of ammonia-oxidizing archaea (AOA). Here, we characterized the thaumarchaeal symbiont of the marine sponge Ianthella basta using metaproteogenomics, fluorescence in situ hybridization, qPCR and isotope-based functional assays. 'Candidatus Nitrosospongia ianthellae' is only distantly related to cultured AOA. It is an abundant symbiont that is solely responsible for nitrite formation from ammonia in I. basta that surprisingly does not harbour nitrite-oxidizing microbes. Furthermore, this AOA is equipped with an expanded set of extracellular subtilisin-like proteases, a metalloprotease unique among archaea, as well as a putative branched-chain amino acid ABC transporter. This repertoire is strongly indicative of a mixotrophic lifestyle and is (with slight variations) also found in other sponge-associated, but not in free-living AOA. We predict that this feature as well as an expanded and unique set of secreted serpins (protease inhibitors), a unique array of eukaryotic-like proteins, and a DNA-phosporothioation system, represent important adaptations of AOA to life within these ancient filter-feeding animals.
Collapse
Affiliation(s)
- Florian U. Moeller
- Centre for Microbiology and Environmental Systems Science, Division of Microbial EcologyUniversity of ViennaAustria
| | - Nicole S. Webster
- Australian Institute of Marine ScienceTownsvilleQueenslandAustralia
- Australian Centre for Ecogenomics, School of Chemistry and Molecular BiosciencesUniversity of QueenslandSt LuciaQueenslandAustralia
| | - Craig W. Herbold
- Centre for Microbiology and Environmental Systems Science, Division of Microbial EcologyUniversity of ViennaAustria
| | - Faris Behnam
- Centre for Microbiology and Environmental Systems Science, Division of Microbial EcologyUniversity of ViennaAustria
| | - Daryl Domman
- Centre for Microbiology and Environmental Systems Science, Division of Microbial EcologyUniversity of ViennaAustria
| | - Mads Albertsen
- Center for Microbial Communities, Department of Chemistry and BioscienceAalborg University9220AalborgDenmark
| | - Maria Mooshammer
- Centre for Microbiology and Environmental Systems Science, Division of Microbial EcologyUniversity of ViennaAustria
| | - Stephanie Markert
- Institute of Marine Biotechnology e.VGreifswaldGermany
- Institute of Pharmacy, Pharmaceutical BiotechnologyUniversity of GreifswaldGreifswaldGermany
| | - Dmitrij Turaev
- Centre for Microbiology and Environmental Systems Science, Division of Computational Systems BiologyUniversity of ViennaAustria
| | - Dörte Becher
- Institute of Microbiology, Microbial ProteomicsUniversity of GreifswaldGreifswaldGermany
| | - Thomas Rattei
- Centre for Microbiology and Environmental Systems Science, Division of Computational Systems BiologyUniversity of ViennaAustria
| | - Thomas Schweder
- Institute of Marine Biotechnology e.VGreifswaldGermany
- Institute of Pharmacy, Pharmaceutical BiotechnologyUniversity of GreifswaldGreifswaldGermany
| | - Andreas Richter
- Centre for Microbiology and Environmental Systems Science, Division of Terrestrial Ecosystem ResearchUniversity of ViennaAustria
| | - Margarete Watzka
- Centre for Microbiology and Environmental Systems Science, Division of Terrestrial Ecosystem ResearchUniversity of ViennaAustria
| | - Per Halkjaer Nielsen
- Center for Microbial Communities, Department of Chemistry and BioscienceAalborg University9220AalborgDenmark
| | - Michael Wagner
- Centre for Microbiology and Environmental Systems Science, Division of Microbial EcologyUniversity of ViennaAustria
- Center for Microbial Communities, Department of Chemistry and BioscienceAalborg University9220AalborgDenmark
| |
Collapse
|
22
|
Paul VJ, Freeman CJ, Agarwal V. Chemical Ecology of Marine Sponges: New Opportunities through "-Omics". Integr Comp Biol 2019; 59:765-776. [PMID: 30942859 PMCID: PMC6797912 DOI: 10.1093/icb/icz014] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The chemical ecology and chemical defenses of sponges have been investigated for decades; consequently, sponges are among the best understood marine organisms in terms of their chemical ecology, from the level of molecules to ecosystems. Thousands of natural products have been isolated and characterized from sponges, and although relatively few of these compounds have been studied for their ecological functions, some are known to serve as chemical defenses against predators, microorganisms, fouling organisms, and other competitors. Sponges are hosts to an exceptional diversity of microorganisms, with almost 40 microbial phyla found in these associations to date. Microbial community composition and abundance are highly variable across host taxa, with a continuum from diverse assemblages of many microbial taxa to those that are dominated by a single microbial group. Microbial communities expand the nutritional repertoire of their hosts by providing access to inorganic and dissolved sources of nutrients. Not only does this continuum of microorganism-sponge associations lead to divergent nutritional characteristics in sponges, these associated microorganisms and symbionts have long been suspected, and are now known, to biosynthesize some of the natural products found in sponges. Modern "omics" tools provide ways to study these sponge-microbe associations that would have been difficult even a decade ago. Metabolomics facilitate comparisons of sponge compounds produced within and among taxa, and metagenomics and metatranscriptomics provide tools to understand the biology of host-microbe associations and the biosynthesis of ecologically relevant natural products. These combinations of ecological, microbiological, metabolomic and genomics tools, and techniques provide unprecedented opportunities to advance sponge biology and chemical ecology across many marine ecosystems.
Collapse
Affiliation(s)
- Valerie J Paul
- Smithsonian Marine Station, 701 Seaway Drive, Fort Pierce, FL 34949, USA
| | - Christopher J Freeman
- Smithsonian Marine Station, 701 Seaway Drive, Fort Pierce, FL 34949, USA
- Department of Biology, College of Charleston, Charleston, SC 29424, USA
| | - Vinayak Agarwal
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, USA
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
23
|
Vassaux A, Meunier L, Vandenbol M, Baurain D, Fickers P, Jacques P, Leclère V. Nonribosomal peptides in fungal cell factories: from genome mining to optimized heterologous production. Biotechnol Adv 2019; 37:107449. [PMID: 31518630 DOI: 10.1016/j.biotechadv.2019.107449] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 09/06/2019] [Accepted: 09/09/2019] [Indexed: 12/15/2022]
Abstract
Fungi are notoriously prolific producers of secondary metabolites including nonribosomal peptides (NRPs). The structural complexity of NRPs grants them interesting activities such as antibiotic, anti-cancer, and anti-inflammatory properties. The discovery of these compounds with attractive activities can be achieved by using two approaches: either by screening samples originating from various environments for their biological activities, or by identifying the related clusters in genomic sequences thanks to bioinformatics tools. This genome mining approach has grown tremendously due to recent advances in genome sequencing, which have provided an incredible amount of genomic data from hundreds of microbial species. Regarding fungal organisms, the genomic data have revealed the presence of an unexpected number of putative NRP-related gene clusters. This highlights fungi as a goldmine for the discovery of putative novel bioactive compounds. Recent development of NRP dedicated bioinformatics tools have increased the capacity to identify these gene clusters and to deduce NRPs structures, speeding-up the screening process for novel metabolites discovery. Unfortunately, the newly identified compound is frequently not or poorly produced by native producers due to a lack of expression of the related genes cluster. A frequently employed strategy to increase production rates consists in transferring the related biosynthetic pathway in heterologous hosts. This review aims to provide a comprehensive overview about the topic of NRPs discovery, from gene cluster identification by genome mining to the heterologous production in fungal hosts. The main computational tools and methods for genome mining are herein presented with an emphasis on the particularities of the fungal systems. The different steps of the reconstitution of NRP biosynthetic pathway in heterologous fungal cell factories will be discussed, as well as the key factors to consider for maximizing productivity. Several examples will be developed to illustrate the potential of heterologous production to both discover uncharacterized novel compounds predicted in silico by genome mining, and to enhance the productivity of interesting bio-active natural products.
Collapse
Affiliation(s)
- Antoine Vassaux
- TERRA Teaching and Research Centre, Microbial Processes and Interactions, Gembloux Agro-Bio Tech, University of Liege, Avenue de la Faculté d'Agronomie, B5030 Gembloux, Belgium; Univ. Lille, INRA, ISA, Univ. Artois, Univ. Littoral Côte d'Opale, EA 7394-ICV-Institut Charles Viollette, F-59000 Lille, France
| | - Loïc Meunier
- TERRA Teaching and Research Centre, Microbial Processes and Interactions, Gembloux Agro-Bio Tech, University of Liege, Avenue de la Faculté d'Agronomie, B5030 Gembloux, Belgium; InBioS-PhytoSYSTEMS, Eukaryotic Phylogenomics, University of Liege, Boulevard du Rectorat 27, B-4000 Liège, Belgium
| | - Micheline Vandenbol
- TERRA Teaching and Research Centre, Microbiologie et Génomique, Gembloux Agro-Bio Tech, University of Liege, Avenue de la Faculté d'Agronomie, B5030 Gembloux, Belgium
| | - Denis Baurain
- InBioS-PhytoSYSTEMS, Eukaryotic Phylogenomics, University of Liege, Boulevard du Rectorat 27, B-4000 Liège, Belgium
| | - Patrick Fickers
- TERRA Teaching and Research Centre, Microbial Processes and Interactions, Gembloux Agro-Bio Tech, University of Liege, Avenue de la Faculté d'Agronomie, B5030 Gembloux, Belgium
| | - Philippe Jacques
- TERRA Teaching and Research Centre, Microbial Processes and Interactions, Gembloux Agro-Bio Tech, University of Liege, Avenue de la Faculté d'Agronomie, B5030 Gembloux, Belgium
| | - Valérie Leclère
- Univ. Lille, INRA, ISA, Univ. Artois, Univ. Littoral Côte d'Opale, EA 7394-ICV-Institut Charles Viollette, F-59000 Lille, France.
| |
Collapse
|
24
|
Vagstad AL, Kuranaga T, Püntener S, Pattabiraman VR, Bode JW, Piel J. Introduction of
d
‐Amino Acids in Minimalistic Peptide Substrates by an
S
‐Adenosyl‐
l
‐Methionine Radical Epimerase. Angew Chem Int Ed Engl 2019; 58:2246-2250. [DOI: 10.1002/anie.201809508] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 11/08/2018] [Indexed: 02/02/2023]
Affiliation(s)
- Anna L. Vagstad
- Institute of MicrobiologyEidgenössische Technische Hochschule (ETH) Zurich Vladimir-Prelog-Weg 4 8093 Zurich Switzerland
| | - Takefumi Kuranaga
- Graduate School of Pharmaceutical SciencesKyoto University Kyoto 606-8501 Japan
| | - Salome Püntener
- Institute of MicrobiologyEidgenössische Technische Hochschule (ETH) Zurich Vladimir-Prelog-Weg 4 8093 Zurich Switzerland
| | - Vijaya R. Pattabiraman
- Laboratory of Organic ChemistryEidgenössische Technische Hochschule (ETH) Zurich Vladimir-Prelog-Weg 3 8093 Zurich Switzerland
| | - Jeffrey W. Bode
- Laboratory of Organic ChemistryEidgenössische Technische Hochschule (ETH) Zurich Vladimir-Prelog-Weg 3 8093 Zurich Switzerland
| | - Jörn Piel
- Institute of MicrobiologyEidgenössische Technische Hochschule (ETH) Zurich Vladimir-Prelog-Weg 4 8093 Zurich Switzerland
| |
Collapse
|
25
|
Vagstad AL, Kuranaga T, Püntener S, Pattabiraman VR, Bode JW, Piel J. Introduction of d
-Amino Acids in Minimalistic Peptide Substrates by an S
-Adenosyl-l
-Methionine Radical Epimerase. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201809508] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Anna L. Vagstad
- Institute of Microbiology; Eidgenössische Technische Hochschule (ETH) Zurich; Vladimir-Prelog-Weg 4 8093 Zurich Switzerland
| | - Takefumi Kuranaga
- Graduate School of Pharmaceutical Sciences; Kyoto University; Kyoto 606-8501 Japan
| | - Salome Püntener
- Institute of Microbiology; Eidgenössische Technische Hochschule (ETH) Zurich; Vladimir-Prelog-Weg 4 8093 Zurich Switzerland
| | - Vijaya R. Pattabiraman
- Laboratory of Organic Chemistry; Eidgenössische Technische Hochschule (ETH) Zurich; Vladimir-Prelog-Weg 3 8093 Zurich Switzerland
| | - Jeffrey W. Bode
- Laboratory of Organic Chemistry; Eidgenössische Technische Hochschule (ETH) Zurich; Vladimir-Prelog-Weg 3 8093 Zurich Switzerland
| | - Jörn Piel
- Institute of Microbiology; Eidgenössische Technische Hochschule (ETH) Zurich; Vladimir-Prelog-Weg 4 8093 Zurich Switzerland
| |
Collapse
|
26
|
Fukuhara K, Takada K, Watanabe R, Suzuki T, Okada S, Matsunaga S. Colony-wise Analysis of a Theonella swinhoei Marine Sponge with a Yellow Interior Permitted the Isolation of Theonellamide I. JOURNAL OF NATURAL PRODUCTS 2018; 81:2595-2599. [PMID: 30346758 DOI: 10.1021/acs.jnatprod.8b00591] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
There are several examples of marine organisms whose metabolic profiles differ among conspecifics inhabiting the same region. We have analyzed the metabolic profile of each colony of a Theonella swinhoei marine sponge with a yellow interior and noticed the patchy distribution of one metabolite. This compound was isolated and its structure was studied by a combination of spectrometric analyses and chemical degradation, showing it to be a congener in the theonellamide class of bicyclic peptides. Theonellamides had previously been isolated by us only from T. swinhoei with a white interior and not from those with a yellow interior.
Collapse
Affiliation(s)
- Kazuya Fukuhara
- Laboratory of Aquatic Natural Products Chemistry, Graduate School of Agricultural and Life Sciences , The University of Tokyo , Bunkyo-ku, Tokyo 113-8657 , Japan
| | - Kentaro Takada
- Laboratory of Aquatic Natural Products Chemistry, Graduate School of Agricultural and Life Sciences , The University of Tokyo , Bunkyo-ku, Tokyo 113-8657 , Japan
| | - Ryuichi Watanabe
- National Research Institute of Fisheries Science , 2-12-4 Fukuura , Kanazawa, Yokohama 236-8648 , Japan
| | - Toshiyuki Suzuki
- National Research Institute of Fisheries Science , 2-12-4 Fukuura , Kanazawa, Yokohama 236-8648 , Japan
| | - Shigeru Okada
- Laboratory of Aquatic Natural Products Chemistry, Graduate School of Agricultural and Life Sciences , The University of Tokyo , Bunkyo-ku, Tokyo 113-8657 , Japan
| | - Shigeki Matsunaga
- Laboratory of Aquatic Natural Products Chemistry, Graduate School of Agricultural and Life Sciences , The University of Tokyo , Bunkyo-ku, Tokyo 113-8657 , Japan
| |
Collapse
|
27
|
Lomora M, Shumate D, Rahman AA, Pandit A. Therapeutic Applications of Phytoplankton, with an Emphasis on Diatoms and Coccolithophores. ADVANCED THERAPEUTICS 2018. [DOI: 10.1002/adtp.201800099] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Mihai Lomora
- SFI Centre For Research in Medical Devices (CÚRAM); National University of Ireland; Galway Ireland
| | - David Shumate
- SFI Centre For Research in Medical Devices (CÚRAM); National University of Ireland; Galway Ireland
- Georgia Institute of Technology; Atlanta GA 30332 USA
| | - Asrizal Abdul Rahman
- SFI Centre For Research in Medical Devices (CÚRAM); National University of Ireland; Galway Ireland
| | - Abhay Pandit
- SFI Centre For Research in Medical Devices (CÚRAM); National University of Ireland; Galway Ireland
| |
Collapse
|
28
|
Metabolic engineering of a carbapenem antibiotic synthesis pathway in Escherichia coli. Nat Chem Biol 2018; 14:794-800. [DOI: 10.1038/s41589-018-0084-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 04/27/2018] [Indexed: 12/14/2022]
|
29
|
Kust A, Mareš J, Jokela J, Urajová P, Hájek J, Saurav K, Voráčová K, Fewer DP, Haapaniemi E, Permi P, Řeháková K, Sivonen K, Hrouzek P. Discovery of a Pederin Family Compound in a Nonsymbiotic Bloom-Forming Cyanobacterium. ACS Chem Biol 2018; 13:1123-1129. [PMID: 29570981 DOI: 10.1021/acschembio.7b01048] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The pederin family includes a number of bioactive compounds isolated from symbiotic organisms of diverse evolutionary origin. Pederin is linked to beetle-induced dermatitis in humans, and pederin family members possess potent antitumor activity caused by selective inhibition of the eukaryotic ribosome. Their biosynthesis is accomplished by a polyketide/nonribosomal peptide synthetase machinery employing an unusual trans-acyltransferase mechanism. Here, we report a novel pederin type compound, cusperin, from the free-living cyanobacterium Cuspidothrix issatschenkoi (earlier Aphanizomenon). The chemical structure of cusperin is similar to that of nosperin recently isolated from the lichen cyanobiont Nostoc sharing the tehrahydropyran moiety and major part of the linear backbone. However, the cusperin molecule is extended by a glycine residue and lacks one hydroxyl substituent. Pederins were previously thought to be exclusive to symbiotic relationships. However, C. issatschenkoi is a nonsymbiotic planktonic organism and a frequent component of toxic water blooms. Cusperin is devoid of the cytotoxic activity reported for other pederin family members. Hence, our findings raise questions about the role of pederin analogues in cyanobacteria and broaden the knowledge of ecological distribution of this group of polyketides.
Collapse
Affiliation(s)
- Andreja Kust
- Institute of Microbiology CAS, Center Algatech, Třeboň, Czech Republic
- The Czech Academy of Sciences, Biology Centre, Institute of Hydrobiology, České Budějovice, Czech Republic
- University of South Bohemia, Faculty of Science, České Budějovice, Czech Republic
| | - Jan Mareš
- Institute of Microbiology CAS, Center Algatech, Třeboň, Czech Republic
- The Czech Academy of Sciences, Biology Centre, Institute of Hydrobiology, České Budějovice, Czech Republic
- University of South Bohemia, Faculty of Science, České Budějovice, Czech Republic
| | - Jouni Jokela
- Department of Microbiology, University of Helsinki, FI-00014 Helsinki, Finland
| | - Petra Urajová
- Institute of Microbiology CAS, Center Algatech, Třeboň, Czech Republic
| | - Jan Hájek
- Institute of Microbiology CAS, Center Algatech, Třeboň, Czech Republic
- University of South Bohemia, Faculty of Science, České Budějovice, Czech Republic
| | - Kumar Saurav
- Institute of Microbiology CAS, Center Algatech, Třeboň, Czech Republic
| | - Kateřina Voráčová
- Institute of Microbiology CAS, Center Algatech, Třeboň, Czech Republic
| | - David P. Fewer
- Department of Microbiology, University of Helsinki, FI-00014 Helsinki, Finland
| | - Esa Haapaniemi
- Department of Chemistry, University of Jyväskylä, FI-40010 Jyväskylä, Finland
| | - Perttu Permi
- Department of Chemistry, University of Jyväskylä, FI-40010 Jyväskylä, Finland
- Department of Biology and Environmental Science, Nanoscience Center, University of Jyväskylä, FI-40010 Jyväskylä, Finland
| | - Klára Řeháková
- The Czech Academy of Sciences, Biology Centre, Institute of Hydrobiology, České Budějovice, Czech Republic
| | | | - Pavel Hrouzek
- Institute of Microbiology CAS, Center Algatech, Třeboň, Czech Republic
- University of South Bohemia, Faculty of Science, České Budějovice, Czech Republic
| |
Collapse
|
30
|
Hegemann JD, van der Donk WA. Investigation of Substrate Recognition and Biosynthesis in Class IV Lanthipeptide Systems. J Am Chem Soc 2018; 140:5743-5754. [PMID: 29633842 PMCID: PMC5932250 DOI: 10.1021/jacs.8b01323] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Lanthipeptides belong to the family of ribosomally synthesized and post-translationally modified peptides (RiPPs) and are subdivided into four classes. The first two classes have been heavily studied, but less is known about classes III and IV. The lanthipeptide synthetases of classes III and IV share a similar organization of protein domains: A lyase domain at the N-terminus, a central kinase domain, and a C-terminal cyclase domain. Here, we provide deeper insight into class IV enzymes (LanLs). A series of putative producer strains was screened to identify production conditions of four new venezuelin-like lanthipeptides, and an Escherichia coli based heterologous production system was established for a fifth. The latter not only allowed production of fully modified core peptide but was also employed as the basis for mutational analysis of the precursor peptide to identify regions important for enzyme recognition. These experiments were complemented by in vitro binding studies aimed at identifying the region of the leader peptide recognized by the LanL enzymes as well as determining which domain of the enzyme is recognizing the substrate peptide. Combined, these studies revealed that the kinase domain is mediating the interaction with the precursor peptide and that a putatively α-helical stretch of residues at the center to N-terminal region of the leader peptide is important for enzyme recognition. In addition, a combination of in vitro assays and tandem mass spectrometry was used to elucidate the order of dehydration events in these systems.
Collapse
Affiliation(s)
- Julian D Hegemann
- Howard Hughes Medical Institute and Department of Chemistry , University of Illinois at Urbana-Champaign , 600 South Mathews Avenue , Urbana, Illinois 61801 , United States
| | - Wilfred A van der Donk
- Howard Hughes Medical Institute and Department of Chemistry , University of Illinois at Urbana-Champaign , 600 South Mathews Avenue , Urbana, Illinois 61801 , United States
| |
Collapse
|
31
|
Morita M, Schmidt EW. Parallel lives of symbionts and hosts: chemical mutualism in marine animals. Nat Prod Rep 2018; 35:357-378. [PMID: 29441375 PMCID: PMC6025756 DOI: 10.1039/c7np00053g] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Covering: up to 2018 Symbiotic microbes interact with animals, often by producing natural products (specialized metabolites; secondary metabolites) that exert a biological role. A major goal is to determine which microbes produce biologically important compounds, a deceptively challenging task that often rests on correlative results, rather than hypothesis testing. Here, we examine the challenges and successes from the perspective of marine animal-bacterial mutualisms. These animals have historically provided a useful model because of their technical accessibility. By comparing biological systems, we suggest a common framework for establishing chemical interactions between animals and microbes.
Collapse
Affiliation(s)
- Maho Morita
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, Utah, USA 84112.
| | | |
Collapse
|
32
|
Miller JH, Field JJ, Kanakkanthara A, Owen JG, Singh AJ, Northcote PT. Marine Invertebrate Natural Products that Target Microtubules. JOURNAL OF NATURAL PRODUCTS 2018; 81:691-702. [PMID: 29431439 DOI: 10.1021/acs.jnatprod.7b00964] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Marine natural products as secondary metabolites are a potential major source of new drugs for treating disease. In some cases, cytotoxic marine metabolites target the microtubules of the eukaryote cytoskeleton for reasons that will be discussed. This review covers the microtubule-targeting agents reported from sponges, corals, tunicates, and molluscs and the evidence that many of these secondary metabolites are produced by bacterial symbionts. The review finishes by discussing the directions for future development and production of clinically relevant amounts of these natural products and their analogues through aquaculture, chemical synthesis, and biosynthesis by bacterial symbionts.
Collapse
Affiliation(s)
| | | | - Arun Kanakkanthara
- Department of Oncology and Department of Molecular Pharmacology and Experimental Therapeutics , Mayo Clinic , Rochester , Minnesota , United States
| | | | | | | |
Collapse
|
33
|
|
34
|
Lanz ND, Blaszczyk AJ, McCarthy EL, Wang B, Wang RX, Jones BS, Booker SJ. Enhanced Solubilization of Class B Radical S-Adenosylmethionine Methylases by Improved Cobalamin Uptake in Escherichia coli. Biochemistry 2018; 57:1475-1490. [PMID: 29298049 DOI: 10.1021/acs.biochem.7b01205] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The methylation of unactivated carbon and phosphorus centers is a burgeoning area of biological chemistry, especially given that such reactions constitute key steps in the biosynthesis of numerous enzyme cofactors, antibiotics, and other natural products of clinical value. These kinetically challenging reactions are catalyzed exclusively by enzymes in the radical S-adenosylmethionine (SAM) superfamily and have been grouped into four classes (A-D). Class B radical SAM (RS) methylases require a cobalamin cofactor in addition to the [4Fe-4S] cluster that is characteristic of RS enzymes. However, their poor solubility upon overexpression and their generally poor turnover has hampered detailed in vitro studies of these enzymes. It has been suggested that improper folding, possibly caused by insufficient cobalamin during their overproduction in Escherichia coli, leads to formation of inclusion bodies. Herein, we report our efforts to improve the overproduction of class B RS methylases in a soluble form by engineering a strain of E. coli to take in more cobalamin. We cloned five genes ( btuC, btuE, btuD, btuF, and btuB) that encode proteins that are responsible for cobalamin uptake and transport in E. coli and co-expressed these genes with those that encode TsrM, Fom3, PhpK, and ThnK, four class B RS methylases that suffer from poor solubility during overproduction. This strategy markedly enhances the uptake of cobalamin into the cytoplasm and improves the solubility of the target enzymes significantly.
Collapse
|
35
|
Radical S-Adenosylmethionine Peptide Epimerases: Detection of Activity and Characterization of d-Amino Acid Products. Methods Enzymol 2018; 604:237-257. [DOI: 10.1016/bs.mie.2018.01.033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
36
|
Molloy EM, Hertweck C. Antimicrobial discovery inspired by ecological interactions. Curr Opin Microbiol 2017; 39:121-127. [PMID: 29169087 DOI: 10.1016/j.mib.2017.09.006] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 09/06/2017] [Indexed: 01/08/2023]
Abstract
Bacteria represent an unparalleled source of antibiotics used to treat infectious diseases. Yet, genome analyses have revealed that their full biosynthetic potential is much larger than expected. Valuable strategies to unearth hidden antibiotics are genome mining, pathway engineering and triggering, as well as co-cultivation approaches. Nevertheless, there is growing understanding that it is often essential to consider the ecological context and that there is a great potential for antimicrobial discovery from bacteria engaged in well-defined interactions with other organisms. Various ecological scenarios involving antimicrobial agents are outlined in this review: predator-prey and pathogenic interactions, the protection of insect assets such as offspring and cultivars, as well as host protection in symbiotic relationships with plants, invertebrates and animals/humans. The illustrative examples given reinforce the idea that examination of interactions between organisms can yield new antimicrobial compounds, and ultimately further our understanding of the function of these molecules in the environment.
Collapse
Affiliation(s)
- Evelyn M Molloy
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Beutenbergstr. 11a, 07745 Jena, Germany
| | - Christian Hertweck
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Beutenbergstr. 11a, 07745 Jena, Germany; Natural Product Chemistry, Friedrich Schiller University, 07743 Jena, Germany.
| |
Collapse
|
37
|
Mahanta N, Hudson GA, Mitchell DA. Radical S-Adenosylmethionine Enzymes Involved in RiPP Biosynthesis. Biochemistry 2017; 56:5229-5244. [PMID: 28895719 DOI: 10.1021/acs.biochem.7b00771] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Ribosomally synthesized and post-translationally modified peptides (RiPPs) display a diverse range of structures and continue to expand as a natural product class. Accordingly, RiPPs exhibit a wide array of bioactivities, acting as broad and narrow spectrum growth suppressors, antidiabetics, and antinociception and anticancer agents. Because of these properties, and the complex repertoire of post-translational modifications (PTMs) that give rise to these molecules, RiPP biosynthesis has been intensely studied. RiPP biosynthesis often involves enzymes that perform unique chemistry with intriguing reaction mechanisms, which attract chemists and biochemists alike to study and re-engineer these pathways. One particular type of RiPP biosynthetic enzyme is the so-called radical S-adenosylmethionine (rSAM) enzyme, which utilizes radical-based chemistry to install several distinct PTMs. Here, we describe the rSAM enzymes characterized over the past decade that catalyze six reaction types from several RiPP biosynthetic pathways. We present the current state of mechanistic understanding and conclude with possible directions for future characterization of this enzyme family.
Collapse
Affiliation(s)
- Nilkamal Mahanta
- Department of Chemistry, University of Illinois at Urbana-Champaign , 600 South Mathews Avenue, Urbana, Illinois 61801, United States.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign , 1206 West Gregory Drive, Urbana, Illinois 61801, United States
| | - Graham A Hudson
- Department of Chemistry, University of Illinois at Urbana-Champaign , 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Douglas A Mitchell
- Department of Chemistry, University of Illinois at Urbana-Champaign , 600 South Mathews Avenue, Urbana, Illinois 61801, United States.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign , 1206 West Gregory Drive, Urbana, Illinois 61801, United States
| |
Collapse
|
38
|
An Overview on Marine Sponge-Symbiotic Bacteria as Unexhausted Sources for Natural Product Discovery. DIVERSITY-BASEL 2017. [DOI: 10.3390/d9040040] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Microbial symbiotic communities of marine macro-organisms carry functional metabolic profiles different to the ones found terrestrially and within surrounding marine environments. These symbiotic bacteria have increasingly been a focus of microbiologists working in marine environments due to a wide array of reported bioactive compounds of therapeutic importance resulting in various patent registrations. Revelations of symbiont-directed host specific functions and the true nature of host-symbiont interactions, combined with metagenomic advances detecting functional gene clusters, will inevitably open new avenues for identification and discovery of novel bioactive compounds of biotechnological value from marine resources. This review article provides an overview on bioactive marine symbiotic organisms with specific emphasis placed on the sponge-associated ones and invites the international scientific community to contribute towards establishment of in-depth information of the environmental parameters defining selection and acquisition of true symbionts by the host organisms.
Collapse
|
39
|
Abstract
With the advent of very rapid and cheap genome analyses and the linkage of these plus microbial metabolomics to potential compound structures came the realization that there was an immense sea of novel agents to be mined and tested. In addition, it is now recognized that there is significant microbial involvement in many natural products isolated from “nominally non-microbial sources”. This short review covers the current screening methods that have evolved and one might even be tempted to say “devolved” in light of the realization that target-based screens had problems when the products entered clinical testing, with off-target effects being the major ones. Modern systems include, but are not limited to, screening in cell lines utilizing very modern techniques (a high content screen) that are designed to show interactions within cells when treated with an “agent”. The underlying principle(s) used in such systems dated back to unpublished attempts in the very early 1980s by the pharmaceutical industry to show toxic interactions within animal cells by using automated light microscopy. Though somewhat successful, the technology was not adequate for any significant commercialization. Somewhat later, mammalian cell lines that were “genetically modified” to alter signal transduction cascades, either up or down, and frequently linked to luciferase readouts, were then employed in a 96-well format. In the case of microbes, specific resistance parameters were induced in isogenic cell lines from approximately the mid-1970s. In the latter two cases, comparisons against parent and sibling cell lines were used in order that a rapid determination of potential natural product “hits” could be made. Obviously, all of these assay systems could also be, and were, used for synthetic molecules. These methods and their results have led to a change in what the term “screening for bioactivity” means. In practice, versions of phenotypic screening are returning, but in a dramatically different scientific environment from the 1970s, as I hope to demonstrate in the short article that follows.
Collapse
|
40
|
Agarwal V, Miles ZD, Winter JM, Eustáquio AS, El Gamal AA, Moore BS. Enzymatic Halogenation and Dehalogenation Reactions: Pervasive and Mechanistically Diverse. Chem Rev 2017; 117:5619-5674. [PMID: 28106994 PMCID: PMC5575885 DOI: 10.1021/acs.chemrev.6b00571] [Citation(s) in RCA: 259] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Naturally produced halogenated compounds are ubiquitous across all domains of life where they perform a multitude of biological functions and adopt a diversity of chemical structures. Accordingly, a diverse collection of enzyme catalysts to install and remove halogens from organic scaffolds has evolved in nature. Accounting for the different chemical properties of the four halogen atoms (fluorine, chlorine, bromine, and iodine) and the diversity and chemical reactivity of their organic substrates, enzymes performing biosynthetic and degradative halogenation chemistry utilize numerous mechanistic strategies involving oxidation, reduction, and substitution. Biosynthetic halogenation reactions range from simple aromatic substitutions to stereoselective C-H functionalizations on remote carbon centers and can initiate the formation of simple to complex ring structures. Dehalogenating enzymes, on the other hand, are best known for removing halogen atoms from man-made organohalogens, yet also function naturally, albeit rarely, in metabolic pathways. This review details the scope and mechanism of nature's halogenation and dehalogenation enzymatic strategies, highlights gaps in our understanding, and posits where new advances in the field might arise in the near future.
Collapse
Affiliation(s)
- Vinayak Agarwal
- Center for Oceans and Human Health, Scripps Institution of Oceanography, University of California, San Diego
| | - Zachary D. Miles
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego
| | | | - Alessandra S. Eustáquio
- College of Pharmacy, Department of Medicinal Chemistry & Pharmacognosy and Center for Biomolecular Sciences, University of Illinois at Chicago
| | - Abrahim A. El Gamal
- Center for Oceans and Human Health, Scripps Institution of Oceanography, University of California, San Diego
| | - Bradley S. Moore
- Center for Oceans and Human Health, Scripps Institution of Oceanography, University of California, San Diego
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego
| |
Collapse
|
41
|
Matcher GF, Waterworth SC, Walmsley TA, Matsatsa T, Parker‐Nance S, Davies‐Coleman MT, Dorrington RA. Keeping it in the family: Coevolution of latrunculid sponges and their dominant bacterial symbionts. Microbiologyopen 2017; 6:e00417. [PMID: 27781403 PMCID: PMC5387304 DOI: 10.1002/mbo3.417] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 09/06/2016] [Accepted: 09/14/2016] [Indexed: 01/13/2023] Open
Abstract
The Latrunculiidae are a family of cold water sponges known for their production of bioactive pyrroloiminoquinone alkaloids. Previously it was shown that the bacterial community associated with a Tsitsikamma sponge species comprises unusual bacterial taxa and is dominated by a novel Betaproteobacterium. Here, we have characterized the bacterial communities associated with six latrunculid species representing three genera (Tsitsikamma, Cyclacanthia, and Latrunculia) as well as a Mycale species, collected from Algoa Bay on the South African southeast coast. The bacterial communities of all seven sponge species were dominated by a single Betaproteobacterium operational taxonomic unit (OTU0.03 ), while a second OTU0.03 was dominant in the Mycale sp. The Betaproteobacteria OTUs from the different latrunculid sponges are closely related and their phylogenetic relationship follows that of their hosts. We propose that the latrunculid Betaproteobacteria OTUs are members of a specialized group of sponge symbionts that may have coevolved with their hosts. A single dominant Spirochaetae OTU0.03 was present in the Tsitsikamma and Cyclacanthia sponge species, but absent from the Latrunculia and Mycale sponges. This study sheds new light on the interactions between latrunculid sponges and their bacterial communities and may point to the potential involvement of dominant symbionts in the biosynthesis of the bioactive secondary metabolites.
Collapse
Affiliation(s)
- Gwynneth F. Matcher
- Department of Biochemistry and MicrobiologyRhodes UniversityGrahamstownSouth Africa
| | | | - Tara A. Walmsley
- Department of Biochemistry and MicrobiologyRhodes UniversityGrahamstownSouth Africa
- Department of BiotechnologyVaal University of TechnologyVanderbijlparkSouth Africa
| | - Tendayi Matsatsa
- Department of Biochemistry and MicrobiologyRhodes UniversityGrahamstownSouth Africa
| | - Shirley Parker‐Nance
- Department of Biochemistry and MicrobiologyRhodes UniversityGrahamstownSouth Africa
| | - Michael T. Davies‐Coleman
- Department of ChemistryRhodes UniversityGrahamstownSouth Africa
- Faculty of Natural ScienceUniversity of the Western CapeCape TownSouth Africa
| | | |
Collapse
|
42
|
A Place to Call Home: An Analysis of the Bacterial Communities in Two Tethya rubra Samaai and Gibbons 2005 Populations in Algoa Bay, South Africa. Mar Drugs 2017; 15:md15040095. [PMID: 28346340 PMCID: PMC5408241 DOI: 10.3390/md15040095] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 03/08/2017] [Accepted: 03/16/2017] [Indexed: 11/26/2022] Open
Abstract
Sponges are important sources of bioactive secondary metabolites. These compounds are frequently synthesized by bacterial symbionts, which may be recruited from the surrounding seawater or transferred to the sponge progeny by the parent. In this study, we investigated the bacterial communities associated with the sponge Tethya rubra Samaai and Gibbons 2005. Sponge specimens were collected from Evans Peak and RIY Banks reefs in Algoa Bay, South Africa and taxonomically identified by spicule analysis and molecular barcoding. Crude chemical extracts generated from individual sponges were profiled by ultraviolet high performance liquid chromatography (UV-HPLC) and subjected to bioactivity assays in mammalian cells. Next-generation sequencing analysis of 16S rRNA gene sequences was used to characterize sponge-associated bacterial communities. T. rubra sponges collected from the two locations were morphologically and genetically indistinguishable. Chemical extracts from sponges collected at RIY banks showed mild inhibition of the metabolic activity of mammalian cells and their UV-HPLC profiles were distinct from those of sponges collected at Evans Peak. Similarly, the bacterial communities associated with sponges from the two locations were distinct with evidence of vertical transmission of symbionts from the sponge parent to its embryos. We conclude that these distinct bacterial communities may be responsible for the differences observed in the chemical profiles of the two Algoa Bay T. rubra Samaai and Gibbons 2005 populations.
Collapse
|
43
|
Insights into the lifestyle of uncultured bacterial natural product factories associated with marine sponges. Proc Natl Acad Sci U S A 2017; 114:E347-E356. [PMID: 28049838 DOI: 10.1073/pnas.1616234114] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The as-yet uncultured filamentous bacteria "Candidatus Entotheonella factor" and "Candidatus Entotheonella gemina" live associated with the marine sponge Theonella swinhoei Y, the source of numerous unusual bioactive natural products. Belonging to the proposed candidate phylum "Tectomicrobia," Candidatus Entotheonella members are only distantly related to any cultivated organism. The Ca E. factor has been identified as the source of almost all polyketide and modified peptides families reported from the sponge host, and both Ca Entotheonella phylotypes contain numerous additional genes for as-yet unknown metabolites. Here, we provide insights into the biology of these remarkable bacteria using genomic, (meta)proteomic, and chemical methods. The data suggest a metabolic model of Ca Entotheonella as facultative anaerobic, organotrophic organisms with the ability to use methanol as an energy source. The symbionts appear to be auxotrophic for some vitamins, but have the potential to produce most amino acids as well as rare cofactors like coenzyme F420 The latter likely accounts for the strong autofluorescence of Ca Entotheonella filaments. A large expansion of protein families involved in regulation and conversion of organic molecules indicates roles in host-bacterial interaction. In addition, a massive overrepresentation of members of the luciferase-like monooxygenase superfamily points toward an important role of these proteins in Ca Entotheonella. Furthermore, we performed mass spectrometric imaging combined with fluorescence in situ hybridization to localize Ca Entotheonella and some of the bioactive natural products in the sponge tissue. These metabolic insights into a new candidate phylum offer hints on the targeted cultivation of the chemically most prolific microorganisms known from microbial dark matter.
Collapse
|
44
|
Fichtner M, Voigt K, Schuster S. The tip and hidden part of the iceberg: Proteinogenic and non-proteinogenic aliphatic amino acids. Biochim Biophys Acta Gen Subj 2017; 1861:3258-3269. [DOI: 10.1016/j.bbagen.2016.08.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 07/14/2016] [Accepted: 08/15/2016] [Indexed: 12/26/2022]
|
45
|
Newman DJ. Predominately Uncultured Microbes as Sources of Bioactive Agents. Front Microbiol 2016; 7:1832. [PMID: 27917159 PMCID: PMC5114300 DOI: 10.3389/fmicb.2016.01832] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 11/01/2016] [Indexed: 12/15/2022] Open
Abstract
In this short review, I am discussing the relatively recent awareness of the role of symbionts in plant, marine-invertebrates and fungal areas. It is now quite obvious that in marine-invertebrates, a majority of compounds found are from either as yet unculturable or poorly culturable microbes, and techniques involving “state of the art” genomic analyses and subsequent computerized analyses are required to investigate these interactions. In the plant kingdom evidence is amassing that endophytes (mainly fungal in nature) are heavily involved in secondary metabolite production and that mimicking the microbial interactions of fermentable microbes leads to involvement of previously unrecognized gene clusters (cryptic clusters is one name used), that when activated, produce previously unknown bioactive molecules.
Collapse
|
46
|
Jamison MT, Molinski TF. Jamaicensamide A, a Peptide Containing β-Amino-α-keto and Thiazole-Homologated η-Amino Acid Residues from the Sponge Plakina jamaicensis. JOURNAL OF NATURAL PRODUCTS 2016; 79:2243-2249. [PMID: 27547840 DOI: 10.1021/acs.jnatprod.6b00336] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
A new cyclic peptide, jamaicensamide A, composed of six amino acids, including a thiazole-homologated amino acid, was isolated from the Bahamian sponge Plakina jamaicensis, along with known compounds bitungolide A and franklinolide A. The structure of the title peptide was solved by integrated analysis of MS, 1D and 2D NMR data, oxidation-hydrolyses to α-amino acids, and their stereodetermination by Marfey's method. The close structural resemblance of Western Atlantic-derived jamaicensamide A to known Western Pacific-derived peptides of lithistid sponges in the genus Theonella and Discodermia suggests a common origin: the symbiotic bacterium Entotheonella sp., a so-called "talented producer" responsible for biosynthesis of most Theonella-associated peptides. Similar natural products from sponges of disparate genera evince the likelihood that these invertebrates harbor the same or a very similar symbiont.
Collapse
Affiliation(s)
- Matthew T Jamison
- Department of Chemistry and Biochemistry and ‡Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego , 9500 Gilman Dr. MC-0358, La Jolla, California 92093-0358, United States
| | - Tadeusz F Molinski
- Department of Chemistry and Biochemistry and ‡Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego , 9500 Gilman Dr. MC-0358, La Jolla, California 92093-0358, United States
| |
Collapse
|
47
|
Liu F, Li J, Feng G, Li Z. New Genomic Insights into "Entotheonella" Symbionts in Theonella swinhoei: Mixotrophy, Anaerobic Adaptation, Resilience, and Interaction. Front Microbiol 2016; 7:1333. [PMID: 27610106 PMCID: PMC4996862 DOI: 10.3389/fmicb.2016.01333] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Accepted: 08/12/2016] [Indexed: 12/11/2022] Open
Abstract
“Entotheonella” (phylum “Tectomicrobia”) is a filamentous symbiont that produces almost all known bioactive compounds derived from the Lithistida sponge Theonella swinhoei. In contrast to the comprehensive knowledge of its secondary metabolism, knowledge of its lifestyle, resilience, and interaction with the sponge host and other symbionts remains rudimentary. In this study, we obtained two “Entotheonella” genomes from T. swinhoei from the South China Sea through metagenome binning, and used a RASTtk pipeline to achieve better genome annotation. The high average nucleotide index values suggested they were the same phylotypes as the two “Entotheonella” phylotypes from T. swinhoei from the Japan Sea. Genomic features related to utilization of various carbon sources, peptidase secretion, CO2 fixation, sulfate reduction, anaerobic respiration, and denitrification indicated the mixotrophic nature of “Entotheonella.” The endospore-forming potential along with metal- and antibiotic resistance indicated “Entotheonella” was highly resilient to harsh conditions. The potential for endospore formation also explained the widespread distribution of “Entotheonella” to some extent. The discovery of Type II (general secretion pathway proteins and the Widespread Colonization Island) and Type VI secretion systems in “Entotheonella” suggested it could secrete extracellular hydrolases, form tight adhesion, act against phagocytes, and kill other prokaryotes. Overall, the newly discovered genomic features suggest “Entotheonella” is a highly competitive member of the symbiotic community of T. swinhoei.
Collapse
Affiliation(s)
- Fang Liu
- Marine Biotechnology Laboratory, Department of Bioengineering, State Key Laboratory of Microbial Metabolism-School of Life Sciences and Biotechnology, Shanghai Jiao Tong University Shanghai, China
| | - Jinlong Li
- Marine Biotechnology Laboratory, Department of Bioengineering, State Key Laboratory of Microbial Metabolism-School of Life Sciences and Biotechnology, Shanghai Jiao Tong University Shanghai, China
| | - Guofang Feng
- Marine Biotechnology Laboratory, Department of Bioengineering, State Key Laboratory of Microbial Metabolism-School of Life Sciences and Biotechnology, Shanghai Jiao Tong University Shanghai, China
| | - Zhiyong Li
- Marine Biotechnology Laboratory, Department of Bioengineering, State Key Laboratory of Microbial Metabolism-School of Life Sciences and Biotechnology, Shanghai Jiao Tong University Shanghai, China
| |
Collapse
|