1
|
Radka CD, Frank MW, Simmons TS, Johnson CN, Rosch JW, Rock CO. Staphylococcus aureus oleate hydratase produces ligands that activate host PPARα. Front Cell Infect Microbiol 2024; 14:1352810. [PMID: 38601738 PMCID: PMC11004285 DOI: 10.3389/fcimb.2024.1352810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 02/26/2024] [Indexed: 04/12/2024] Open
Abstract
Commensal gut bacteria use oleate hydratase to release a spectrum of hydroxylated fatty acids using host-derived unsaturated fatty acids. These compounds are thought to attenuate the immune response, but the underlying signaling mechanism(s) remain to be established. The pathogen Staphylococcus aureus also expresses an oleate hydratase and 10-hydroxyoctadecanoic acid (h18:0) is the most abundant oleate hydratase metabolite found at Staphylococcal skin infection sites. Here, we show h18:0 stimulates the transcription of a set of lipid metabolism genes associated with the activation of peroxisome proliferator activated receptor (PPAR) in the RAW 264.7 macrophage cell line and mouse primary bone marrow-derived macrophages. Cell-based transcriptional reporter assays show h18:0 selectively activates PPARα. Radiolabeling experiments with bone marrow-derived macrophages show [1-14C]h18:0 is not incorporated into cellular lipids, but is degraded by β-oxidation, and mass spectrometry detected shortened fragments of h18:0 released into the media. The catabolism of h18:0 was >10-fold lower in bone marrow-derived macrophages isolated from Ppara -/- knockout mice, and we recover 74-fold fewer S. aureus cells from the skin infection site of Ppara -/- knockout mice compared to wildtype mice. These data identify PPARα as a target for oleate hydratase-derived hydroxy fatty acids and support the existence of an oleate hydratase-PPARα signaling axis that functions to suppress the innate immune response to S. aureus.
Collapse
Affiliation(s)
- Christopher D. Radka
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, KY, United States
- Department of Host Microbe Interactions, St. Jude Children’s Research Hospital, Memphis, TN, United States
| | - Matthew W. Frank
- Department of Host Microbe Interactions, St. Jude Children’s Research Hospital, Memphis, TN, United States
| | - Tyler S. Simmons
- Department of Host Microbe Interactions, St. Jude Children’s Research Hospital, Memphis, TN, United States
| | - Cydney N. Johnson
- Department of Host Microbe Interactions, St. Jude Children’s Research Hospital, Memphis, TN, United States
| | - Jason W. Rosch
- Department of Host Microbe Interactions, St. Jude Children’s Research Hospital, Memphis, TN, United States
| | - Charles O. Rock
- Department of Host Microbe Interactions, St. Jude Children’s Research Hospital, Memphis, TN, United States
| |
Collapse
|
2
|
Dong G, Zhao Y, Ding W, Xu S, Zhang Q, Zhao H, Shi S. Metabolic engineering of Saccharomyces cerevisiae for de novo production of odd-numbered medium-chain fatty acids. Metab Eng 2024; 82:100-109. [PMID: 38325640 DOI: 10.1016/j.ymben.2024.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 12/18/2023] [Accepted: 01/26/2024] [Indexed: 02/09/2024]
Abstract
Odd-numbered fatty acids (FAs) have been widely used in nutrition, agriculture, and chemical industries. Recently, some studies showed that they could be produced from bacteria or yeast, but the products are almost exclusively odd-numbered long-chain FAs. Here we report the design and construction of two biosynthetic pathways in Saccharomyces cerevisiae for de novo production of odd-numbered medium-chain fatty acids (OMFAs) via ricinoleic acid and 10-hydroxystearic acid, respectively. The production of OMFAs was enabled by introducing a hydroxy fatty acid cleavage pathway, including an alcohol dehydrogenase from Micrococcus luteus, a Baeyer-Villiger monooxygenase from Pseudomonas putida, and a lipase from Pseudomonas fluorescens. These OMFA biosynthetic pathways were optimized by eliminating the rate-limiting step, generating heptanoic acid, 11-hydroxyundec-9-enoic acid, nonanoic acid, and 9-hydroxynonanoic acid at 7.83 mg/L, 9.68 mg/L, 9.43 mg/L and 13.48 mg/L, respectively. This work demonstrates the biological production of OMFAs in a sustainable manner in S. cerevisiae.
Collapse
Affiliation(s)
- Genlai Dong
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China; Key Laboratory of Natural Products, Henan Academy of Sciences, Zhengzhou, 450002, China
| | - Ying Zhao
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Wentao Ding
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Shijie Xu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Qi Zhang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Huimin Zhao
- Department of Chemical and Biomolecular Engineering, Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| | - Shuobo Shi
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China.
| |
Collapse
|
3
|
Abstract
The ability to site-selectively modify equivalent functional groups in a molecule has the potential to streamline syntheses and increase product yields by lowering step counts. Enzymes catalyze site-selective transformations throughout primary and secondary metabolism, but leveraging this capability for non-native substrates and reactions requires a detailed understanding of the potential and limitations of enzyme catalysis and how these bounds can be extended by protein engineering. In this review, we discuss representative examples of site-selective enzyme catalysis involving functional group manipulation and C-H bond functionalization. We include illustrative examples of native catalysis, but our focus is on cases involving non-native substrates and reactions often using engineered enzymes. We then discuss the use of these enzymes for chemoenzymatic transformations and target-oriented synthesis and conclude with a survey of tools and techniques that could expand the scope of non-native site-selective enzyme catalysis.
Collapse
Affiliation(s)
- Dibyendu Mondal
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Harrison M Snodgrass
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Christian A Gomez
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Jared C Lewis
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| |
Collapse
|
4
|
Gajdoš M, Wagner J, Ospina F, Köhler A, Engqvist MKM, Hammer SC. Chiral Alcohols from Alkenes and Water: Directed Evolution of a Styrene Hydratase. Angew Chem Int Ed Engl 2023; 62:e202215093. [PMID: 36511829 PMCID: PMC10107627 DOI: 10.1002/anie.202215093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/13/2022] [Accepted: 12/13/2022] [Indexed: 12/15/2022]
Abstract
Enantioselective synthesis of chiral alcohols through asymmetric addition of water across an unactivated alkene is a highly sought-after transformation and a big challenge in catalysis. Herein we report the identification and directed evolution of a fatty acid hydratase from Marinitoga hydrogenitolerans for the highly enantioselective hydration of styrenes to yield chiral 1-arylethanols. While directed evolution for styrene hydration was performed in the presence of heptanoic acid to mimic fatty acid binding, the engineered enzyme displayed remarkable asymmetric styrene hydration activity in the absence of the small molecule activator. The evolved styrene hydratase provided access to chiral alcohols from simple alkenes and water with high enantioselectivity (>99 : 1 e.r.) and could be applied on a preparative scale.
Collapse
Affiliation(s)
- Matúš Gajdoš
- Faculty of Chemistry, Organic Chemistry and Biocatalysis, Bielefeld University, Universitätsstraße 25, 33615, Bielefeld, Germany
| | - Jendrik Wagner
- Faculty of Chemistry, Organic Chemistry and Biocatalysis, Bielefeld University, Universitätsstraße 25, 33615, Bielefeld, Germany
| | - Felipe Ospina
- Faculty of Chemistry, Organic Chemistry and Biocatalysis, Bielefeld University, Universitätsstraße 25, 33615, Bielefeld, Germany
| | - Antonia Köhler
- Faculty of Chemistry, Organic Chemistry and Biocatalysis, Bielefeld University, Universitätsstraße 25, 33615, Bielefeld, Germany
| | - Martin K M Engqvist
- Department of Biology and Biological Engineering., Chalmers University of Technology, 41296, Gothenburg, Sweden
| | - Stephan C Hammer
- Faculty of Chemistry, Organic Chemistry and Biocatalysis, Bielefeld University, Universitätsstraße 25, 33615, Bielefeld, Germany
| |
Collapse
|
5
|
Vidar Hansen T, Serhan CN. Protectins: Their biosynthesis, metabolism and structure-functions. Biochem Pharmacol 2022; 206:115330. [PMID: 36341938 PMCID: PMC9838224 DOI: 10.1016/j.bcp.2022.115330] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/20/2022] [Accepted: 10/21/2022] [Indexed: 01/17/2023]
Abstract
Several lipoxygenase enzymes and cyclooxygenase-2 stereoselectively convert the polyunsaturated fatty acids arachidonic acid, eicosapentaenoic acid, docosahexaenoic acid, and n-3 docosapentaenoic acid into numerous oxygenated products. Biosynthetic pathway studies have shown, during the resolution phase of acute inflammation, that distinct families of endogenous products are formed. These products were named specialized pro-resolving mediators, given their specialized functions in the inflammation-resolution circuit, enhancing the return of inflamed and injured tissue to homeostasis. The lipoxins, resolvins, protectins and maresins, together with the sulfido-conjugates of the resolvins, protectins and maresins, constitute the four individual families of these local mediators. When administrated in vivo in a wide range of human disease models, the specialized pro-resolving mediators display potent bioactions. The detailed and individual biosynthetic steps constituting the biochemical pathways, the metabolism, recent reports on structure-function studies and pharmacodynamic data of the protectins, are presented herein. Emphasis is on the structure-function results on the recent members of the sulfido conjugated protectins and further metabolism of protectin D1. Moreover, the members of the individual families of specialized pro-resolving mediators and their biosynthetic precursor are presented. Today 43 specialized pro-resolving mediators possessing pro-resolution and anti-inflammatory bioactions are reported and confirmed, constituting a basis for resolution pharmacology. This emerging biomedical field provides a new approach for drug discovery, that is also discussed.
Collapse
Affiliation(s)
- Trond Vidar Hansen
- Department of Pharmacy, Section for Pharmaceutical Chemistry, University of Oslo, PO Box 1068 Blindern, N-0316 Oslo, Norway.
| | - Charles N Serhan
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Hale Building for Transformative Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, United States.
| |
Collapse
|
6
|
Biundo A, Stamm A, Gorgoglione R, Syrén PO, Curia S, Hauer B, Capriati V, Vitale P, Perna F, Agrimi G, Pisano I. REGIO- AND STEREOSELECTIVE BIOCATALYTIC HYDRATION OF FATTY ACIDS FROM WASTE COOKING OILS EN ROUTE TO HYDROXY FATTY ACIDS AND BIO-BASED POLYESTERS. Enzyme Microb Technol 2022; 163:110164. [DOI: 10.1016/j.enzmictec.2022.110164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/17/2022] [Accepted: 11/19/2022] [Indexed: 11/27/2022]
|
7
|
Sangster JJ, Marshall JR, Turner NJ, Mangas‐Sanchez J. New Trends and Future Opportunities in the Enzymatic Formation of C-C, C-N, and C-O bonds. Chembiochem 2022; 23:e202100464. [PMID: 34726813 PMCID: PMC9401909 DOI: 10.1002/cbic.202100464] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/29/2021] [Indexed: 01/04/2023]
Abstract
Organic chemistry provides society with fundamental products we use daily. Concerns about the impact that the chemical industry has over the environment is propelling major changes in the way we manufacture chemicals. Biocatalysis offers an alternative to other synthetic approaches as it employs enzymes, Nature's catalysts, to carry out chemical transformations. Enzymes are biodegradable, come from renewable sources, operate under mild reaction conditions, and display high selectivities in the processes they catalyse. As a highly multidisciplinary field, biocatalysis benefits from advances in different areas, and developments in the fields of molecular biology, bioinformatics, and chemical engineering have accelerated the extension of the range of available transformations (E. L. Bell et al., Nat. Rev. Meth. Prim. 2021, 1, 1-21). Recently, we surveyed advances in the expansion of the scope of biocatalysis via enzyme discovery and protein engineering (J. R. Marshall et al., Tetrahedron 2021, 82, 131926). Herein, we focus on novel enzymes currently available to the broad synthetic community for the construction of new C-C, C-N and C-O bonds, with the purpose of providing the non-specialist with new and alternative tools for chiral and sustainable chemical synthesis.
Collapse
Affiliation(s)
- Jack J. Sangster
- Department of ChemistryManchester Institute of BiotechnologyUniversity of Manchester131 Princess StreetManchesterM1 7DNUK
| | - James R. Marshall
- Department of ChemistryManchester Institute of BiotechnologyUniversity of Manchester131 Princess StreetManchesterM1 7DNUK
| | - Nicholas J. Turner
- Department of ChemistryManchester Institute of BiotechnologyUniversity of Manchester131 Princess StreetManchesterM1 7DNUK
| | - Juan Mangas‐Sanchez
- Institute of Chemical Synthesis and Homogeneous CatalysisSpanish National Research Council (CSIC)Pedro Cerbuna 1250009ZaragozaSpain
- ARAID FoundationZaragozaSpain
| |
Collapse
|
8
|
Zhang Y, Breum NMD, Schubert S, Hashemi N, Kyhnau R, Knauf MS, Mathialakan M, Takeuchi M, Kishino S, Ogawa J, Kristensen P, Guo Z, Eser BE. Semi-rational Engineering of a Promiscuous Fatty Acid Hydratase for Alteration of Regioselectivity. Chembiochem 2021; 23:e202100606. [PMID: 34929055 DOI: 10.1002/cbic.202100606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/14/2021] [Indexed: 11/12/2022]
Abstract
Fatty acid hydratases (FAHs) catalyze regio- and stereo-selective hydration of unsaturated fatty acids to produce hydroxy fatty acids. Fatty acid hydratase-1 (FA-HY1) from Lactobacillus Acidophilus is the most promiscuous and regiodiverse FAH identified so far. Here, we engineered binding site residues of FA-HY1 (S393, S395, S218 and P380) by semi-rational protein engineering to alter regioselectivity. Although it was not possible to obtain a completely new type of regioselectivity with our mutant libraries, a significant shift of regioselectivity was observed towards cis-5, cis-8, cis-11, cis-14, cis-17-eicosapentaenoic acid (EPA). We identified mutants (S393/S395 mutants) with excellent regioselectivity, generating a single hydroxy fatty acid product from EPA (15-OH product), which is advantageous from application perspective. This result is impressive given that wild-type FA-HY1 produces a mixture of 12-OH and 15-OH products at 63 : 37 ratio (12-OH : 15-OH). Moreover, our results indicate that native FA-HY1 is at its limit in terms of promiscuity and regiospecificity, thus it may not be possible to diversify its product portfolio with active site engineering. This behavior of FA-HY1 is unlike its orthologue, fatty acid hydratase-2 (FA-HY2; 58 % sequence identity to FA-HY1), which has been shown earlier to exhibit significant promiscuity and regioselectivity changes by a few active site mutations. Our reverse engineering from FA-HY1 to FA-HY2 further demonstrates this conclusion.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Biological and Chemical Engineering, Aarhus University, 8000, Aarhus, Denmark
| | | | - Sune Schubert
- Department of Biological and Chemical Engineering, Aarhus University, 8000, Aarhus, Denmark
| | - Negin Hashemi
- Department of Biological and Chemical Engineering, Aarhus University, 8000, Aarhus, Denmark
| | - Rikke Kyhnau
- Department of Biological and Chemical Engineering, Aarhus University, 8000, Aarhus, Denmark
| | - Marius Sandholt Knauf
- Department of Biological and Chemical Engineering, Aarhus University, 8000, Aarhus, Denmark
| | - Masuthan Mathialakan
- Department of Biological and Chemical Engineering, Aarhus University, 8000, Aarhus, Denmark
| | - Michiki Takeuchi
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan
| | - Shigenobu Kishino
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan
| | - Jun Ogawa
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan
| | - Peter Kristensen
- Faculty of Engineering and Science, Department of Chemistry and Bioscience, Aalborg University, 9220, Aalborg, Denmark
| | - Zheng Guo
- Department of Biological and Chemical Engineering, Aarhus University, 8000, Aarhus, Denmark
| | - Bekir Engin Eser
- Department of Biological and Chemical Engineering, Aarhus University, 8000, Aarhus, Denmark
| |
Collapse
|
9
|
Whaley SG, Radka CD, Subramanian C, Frank MW, Rock CO. Malonyl-acyl carrier protein decarboxylase activity promotes fatty acid and cell envelope biosynthesis in Proteobacteria. J Biol Chem 2021; 297:101434. [PMID: 34801557 PMCID: PMC8666670 DOI: 10.1016/j.jbc.2021.101434] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/02/2021] [Accepted: 11/09/2021] [Indexed: 11/20/2022] Open
Abstract
Bacterial fatty acid synthesis in Escherichia coli is initiated by the condensation of an acetyl-CoA with a malonyl-acyl carrier protein (ACP) by the β-ketoacyl-ACP synthase III enzyme, FabH. E. coli ΔfabH knockout strains are viable because of the yiiD gene that allows FabH-independent fatty acid synthesis initiation. However, the molecular function of the yiiD gene product is not known. Here, we show the yiiD gene product is a malonyl-ACP decarboxylase (MadA). MadA has two independently folded domains: an amino-terminal N-acetyl transferase (GNAT) domain (MadAN) and a carboxy-terminal hot dog dimerization domain (MadAC) that encodes the malonyl-ACP decarboxylase function. Members of the proteobacterial Mad protein family are either two domain MadA (GNAT-hot dog) or standalone MadB (hot dog) decarboxylases. Using structure-guided, site-directed mutagenesis of MadB from Shewanella oneidensis, we identified Asn45 on a conserved catalytic loop as critical for decarboxylase activity. We also found that MadA, MadAC, or MadB expression all restored normal cell size and growth rates to an E. coli ΔfabH strain, whereas the expression of MadAN did not. Finally, we verified that GlmU, a bifunctional glucosamine-1-phosphate N-acetyl transferase/N-acetyl-glucosamine-1-phosphate uridylyltransferase that synthesizes the key intermediate UDP-GlcNAc, is an ACP binding protein. Acetyl-ACP is the preferred glucosamine-1-phosphate N-acetyl transferase/N-acetyl-glucosamine-1-phosphate uridylyltransferase substrate, in addition to being the substrate for the elongation-condensing enzymes FabB and FabF. Thus, we conclude that the Mad family of malonyl-ACP decarboxylases supplies acetyl-ACP to support the initiation of fatty acid, lipopolysaccharide, peptidoglycan, and enterobacterial common antigen biosynthesis in Proteobacteria.
Collapse
Affiliation(s)
- Sarah G Whaley
- Department of Infectious Diseases, St Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Christopher D Radka
- Department of Infectious Diseases, St Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Chitra Subramanian
- Department of Infectious Diseases, St Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Matthew W Frank
- Department of Infectious Diseases, St Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Charles O Rock
- Department of Infectious Diseases, St Jude Children's Research Hospital, Memphis, Tennessee, USA.
| |
Collapse
|
10
|
Hagedoorn PL, Hollmann F, Hanefeld U. Novel oleate hydratases and potential biotechnological applications. Appl Microbiol Biotechnol 2021; 105:6159-6172. [PMID: 34350478 PMCID: PMC8403116 DOI: 10.1007/s00253-021-11465-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 07/19/2021] [Accepted: 07/19/2021] [Indexed: 11/29/2022]
Abstract
Abstract Oleate hydratase catalyses the addition of water to the CC double bond of oleic acid to produce (R)-10-hydroxystearic acid. The enzyme requires an FAD cofactor that functions to optimise the active site structure. A wide range of unsaturated fatty acids can be hydrated at the C10 and in some cases the C13 position. The substrate scope can be expanded using ‘decoy’ small carboxylic acids to convert small chain alkenes to secondary alcohols, albeit at low conversion rates. Systematic protein engineering and directed evolution to widen the substrate scope and increase the conversion rate is possible, supported by new high throughput screening assays that have been developed. Multi-enzyme cascades allow the formation of a wide range of products including keto-fatty acids, secondary alcohols, secondary amines and α,ω-dicarboxylic acids. Key points • Phylogenetically distinct oleate hydratases may exhibit mechanistic differences. • Protein engineering to improve productivity and substrate scope is possible. • Multi-enzymatic cascades greatly widen the product portfolio.
Collapse
Affiliation(s)
- Peter Leon Hagedoorn
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629, HZ, Delft, The Netherlands.
| | - Frank Hollmann
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629, HZ, Delft, The Netherlands
| | - Ulf Hanefeld
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629, HZ, Delft, The Netherlands
| |
Collapse
|
11
|
Zhang Y, Eser BE, Kougioumtzoglou G, Eser Z, Poborsky M, Kishino S, Takeuchi M, Ogawa J, Kristensen P, Guo Z. Effects of the engineering of a single binding pocket residue on specificity and regioselectivity of hydratases from Lactobacillus Acidophilus. Biochem Eng J 2021. [DOI: 10.1016/j.bej.2021.108006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
12
|
Marshall JR, Mangas-Sanchez J, Turner NJ. Expanding the synthetic scope of biocatalysis by enzyme discovery and protein engineering. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.131926] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
13
|
Radka CD, Batte JL, Frank MW, Young BM, Rock CO. Structure and mechanism of Staphylococcus aureus oleate hydratase (OhyA). J Biol Chem 2021; 296:100252. [PMID: 33376139 PMCID: PMC7948970 DOI: 10.1074/jbc.ra120.016818] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/15/2020] [Accepted: 12/29/2020] [Indexed: 01/07/2023] Open
Abstract
Flavin adenine dinucleotide (FAD)-dependent bacterial oleate hydratases (OhyAs) catalyze the addition of water to isolated fatty acid carbon-carbon double bonds. Staphylococcus aureus uses OhyA to counteract the host innate immune response by inactivating antimicrobial unsaturated fatty acids. Mechanistic information explaining how OhyAs catalyze regiospecific and stereospecific hydration is required to understand their biological functions and the potential for engineering new products. In this study, we deduced the catalytic mechanism of OhyA from multiple structures of S. aureus OhyA in binary and ternary complexes with combinations of ligands along with biochemical analyses of relevant mutants. The substrate-free state shows Arg81 is the gatekeeper that controls fatty acid entrance to the active site. FAD binding engages the catalytic loop to simultaneously rotate Glu82 into its active conformation and Arg81 out of the hydrophobic substrate tunnel, allowing the fatty acid to rotate into the active site. FAD binding also dehydrates the active site, leaving a single water molecule connected to Glu82. This active site water is a hydronium ion based on the analysis of its hydrogen bond network in the OhyA•PEG400•FAD complex. We conclude that OhyA accelerates acid-catalyzed alkene hydration by positioning the fatty acid double bond to attack the active site hydronium ion, followed by the addition of water to the transient carbocation intermediate. Structural transitions within S. aureus OhyA channel oleate to the active site, curl oleate around the substrate water, and stabilize the hydroxylated product to inactivate antimicrobial fatty acids.
Collapse
Affiliation(s)
- Christopher D Radka
- The Department of Infectious Diseases, St Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Justin L Batte
- The Department of Infectious Diseases, St Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Matthew W Frank
- The Department of Infectious Diseases, St Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Brandon M Young
- Department of Chemical Biology and Therapeutics, St Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Charles O Rock
- The Department of Infectious Diseases, St Jude Children's Research Hospital, Memphis, Tennessee, USA.
| |
Collapse
|
14
|
Recombinant Oleate Hydratase from Lactobacillus rhamnosus ATCC 53103: Enzyme Expression and Design of a Reliable Experimental Procedure for the Stereoselective Hydration of Oleic Acid. Catalysts 2020. [DOI: 10.3390/catal10101122] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Different microbial strains are able to transform oleic acid (OA) into 10-hydroxystearic acid (10-HSA) by means of the catalytic activity of the enzymes oleate hydratase (EC 4.2.1.53). Lactobacillus rhamnosus ATCC 53103 performs this biotransformation with very high stereoselectivity, affording enantiopure (R)-10-HSA. In this work, we cloned, in Escherichia coli, the oleate hydratase present in the above-mentioned probiotic strain. Our study demonstrated that the obtained recombinant hydratase retains the catalytic properties of the Lactobacillus strain but that its activity was greatly affected by the expression procedure. According to our findings, we devised a reliable procedure for the hydration of oleic acid using a recombinant E. coli whole-cell catalyst. We established that the optimal reaction conditions were pH 6.6 at 28 °C in phosphate buffer, using glycerol and ethanol as co-solvents. According to our experimental protocol, the biocatalyst does not show significant substrate inhibition as the hydration reaction can be performed at high oleic acid concentration (up to 50 g/L).
Collapse
|
15
|
Cuetos A, Iglesias-Fernández J, Danesh-Azari HR, Zukic E, Dowle A, Osuna S, Grogan G. Mutational Analysis of Linalool Dehydratase Isomerase Suggests That Alcohol and Alkene Transformations Are Catalyzed Using Noncovalent Mechanisms. ACS Catal 2020. [DOI: 10.1021/acscatal.0c02958] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Anibal Cuetos
- York Structural Biology Laboratory, Department of Chemistry, University of York, YO10 5DD York, U.K
| | - Javier Iglesias-Fernández
- CompBioLab group, Institut de Química Computacional i Catàlisi, Departament de Química, Carrer Maria Aurèlia Capmany 69, 17003 Girona, Spain
| | - Hamid-Reza Danesh-Azari
- York Structural Biology Laboratory, Department of Chemistry, University of York, YO10 5DD York, U.K
| | - Erna Zukic
- York Structural Biology Laboratory, Department of Chemistry, University of York, YO10 5DD York, U.K
| | - Adam Dowle
- Bioscience Technology Facility, Department of Biology, University of York, YO10 5DD, York, U.K
| | - Sílvia Osuna
- CompBioLab group, Institut de Química Computacional i Catàlisi, Departament de Química, Carrer Maria Aurèlia Capmany 69, 17003 Girona, Spain
- ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Spain
| | - Gideon Grogan
- York Structural Biology Laboratory, Department of Chemistry, University of York, YO10 5DD York, U.K
| |
Collapse
|
16
|
Busch H, Tonin F, Alvarenga N, van den Broek M, Lu S, Daran JM, Hanefeld U, Hagedoorn PL. Exploring the abundance of oleate hydratases in the genus Rhodococcus-discovery of novel enzymes with complementary substrate scope. Appl Microbiol Biotechnol 2020; 104:5801-5812. [PMID: 32358760 PMCID: PMC7306040 DOI: 10.1007/s00253-020-10627-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 04/02/2020] [Accepted: 04/14/2020] [Indexed: 11/24/2022]
Abstract
Oleate hydratases (Ohys, EC 4.2.1.53) are a class of enzymes capable of selective water addition reactions to a broad range of unsaturated fatty acids leading to the respective chiral alcohols. Much research was dedicated to improving the applications of existing Ohys as well as to the identification of undescribed Ohys with potentially novel properties. This study focuses on the latter by exploring the genus Rhodococcus for its plenitude of oleate hydratases. Three different Rhodococcus clades showed the presence of oleate hydratases whereby each clade was represented by a specific oleate hydratase family (HFam). Phylogenetic and sequence analyses revealed HFam-specific patterns amongst conserved amino acids. Oleate hydratases from two Rhodococcus strains (HFam 2 and 3) were heterologously expressed in Escherichia coli and their substrate scope investigated. Here, both enzymes showed a complementary behaviour towards sterically demanding and multiple unsaturated fatty acids. Furthermore, this study includes the characterisation of the newly discovered Rhodococcus pyridinivorans Ohy. The steady-state kinetics of R. pyridinivorans Ohy was measured using a novel coupled assay based on the alcohol dehydrogenase and NAD+-dependent oxidation of 10-hydroxystearic acid.
Collapse
Affiliation(s)
- Hanna Busch
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands
| | - Fabio Tonin
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands
| | - Natália Alvarenga
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands
| | - Marcel van den Broek
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands
| | - Simona Lu
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands
| | - Jean-Marc Daran
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands
| | - Ulf Hanefeld
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands
| | - Peter-Leon Hagedoorn
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands.
| |
Collapse
|
17
|
Jung J, Braun J, Czabany T, Nidetzky B. Unexpected NADPH Hydratase Activity in the Nitrile Reductase QueF from Escherichia coli. Chembiochem 2020; 21:1534-1543. [PMID: 31850614 PMCID: PMC7317782 DOI: 10.1002/cbic.201900679] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Indexed: 11/09/2022]
Abstract
The nitrile reductase QueF catalyzes NADPH-dependent reduction of the nitrile group of preQ0 (7-cyano-7-deazaguanine) into the primary amine of preQ1 (7-aminomethyl-7-deazaguanine), a biologically unique reaction important in bacterial nucleoside biosynthesis. Here we have discovered that the QueF from Escherichia coli-its D197A and E89L variants in particular (apparent kcat ≈10-2 min-1 )-also catalyze the slow hydration of the C5=C6 double bond of the dihydronicotinamide moiety of NADPH. The enzymatically C6-hydrated NADPH is a 3.5:1 mixture of R and S forms and rearranges spontaneously through anomeric epimerization (β→α) and cyclization at the tetrahydronicotinamide C6 and the ribosyl O2. NADH and 1-methyl- or 1-benzyl-1,4-dihydronicotinamide are not substrates of the enzymatic hydration. Mutagenesis results support a QueF hydratase mechanism, in which Cys190-the essential catalytic nucleophile for nitrile reduction-acts as the general acid for protonation at the dihydronicotinamide C5 of NADPH. Thus, the NADPH hydration in the presence of QueF bears mechanistic resemblance to the C=C double bond hydration in natural hydratases.
Collapse
Affiliation(s)
- Jihye Jung
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Petersgasse 10/12, 8010, Graz, Austria.,Austrian Centre of Industrial Biotechnology, Petersgasse 14, 8010, Graz, Austria
| | - Jan Braun
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Petersgasse 10/12, 8010, Graz, Austria
| | - Tibor Czabany
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Petersgasse 10/12, 8010, Graz, Austria.,Austrian Centre of Industrial Biotechnology, Petersgasse 14, 8010, Graz, Austria
| | - Bernd Nidetzky
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Petersgasse 10/12, 8010, Graz, Austria.,Austrian Centre of Industrial Biotechnology, Petersgasse 14, 8010, Graz, Austria
| |
Collapse
|
18
|
Abstract
In this work, we studied the biotechnological potential of thirteen probiotic microorganisms currently used to improve human health. We discovered that the majority of the investigated bacteria are able to catalyze the hydration reaction of the unsaturated fatty acids (UFAs). We evaluated their biocatalytic activity toward the three most common vegetable UFAs, namely oleic, linoleic, and linolenic acids. The whole-cell biotransformation experiments were performed using a fatty acid concentration of 3 g/L in anaerobic conditions. Through these means, we assessed that the main part of the investigated strains catalyzed the hydration reaction of UFAs with very high regio- and stereoselectivity. Our biotransformation reactions afforded almost exclusively 10-hydroxy fatty acid derivatives with the single exception of Lactobacillus acidophilus ATCC SD5212, which converted linoleic acid in a mixture of 13-hydroxy and 10-hydroxy derivatives. Oleic, linoleic, and linolenic acids were transformed into (R)-10-hydroxystearic acid, (S)-(12Z)-10-hydroxy-octadecenoic, and (S)-(12Z,15Z)-10-hydroxy-octadecadienoic acids, respectively, usually with very high enantiomeric purity (ee > 95%). It is worth noting that the biocatalytic capabilities of the thirteen investigated strains may change considerably from each other, both in terms of activity, stereoselectivity, and transformation yields. Lactobacillus rhamnosus ATCC 53103 and Lactobacillus plantarum 299 V proved to be the most versatile, being able to efficiently and selectively hydrate all three investigated fatty acids.
Collapse
|
19
|
Song JW, Seo JH, Oh DK, Bornscheuer UT, Park JB. Design and engineering of whole-cell biocatalytic cascades for the valorization of fatty acids. Catal Sci Technol 2020. [DOI: 10.1039/c9cy01802f] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
This review presents the key factors to construct a productive whole-cell biocatalytic cascade exemplified for the biotransformation of renewable fatty acids.
Collapse
Affiliation(s)
- Ji-Won Song
- Department of Food Science and Engineering
- Ewha Womans University
- Seoul 03760
- Republic of Korea
| | - Joo-Hyun Seo
- Department of Bio and Fermentation Convergence Technology
- Kookmin University
- Seoul 02707
- Republic of Korea
| | - Doek-Kun Oh
- Department of Bioscience and Biotechnology
- Konkuk University
- Seoul 143-701
- Republic of Korea
| | - Uwe T. Bornscheuer
- Institute of Biochemistry
- Department of Biotechnology & Enzyme Catalysis
- Greifswald University
- 17487 Greifswald
- Germany
| | - Jin-Byung Park
- Department of Food Science and Engineering
- Ewha Womans University
- Seoul 03760
- Republic of Korea
- Institute of Molecular Microbiology and Biosystems Engineering
| |
Collapse
|
20
|
Eser BE, Poborsky M, Dai R, Kishino S, Ljubic A, Takeuchi M, Jacobsen C, Ogawa J, Kristensen P, Guo Z. Rational Engineering of Hydratase from
Lactobacillus acidophilus
Reveals Critical Residues Directing Substrate Specificity and Regioselectivity. Chembiochem 2019; 21:550-563. [DOI: 10.1002/cbic.201900389] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Indexed: 12/21/2022]
Affiliation(s)
- Bekir Engin Eser
- Department of EngineeringAarhus University Gustav Wieds Vej 10 8000 Aarhus Denmark
| | - Michal Poborsky
- Department of EngineeringAarhus University Gustav Wieds Vej 10 8000 Aarhus Denmark
| | - Rongrong Dai
- Department of EngineeringAarhus University Gustav Wieds Vej 10 8000 Aarhus Denmark
| | - Shigenobu Kishino
- Division of Applied Life SciencesGraduate School of AgricultureKyoto University Kitashirakawa-oiwakecho Sakyo-ku Kyoto 606-8502 Japan
| | - Anita Ljubic
- Division of Food Technology, National Food InstituteTechnical University of Denmark Kemitorvet, Building 202 2800 Kgs. Lyngby Denmark
| | - Michiki Takeuchi
- Division of Applied Life SciencesGraduate School of AgricultureKyoto University Kitashirakawa-oiwakecho Sakyo-ku Kyoto 606-8502 Japan
| | - Charlotte Jacobsen
- Division of Food Technology, National Food InstituteTechnical University of Denmark Kemitorvet, Building 202 2800 Kgs. Lyngby Denmark
| | - Jun Ogawa
- Division of Applied Life SciencesGraduate School of AgricultureKyoto University Kitashirakawa-oiwakecho Sakyo-ku Kyoto 606-8502 Japan
| | - Peter Kristensen
- Faculty of Engineering and ScienceDepartment of Chemistry and BioscienceAalborg University Frederik Bayers Vej 7H 9220 Aalborg Denmark
| | - Zheng Guo
- Department of EngineeringAarhus University Gustav Wieds Vej 10 8000 Aarhus Denmark
| |
Collapse
|
21
|
Busch H, Alvarenga N, Abdelraheem E, Hoek M, Hagedoorn P, Hanefeld U. Re‐Investigation of Hydration Potential of
Rhodococcus
Whole‐Cell Biocatalysts towards Michael Acceptors. ChemCatChem 2019. [DOI: 10.1002/cctc.201901606] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Hanna Busch
- Department of BiotechnologyDelft University of Technology Van der Maasweg 9 Delft 2629 HZ (The Netherlands
| | - Natália Alvarenga
- Department of BiotechnologyDelft University of Technology Van der Maasweg 9 Delft 2629 HZ (The Netherlands
| | - Eman Abdelraheem
- Department of BiotechnologyDelft University of Technology Van der Maasweg 9 Delft 2629 HZ (The Netherlands
| | - Max Hoek
- Department of BiotechnologyDelft University of Technology Van der Maasweg 9 Delft 2629 HZ (The Netherlands
| | - Peter‐Leon Hagedoorn
- Department of BiotechnologyDelft University of Technology Van der Maasweg 9 Delft 2629 HZ (The Netherlands
| | - Ulf Hanefeld
- Department of BiotechnologyDelft University of Technology Van der Maasweg 9 Delft 2629 HZ (The Netherlands
| |
Collapse
|
22
|
Ganiu MO, Cleveland AH, Paul JL, Kartika R. Triphosgene and DMAP as Mild Reagents for Chemoselective Dehydration of Tertiary Alcohols. Org Lett 2019; 21:5611-5615. [PMID: 31251637 DOI: 10.1021/acs.orglett.9b01959] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The utility of triphosgene and DMAP as mild reagents for chemoselective dehydration of tertiary alcohols is reported. Performed in dichloromethane at room temperature, this reaction is readily tolerated by a broad scope of substrates, yielding alkenes preferentially with the (E)-geometry. While formation of the Hofmann products is generally favored, a dramatic change in alkene selectivity toward the Zaitzev products is observed when the reaction is carried out in dichloroethane at reflux.
Collapse
Affiliation(s)
- Moshood O Ganiu
- Department of Chemistry , Louisiana State University , 232 Choppin Hall , Baton Rouge , Louisiana 70803 , United States
| | - Alexander H Cleveland
- Department of Chemistry , Louisiana State University , 232 Choppin Hall , Baton Rouge , Louisiana 70803 , United States
| | - Jarrod L Paul
- Department of Chemistry , Louisiana State University , 232 Choppin Hall , Baton Rouge , Louisiana 70803 , United States
| | - Rendy Kartika
- Department of Chemistry , Louisiana State University , 232 Choppin Hall , Baton Rouge , Louisiana 70803 , United States
| |
Collapse
|
23
|
Exploring Castellaniella defragrans Linalool (De)hydratase-Isomerase for Enzymatic Hydration of Alkenes. Molecules 2019; 24:molecules24112092. [PMID: 31159367 PMCID: PMC6600392 DOI: 10.3390/molecules24112092] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 05/30/2019] [Accepted: 05/31/2019] [Indexed: 01/08/2023] Open
Abstract
Acyclic monoterpenes constitute a large and highly abundant class of secondary plant metabolites and are, therefore, attractive low-cost raw materials for the chemical industry. To date, numerous biocatalysts for their transformation are known, giving access to highly sought-after monoterpenoids. In view of the high selectivity associated with many of these reactions, the demand for enzymes generating commercially important target molecules is unabated. Here, linalool (de)hydratase-isomerase (Ldi, EC 4.2.1.127) from Castellaniella defragrans was examined for the regio- and stereoselective hydration of the acyclic monoterpene β-myrcene to (S)-(+)-linalool. Expression of the native enzyme in Escherichia coli allowed for identification of bottlenecks limiting enzyme activity, which were investigated by mutating selected residues implied in enzyme assembly and function. Combining these analyses with the recently published 3D structures of Ldi highlighted the precisely coordinated reduction-oxidation state of two cysteine pairs in correct oligomeric assembly and the catalytic mechanism, respectively. Subcellular targeting studies upon fusion of Ldi to different signal sequences revealed the significance of periplasmic localization of the mature enzyme in the heterologous expression host. This study provides biochemical and mechanistic insight into the hydration of β-myrcene, a nonfunctionalized terpene, and emphasizes its potential for access to scarcely available but commercially interesting tertiary alcohols.
Collapse
|
24
|
Engleder M, Strohmeier GA, Weber H, Steinkellner G, Leitner E, Müller M, Mink D, Schürmann M, Gruber K, Pichler H. Weiterentwicklung der Substrattoleranz von
Elizabethkingia meningoseptica
Oleathydratase zur regio‐ und stereoselektiven Hydratisierung von Ölsäurederivaten. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201901462] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Matthias Engleder
- ACIB GmbH – Austrian Centre of Industrial Biotechnology Petersgasse 14 8010 Graz Österreich
| | - Gernot A. Strohmeier
- ACIB GmbH – Austrian Centre of Industrial Biotechnology Petersgasse 14 8010 Graz Österreich
- Institut für Organische ChemieTechnische Universität Graz, NAWI Graz Stremayrgasse 9 8010 Graz Österreich
| | - Hansjörg Weber
- Institut für Organische ChemieTechnische Universität Graz, NAWI Graz Stremayrgasse 9 8010 Graz Österreich
| | - Georg Steinkellner
- ACIB GmbH – Austrian Centre of Industrial Biotechnology Petersgasse 14 8010 Graz Österreich
- Innophore GmbH Am Eisernen Tor 3 8010 Graz Österreich
| | - Erich Leitner
- Institut für Analytische Chemie und LebensmittelchemieTechnische Universität Graz, NAWI Graz Stremayrgasse 9 8010 Graz Österreich
| | - Monika Müller
- InnoSyn B.V. Urmonderbaan 22 6167 RD Geleen Niederlande
| | - Daniel Mink
- InnoSyn B.V. Urmonderbaan 22 6167 RD Geleen Niederlande
| | | | - Karl Gruber
- ACIB GmbH – Austrian Centre of Industrial Biotechnology Petersgasse 14 8010 Graz Österreich
- Institut für Molekulare BiowissenschaftenUniversität Graz, NAWI Graz, BioTechMed Graz Humboldtstraße 50 8010 Graz Österreich
| | - Harald Pichler
- Institut für Molekulare BiotechnologieTechnische Universität Graz, NAWI Graz, BioTechMed Graz Petersgasse 14 8010 Graz Österreich
- ACIB GmbH – Austrian Centre of Industrial Biotechnology Petersgasse 14 8010 Graz Österreich
| |
Collapse
|
25
|
Engleder M, Strohmeier GA, Weber H, Steinkellner G, Leitner E, Müller M, Mink D, Schürmann M, Gruber K, Pichler H. Evolving the Promiscuity of Elizabethkingia meningoseptica Oleate Hydratase for the Regio- and Stereoselective Hydration of Oleic Acid Derivatives. Angew Chem Int Ed Engl 2019; 58:7480-7484. [PMID: 30848865 PMCID: PMC6563698 DOI: 10.1002/anie.201901462] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Indexed: 12/15/2022]
Abstract
The addition of water to non-activated carbon-carbon double bonds catalyzed by fatty acid hydratases (FAHYs) allows for highly regio- and stereoselective oxyfunctionalization of renewable oil feedstock. So far, the applicability of FAHYs has been limited to free fatty acids, mainly owing to the requirement of a carboxylate function for substrate recognition and binding. Herein, we describe for the first time the hydration of oleic acid (OA) derivatives lacking this free carboxylate by the oleate hydratase from Elizabethkingia meningoseptica (OhyA). Molecular docking of OA to the OhyA 3D-structure and a sequence alignment uncovered conserved amino acid residues at the entrance of the substrate channel as target positions for enzyme engineering. Exchange of selected amino acids gave rise to OhyA variants which showed up to an 18-fold improved conversion of OA derivatives, while retaining the excellent regio- and stereoselectivity in the olefin hydration reaction.
Collapse
Affiliation(s)
- Matthias Engleder
- ACIB GmbH—Austrian Centre of Industrial BiotechnologyPetersgasse 148010GrazAustria
| | - Gernot A. Strohmeier
- ACIB GmbH—Austrian Centre of Industrial BiotechnologyPetersgasse 148010GrazAustria
- Institute of Organic ChemistryGraz University of Technology, NAWI GrazStremayrgasse 98010GrazAustria
| | - Hansjörg Weber
- Institute of Organic ChemistryGraz University of Technology, NAWI GrazStremayrgasse 98010GrazAustria
| | - Georg Steinkellner
- ACIB GmbH—Austrian Centre of Industrial BiotechnologyPetersgasse 148010GrazAustria
- Innophore GmbHAm Eisernen Tor 38010GrazAustria
| | - Erich Leitner
- Institute of Analytical Chemistry and Food ChemistryGraz University of Technology, NAWI GrazStremayrgasse 98010GrazAustria
| | - Monika Müller
- InnoSyn B.V.Urmonderbaan 226167 RDGeleenThe Netherlands
| | - Daniel Mink
- InnoSyn B.V.Urmonderbaan 226167 RDGeleenThe Netherlands
| | | | - Karl Gruber
- ACIB GmbH—Austrian Centre of Industrial BiotechnologyPetersgasse 148010GrazAustria
- Institute of Molecular BiosciencesUniversity of Graz, NAWI Graz, BioTechMed GrazHumboldtstrasse 508010GrazAustria
| | - Harald Pichler
- Institute of Molecular BiotechnologyGraz University of Technology, NAWI Graz, BioTechMed GrazPetersgasse 148010GrazAustria
- ACIB GmbH—Austrian Centre of Industrial BiotechnologyPetersgasse 148010GrazAustria
| |
Collapse
|
26
|
Subramanian C, Frank MW, Batte JL, Whaley SG, Rock CO. Oleate hydratase from Staphylococcus aureus protects against palmitoleic acid, the major antimicrobial fatty acid produced by mammalian skin. J Biol Chem 2019; 294:9285-9294. [PMID: 31018965 DOI: 10.1074/jbc.ra119.008439] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 04/11/2019] [Indexed: 01/01/2023] Open
Abstract
Oleate hydratases (OhyAs) belong to a large family of bacterial proteins catalyzing the hydration or isomerization of double bonds in unsaturated fatty acids. A Staphylococcus aureus gene (Sa0102) is predicted to encode an OhyA. Here, we recombinantly expressed and purified SaOhyA and found that it forms a homodimer that requires FAD for activity. SaOhyA hydrates only unsaturated fatty acids containing cis-9 double bonds, but not fatty acids with trans-9 double bonds or cis double bonds at other positions. SaOhyA products were not detected in S. aureus phospholipids and were released into the growth medium. S. aureus does not synthesize unsaturated fatty acids, and the SaOhyA substrates are derived from infection sites. Palmitoleate (16:1(9Z)) is a major mammalian skin-produced antimicrobial fatty acid that protects against S. aureus infection, and we observed that it is an SaOhyA substrate and that its hydroxylated derivative is not antimicrobial. Treatment of S. aureus with 24 μm 16:1(9Z) immediately arrested growth, followed by growth resumption after a lag period of 2 h. The ΔohyA mutant strain did not recover from the 16:1(9Z) challenge, and increasing SaOhyA expression using a plasmid system prevented the initial growth arrest. Challenging S. aureus with sapienic acid (16:1(6Z)), an antimicrobial fatty acid produced only by human skin, arrested growth without recovery in WT, ΔohyA, and SaOhyA-overexpressing strains. We conclude that SaOhyA protects S. aureus from palmitoleic acid, the antimicrobial unsaturated fatty acid produced by most mammals, and that sapienic acid, uniquely produced by humans, counters the OhyA-dependent bacterial defense mechanism.
Collapse
Affiliation(s)
- Chitra Subramanian
- From the Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee 38105
| | - Matthew W Frank
- From the Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee 38105
| | - Justin L Batte
- From the Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee 38105
| | - Sarah G Whaley
- From the Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee 38105
| | - Charles O Rock
- From the Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee 38105
| |
Collapse
|
27
|
Wu S, Zhou Y, Li Z. Biocatalytic selective functionalisation of alkenes via single-step and one-pot multi-step reactions. Chem Commun (Camb) 2019; 55:883-896. [PMID: 30566124 DOI: 10.1039/c8cc07828a] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Alkenes are excellent starting materials for organic synthesis due to the versatile reactivity of C[double bond, length as m-dash]C bonds and the easy availability of many unfunctionalised alkenes. Direct regio- and/or enantioselective conversion of alkenes into functionalised (chiral) compounds has enormous potential for industrial applications, and thus has attracted the attention of researchers for extensive development using chemo-catalysis over the past few years. On the other hand, many enzymes have also been employed for conversion of alkenes in a highly selective and much greener manner to offer valuable products. Herein, we review recent advances in seven well-known types of biocatalytic conversion of alkenes. Remarkably, recent mechanism-guided directed evolution and enzyme cascades have enabled the development of seven novel types of single-step and one-pot multi-step functionalisation of alkenes, some of which are even unattainable via chemo-catalysis. These new reactions are particularly highlighted in this feature article. Overall, we present an ever-expanding enzyme toolbox for various alkene functionalisations inspiring further research in this fast-developing theme.
Collapse
Affiliation(s)
- Shuke Wu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585.
| | | | | |
Collapse
|
28
|
Demming RM, Hammer SC, Nestl BM, Gergel S, Fademrecht S, Pleiss J, Hauer B. Asymmetric Enzymatic Hydration of Unactivated, Aliphatic Alkenes. Angew Chem Int Ed Engl 2019; 58:173-177. [PMID: 30256501 PMCID: PMC6471033 DOI: 10.1002/anie.201810005] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Indexed: 11/30/2022]
Abstract
The direct enantioselective addition of water to unactivated alkenes could simplify the synthesis of chiral alcohols and solve a long-standing challenge in catalysis. Here we report that an engineered fatty acid hydratase can catalyze the asymmetric hydration of various terminal and internal alkenes. In the presence of a carboxylic acid decoy molecule for activation of the oleate hydratase from E. meningoseptica, asymmetric hydration of unactivated alkenes was achieved with up to 93 % conversion, excellent selectivity (>99 % ee, >95 % regioselectivity), and on a preparative scale.
Collapse
Affiliation(s)
- Rebecca M. Demming
- Institute of Biochemistry and Technical BiochemistryDepartment of Technical BiochemistryUniversity of StuttgartAllmandring 3170569StuttgartGermany
| | - Stephan C. Hammer
- Institute of Biochemistry and Technical BiochemistryDepartment of Technical BiochemistryUniversity of StuttgartAllmandring 3170569StuttgartGermany
| | - Bettina M. Nestl
- Institute of Biochemistry and Technical BiochemistryDepartment of Technical BiochemistryUniversity of StuttgartAllmandring 3170569StuttgartGermany
| | - Sebastian Gergel
- Institute of Biochemistry and Technical BiochemistryDepartment of Technical BiochemistryUniversity of StuttgartAllmandring 3170569StuttgartGermany
| | - Silvia Fademrecht
- Institute of Biochemistry and Technical BiochemistryDepartment of Technical BiochemistryUniversity of StuttgartAllmandring 3170569StuttgartGermany
| | - Jürgen Pleiss
- Institute of Biochemistry and Technical BiochemistryDepartment of Technical BiochemistryUniversity of StuttgartAllmandring 3170569StuttgartGermany
| | - Bernhard Hauer
- Institute of Biochemistry and Technical BiochemistryDepartment of Technical BiochemistryUniversity of StuttgartAllmandring 3170569StuttgartGermany
| |
Collapse
|
29
|
Salsinha AS, Pimentel LL, Fontes AL, Gomes AM, Rodríguez-Alcalá LM. Microbial Production of Conjugated Linoleic Acid and Conjugated Linolenic Acid Relies on a Multienzymatic System. Microbiol Mol Biol Rev 2018; 82:e00019-18. [PMID: 30158254 PMCID: PMC6298612 DOI: 10.1128/mmbr.00019-18] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Conjugated linoleic acids (CLAs) and conjugated linolenic acids (CLNAs) have gained significant attention due to their anticarcinogenic and lipid/energy metabolism-modulatory effects. However, their concentration in foodstuffs is insufficient for any therapeutic application to be implemented. From a biotechnological standpoint, microbial production of these conjugated fatty acids (CFAs) has been explored as an alternative, and strains of the genera Propionibacterium, Lactobacillus, and Bifidobacterium have shown promising producing capacities. Current screening research works are generally based on direct analytical determination of production capacity (e.g., trial and error), representing an important bottleneck in these studies. This review aims to summarize the available information regarding identified genes and proteins involved in CLA/CLNA production by these groups of bacteria and, consequently, the possible enzymatic reactions behind such metabolic processes. Linoleate isomerase (LAI) was the first enzyme to be described to be involved in the microbiological transformation of linoleic acids (LAs) and linolenic acids (LNAs) into CFA isomers. Thus, the availability of lai gene sequences has allowed the development of genetic screening tools. Nevertheless, several studies have reported that LAIs have significant homology with myosin-cross-reactive antigen (MCRA) proteins, which are involved in the synthesis of hydroxy fatty acids, as shown by hydratase activity. Furthermore, it has been suggested that CLA and/or CLNA production results from a stress response performed by the activation of more than one gene in a multiple-step reaction. Studies on CFA biochemical pathways are essential to understand and characterize the metabolic mechanism behind this process, unraveling all the gene products that may be involved. As some of these bacteria have shown modulation of lipid metabolism in vivo, further research to be focused on this topic may help us to understand the role of the gut microbiota in human health.
Collapse
Affiliation(s)
- Ana S Salsinha
- Universidade Católica Portuguesa, Centro de Biotecnologia e Química Fina, Laboratório Associado, Escola Superior de Biotecnologia, Porto, Portugal
| | - Lígia L Pimentel
- Universidade Católica Portuguesa, Centro de Biotecnologia e Química Fina, Laboratório Associado, Escola Superior de Biotecnologia, Porto, Portugal
- Centro de Investigação em Tecnologias e Sistemas de Informação em Saúde, Faculdade de Medicina da Universidade do Porto, Porto, Portugal
- Unidade de Investigação de Química Orgânica, Produtos Naturais e Agroalimentares, Universidade de Aveiro, Aveiro, Portugal
| | - Ana L Fontes
- Universidade Católica Portuguesa, Centro de Biotecnologia e Química Fina, Laboratório Associado, Escola Superior de Biotecnologia, Porto, Portugal
- Unidade de Investigação de Química Orgânica, Produtos Naturais e Agroalimentares, Universidade de Aveiro, Aveiro, Portugal
| | - Ana M Gomes
- Universidade Católica Portuguesa, Centro de Biotecnologia e Química Fina, Laboratório Associado, Escola Superior de Biotecnologia, Porto, Portugal
| | - Luis M Rodríguez-Alcalá
- Universidade Católica Portuguesa, Centro de Biotecnologia e Química Fina, Laboratório Associado, Escola Superior de Biotecnologia, Porto, Portugal
- Centro de Investigación en Recursos Naturales y Sustentabilidad, Universidad Bernardo O'Higgins, Santiago de Chile, Chile
| |
Collapse
|
30
|
Demming RM, Hammer SC, Nestl BM, Gergel S, Fademrecht S, Pleiss J, Hauer B. Asymmetric Enzymatic Hydration of Unactivated, Aliphatic Alkenes. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201810005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Rebecca M. Demming
- Institute of Biochemistry and Technical Biochemistry; Department of Technical Biochemistry; University of Stuttgart; Allmandring 31 70569 Stuttgart Germany
| | - Stephan C. Hammer
- Institute of Biochemistry and Technical Biochemistry; Department of Technical Biochemistry; University of Stuttgart; Allmandring 31 70569 Stuttgart Germany
| | - Bettina M. Nestl
- Institute of Biochemistry and Technical Biochemistry; Department of Technical Biochemistry; University of Stuttgart; Allmandring 31 70569 Stuttgart Germany
| | - Sebastian Gergel
- Institute of Biochemistry and Technical Biochemistry; Department of Technical Biochemistry; University of Stuttgart; Allmandring 31 70569 Stuttgart Germany
| | - Silvia Fademrecht
- Institute of Biochemistry and Technical Biochemistry; Department of Technical Biochemistry; University of Stuttgart; Allmandring 31 70569 Stuttgart Germany
| | - Jürgen Pleiss
- Institute of Biochemistry and Technical Biochemistry; Department of Technical Biochemistry; University of Stuttgart; Allmandring 31 70569 Stuttgart Germany
| | - Bernhard Hauer
- Institute of Biochemistry and Technical Biochemistry; Department of Technical Biochemistry; University of Stuttgart; Allmandring 31 70569 Stuttgart Germany
| |
Collapse
|
31
|
Devine PN, Howard RM, Kumar R, Thompson MP, Truppo MD, Turner NJ. Extending the application of biocatalysis to meet the challenges of drug development. Nat Rev Chem 2018. [DOI: 10.1038/s41570-018-0055-1] [Citation(s) in RCA: 191] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
32
|
Engleder M, Pichler H. On the current role of hydratases in biocatalysis. Appl Microbiol Biotechnol 2018; 102:5841-5858. [PMID: 29785499 PMCID: PMC6013536 DOI: 10.1007/s00253-018-9065-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 04/27/2018] [Accepted: 04/27/2018] [Indexed: 11/06/2022]
Abstract
Water addition to carbon-carbon double bonds provides access to value-added products from inexpensive organic feedstock. This interesting but relatively little-studied reaction is catalysed by hydratases in a highly regio- and enantiospecific fashion with excellent atom economy. Considering that asymmetric hydration of (non-activated) carbon-carbon double bonds is virtually impossible with current organic chemistry, enzymatic hydration reactions are highly attractive for industrial applications. Hydratases have been known for several decades but their biocatalytic potential has only been explored over the past 15 years. As a result, a considerable amount of information on this enzyme group has become available, enabling their development for practical applications. This review focuses on hydratases catalysing water addition to non-activated carbon-carbon double bonds, and examines hydratases from a biochemical, structural and mechanistic angle. Current challenges and opportunities in hydration biocatalysis are discussed, and, ultimately, their potential for organic synthesis is highlighted.
Collapse
Affiliation(s)
- Matthias Engleder
- Austrian Centre of Industrial Biotechnology (acib), Petersgasse 14, 8010, Graz, Austria
- Institute of Molecular Biotechnology, Graz University of Technology, NAWI Graz, BioTechMed Graz, Petersgasse 8010, Graz, Austria
| | - Harald Pichler
- Austrian Centre of Industrial Biotechnology (acib), Petersgasse 14, 8010, Graz, Austria.
- Institute of Molecular Biotechnology, Graz University of Technology, NAWI Graz, BioTechMed Graz, Petersgasse 8010, Graz, Austria.
| |
Collapse
|
33
|
Wohlgemuth R. Horizons of Systems Biocatalysis and Renaissance of Metabolite Synthesis. Biotechnol J 2018; 13:e1700620. [DOI: 10.1002/biot.201700620] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 04/26/2018] [Indexed: 12/12/2022]
Affiliation(s)
- Roland Wohlgemuth
- European Federation of Biotechnology; Section on Applied Biocatalysis (ESAB); Theodor-Heuss-Allee 25,Frankfurt am Main 60486 Germany
- Sigma-Aldrich; Member of Merck Group; Industriestrasse 25,Buchs 9470 Switzerland
| |
Collapse
|