1
|
Effect of Glutamine on the Growth Performance, Oxidative Stress, and Nrf2/p38 MAPK Expression in the Livers of Heat-Stressed Broilers. Animals (Basel) 2023; 13:ani13040652. [PMID: 36830439 PMCID: PMC9951748 DOI: 10.3390/ani13040652] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/10/2023] [Accepted: 02/10/2023] [Indexed: 02/16/2023] Open
Abstract
The purpose of this work was to study the effects of glutamine (Gln) on the growth performance, oxidative stress, Nrf2, and p38 MAPK pathway in the livers of heat-stressed broilers. In total, 300 broilers were divided into five groups, including a normal temperature (NT, without dietary Gln) group and four cyclic high temperature groups (HT, GHT1, GHT2, and GHT3) fed with 0%, 0.5%, 1.0%, and 1.5% Gln, respectively. High temperature conditions increased (p < 0.05) liver malonaldehyde (MDA) concentration, but decreased (p < 0.05), body weight gain (BWG), feed intake (FI), liver superoxide dismutase (SOD), total antioxidant capacity (T-AOC), glutathione peroxidase (GSH-Px), glutathione S-transferase (GST), and glutathione (GSH) levels in broilers. Nrf2 and p38 MAPK protein and mRNA expression levels were lower (p < 0.05) in the NT group than that in the HT group. However, dietary 1.5% Gln decreased (p < 0.05) liver MDA concentration, but increased (p < 0.05) BWG, FI, liver SOD, T-AOC, GSH-Px, GST, and GSH levels in heat-stressed broilers. Nrf2 and p38 MAPK protein and mRNA expression levels were higher (p < 0.05) in the GHT3 group than that in the HT group. In summary, Gln improved oxidative damage through the activation of Nrf2 and p38 MAPK expression in the livers of heat-stressed broilers.
Collapse
|
2
|
Pan PK, Wang KT, Nan FH, Wu TM, Wu YS. Red Algae “Sarcodia suieae” Acetyl-Xylogalactan Downregulate Heat-Induced Macrophage Stress Factors Ddit3 and Hyou1 Compared to the Aquatic Animal Model of Nile Tilapia (Oreochromis niloticus) Brain Arachidonic Acid Expression. Int J Mol Sci 2022; 23:ijms232314662. [PMID: 36498988 PMCID: PMC9737935 DOI: 10.3390/ijms232314662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/08/2022] [Accepted: 11/15/2022] [Indexed: 11/25/2022] Open
Abstract
Anthropogenic climate change is known to be an increased stress that affects aquatic animal behavior and physiological alternations, which can induce the animal's death. In order to known whether the extracted acetyl-xylogalactan function on the regulation of the external high temperature induced death, we first selected the mammalian cell line "RAW 264.7" used in the previous experiment to evaluate the extracted acetyl-xylogalactan function. We aimed to evaluate the effects of the acetyl-xylogalactan on the RAW 264.7 macrophages and Nile Tilapia stress factor expression under the heat environment. In the in vitro cell observation, we assessed the cell survival, phagocytic activity, intracellular Ca2+ level, mitochondria potential exchange, apoptotic assay findings, galactosidase activity, RNA-seq by NGS and real-time polymerase chain reaction (QPCR) expression. In the in vivo Nile Tilapia observation aimed to evaluate the blood biochemical indicator, brain metabolites exchange and the liver morphology. In our evaluation of RAW 264.7 macrophages, the RNA sequencing and real-time polymerase chain reaction (PCR) was shown to upregulate the expression of the anti-apoptosis Cflar gene and downregulate the expression of the apoptosis factors Ddit3 and Hyou1 to protect macrophages under heat stress. We already knew the extracted acetyl-xylogalactan function on the mammalian "RAW 264.7" system. Following, we used the aquatic Nile Tilapia model as the anthropogenic climate change high temperature experiment. After feeding the Nile Tilapia with the acetyl-xylogalactan, it was found to reduce the brain arachidonic acid (AA) production, which is related to the NF-κB-induced apoptosis mechanism. Combined with the in vitro and in vivo findings, the acetyl-xylogalactan was able to reduce the heat induced cell or tissue stress.
Collapse
Affiliation(s)
- Po-Kai Pan
- Department of Aquaculture, National Pingtung University of Science and Technology, Pingtung 912, Taiwan
| | - Kuang-Teng Wang
- Department of Aquaculture, National Pingtung University of Science and Technology, Pingtung 912, Taiwan
| | - Fan-Hua Nan
- Department of Aquaculture, National Taiwan Ocean University, Keelung 202, Taiwan
| | - Tsung-Meng Wu
- Department of Aquaculture, National Pingtung University of Science and Technology, Pingtung 912, Taiwan
- Correspondence: (T.-M.W.); (Y.-S.W.); Tel.: +886-8-7703202 (ext. 6223) (Y.-S.W.)
| | - Yu-Sheng Wu
- Department of Aquaculture, National Pingtung University of Science and Technology, Pingtung 912, Taiwan
- Correspondence: (T.-M.W.); (Y.-S.W.); Tel.: +886-8-7703202 (ext. 6223) (Y.-S.W.)
| |
Collapse
|
3
|
Chu F, Wan H, Xiao W, Dong H, Lü M. Ca 2+-Permeable Channels/Ca 2+ Signaling in the Regulation of Ileal Na +/Gln Co-Transport in Mice. Front Pharmacol 2022; 13:816133. [PMID: 35281933 PMCID: PMC8905502 DOI: 10.3389/fphar.2022.816133] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 01/13/2022] [Indexed: 11/13/2022] Open
Abstract
Oral glutamine (Gln) has been widely used in gastrointestinal (GI) clinical practice, but it is unclear if Ca2+ regulates intestinal Gln transport, although both of them are essential nutrients for mammals. Chambers were used to determine Gln (25 mM)-induced Isc through Na+/Gln co-transporters in the small intestine in the absence or the presence of selective activators or blockers of ion channels and transporters. Luminal but not serosal application of Gln induced marked intestinal Isc, especially in the distal ileum. Lowering luminal Na+ almost abolished the Gln-induced ileal Isc, in which the calcium-sensitive receptor (CaSR) activation were not involved. Ca2+ removal from both luminal and serosal sides of the ileum significantly reduced Gln- Isc. Blocking either luminal Ca2+ entry via the voltage-gated calcium channels (VGCC) or endoplasmic reticulum (ER) release via inositol 1,4,5-triphosphate receptor (IP3R) and ryanodine receptor (RyR) attenuated the Gln-induced ileal Isc, Likewise, blocking serosal Ca2+ entry via the store-operated Ca2+ entry (SOCE), TRPV1/2 channels, and Na+/Ca2+ exchangers (NCX) attenuated the Gln-induced ileal Isc. In contrast, activating TRPV1/2 channels enhanced the Gln-induced ileal Isc. We concluded that Ca2+ signaling is critical for intestinal Gln transport, and multiple plasma membrane Ca2+-permeable channels and transporters play roles in this process. The Ca2+ regulation of ileal Na+/Gln transport expands our understanding of intestinal nutrient uptake and may be significant in GI health and disease.
Collapse
Affiliation(s)
- Fenglan Chu
- Department of Gastroenterology, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Hanxing Wan
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Weidong Xiao
- Department of General Surgery, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Hui Dong
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Muhan Lü
- Department of Gastroenterology, Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
4
|
Chalvon-Demersay T, Luise D, Le Floc'h N, Tesseraud S, Lambert W, Bosi P, Trevisi P, Beaumont M, Corrent E. Functional Amino Acids in Pigs and Chickens: Implication for Gut Health. Front Vet Sci 2021; 8:663727. [PMID: 34113671 PMCID: PMC8185281 DOI: 10.3389/fvets.2021.663727] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 04/20/2021] [Indexed: 12/11/2022] Open
Abstract
In pigs and broiler chickens, the gastrointestinal tract or gut is subjected to many challenges which alter performance, animal health, welfare and livability. Preventive strategies are needed to mitigate the impacts of these challenges on gut health while reducing the need to use antimicrobials. In the first part of the review, we propose a common definition of gut health for pig and chickens relying on four pillars, which correspond to the main functions of the digestive tract: (i) epithelial barrier and digestion, (ii) immune fitness, (iii) microbiota balance and (iv) oxidative stress homeostasis. For each pillar, we describe the most commonly associated indicators. In the second part of the review, we present the potential of functional amino acid supplementation to preserve and improve gut health in piglets and chickens. We highlight that amino acid supplementation strategies, based on their roles as precursors of energy and functional molecules, as signaling molecules and as microbiota modulators can positively contribute to gut health by supporting or restoring its four intertwined pillars. Additional work is still needed in order to determine the effective dose of supplementation and mode of administration that ensure the full benefits of amino acids. For this purpose, synergy between amino acids, effects of amino acid-derived metabolites and differences in the metabolic fate between free and protein-bound amino acids are research topics that need to be furtherly investigated.
Collapse
Affiliation(s)
| | - Diana Luise
- Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| | | | | | | | - Paolo Bosi
- Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| | - Paolo Trevisi
- Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| | - Martin Beaumont
- GenPhySE, Université De Toulouse, INRAE, ENVT, Toulouse, France
| | | |
Collapse
|
5
|
Cheng X, Aabdin ZU, Wang Y, Ma N, Dai H, Shi X, Shen X. Glutamine pretreatment protects bovine mammary epithelial cells from inflammation and oxidative stress induced by γ-d-glutamyl-meso-diaminopimelic acid (iE-DAP). J Dairy Sci 2020; 104:2123-2139. [PMID: 33358155 DOI: 10.3168/jds.2020-18402] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 09/28/2020] [Indexed: 12/15/2022]
Abstract
Glutamine (GLN) has many types of biological activity in rats, including anti-inflammatory, antioxidative stress, and anti-apoptosis effects. However, little is known about the effects of GLN on bovine mammary epithelial cells (BMEC). γ-d-Glutamyl-meso-diaminopimelic acid (iE-DAP) is a cell wall peptidoglycan component of gram-negative bacteria that can be recognized by the intracellular receptor nucleotide-binding oligomerization domain-containing protein 1 (NOD1) and can cause bovine mastitis. The goal of the present study was to investigate whether GLN protects BMEC from iE-DAP-induced inflammation, oxidative stress, and apoptosis. We cultured BMEC in a GLN-free medium for 24 h and then separated them into 4 groups: cells treated with 1× PBS for 26 or 32 h (control); cells stimulated by 10 μg/mL iE-DAP for 2 or 8 h (2- or 8-h iE-DAP); cells pretreated with 8 or 4 mM GLN for 24 h followed by 2 or 8 h of 1× PBS treatment (8 or 4 mM GLN); and cells pretreated with 8 or 4 mM GLN for 24 h followed by 2 or 8 h of iE-DAP treatment (DG). In the 2-h iE-DAP group, when levels of inflammation peaked, iE-DAP treatment increased both the mRNA and protein expression of NOD1, inhibitor of nuclear factor-κB (NFKBIA, IκB), and nuclear factor-κB subunit p65 (RELA, NF-κB p65), as well as the mRNA expression of IL6 and IL8 and levels of IL-6 and tumor necrosis factor-α in cell culture supernatants. In contrast, 8 mM GLN pretreatment inhibited the mRNA and protein expression of inflammatory-related factors by suppressing the NOD1/NF-κB pathway. In the 8-h iE-DAP group, iE-DAP treatment decreased the mRNA and protein expression of extracellular regulated kinase (Erk, ERK) and nuclear factor erythroid 2-associated factor2 (NFE2L2, Nrf2), as well as the mRNA expression of superoxide dismutase 1 (SOD1), catalase (CAT), coenzyme II oxidoreductase 1 (NQO1), and heme oxygenase 1 (HMOX1, HO1). In addition, iE-DAP treatment increased the expression of malondialdehyde in BMEC when oxidative stress levels peaked. Interestingly, 4 mM GLN pretreatment induced the mRNA and protein expression of antioxidative stress-related factors and inhibited the expression of reactive oxygen species in BMEC by promoting the ERK/Nrf2 pathway. Moreover, GLN reduced apoptosis caused by inflammation and oxidative stress in BMEC. This is the first report showing that GLN protects against iE-DAP-induced inflammation and oxidative stress via the NOD1/NF-κB and ERK/Nrf2 pathways in BMEC.
Collapse
Affiliation(s)
- Xiaoye Cheng
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Zain-Ui Aabdin
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Yan Wang
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Nana Ma
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Hongyu Dai
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaoli Shi
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiangzhen Shen
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
6
|
Yu YC, Han JM, Kim S. Aminoacyl-tRNA synthetases and amino acid signaling. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1868:118889. [PMID: 33091505 DOI: 10.1016/j.bbamcr.2020.118889] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 10/05/2020] [Accepted: 10/10/2020] [Indexed: 12/13/2022]
Abstract
Aminoacyl-tRNA synthetases (ARSs) are a family of evolutionarily conserved housekeeping enzymes used for protein synthesis that have pivotal roles in the ligation of tRNA with their cognate amino acids. Recent advances in the structural and functional studies of ARSs have revealed many previously unknown biological functions beyond the classical catalytic roles. Sensing the sufficiency of intracellular nutrients such as amino acids, ATP, and fatty acids is a crucial aspect for every living organism, and it is closely connected to the regulation of diverse cellular physiologies. Notably, among ARSs, leucyl-tRNA synthetase 1 (LARS1) has been identified to perform specifically as a leucine sensor upstream of the amino acid-sensing pathway and thus participates in the coordinated control of protein synthesis and autophagy for cell growth. In addition to LARS1, other types of ARSs are also likely involved in the sensing and signaling of their cognate amino acids inside cells. Collectively, this review focuses on the mechanisms of ARSs interacting within amino acid signaling and proposes the possible role of ARSs as general intracellular amino acid sensors.
Collapse
Affiliation(s)
- Ya Chun Yu
- Yonsei Institute of Pharmaceutical Sciences, College of Pharmacy, Yonsei University, Incheon 21983, South Korea
| | - Jung Min Han
- Yonsei Institute of Pharmaceutical Sciences, College of Pharmacy, Yonsei University, Incheon 21983, South Korea; Department of Integrated OMICS for Biomedical Science, Yonsei University, Seoul 03722, South Korea.
| | - Sunghoon Kim
- Yonsei Institute of Pharmaceutical Sciences, College of Pharmacy, Yonsei University, Incheon 21983, South Korea; Medicinal Bioconvergence Research Center, College of Pharmacy and College of Medicine, Gangnam Severance Hospital, Yonsei University, South Korea.
| |
Collapse
|
7
|
Sun L, Sarath Babu V, Qin Z, Su Y, Liu C, Shi F, Zhao L, Li J, Chen K, Lin L. Snakehead vesiculovirus (SHVV) infection alters striped snakehead (Ophicephalus striatus) cells (SSN-1) glutamine metabolism and apoptosis pathways. FISH & SHELLFISH IMMUNOLOGY 2020; 102:36-46. [PMID: 32289513 DOI: 10.1016/j.fsi.2020.04.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 04/06/2020] [Accepted: 04/07/2020] [Indexed: 06/11/2023]
Abstract
Snakehead vesiculovirus (SHVV) causes enormous economic losses in snakehead fish (Ophicephalus striatus) culture. Understanding replication mechanisms of virus is considerable significance in preventing and treating viral disease. In our previous studies, we have reported that glutamine starvation could significant inhibit the replication of SHVV. Furthermore, we also showed that SHVV infection could cause apoptosis of striped snakehead fish cells (SSN-1). However, the underlying mechanisms remain enigmatic. To decipher the relationships among the viral infection, glutamine starvation and apoptosis, SSN-1 cells transcriptomic profilings of SSN-1 cells infected with or without SHVV under glutamine deprived condition were analyzed. RNA-seq was used to identify differentially expressed genes (DEGs). Our data revealed that 1215 up-regulated and 226 down-regulated genes at 24 h post-infection were involved in MAPK, apoptosis, RIG-1-like and toll-like receptors pathways and glutamine metabolism. Subsequently, DEGs of glutamine metabolism and apoptosis pathways were selected to validate the sequencing data by quantitative real-time PCR (qRT-PCR). The expression patterns of both transcriptomic data and qRT-PCR were consistent. We observed that lack of glutamine alone could cause mild cellular apoptosis. However, lack of glutamine together with SHVV infection could synergistically enhance cellular apoptosis. When the cells were cultured in complete medium with glutamine, overexpression of glutaminase (GLS), an essential enzyme for glutamine metabolism, could significantly enhance the SHVV replication. While, SHVV replication was decreased in cells when GLS was knocked down by specific siRNA, indicating that glutamine metabolism was essential for viral replication. Furthermore, the expression level of caspase-3 and Bax was significantly decreased in SHVV infected cells with GLS overexpression. By contrast, they were significantly increased in SHVV infected cells with GLS silence by SiRNA, indicating that SHVV infection activated the Bax and caspase-3 pathways to induce apoptosis independent of glutamine. Our results reveal that SHVV replication and starvation of glutamine could synergistically promote the cellular apoptosis, which will pave a new way for developing strategies against the vial infection.
Collapse
Affiliation(s)
- Lindan Sun
- School of Food and Biological Engineering, Institute of Life Sciences, Jiangsu University, Zhenjiang, 212013, China; Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, China
| | - V Sarath Babu
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, China
| | - Zhendong Qin
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, China
| | - Youlu Su
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, China
| | - Chun Liu
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, China
| | - Fei Shi
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, China
| | - Lijuan Zhao
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, China
| | - Jun Li
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, China; School of Biological Sciences, Lake Superior State University, Sault Ste. Marie, MI, 49783, USA
| | - Keping Chen
- School of Food and Biological Engineering, Institute of Life Sciences, Jiangsu University, Zhenjiang, 212013, China.
| | - Li Lin
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, China; School of Biological Sciences, Lake Superior State University, Sault Ste. Marie, MI, 49783, USA.
| |
Collapse
|
8
|
Areco VA, Kohan R, Talamoni G, Tolosa de Talamoni NG, Peralta López ME. Intestinal Ca 2+ absorption revisited: A molecular and clinical approach. World J Gastroenterol 2020; 26:3344-3364. [PMID: 32655262 PMCID: PMC7327788 DOI: 10.3748/wjg.v26.i24.3344] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 05/11/2020] [Accepted: 06/10/2020] [Indexed: 02/06/2023] Open
Abstract
Ca2+ has an important role in the maintenance of the skeleton and is involved in the main physiological processes. Its homeostasis is controlled by the intestine, kidney, bone and parathyroid glands. The intestinal Ca2+ absorption occurs mainly via the paracellular and the transcellular pathways. The proteins involved in both ways are regulated by calcitriol and other hormones as well as dietary factors. Fibroblast growth factor 23 (FGF-23) is a strong antagonist of vitamin D action. Part of the intestinal Ca2+ movement seems to be vitamin D independent. Intestinal Ca2+ absorption changes according to different physiological conditions. It is promoted under high Ca2+ demands such as growth, pregnancy, lactation, dietary Ca2+ deficiency and high physical activity. In contrast, the intestinal Ca2+ transport decreases with aging. Oxidative stress inhibits the intestinal Ca2+ absorption whereas the antioxidants counteract the effects of prooxidants leading to the normalization of this physiological process. Several pathologies such as celiac disease, inflammatory bowel diseases, Turner syndrome and others occur with inhibition of intestinal Ca2+ absorption, some hypercalciurias show Ca2+ hyperabsorption, most of these alterations are related to the vitamin D endocrine system. Further research work should be accomplished in order not only to know more molecular details but also to detect possible therapeutic targets to ameliorate or avoid the consequences of altered intestinal Ca2+ absorption.
Collapse
Affiliation(s)
- Vanessa A Areco
- Laboratorio “Dr. Fernando Cañas”, Cátedra de Bioquímica y Biología Molecular, Facultad de Ciencias Médicas, INICSA (CONICET-Universidad Nacional de Córdoba), Córdoba 5000, Argentina
| | - Romina Kohan
- Laboratorio “Dr. Fernando Cañas”, Cátedra de Bioquímica y Biología Molecular, Facultad de Ciencias Médicas, INICSA (CONICET-Universidad Nacional de Córdoba), Córdoba 5000, Argentina
| | - Germán Talamoni
- Laboratorio “Dr. Fernando Cañas”, Cátedra de Bioquímica y Biología Molecular, Facultad de Ciencias Médicas, INICSA (CONICET-Universidad Nacional de Córdoba), Córdoba 5000, Argentina
| | - Nori G Tolosa de Talamoni
- Laboratorio “Dr. Fernando Cañas”, Cátedra de Bioquímica y Biología Molecular, Facultad de Ciencias Médicas, INICSA (CONICET-Universidad Nacional de Córdoba), Córdoba 5000, Argentina
| | - María E Peralta López
- Laboratorio “Dr. Fernando Cañas”, Cátedra de Bioquímica y Biología Molecular, Facultad de Ciencias Médicas, INICSA (CONICET-Universidad Nacional de Córdoba), Córdoba 5000, Argentina
| |
Collapse
|
9
|
Dynamic observation and analysis of metabolic response to moxibustion stimulation on ethanol-induced gastric mucosal lesions (GML) rats. Chin Med 2019; 14:44. [PMID: 31636695 PMCID: PMC6794790 DOI: 10.1186/s13020-019-0266-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Accepted: 10/04/2019] [Indexed: 12/13/2022] Open
Abstract
Background Gastric mucosal lesion (GML) is the initiating pathological process in many refractory gastric diseases. And moxibustion is an increasingly popular alternative therapy that prevents and treats diseases. However, there are few published reports about developing pathology of GML and therapeutic mechanism of moxibustion treatment on GML. In this study, we investigated pathology of GML and therapeutic mechanism of moxibustion treatment on GML. Methods The male Sprague-Dawley (SD) rats were induced by intragastric administration of 75% ethanol after fasting for 24 h and treated by moxibustion at Zusanli (ST36) and Liangmen (ST21) for 1 day, 4 days or 7 days. Then we applied 1H NMR-based metabolomics to dynamic analysis of metabolic profiles in biological samples (stomach, cerebral cortex and medulla). And the conventional histopathological examinations as well as metabolic pathways assays were also performed. Results Moxibustion intervention showed a beneficial effect on GML by modulating comprehensive metabolic alterations caused by GML, including energy metabolism, membrane metabolism, cellular active and neurotransmitters function. Conclusions Moxibustion can effectively treat gastric mucosal damage and effectively regulate the concentration of some related differential metabolites to maintain the stability of the metabolic pathway.
Collapse
|
10
|
Glutamine protects both transcellular and paracellular pathways of chick intestinal calcium absorption under oxidant conditions. Comp Biochem Physiol A Mol Integr Physiol 2019; 238:110553. [PMID: 31437565 DOI: 10.1016/j.cbpa.2019.110553] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 08/12/2019] [Accepted: 08/15/2019] [Indexed: 12/11/2022]
Abstract
Glutamine (GLN) avoids the inhibition of the intestinal Ca2+ absorption caused by menadione (MEN) through oxidative stress. The purpose of this study was to elucidate whether molecules of transcellular and/or paracellular pathways of intestinal Ca2+ absorption are involved in the GLN action and underlying mechanisms. One-month old chicks were divided in four groups: 1) controls, 2) MEN treated, 3) GLN treated and 4) GLN + MEN treated. The morphology of intestinal villi, the intestinal Ca2+ absorption and the molecules involved in the transcellular and paracellular pathways were analyzed. Markers of autophagy and inflammation were also evaluated. The data demonstrated that GLN protected both transcellular and paracellular pathways. GLN avoided morphological changes in the intestine caused by MEN. GLN protected the gene expression of transporters involved in the transcellular pathway and the gene and protein expression of molecules belonging to the paracellular pathways altered by MEN. GLN increased the LC3-II protein expression and the number of acidic vesicular organelles, markers of autophagy, and blocked an increase in the NFkB protein expression in the nuclei and in the IL-6 gene expression caused by MEN. In conclusion, GLN protects both transcellular and paracellular pathways of intestinal Ca2+ absorption by increasing autophagy and blocking inflammation.
Collapse
|
11
|
Moine L, Rivoira M, Díaz de Barboza G, Pérez A, Tolosa de Talamoni N. Glutathione depleting drugs, antioxidants and intestinal calcium absorption. World J Gastroenterol 2018; 24:4979-4988. [PMID: 30510373 PMCID: PMC6262252 DOI: 10.3748/wjg.v24.i44.4979] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 10/24/2018] [Accepted: 11/02/2018] [Indexed: 02/06/2023] Open
Abstract
Glutathione (GSH) is a tripeptide that constitutes one of the main intracellular reducing compounds. The normal content of GSH in the intestine is essential to optimize the intestinal Ca2+ absorption. The use of GSH depleting drugs such as DL-buthionine-S,R-sulfoximine, menadione or vitamin K3, sodium deoxycholate or diets enriched in fructose, which induce several features of the metabolic syndrome, produce inhibition of the intestinal Ca2+ absorption. The GSH depleting drugs switch the redox state towards an oxidant condition provoking oxidative/nitrosative stress and inflammation, which lead to apoptosis and/or autophagy of the enterocytes. Either the transcellular Ca2+ transport or the paracellular Ca2+ route are altered by GSH depleting drugs. The gene and/or protein expression of transporters involved in the transcellular Ca2+ pathway are decreased. The flavonoids quercetin and naringin highly abrogate the inhibition of intestinal Ca2+ absorption, not only by restoration of the GSH levels in the intestine but also by their anti-apoptotic properties. Ursodeoxycholic acid, melatonin and glutamine also block the inhibition of Ca2+ transport caused by GSH depleting drugs. The use of any of these antioxidants to ameliorate the intestinal Ca2+ absorption under oxidant conditions associated with different pathologies in humans requires more investigation with regards to the safety, pharmacokinetics and pharmacodynamics of them.
Collapse
Affiliation(s)
- Luciana Moine
- Laboratorio “Dr. Fernando Cañas”, Cátedra de Bioquímica y Biología Molecular, Facultad de Ciencias Médicas, INICSA (CONICET-Universidad Nacional de Córdoba), Córdoba 5000, Argentina
| | - María Rivoira
- Laboratorio “Dr. Fernando Cañas”, Cátedra de Bioquímica y Biología Molecular, Facultad de Ciencias Médicas, INICSA (CONICET-Universidad Nacional de Córdoba), Córdoba 5000, Argentina
| | - Gabriela Díaz de Barboza
- Laboratorio “Dr. Fernando Cañas”, Cátedra de Bioquímica y Biología Molecular, Facultad de Ciencias Médicas, INICSA (CONICET-Universidad Nacional de Córdoba), Córdoba 5000, Argentina
| | - Adriana Pérez
- Laboratorio “Dr. Fernando Cañas”, Cátedra de Bioquímica y Biología Molecular, Facultad de Ciencias Médicas, INICSA (CONICET-Universidad Nacional de Córdoba), Córdoba 5000, Argentina
| | - Nori Tolosa de Talamoni
- Laboratorio “Dr. Fernando Cañas”, Cátedra de Bioquímica y Biología Molecular, Facultad de Ciencias Médicas, INICSA (CONICET-Universidad Nacional de Córdoba), Córdoba 5000, Argentina
| |
Collapse
|