1
|
Bilgin N, Tumber A, Dhingra S, Salah E, Al-Salmy A, Martín SP, Wang Y, Schofield CJ, Mecinović J. Substrate selectivity and inhibition of the human lysyl hydroxylase JMJD7. Protein Sci 2024; 33:e5162. [PMID: 39276004 PMCID: PMC11400632 DOI: 10.1002/pro.5162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/12/2024] [Accepted: 08/19/2024] [Indexed: 09/16/2024]
Abstract
Jumonji-C (JmjC) domain-containing protein 7 (JMJD7) is a human Fe(II) and 2-oxoglutarate dependent oxygenase that catalyzes stereospecific C3-hydroxylation of lysyl-residues in developmentally regulated GTP binding proteins 1 and 2 (DRG1/2). We report studies exploring a diverse set of lysine derivatives incorporated into the DRG1 peptides as potential human JMJD7 substrates and inhibitors. The results indicate that human JMJD7 has a relatively narrow substrate scope beyond lysine compared to some other JmjC hydroxylases and lysine-modifying enzymes. The geometrically constrained (E)-dehydrolysine is an efficient alternative to lysine for JMJD7-catalyzed C3-hydroxylation. γ-Thialysine and γ-azalysine undergo C3-hydroxylation, followed by degradation to formylglycine. JMJD7 also catalyzes the S-oxidation of DRG1-derived peptides possessing methionine and homomethionine residues in place of lysine. Inhibition assays show that DRG1 variants possessing cysteine/selenocysteine instead of the lysine residue efficiently inhibit JMJD7 via cross-linking. The overall results inform on the substrate selectivity and inhibition of human JMJD7, which will help enable the rational design of selective small-molecule and peptidomimetic inhibitors of JMJD7.
Collapse
Affiliation(s)
- Nurgül Bilgin
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense, Denmark
| | - Anthony Tumber
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, Oxford, UK
| | - Siddhant Dhingra
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, Oxford, UK
| | - Eidarus Salah
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, Oxford, UK
| | - Aziza Al-Salmy
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense, Denmark
| | - Sandra Pinzón Martín
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense, Denmark
| | - Yicheng Wang
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, Oxford, UK
| | - Christopher J Schofield
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, Oxford, UK
| | - Jasmin Mecinović
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
2
|
Ablat G, Lawton N, Alam R, Haynes BA, Hossain S, Hicks T, Evans SL, Jarvis JA, Nott TJ, Isaacson RL, Müller MM. Kinetic Resolution of Epimeric Proteins Enables Stereoselective Chemical Mutagenesis. J Am Chem Soc 2024; 146:22622-22628. [PMID: 39083370 PMCID: PMC11328163 DOI: 10.1021/jacs.4c07103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
Chemical mutagenesis via dehydroalanine (Dha) is a powerful method to tailor protein structure and function, allowing the site-specific installation of post-translational modifications and non-natural functional groups. Despite the impressive versatility of this method, applications have been limited, as products are formed as epimeric mixtures, whereby the modified amino acid is present as both the desired l-configuration and a roughly equal amount of the undesired d-isomer. Here, we describe a simple remedy for this issue: removal of the d-isomer via proteolysis using a d-stereoselective peptidase, alkaline d-peptidase (AD-P). We demonstrate that AD-P can selectively cleave the d-isomer of epimeric residues within histone H3, GFP, Ddx4, and SGTA, allowing the installation of non-natural amino acids with stereochemical control. Given the breadth of modifications that can be introduced via Dha and the simplicity of our method, we believe that stereoselective chemoenzymatic mutagenesis will find broad utility in protein engineering and chemical biology applications.
Collapse
Affiliation(s)
- Guljannat Ablat
- Department of Chemistry, King's College London, Britannia House, 7 Trinity Street, London SE1 1DB, U.K
| | - Neev Lawton
- Department of Chemistry, King's College London, Britannia House, 7 Trinity Street, London SE1 1DB, U.K
| | - Ruqaiya Alam
- Department of Chemistry, King's College London, Britannia House, 7 Trinity Street, London SE1 1DB, U.K
| | - Bethany A Haynes
- Department of Chemistry, King's College London, Britannia House, 7 Trinity Street, London SE1 1DB, U.K
| | - Sabrina Hossain
- Department of Chemistry, King's College London, Britannia House, 7 Trinity Street, London SE1 1DB, U.K
| | - Thomas Hicks
- Department of Chemistry, King's College London, Britannia House, 7 Trinity Street, London SE1 1DB, U.K
| | - Sasha L Evans
- Department of Chemistry, King's College London, Britannia House, 7 Trinity Street, London SE1 1DB, U.K
| | - James A Jarvis
- Randall Centre for Cell and Molecular Biophysics and Centre for Biomolecular Spectroscopy, King's College London, New Hunts House, London SE1 1UL, U.K
| | - Timothy J Nott
- Department of Chemistry, King's College London, Britannia House, 7 Trinity Street, London SE1 1DB, U.K
| | - Rivka L Isaacson
- Department of Chemistry, King's College London, Britannia House, 7 Trinity Street, London SE1 1DB, U.K
| | - Manuel M Müller
- Department of Chemistry, King's College London, Britannia House, 7 Trinity Street, London SE1 1DB, U.K
| |
Collapse
|
3
|
Roth GV, Gengaro IR, Qi LS. Precision epigenetic editing: Technological advances, enduring challenges, and therapeutic applications. Cell Chem Biol 2024:S2451-9456(24)00309-X. [PMID: 39137782 DOI: 10.1016/j.chembiol.2024.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/31/2024] [Accepted: 07/15/2024] [Indexed: 08/15/2024]
Abstract
The epigenome is a complex framework through which gene expression is precisely and flexibly modulated to incorporate heritable memory and responses to environmental stimuli. It governs diverse cellular processes, including cell fate, disease, and aging. The need to understand this system and precisely control gene expression outputs for therapeutic purposes has precipitated the development of a diverse set of epigenetic editing tools. Here, we review the existing toolbox for targeted epigenetic editing, technical considerations of the current technologies, and opportunities for future development. We describe applications of therapeutic epigenetic editing and their potential for treating disease, with a discussion of ongoing delivery challenges that impede certain clinical interventions, particularly in the brain. With simultaneous advancements in available engineering tools and appropriate delivery technologies, we predict that epigenetic editing will increasingly cement itself as a powerful approach for safely treating a wide range of disorders in all tissues of the body.
Collapse
Affiliation(s)
- Goldie V Roth
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
| | - Isabella R Gengaro
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA; Sarafan ChEM-H, Stanford University, Stanford, CA, USA
| | - Lei S Qi
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA; Department of Bioengineering, Stanford University, Stanford, CA, USA; Chan Zuckerberg Biohub - San Francisco, San Francisco, CA, USA.
| |
Collapse
|
4
|
Boyle AL. Approaches to the Full and Partial Chemical Synthesis of Proteins. Methods Mol Biol 2024; 2819:573-582. [PMID: 39028524 DOI: 10.1007/978-1-0716-3930-6_26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Histones are proteins which help to organize DNA. The way in which they function is complex and is partially controlled by post-translational modifications (PTMs). Histone proteins from numerous organisms can be recombinantly produced in bacteria, but many bacterial strains are incapable of installing the variety of PTMs that histones possess. An alternative method of producing histones, which can be used to introduce PTMs, is native chemical ligation (NCL). This chapter provides a general NCL protocol which can be used to produce synthetic, post-translationally modified, histone proteins. The focus is on the NCL procedure itself and not on producing the modified histone protein fragments as there are many different ways in which these can be synthesized, depending on the modification(s) required. The same NCL protocol is also applicable for expressed protein ligation (EPL) with only small modifications to the purification procedure potentially required.
Collapse
Affiliation(s)
- Aimee L Boyle
- Macromolecular Biochemistry, Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands.
- School of Chemistry, University of Bristol, Bristol, UK.
| |
Collapse
|
5
|
Wu H, Sun Z, Li X. N,O-Benzylidene Acetal Dipeptides (NBDs) Enable the Synthesis of Difficult Peptides via a Kinked Backbone Strategy. Angew Chem Int Ed Engl 2023; 62:e202310624. [PMID: 37694822 DOI: 10.1002/anie.202310624] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/05/2023] [Accepted: 09/11/2023] [Indexed: 09/12/2023]
Abstract
Proteins with highly hydrophobic regions or aggregation-prone sequences are typically difficult targets for chemical synthesis at the current stage, as obtaining such type of peptides via solid-phase peptide synthesis requires sophisticated operations. Herein, we report N,O-benzylidene acetal dipeptides (NBDs) as robust and effective building blocks to allow the direct synthesis of difficult peptides and proteins via a kinked backbone strategy. The effectiveness and easy accessibility of NBDs have been well demonstrated in our chemical syntheses of various challenging peptides and proteins, including chemokine, therapeutic hormones, histone, and glycosylated erythropoietin.
Collapse
Affiliation(s)
- Hongxiang Wu
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, P. R. China
| | - Zhenquan Sun
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, P. R. China
| | - Xuechen Li
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, P. R. China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, P. R. China
| |
Collapse
|
6
|
Liu R, Wu J, Guo H, Yao W, Li S, Lu Y, Jia Y, Liang X, Tang J, Zhang H. Post-translational modifications of histones: Mechanisms, biological functions, and therapeutic targets. MedComm (Beijing) 2023; 4:e292. [PMID: 37220590 PMCID: PMC10200003 DOI: 10.1002/mco2.292] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 05/05/2023] [Accepted: 05/09/2023] [Indexed: 05/25/2023] Open
Abstract
Histones are DNA-binding basic proteins found in chromosomes. After the histone translation, its amino tail undergoes various modifications, such as methylation, acetylation, phosphorylation, ubiquitination, malonylation, propionylation, butyrylation, crotonylation, and lactylation, which together constitute the "histone code." The relationship between their combination and biological function can be used as an important epigenetic marker. Methylation and demethylation of the same histone residue, acetylation and deacetylation, phosphorylation and dephosphorylation, and even methylation and acetylation between different histone residues cooperate or antagonize with each other, forming a complex network. Histone-modifying enzymes, which cause numerous histone codes, have become a hot topic in the research on cancer therapeutic targets. Therefore, a thorough understanding of the role of histone post-translational modifications (PTMs) in cell life activities is very important for preventing and treating human diseases. In this review, several most thoroughly studied and newly discovered histone PTMs are introduced. Furthermore, we focus on the histone-modifying enzymes with carcinogenic potential, their abnormal modification sites in various tumors, and multiple essential molecular regulation mechanism. Finally, we summarize the missing areas of the current research and point out the direction of future research. We hope to provide a comprehensive understanding and promote further research in this field.
Collapse
Affiliation(s)
- Ruiqi Liu
- Cancer CenterDepartment of Radiation OncologyZhejiang Provincial People's HospitalAffiliated People's HospitalHangzhou Medical CollegeHangzhouZhejiangChina
- Graduate DepartmentBengbu Medical College, BengbuAnhuiChina
| | - Jiajun Wu
- Graduate DepartmentBengbu Medical College, BengbuAnhuiChina
- Otolaryngology & Head and Neck CenterCancer CenterDepartment of Head and Neck SurgeryZhejiang Provincial People's HospitalAffiliated People's Hospital, Hangzhou Medical CollegeHangzhouZhejiangChina
| | - Haiwei Guo
- Otolaryngology & Head and Neck CenterCancer CenterDepartment of Head and Neck SurgeryZhejiang Provincial People's HospitalAffiliated People's Hospital, Hangzhou Medical CollegeHangzhouZhejiangChina
| | - Weiping Yao
- Cancer CenterDepartment of Radiation OncologyZhejiang Provincial People's HospitalAffiliated People's HospitalHangzhou Medical CollegeHangzhouZhejiangChina
- Graduate DepartmentBengbu Medical College, BengbuAnhuiChina
| | - Shuang Li
- Cancer CenterDepartment of Radiation OncologyZhejiang Provincial People's HospitalAffiliated People's HospitalHangzhou Medical CollegeHangzhouZhejiangChina
- Graduate DepartmentJinzhou Medical UniversityJinzhouLiaoningChina
| | - Yanwei Lu
- Cancer CenterDepartment of Radiation OncologyZhejiang Provincial People's HospitalAffiliated People's HospitalHangzhou Medical CollegeHangzhouZhejiangChina
| | - Yongshi Jia
- Cancer CenterDepartment of Radiation OncologyZhejiang Provincial People's HospitalAffiliated People's HospitalHangzhou Medical CollegeHangzhouZhejiangChina
| | - Xiaodong Liang
- Cancer CenterDepartment of Radiation OncologyZhejiang Provincial People's HospitalAffiliated People's HospitalHangzhou Medical CollegeHangzhouZhejiangChina
- Graduate DepartmentBengbu Medical College, BengbuAnhuiChina
| | - Jianming Tang
- Department of Radiation OncologyThe First Hospital of Lanzhou UniversityLanzhou UniversityLanzhouGansuChina
| | - Haibo Zhang
- Cancer CenterDepartment of Radiation OncologyZhejiang Provincial People's HospitalAffiliated People's HospitalHangzhou Medical CollegeHangzhouZhejiangChina
| |
Collapse
|
7
|
Isenegger PG, Josephson B, Gaunt B, Davy MJ, Gouverneur V, Baldwin AJ, Davis BG. Posttranslational, site-directed photochemical fluorine editing of protein sidechains to probe residue oxidation state via 19F-nuclear magnetic resonance. Nat Protoc 2023; 18:1543-1562. [PMID: 36806799 DOI: 10.1038/s41596-022-00800-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 11/23/2022] [Indexed: 02/22/2023]
Abstract
The fluorination of amino acid residues represents a near-isosteric alteration with the potential to report on biological pathways, yet the site-directed editing of carbon-hydrogen (C-H) bonds in complex biomolecules to carbon-fluorine (C-F) bonds is challenging, resulting in its limited exploitation. Here, we describe a protocol for the posttranslational and site-directed alteration of native γCH2 to γCF2 in protein sidechains. This alteration allows the installation of difluorinated sidechain analogs of proteinogenic amino acids, in both native and modified states. This chemical editing is robust, mild, fast and highly efficient, exploiting photochemical- and radical-mediated C-C bonds grafted onto easy-to-access cysteine-derived dehydroalanine-containing proteins as starting materials. The heteroaryl-sulfonyl reagent required for generating the key carbon-centered C• radicals that install the sidechain can be synthesized in two to six steps from commercially available precursors. This workflow allows the nonexpert to create fluorinated proteins within 24 h, starting from a corresponding purified cysteine-containing protein precursor, without the need for bespoke biological systems. As an example, we readily introduce three γCF2-containing methionines in all three progressive oxidation states (sulfide, sulfoxide and sulfone) as D-/L- forms into histone eH3.1 at site 4 (a relevant lysine to methionine oncomutation site), and each can be detected by 19F-nuclear magnetic resonance of the γCF2 group, as well as the two diastereomers of the sulfoxide, even when found in a complex protein mixture of all three. The site-directed editing of C-H→C-F enables the use of γCF2 as a highly sensitive, 'zero-size-zero-background' label in protein sidechains, which may be used to probe biological phenomena, protein structures and/or protein-ligand interactions by 19F-based detection methods.
Collapse
Affiliation(s)
| | | | - Ben Gaunt
- The Rosalind Franklin Institute, Oxfordshire, UK
| | - Matthew J Davy
- The Rosalind Franklin Institute, Oxfordshire, UK.,Department of Pharmacology, University of Oxford, Oxford, UK
| | | | - Andrew J Baldwin
- Department of Chemistry, University of Oxford, Oxford, UK. .,The Rosalind Franklin Institute, Oxfordshire, UK. .,Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, UK.
| | - Benjamin G Davis
- Department of Chemistry, University of Oxford, Oxford, UK. .,The Rosalind Franklin Institute, Oxfordshire, UK. .,Department of Pharmacology, University of Oxford, Oxford, UK.
| |
Collapse
|
8
|
Stroynowska-Czerwinska AM, Klimczak M, Pastor M, Kazrani AA, Misztal K, Bochtler M. Clustered PHD domains in KMT2/MLL proteins are attracted by H3K4me3 and H3 acetylation-rich active promoters and enhancers. Cell Mol Life Sci 2023; 80:23. [PMID: 36598580 PMCID: PMC9813062 DOI: 10.1007/s00018-022-04651-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 11/18/2022] [Accepted: 11/23/2022] [Indexed: 01/05/2023]
Abstract
Histone lysine-specific methyltransferase 2 (KMT2A-D) proteins, alternatively called mixed lineage leukemia (MLL1-4) proteins, mediate positive transcriptional memory. Acting as the catalytic subunits of human COMPASS-like complexes, KMT2A-D methylate H3K4 at promoters and enhancers. KMT2A-D contain understudied highly conserved triplets and a quartet of plant homeodomains (PHDs). Here, we show that all clustered (multiple) PHDs localize to the well-defined loci of H3K4me3 and H3 acetylation-rich active promoters and enhancers. Surprisingly, we observe little difference in binding pattern between PHDs from promoter-specific KMT2A-B and enhancer-specific KMT2C-D. Fusion of the KMT2A CXXC domain to the PHDs drastically enhances their preference for promoters over enhancers. Hence, the presence of CXXC domains in KMT2A-B, but not KMT2C-D, may explain the promoter/enhancer preferences of the full-length proteins. Importantly, targets of PHDs overlap with KMT2A targets and are enriched in genes involved in the cancer pathways. We also observe that PHDs of KMT2A-D are mutated in cancer, especially within conserved folding motifs (Cys4HisCys2Cys/His). The mutations cause a domain loss-of-function. Taken together, our data suggest that PHDs of KMT2A-D guide the full-length proteins to active promoters and enhancers, and thus play a role in positive transcriptional memory.
Collapse
Affiliation(s)
| | - Magdalena Klimczak
- International Institute of Molecular and Cell Biology, 02-109, Warsaw, Poland
| | - Michal Pastor
- International Institute of Molecular and Cell Biology, 02-109, Warsaw, Poland
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106, Warsaw, Poland
| | - Asgar Abbas Kazrani
- International Institute of Molecular and Cell Biology, 02-109, Warsaw, Poland
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch-Graffenstaden, France
| | - Katarzyna Misztal
- International Institute of Molecular and Cell Biology, 02-109, Warsaw, Poland
| | - Matthias Bochtler
- International Institute of Molecular and Cell Biology, 02-109, Warsaw, Poland.
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106, Warsaw, Poland.
| |
Collapse
|
9
|
Zhang Z, Lin J, Liu Z, Tian G, Li XM, Jing Y, Li X, Li XD. Photo-Cross-Linking To Delineate Epigenetic Interactome. J Am Chem Soc 2022; 144:20979-20997. [DOI: 10.1021/jacs.2c06135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Zhuoyuan Zhang
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Jianwei Lin
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
- Greater Bay Biomedical InnoCenter, Shenzhen Bay Laboratory, Shenzhen 518055, China
| | - Zheng Liu
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Gaofei Tian
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Xiao-Meng Li
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Yihang Jing
- Greater Bay Biomedical InnoCenter, Shenzhen Bay Laboratory, Shenzhen 518055, China
| | - Xin Li
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
- Greater Bay Biomedical InnoCenter, Shenzhen Bay Laboratory, Shenzhen 518055, China
| | - Xiang David Li
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| |
Collapse
|
10
|
Maas MN, Hintzen JCJ, Mecinović J. Probing lysine posttranslational modifications by unnatural amino acids. Chem Commun (Camb) 2022; 58:7216-7231. [PMID: 35678513 DOI: 10.1039/d2cc00708h] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Posttranslational modifications, typically small chemical tags attached on amino acids following protein biosynthesis, have a profound effect on protein structure and function. Numerous chemically and structurally diverse posttranslational modifications, including methylation, acetylation, hydroxylation, and ubiquitination, have been identified and characterised on lysine residues in proteins. In this feature article, we focus on chemical tools that rely on the site-specific incorporation of unnatural amino acids into peptides and proteins to probe posttranslational modifications of lysine. We highlight that simple amino acid mimics enable detailed mechanistic and functional assignment of enzymes that install and remove such modifications, and proteins that specifically recognise lysine posttranslational modifications.
Collapse
Affiliation(s)
- Marijn N Maas
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark.
| | - Jordi C J Hintzen
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark.
| | - Jasmin Mecinović
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark.
| |
Collapse
|
11
|
Tomkuvienė M, Meier M, Ikasalaitė D, Wildenauer J, Kairys V, Klimašauskas S, Manelytė L. Enhanced nucleosome assembly at CpG sites containing an extended 5-methylcytosine analogue. Nucleic Acids Res 2022; 50:6549-6561. [PMID: 35648439 PMCID: PMC9226530 DOI: 10.1093/nar/gkac444] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 05/05/2022] [Accepted: 05/16/2022] [Indexed: 02/01/2023] Open
Abstract
Methylation of cytosine to 5-methylcytosine (mC) at CpG sites is a prevalent reversible epigenetic mark in vertebrates established by DNA methyltransferases (MTases); the attached methyl groups can alter local structure of DNA and chromatin as well as binding of dedicated proteins. Nucleosome assembly on methylated DNA has been studied extensively, however little is known how the chromatin structure is affected by larger chemical variations in the major groove of DNA. Here, we studied the nucleosome formation in vitro on DNA containing an extended 5mC analog, 5-(6-azidohex-2-ynyl)cytosine (ahyC) installed at biological relevant CpG sites. We found that multiple ahyC residues on 80-Widom and Hsp70 promoter DNA fragments proved compatible with nucleosome assembly. Moreover, unlike mC, ahyC increases the affinity of histones to the DNA, partially altering nucleosome positioning, stability, and the action of chromatin remodelers. Based on molecular dynamics calculations, we suggest that these new features are due to increased DNA flexibility at ahyC-modified sites. Our findings provide new insights into the biophysical behavior of modified DNA and open new ways for directed design of synthetic nucleosomes.
Collapse
Affiliation(s)
- Miglė Tomkuvienė
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius LT-10257, Lithuania
| | - Markus Meier
- Biochemistry III, University of Regensburg, Regensburg, Bavaria, DE-93053, Germany
| | - Diana Ikasalaitė
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius LT-10257, Lithuania
| | - Julia Wildenauer
- Biochemistry III, University of Regensburg, Regensburg, Bavaria, DE-93053, Germany
| | - Visvaldas Kairys
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius LT-10257, Lithuania
| | - Saulius Klimašauskas
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius LT-10257, Lithuania
| | - Laura Manelytė
- Biochemistry III, University of Regensburg, Regensburg, Bavaria, DE-93053, Germany
| |
Collapse
|
12
|
Toyobe M, Yakushiji F. Synthetic modifications of histones and their functional evaluation. Chem Asian J 2022; 17:e202200197. [PMID: 35489041 DOI: 10.1002/asia.202200197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/22/2022] [Indexed: 11/07/2022]
Abstract
Post-transrational modifications (PTMs) of histones play a key role in epigenetic regulation. Unraveling the roles of each epigenetic mark can provide new insights into their biological mechanisms. On the other hand, it is generally difficult to prepare homogeneously-modified histones/nucleosomes to investigate their specific functions. Therefore, synthetic approaches to acquire precisely mimicked histones/nucleosomes are in great demand, and further development of this research field is anticipated. In this review, synthetic strategies to modify histones/nucleosomes, including cysteine modifications, transformations of dehydroalanine residues and lysine acylation using a catalyst system, are cited. In addition, the functional evaluation of synthetically modified histones/nucleosomes is described.
Collapse
Affiliation(s)
- Moe Toyobe
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | - Fumika Yakushiji
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
- Center for Research and Education on Drug Discovery, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
- Global Station for Biosurfaces and Drug Discovery, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| |
Collapse
|
13
|
Konrad SF, Vanderlinden W, Lipfert J. Quantifying epigenetic modulation of nucleosome breathing by high-throughput AFM imaging. Biophys J 2022; 121:841-851. [PMID: 35065917 PMCID: PMC8943691 DOI: 10.1016/j.bpj.2022.01.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 11/30/2021] [Accepted: 01/19/2022] [Indexed: 11/30/2022] Open
Abstract
Nucleosomes are the basic units of chromatin and critical for storage and expression of eukaryotic genomes. Chromatin accessibility and gene readout are heavily regulated by epigenetic marks, in which post-translational modifications of histones play a key role. However, the mode of action and the structural implications at the single-molecule level of nucleosomes is still poorly understood. Here we apply a high-throughput atomic force microscopy imaging and analysis pipeline to investigate the conformational landscape of the nucleosome variants three additional methyl groups at lysine 36 of histone H3 (H3K36me3), phosphorylation of H3 histones at serine 10 (H3S10phos), and acetylation of H4 histones at lysines 5, 8, 12, and 16 (H4K5/8/12/16ac). Our data set of more than 25,000 nucleosomes reveals nucleosomal unwrapping steps corresponding to 5-bp DNA. We find that H3K36me3 nucleosomes unwrap significantly more than wild-type nucleosomes and additionally unwrap stochastically from both sides, similar to centromere protein A (CENP-A) nucleosomes and in contrast to the highly anticooperative unwrapping of wild-type nucleosomes. Nucleosomes with H3S10phos or H4K5/8/12/16ac modifications show unwrapping populations similar to wild-type nucleosomes and also retain the same level of anticooperativity. Our findings help to put the mode of action of these modifications into context. Although H3K36me3 likely acts partially by directly affecting nucleosome structure on the single-molecule level, H3S10phos and H4K5/8/12/16ac must predominantly act through higher-order processes. Our analysis pipeline is readily applicable to other nucleosome variants and will facilitate future high-resolution studies of the conformational landscape of nucleoprotein complexes.
Collapse
Affiliation(s)
- Sebastian F. Konrad
- Department of Physics and Center for NanoScience, LMU Munich, Munich, Germany
| | - Willem Vanderlinden
- Department of Physics and Center for NanoScience, LMU Munich, Munich, Germany
| | - Jan Lipfert
- Department of Physics and Center for NanoScience, LMU Munich, Munich, Germany.
| |
Collapse
|
14
|
Spangler CJ, McGinty RK. Determination of Histone Methyltransferase Structures in Complex with the Nucleosome by Cryogenic Electron Microscopy. Methods Mol Biol 2022; 2529:149-168. [PMID: 35733015 PMCID: PMC10202144 DOI: 10.1007/978-1-0716-2481-4_8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Cryogenic electron microscopy (cryo-EM) has recently emerged as an optimal technique for the determination of histone methyltransferase-nucleosome complex structures. Histone methyltransferases are a group of enzymes that posttranslationally methylate histone lysine and arginine residues on the nucleosome, providing important epigenetic signals that regulate gene expression. Here we describe a protocol to solve the structure of histone lysine methyltransferase Dot1L bound to a chemically ubiquitylated nucleosome, including complex reconstitution, crosslinking, grid preparation, and data collection and analysis. Throughout, we discuss key steps requiring optimization to allow this protocol to serve as a starting point for the determination of new histone methyltransferase-nucleosome complex structures.
Collapse
Affiliation(s)
- Cathy J Spangler
- Department of Biochemistry and Biophysics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Robert K McGinty
- Department of Biochemistry and Biophysics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
15
|
Ai H, Peng S, Li JB. Chemical methods for studying the crosstalk between histone H2B ubiquitylation and H3 methylation. J Pept Sci 2021; 28:e3381. [PMID: 34811838 DOI: 10.1002/psc.3381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 10/19/2021] [Accepted: 11/03/2021] [Indexed: 11/06/2022]
Abstract
The reversible and dynamic post-translational modifications (PTMs) of histones in eukaryotic chromatin are intimately connected to cell development and gene function, and abnormal regulation of PTMs can result in cancer and neurodegenerative diseases. Specific combinations of these modifications are mediated by a series of chromatin proteins that write, erase, and read the "histone codes," but mechanistic studies of the precise biochemical and structural relationships between different sets of modifications and their effects on chromatin function constitute a unique challenge to canonical biochemical approaches. In the past decade, the development and application of chemical methods for investigating histone PTM crosstalks has received considerable attention in the field of chemical biology. In this review, taking the functional crosstalk between H2B ubiquitylation at Lys120 (H2BK120ub) and H3 methylation at Lys79 (H3K79me) as a typical example, we survey recent developments of different chemical methods, in particular, protein synthetic chemistry and protein-based chemical probes, for studying the mechanism of the functional crosstalks of histone PTMs.
Collapse
Affiliation(s)
- Huasong Ai
- College of Pharmaceutical Sciences, Soochow University, Suzhou, China.,Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, China
| | - Shuai Peng
- College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Jia-Bin Li
- College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| |
Collapse
|
16
|
Chen B, Ali S, Zhang X, Zhang Y, Wang M, Zhang Q, Xie L. Genome-wide identification, classification, and expression analysis of the JmjC domain-containing histone demethylase gene family in birch. BMC Genomics 2021; 22:772. [PMID: 34711171 PMCID: PMC8555302 DOI: 10.1186/s12864-021-08063-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 10/06/2021] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Histone methylation occurs primarily on lysine residues and requires a set of enzymes capable of reading, writing, and erasing to control its establishment and deletion, which is essential for maintaining chromatin structure and gene expression. Histone methylation and demethylation are contributed to plant growth and development, and are involved in adapting to environmental stresses. The JmjC domain-containing proteins are extensively studied for their function in histone lysine demethylation in plants, and play a critical role in sustaining histone methylation homeostasis. RESULTS In this study, a total of 21 JmjC domain-containing histone demethylase proteins (JHDMs) in birch were identified and classified into five subfamilies based on structural characteristics and phylogenetic relationships among Arabidopsis, rice, maize, and birch. Although the BpJMJ genes displayed significant schematic variation, their distribution on the chromosomes is relatively uniform. Additionally, the BpJMJ genes in birch have never experienced a tandem-duplication event proved by WGD analysis and were remaining underwent purifying selection (Ka/Ks < < 1). A typical JmjC domain was found in all BpJMJ genes, some of which have other essential domains for their functions. In the promoter regions of BpJMJ genes, cis-acting elements associated with hormone and abiotic stress responses were overrepresented. Under abiotic stresses, the transcriptome profile reveals two contrasting expression patterns within 21 BpJMJ genes. Furthermore, it was established that most BpJMJ genes had higher expression in young tissues under normal conditions, with BpJMJ06/16 having the highest expression in germinating seeds and participating in the regulation of BpGA3ox1/2 gene expression. Eventually, BpJMJ genes were found to directly interact with genes involved in the "intracellular membrane" in respond to cold stress. CONCLUSIONS The present study will provide a foundation for future experiments on histone demethylases in birch and a theoretical basis for epigenetic research on growth and development in response to abiotic stresses.
Collapse
Affiliation(s)
- Bowei Chen
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Shahid Ali
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Xu Zhang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Yonglan Zhang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Min Wang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Qingzhu Zhang
- College of Life Sciences, Northeast Forestry University, Harbin, 150040, China
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China
| | - Linan Xie
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin, 150040, China.
- College of Life Sciences, Northeast Forestry University, Harbin, 150040, China.
| |
Collapse
|
17
|
Li X, Li XD. Integrative Chemical Biology Approaches to Deciphering the Histone Code: A Problem-Driven Journey. Acc Chem Res 2021; 54:3734-3747. [PMID: 34553920 DOI: 10.1021/acs.accounts.1c00463] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The hereditary blueprint of a eukaryotic cell is encoded in its genomic DNA that is tightly compacted into chromatin together with histone proteins. The basic repeating units of chromatin fibers are nucleosomes, in which approximately 1.7 turns of DNA wrap around a proteinaceous octamer consisting of two copies of histones H2A, H2B, H3, and H4. Histones are extensively decorated by a variety of posttranslational modifications (PTMs, e.g., methylation, acetylation, ubiquitylation, phosphorylation, etc.), serving as one of the cellular mechanisms that regulates DNA-templated processes, including but not limited to gene transcription, DNA replication, and DNA damage repair. Most of the histone PTMs exist in dynamic fluctuations, and their on and off states are exquisitely regulated by enzymes known as "writers" and "erasers", respectively. When installed at certain sites, histone PTMs can change the local physicochemical environment and thereby directly influence the nucleosome and chromatin structures. Alternatively, histone PTMs can recruit effectors (or "readers") to signal the downstream events. A "histone code" hypothesis has been proposed in which the combinatory actions of different histone PTMs orchestrate the epigenetic landscape of cells, modulating the activity of the underlying DNA and maintaining the genome stability between generations. Accumulating evidence also suggests that malfunctions of histone PTMs are associated with the pathogenesis of human diseases, such as cancer. It is therefore important to fully decipher the histone code, namely, to dissect the regulatory mechanisms and biological functions of histone PTMs.Owing to the advances in state-of-the-art mass spectrometry, dozens of novel histone modifications have been archived during the past decade. However, most of these newly identified histone PTMs remain poorly explored. To unravel the roles played by these PTMs in histone code, key questions that have driven our study are (i) how to detect the novel histone PTMs; (ii) how to identify the enzymes that catalyze the addition (writers) and removal (erasers) of the histone PTMs along with the regulating mechanisms; (iii) what is the biological significance of the histone PTMs and how do they function, by affecting the nucleosome and chromatin dynamics or by recruiting readers; and (iv) how to develop chemical probes to interrogate the histone PTMs or even serve as potential leads for the drug discovery campaigns to treat diseases caused by abnormalities in the regulation of histone PTMs.This Account focuses on our efforts in developing and applying chemical tools and methods to answer the above questions. Specifically, we review the detection of negatively charged histone acylations by developing and applying chemical reporters; preparing homogeneous nucleosomes carrying negatively charged acylations by protein chemistry approaches and the in vitro biophysical analyses of the effects of the acylations on nucleosome structures; investigating the negatively charged acylations' influence on chromatin dynamics in vivo using yeast genetic approaches; identifying and characterizing protein-protein interactions (PPIs) mediated by histone PTMs in different biological contexts (i.e., to identify the readers and erasers) by establishing a chemical proteomics platform that is enabled by photo-cross-linking chemistry and quantitative proteomics strategies; and manipulating PTM-mediated PPIs by the structure-guided design of inhibitors. We also discuss possible future directions in our journey to fully decipher the histone code.
Collapse
Affiliation(s)
- Xin Li
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, 999077 China
| | - Xiang David Li
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, 999077 China
| |
Collapse
|
18
|
Saha A, Bello D, Fernández-Tejada A. Advances in chemical probing of protein O-GlcNAc glycosylation: structural role and molecular mechanisms. Chem Soc Rev 2021; 50:10451-10485. [PMID: 34338261 PMCID: PMC8451060 DOI: 10.1039/d0cs01275k] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Indexed: 12/11/2022]
Abstract
The addition of O-linked-β-D-N-acetylglucosamine (O-GlcNAc) onto serine and threonine residues of nuclear and cytoplasmic proteins is an abundant, unique post-translational modification governing important biological processes. O-GlcNAc dysregulation underlies several metabolic disorders leading to human diseases, including cancer, neurodegeneration and diabetes. This review provides an extensive summary of the recent progress in probing O-GlcNAcylation using mainly chemical methods, with a special focus on discussing mechanistic insights and the structural role of O-GlcNAc at the molecular level. We highlight key aspects of the O-GlcNAc enzymes, including development of OGT and OGA small-molecule inhibitors, and describe a variety of chemoenzymatic and chemical biology approaches for the study of O-GlcNAcylation. Special emphasis is placed on the power of chemistry in the form of synthetic glycopeptide and glycoprotein tools for investigating the site-specific functional consequences of the modification. Finally, we discuss in detail the conformational effects of O-GlcNAc glycosylation on protein structure and stability, relevant O-GlcNAc-mediated protein interactions and its molecular recognition features by biological receptors. Future research in this field will provide novel, more effective chemical strategies and probes for the molecular interrogation of O-GlcNAcylation, elucidating new mechanisms and functional roles of O-GlcNAc with potential therapeutic applications in human health.
Collapse
Affiliation(s)
- Abhijit Saha
- Chemical Immunology Lab, Centre for Cooperative Research in Biosciences, CIC-bioGUNE, Basque Research and Technology Alliance (BRTA), Derio 48160, Biscay, Spain.
| | - Davide Bello
- Chemical Immunology Lab, Centre for Cooperative Research in Biosciences, CIC-bioGUNE, Basque Research and Technology Alliance (BRTA), Derio 48160, Biscay, Spain.
| | - Alberto Fernández-Tejada
- Chemical Immunology Lab, Centre for Cooperative Research in Biosciences, CIC-bioGUNE, Basque Research and Technology Alliance (BRTA), Derio 48160, Biscay, Spain.
- Ikerbasque, Basque Foundation for Science, Bilbao 48013, Spain
| |
Collapse
|
19
|
Höllmüller E, Geigges S, Niedermeier ML, Kammer KM, Kienle SM, Rösner D, Scheffner M, Marx A, Stengel F. Site-specific ubiquitylation acts as a regulator of linker histone H1. Nat Commun 2021; 12:3497. [PMID: 34108453 PMCID: PMC8190259 DOI: 10.1038/s41467-021-23636-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 05/03/2021] [Indexed: 01/05/2023] Open
Abstract
Decoding the role of histone posttranslational modifications (PTMs) is key to understand the fundamental process of epigenetic regulation. This is well studied for PTMs of core histones but not for linker histone H1 in general and its ubiquitylation in particular due to a lack of proper tools. Here, we report on the chemical synthesis of site-specifically mono-ubiquitylated H1.2 and identify its ubiquitin-dependent interactome on a proteome-wide scale. We show that site-specific ubiquitylation of H1 at position K64 modulates interactions with deubiquitylating enzymes and the deacetylase SIRT1. Moreover, it affects H1-dependent chromatosome assembly and phase separation resulting in a more open chromatosome conformation generally associated with a transcriptionally active chromatin state. In summary, we propose that site-specific ubiquitylation plays a general regulatory role for linker histone H1. While the role of specific posttranslational modifications (PTMs) is increasingly well understood for core histones, this is not the case for linker histone H1. Here the authors show that site-specific ubiquitylation of H1 results in distinct interactomes, regulates phase separation, and modulates assembly of chromatosomes.
Collapse
Affiliation(s)
- Eva Höllmüller
- Department of Chemistry, University of Konstanz, Konstanz, Germany.,Department of Biology, University of Konstanz, Konstanz, Germany.,Konstanz Research School Chemical Biology, University of Konstanz, Konstanz, Germany
| | - Simon Geigges
- Department of Chemistry, University of Konstanz, Konstanz, Germany.,Konstanz Research School Chemical Biology, University of Konstanz, Konstanz, Germany
| | - Marie L Niedermeier
- Department of Biology, University of Konstanz, Konstanz, Germany.,Konstanz Research School Chemical Biology, University of Konstanz, Konstanz, Germany
| | - Kai-Michael Kammer
- Department of Biology, University of Konstanz, Konstanz, Germany.,Konstanz Research School Chemical Biology, University of Konstanz, Konstanz, Germany
| | - Simon M Kienle
- Department of Biology, University of Konstanz, Konstanz, Germany.,Konstanz Research School Chemical Biology, University of Konstanz, Konstanz, Germany
| | - Daniel Rösner
- Department of Chemistry, University of Konstanz, Konstanz, Germany.,Konstanz Research School Chemical Biology, University of Konstanz, Konstanz, Germany
| | - Martin Scheffner
- Department of Biology, University of Konstanz, Konstanz, Germany. .,Konstanz Research School Chemical Biology, University of Konstanz, Konstanz, Germany.
| | - Andreas Marx
- Department of Chemistry, University of Konstanz, Konstanz, Germany. .,Konstanz Research School Chemical Biology, University of Konstanz, Konstanz, Germany.
| | - Florian Stengel
- Department of Biology, University of Konstanz, Konstanz, Germany. .,Konstanz Research School Chemical Biology, University of Konstanz, Konstanz, Germany.
| |
Collapse
|
20
|
Chen X, Liu Y, Gao Y, Shou S, Chai Y. The roles of macrophage polarization in the host immune response to sepsis. Int Immunopharmacol 2021; 96:107791. [PMID: 34162154 DOI: 10.1016/j.intimp.2021.107791] [Citation(s) in RCA: 93] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/11/2021] [Accepted: 05/13/2021] [Indexed: 12/31/2022]
Abstract
Sepsis is a life-threatening clinical syndrome caused by infection. Its pathogenesis is complex and entails coagulation dysfunction, inflammation, and immune disorders. Macrophages are important components of innate and adaptive immunity that are highly heterogeneous and plastic. They can polarize into a multi-dimensional spectrum of phenotypes with different functions relating to immune regulation in response to changes in the microenvironment of specific tissues. We reviewed studies that examined the role of macrophage polarization with a focus on the classical activated (M1-like) and alternative activated (M2-like) macrophages as the two main phenotypes involved in the host immune response to sepsis. A complex regulatory network is involved in the process of macrophage polarization, which is influenced by a variety of signaling molecules, transcription factors, epigenetic modifications, and metabolic reprogramming. M1-like macrophages release large quantities of pro-inflammatory mediators, while M2-like macrophages release large quantities of anti-inflammatory mediators. An imbalance between M1-like and M2-like macrophages induces the occurrence and development of sepsis. Therefore, targeted regulation of the process of macrophage polarization could be a useful approach to normalize the immune balance of the host, offering a new treatment modality for different stages of sepsis.
Collapse
Affiliation(s)
- Xinsen Chen
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin, China
| | - Yancun Liu
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin, China
| | - Yulei Gao
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin, China
| | - Songtao Shou
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin, China
| | - Yanfen Chai
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin, China.
| |
Collapse
|
21
|
Tachiwana H, Dacher M, Maehara K, Harada A, Seto Y, Katayama R, Ohkawa Y, Kimura H, Kurumizaka H, Saitoh N. Chromatin structure-dependent histone incorporation revealed by a genome-wide deposition assay. eLife 2021; 10:66290. [PMID: 33970102 PMCID: PMC8110306 DOI: 10.7554/elife.66290] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 04/05/2021] [Indexed: 12/25/2022] Open
Abstract
In eukaryotes, histone variant distribution within the genome is the key epigenetic feature. To understand how each histone variant is targeted to the genome, we developed a new method, the RhIP (Reconstituted histone complex Incorporation into chromatin of Permeabilized cell) assay, in which epitope-tagged histone complexes are introduced into permeabilized cells and incorporated into their chromatin. Using this method, we found that H3.1 and H3.3 were incorporated into chromatin in replication-dependent and -independent manners, respectively. We further found that the incorporation of histones H2A and H2A.Z mainly occurred at less condensed chromatin (open), suggesting that condensed chromatin (closed) is a barrier for histone incorporation. To overcome this barrier, H2A, but not H2A.Z, uses a replication-coupled deposition mechanism. Our study revealed that the combination of chromatin structure and DNA replication dictates the differential histone deposition to maintain the epigenetic chromatin states.
Collapse
Affiliation(s)
- Hiroaki Tachiwana
- Division of Cancer Biology, The Cancer Institute of Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Mariko Dacher
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan
| | - Kazumitsu Maehara
- Division of Transcriptomics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Akihito Harada
- Division of Transcriptomics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Yosuke Seto
- Division of Experimental Chemotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Ryohei Katayama
- Division of Experimental Chemotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Yasuyuki Ohkawa
- Division of Transcriptomics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Hiroshi Kimura
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
| | - Hitoshi Kurumizaka
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan
| | - Noriko Saitoh
- Division of Cancer Biology, The Cancer Institute of Japanese Foundation for Cancer Research, Tokyo, Japan
| |
Collapse
|
22
|
Meng F, Liang Z, Zhao K, Luo C. Drug design targeting active posttranslational modification protein isoforms. Med Res Rev 2020; 41:1701-1750. [PMID: 33355944 DOI: 10.1002/med.21774] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 11/29/2020] [Accepted: 12/03/2020] [Indexed: 12/11/2022]
Abstract
Modern drug design aims to discover novel lead compounds with attractable chemical profiles to enable further exploration of the intersection of chemical space and biological space. Identification of small molecules with good ligand efficiency, high activity, and selectivity is crucial toward developing effective and safe drugs. However, the intersection is one of the most challenging tasks in the pharmaceutical industry, as chemical space is almost infinity and continuous, whereas the biological space is very limited and discrete. This bottleneck potentially limits the discovery of molecules with desirable properties for lead optimization. Herein, we present a new direction leveraging posttranslational modification (PTM) protein isoforms target space to inspire drug design termed as "Post-translational Modification Inspired Drug Design (PTMI-DD)." PTMI-DD aims to extend the intersections of chemical space and biological space. We further rationalized and highlighted the importance of PTM protein isoforms and their roles in various diseases and biological functions. We then laid out a few directions to elaborate the PTMI-DD in drug design including discovering covalent binding inhibitors mimicking PTMs, targeting PTM protein isoforms with distinctive binding sites from that of wild-type counterpart, targeting protein-protein interactions involving PTMs, and hijacking protein degeneration by ubiquitination for PTM protein isoforms. These directions will lead to a significant expansion of the biological space and/or increase the tractability of compounds, primarily due to precisely targeting PTM protein isoforms or complexes which are highly relevant to biological functions. Importantly, this new avenue will further enrich the personalized treatment opportunity through precision medicine targeting PTM isoforms.
Collapse
Affiliation(s)
- Fanwang Meng
- Drug Discovery and Design Center, the Center for Chemical Biology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario, Canada
| | - Zhongjie Liang
- Center for Systems Biology, Department of Bioinformatics, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China
| | - Kehao Zhao
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China
| | - Cheng Luo
- Drug Discovery and Design Center, the Center for Chemical Biology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
23
|
Histone Variant H3.3 Mutations in Defining the Chromatin Function in Mammals. Cells 2020; 9:cells9122716. [PMID: 33353064 PMCID: PMC7766983 DOI: 10.3390/cells9122716] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 12/12/2020] [Accepted: 12/15/2020] [Indexed: 12/26/2022] Open
Abstract
The systematic mutation of histone 3 (H3) genes in model organisms has proven to be a valuable tool to distinguish the functional role of histone residues. No system exists in mammalian cells to directly manipulate canonical histone H3 due to a large number of clustered and multi-loci histone genes. Over the years, oncogenic histone mutations in a subset of H3 have been identified in humans, and have advanced our understanding of the function of histone residues in health and disease. The oncogenic mutations are often found in one allele of the histone variant H3.3 genes, but they prompt severe changes in the epigenetic landscape of cells, and contribute to cancer development. Therefore, mutation approaches using H3.3 genes could be relevant to the determination of the functional role of histone residues in mammalian development without the replacement of canonical H3 genes. In this review, we describe the key findings from the H3 mutation studies in model organisms wherein the genetic replacement of canonical H3 is possible. We then turn our attention to H3.3 mutations in human cancers, and discuss H3.3 substitutions in the N-terminus, which were generated in order to explore the specific residue or associated post-translational modification.
Collapse
|
24
|
Jones LH. Dehydroamino acid chemical biology: an example of functional group interconversion on proteins. RSC Chem Biol 2020; 1:298-304. [PMID: 34458767 PMCID: PMC8341704 DOI: 10.1039/d0cb00174k] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 10/26/2020] [Indexed: 12/17/2022] Open
Abstract
In nature, dehydroalanine (Dha) and dehydrobutyrine (Dhb) residues are byproducts of protein aging, intermediates in the biosynthesis of lanthipeptides and products of bacterial phospholyases that inactivate host kinase immune responses. Recent chemical biology studies have demonstrated the possibility of mapping dehydroamino acids in complex proteomes in an unbiased manner that could further our understanding of the role of Dha and Dhb in biology and disease more broadly. From a synthetic perspective, chemical mutagenesis through site-selective formation of the unsaturated residue and subsequent addition chemistry has yielded homogeneous proteins bearing a variety of post-translational modifications (PTMs) which have assisted fundamental biological research. This Opinion discusses these recent advances and presents new opportunities for protein engineering and drug discovery. The chemical biology of dehydroalanine and dehydrobutyrine in proteins is summarized and new concepts are presented.![]()
Collapse
Affiliation(s)
- Lyn H Jones
- Center for Protein Degradation, Dana-Farber Cancer Institute 360 Longwood Avenue Boston MA 02215 USA
| |
Collapse
|
25
|
Ramazi S, Allahverdi A, Zahiri J. Evaluation of post-translational modifications in histone proteins: A review on histone modification defects in developmental and neurological disorders. J Biosci 2020. [DOI: 10.1007/s12038-020-00099-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
26
|
Beyer JN, Raniszewski NR, Burslem GM. Advances and Opportunities in Epigenetic Chemical Biology. Chembiochem 2020; 22:17-42. [PMID: 32786101 DOI: 10.1002/cbic.202000459] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/10/2020] [Indexed: 12/13/2022]
Abstract
The study of epigenetics has greatly benefited from the development and application of various chemical biology approaches. In this review, we highlight the key targets for modulation and recent methods developed to enact such modulation. We discuss various chemical biology techniques to study DNA methylation and the post-translational modification of histones as well as their effect on gene expression. Additionally, we address the wealth of protein synthesis approaches to yield histones and nucleosomes bearing epigenetic modifications. Throughout, we highlight targets that present opportunities for the chemical biology community, as well as exciting new approaches that will provide additional insight into the roles of epigenetic marks.
Collapse
Affiliation(s)
- Jenna N Beyer
- Department of Biochemistry and Biophysics Perelman School of Medicine, University of Pennsylvania, 422 Curie Blvd., Philadelphia, PA 19104, USA
| | - Nicole R Raniszewski
- Department of Biochemistry and Biophysics Perelman School of Medicine, University of Pennsylvania, 422 Curie Blvd., Philadelphia, PA 19104, USA
| | - George M Burslem
- Department of Biochemistry and Biophysics Perelman School of Medicine, University of Pennsylvania, 422 Curie Blvd., Philadelphia, PA 19104, USA.,Department of Cancer Biology and Epigenetics Institute Perelman School of Medicine, University of Pennsylvania, 422 Curie Blvd., Philadelphia, PA 19104, USA
| |
Collapse
|
27
|
Rodríguez J, Martínez-Calvo M. Transition-Metal-Mediated Modification of Biomolecules. Chemistry 2020; 26:9792-9813. [PMID: 32602145 DOI: 10.1002/chem.202001287] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 06/25/2020] [Indexed: 01/15/2023]
Abstract
The site-selective modification of biomolecules has grown spectacularly in recent years. The presence of a large number of functional groups in a biomolecule makes its chemo- and regioselective modification a challenging goal. In this context, transition-metal-mediated reactions are emerging as a powerful tool owing to their unique reactivity and good functional group compatibility, allowing highly efficient and selective bioconjugation reactions that operate under mild conditions. This Minireview focuses on the current state of organometallic chemistry for bioconjugation, highlighting the potential of transition metals for the development of chemoselective and site-specific methods for functionalization of peptides, proteins and nucleic acids. The importance of the selection of ligands attached to the transition metal for conferring the desired chemoselectivity will be highlighted.
Collapse
Affiliation(s)
- Jessica Rodríguez
- Laboratoire Hétérochimie Fondamentale et Appliquée, Université Paul Sabatier/CNRS UMR 5069, 118 Route de Narbonne, 31062, Toulouse Cedex 09, France
| | - Miguel Martínez-Calvo
- Centro de Investigaciones Científicas Avanzadas (CICA), AE CICA-INIBIC, Departamento de Química, Facultade de Ciencias, Universidade da Coruña, Campus de Elviña, 15071 A, Coruña, Galicia, Spain
| |
Collapse
|
28
|
Kightlinger W, Warfel KF, DeLisa MP, Jewett MC. Synthetic Glycobiology: Parts, Systems, and Applications. ACS Synth Biol 2020; 9:1534-1562. [PMID: 32526139 PMCID: PMC7372563 DOI: 10.1021/acssynbio.0c00210] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Indexed: 12/11/2022]
Abstract
Protein glycosylation, the attachment of sugars to amino acid side chains, can endow proteins with a wide variety of properties of great interest to the engineering biology community. However, natural glycosylation systems are limited in the diversity of glycoproteins they can synthesize, the scale at which they can be harnessed for biotechnology, and the homogeneity of glycoprotein structures they can produce. Here we provide an overview of the emerging field of synthetic glycobiology, the application of synthetic biology tools and design principles to better understand and engineer glycosylation. Specifically, we focus on how the biosynthetic and analytical tools of synthetic biology have been used to redesign glycosylation systems to obtain defined glycosylation structures on proteins for diverse applications in medicine, materials, and diagnostics. We review the key biological parts available to synthetic biologists interested in engineering glycoproteins to solve compelling problems in glycoscience, describe recent efforts to construct synthetic glycoprotein synthesis systems, and outline exemplary applications as well as new opportunities in this emerging space.
Collapse
Affiliation(s)
- Weston Kightlinger
- Department
of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Tech E136, Evanston, Illinois 60208, United States
- Center
for Synthetic Biology, Northwestern University, 2145 Sheridan Road, Tech B486, Evanston, Illinois 60208, United States
| | - Katherine F. Warfel
- Department
of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Tech E136, Evanston, Illinois 60208, United States
- Center
for Synthetic Biology, Northwestern University, 2145 Sheridan Road, Tech B486, Evanston, Illinois 60208, United States
| | - Matthew P. DeLisa
- Department
of Microbiology, Cornell University, 123 Wing Drive, Ithaca, New York 14853, United States
- Robert
Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, 120 Olin Hall, Ithaca, New York 14853, United States
- Nancy
E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Weill Hall, Ithaca, New York 14853, United States
| | - Michael C. Jewett
- Department
of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Tech E136, Evanston, Illinois 60208, United States
- Center
for Synthetic Biology, Northwestern University, 2145 Sheridan Road, Tech B486, Evanston, Illinois 60208, United States
| |
Collapse
|
29
|
Abstract
Abstract
Site-specific protein conjugation is a critical step in the generation of unique protein analogs for a range of basic research and therapeutic developments. Protein transformations must target a precise residue in the presence of a plethora of functional groups to obtain a well-characterized homogeneous product. Competing reactive residues on natural proteins render rapid and selective conjugation a challenging task. Organometallic reagents have recently emerged as a powerful strategy to achieve site-specific labeling of a diverse set of biopolymers, due to advances in water-soluble ligand design, high reaction rate, and selectivity. The thiophilic nature of various transition metals, especially soft metals, makes cysteine an ideal target for these reagents. The distinctive reactivity and selectivity of organometallic-based reactions, along with the unique reactivity and abundancy of cysteine within the human proteome, provide a powerful platform to modify native proteins in aqueous media. These reactions often provide the modified proteins with a stable linkage made from irreversible cross-coupling steps. Additionally, transition metal reagents have recently been applied for the decaging of cysteine residues in the context of chemical protein synthesis. Orthogonal cysteine protecting groups and functional tags are often necessary for the synthesis of challenging proteins, and organometallic reagents are powerful tools for selective, rapid, and water-compatible removal of those moieties. This review examines transition metal-based reactions of cysteine residues for the synthesis and modification of natural peptides and proteins.
Collapse
Affiliation(s)
- Muhammad Jbara
- Massachusetts Institute of Technology , Department of Chemistry , 77 Massachusetts Avenue , Cambridge , MA , 02139, USA
| |
Collapse
|
30
|
Mechanism of biomolecular recognition of trimethyllysine by the fluorinated aromatic cage of KDM5A PHD3 finger. Commun Chem 2020; 3:69. [PMID: 36703460 PMCID: PMC9814790 DOI: 10.1038/s42004-020-0313-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 05/06/2020] [Indexed: 01/29/2023] Open
Abstract
The understanding of biomolecular recognition of posttranslationally modified histone proteins is centrally important to the histone code hypothesis. Despite extensive binding and structural studies on the readout of histones, the molecular language by which posttranslational modifications on histone proteins are read remains poorly understood. Here we report physical-organic chemistry studies on the recognition of the positively charged trimethyllysine by the electron-rich aromatic cage containing PHD3 finger of KDM5A. The aromatic character of two tryptophan residues that solely constitute the aromatic cage of KDM5A was fine-tuned by the incorporation of fluorine substituents. Our thermodynamic analyses reveal that the wild-type and fluorinated KDM5A PHD3 fingers associate equally well with trimethyllysine. This work demonstrates that the biomolecular recognition of trimethyllysine by fluorinated aromatic cages is associated with weaker cation-π interactions that are compensated by the energetically more favourable trimethyllysine-mediated release of high-energy water molecules that occupy the aromatic cage.
Collapse
|
31
|
Khan KA, Ng MK, Cheung P. The Use of Mononucleosome Immunoprecipitation for Analysis of Combinatorial Histone Post-translational Modifications and Purification of Nucleosome-Interacting Proteins. Front Cell Dev Biol 2020; 8:331. [PMID: 32457909 PMCID: PMC7225312 DOI: 10.3389/fcell.2020.00331] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 04/16/2020] [Indexed: 01/05/2023] Open
Abstract
The nucleosome is the principal structural unit of chromatin. Although many studies focus on individual histone post-translational modifications (PTMs) in isolation, it is important to recognize that multiple histone PTMs can function together or cross-regulate one another within the nucleosome context. In addition, different modifications or histone-binding surfaces can synergize to stabilize the binding of nuclear factors to nucleosomes. To facilitate these types of studies, we present here a step-by-step protocol for isolating high yields of mononucleosomes for biochemical analyses. Furthermore, we discuss differences and variations of the basic protocol used in different publications and characterize the relative abundance of selected histone PTMs and chromatin-binding proteins in the different chromatin fractions obtained by this method.
Collapse
Affiliation(s)
| | - Marlee K Ng
- Department of Biology, York University, Toronto, ON, Canada
| | - Peter Cheung
- Department of Biology, York University, Toronto, ON, Canada
| |
Collapse
|
32
|
Hintzen JCJ, Poater J, Kumar K, Al Temimi AHK, Pieters BJGE, Paton RS, Bickelhaupt FM, Mecinović J. Comparison of Molecular Recognition of Trimethyllysine and Trimethylthialysine by Epigenetic Reader Proteins. Molecules 2020; 25:molecules25081918. [PMID: 32326252 PMCID: PMC7221964 DOI: 10.3390/molecules25081918] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 04/16/2020] [Accepted: 04/16/2020] [Indexed: 01/31/2023] Open
Abstract
Gaining a fundamental insight into the biomolecular recognition of posttranslationally modified histones by epigenetic reader proteins is of crucial importance to understanding the regulation of the activity of human genes. Here, we seek to establish whether trimethylthialysine, a simple trimethyllysine analogue generated through cysteine alkylation, is a good trimethyllysine mimic for studies on molecular recognition by reader proteins. Histone peptides bearing trimethylthialysine and trimethyllysine were examined for binding with five human reader proteins employing a combination of thermodynamic analyses, molecular dynamics simulations and quantum chemical analyses. Collectively, our experimental and computational findings reveal that trimethylthialysine and trimethyllysine exhibit very similar binding characteristics for the association with human reader proteins, thereby justifying the use of trimethylthialysine for studies aimed at dissecting the origin of biomolecular recognition in epigenetic processes that play important roles in human health and disease.
Collapse
Affiliation(s)
- Jordi C. J. Hintzen
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark
| | - Jordi Poater
- ICREA and Departament de Química Inorgànica i Orgànica & IQTCUB, Universitat de Barcelona, Martí I Franquès 1–11, 08028 Barcelona, Spain
| | - Kiran Kumar
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, UK
| | - Abbas H. K. Al Temimi
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6522 AJ Nijmegen, The Netherlands
| | - Bas J. G. E. Pieters
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6522 AJ Nijmegen, The Netherlands
| | - Robert S. Paton
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, UK
- Correspondence: (R.S.P.); (F.M.B.); (J.M.); Tel.: +45-6550-3603 (J.M.)
| | - F. Matthias Bickelhaupt
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6522 AJ Nijmegen, The Netherlands
- Department of Theoretical Chemistry and Amsterdam Center for Multiscale Modeling, Vrije Universiteit Amsterdam, De Boelelaan 1083, 1081HV Amsterdam, The Netherlands
- Correspondence: (R.S.P.); (F.M.B.); (J.M.); Tel.: +45-6550-3603 (J.M.)
| | - Jasmin Mecinović
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6522 AJ Nijmegen, The Netherlands
- Correspondence: (R.S.P.); (F.M.B.); (J.M.); Tel.: +45-6550-3603 (J.M.)
| |
Collapse
|
33
|
Proietti G, Rainone G, Hintzen JCJ, Mecinović J. Exploring the Histone Acylome through Incorporation of γ-Thialysine on Histone Tails. Bioconjug Chem 2020; 31:844-851. [PMID: 32058696 DOI: 10.1021/acs.bioconjchem.0c00012] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Histone lysine acetyltransferases (KATs) catalyze the transfer of the acetyl group from acetyl Coenzyme A to lysine residues in histones and nonhistone proteins. Here, we report biomolecular studies on epigenetic acetylation and related acylation reactions of lysine and γ-thialysine, a cysteine-derived lysine mimic, which can be site-specifically introduced to histone peptides and histone proteins. Enzyme assays demonstrate that human KATs catalyze an efficient acetylation and propionylation of histone peptides that possess lysine and γ-thialysine. Enzyme kinetics analyses reveal that lysine- and γ-thialysine-containing histone peptides exhibit indistinguishable Km values, whereas small differences in kcat values were observed. This work highlights that γ-thialysine may act as a representative and easily accessible lysine mimic for chemical and biochemical examinations of post-translationally modified histones.
Collapse
Affiliation(s)
- Giordano Proietti
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark
| | - Giorgio Rainone
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark
| | - Jordi C J Hintzen
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark
| | - Jasmin Mecinović
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark
| |
Collapse
|
34
|
Yuan H, Chen J, Yang Y, Shen C, Xu D, Wang J, Yan D, He Y, Zheng B. Quantitative succinyl-proteome profiling of Chinese hickory (Carya cathayensis) during the grafting process. BMC PLANT BIOLOGY 2019; 19:467. [PMID: 31684873 PMCID: PMC6829946 DOI: 10.1186/s12870-019-2072-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Accepted: 10/14/2019] [Indexed: 05/22/2023]
Abstract
BACKGROUND Chinese hickory (Carya cathayensis) is a popular nut plant having high economic value. Grafting is applied to accelerate the transition from vegetative phase to reproductive phase. Lysine succinylation occurs frequently in the proteins associated with metabolic pathways, which may participate in the regulation of the grafting process. However, the exact regulatory mechanism underlying grafting process in Chinese hickory has not been studied at post-translational modification level. RESULTS A comprehensive proteome-wide lysine succinylation profiling of Chinese hickory was explored by a newly developed method combining affinity enrichment and high-resolution LC-MS/MS. In total, 259 succinylation sites in 202 proteins were identified, representing the first comprehensive lysine succinylome in Chinese hickory. The succinylation was biased to occur in the cytosolic proteins of Chinese hickory. Moreover, four conserved succinylation motifs were identified in the succinylated peptides. Comparison of two grafting stages of Chinese hickory revealed that the differential expressed succinylated proteins were mainly involved in sugar metabolism, carbon fixation, amino acid metabolism and plant-pathogen interaction. Besides, seven heat shock proteins (HSPs) with 11 succinylation sites were also identified, all of which were observed to be up-regulated during the grafting process. CONCLUSIONS Succinylation of the proteins involved in amino acid biosynthesis might be required for a successful grafting. Succinylated HSPs might play a role in stress tolerance of the grafted Chinese hickory plants. Our results can be a good resource for functional validation of the succinylated proteins and a starting point for the investigation of molecular mechanisms during lysine succinylation occurring at grafting site.
Collapse
Affiliation(s)
- Huwei Yuan
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300 People’s Republic of China
- Center for Cultivation of Subtropical Forest Resources (CCSFR, Zhejiang A&F University, Hangzhou, 311300 People’s Republic of China
| | - Juanjuan Chen
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300 People’s Republic of China
- Center for Cultivation of Subtropical Forest Resources (CCSFR, Zhejiang A&F University, Hangzhou, 311300 People’s Republic of China
| | - Ying Yang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300 People’s Republic of China
- Center for Cultivation of Subtropical Forest Resources (CCSFR, Zhejiang A&F University, Hangzhou, 311300 People’s Republic of China
| | - Chenjia Shen
- College of Life and Environmental Sciences Hangzhou Normal University, Hangzhou, 310036 People’s Republic of China
| | - Dongbin Xu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300 People’s Republic of China
- Center for Cultivation of Subtropical Forest Resources (CCSFR, Zhejiang A&F University, Hangzhou, 311300 People’s Republic of China
| | - Junfeng Wang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300 People’s Republic of China
- Center for Cultivation of Subtropical Forest Resources (CCSFR, Zhejiang A&F University, Hangzhou, 311300 People’s Republic of China
| | - Daoliang Yan
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300 People’s Republic of China
- Center for Cultivation of Subtropical Forest Resources (CCSFR, Zhejiang A&F University, Hangzhou, 311300 People’s Republic of China
| | - Yi He
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300 People’s Republic of China
- Center for Cultivation of Subtropical Forest Resources (CCSFR, Zhejiang A&F University, Hangzhou, 311300 People’s Republic of China
| | - Bingsong Zheng
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300 People’s Republic of China
- Center for Cultivation of Subtropical Forest Resources (CCSFR, Zhejiang A&F University, Hangzhou, 311300 People’s Republic of China
| |
Collapse
|
35
|
The nucleophilic amino group of lysine is central for histone lysine methyltransferase catalysis. Commun Chem 2019. [DOI: 10.1038/s42004-019-0210-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Abstract
Histone lysine methyltransferases (KMTs) are biomedically important epigenetic enzymes that catalyze the transfer of methyl group from S-adenosylmethionine to lysine’s nucleophilic ε-amino group in histone tails and core histones. Understanding the chemical basis of KMT catalysis is important for discerning its complex biology in disease, structure-function relationship, and for designing specific inhibitors with therapeutic potential. Here we examine histone peptides, which possess simplest lysine analogs with different nucleophilic character, as substrates for human KMTs. Combined MALDI-TOF MS experiments, NMR analyses and molecular dynamics and free-energy simulations based on quantum mechanics/molecular mechanics (QM/MM) potential provide experimental and theoretical evidence that KMTs do have an ability to catalyze methylation of primary amine-containing N-nucleophiles, but do not methylate related amide/guanidine-containing N-nucleophiles as well as simple O- and C-nucleophiles. The results demonstrate a broader, but still limited, substrate scope for KMT catalysis, and contribute to rational design of selective epigenetic inhibitors.
Collapse
|
36
|
Lassak J, Koller F, Krafczyk R, Volkwein W. Exceptionally versatile – arginine in bacterial post-translational protein modifications. Biol Chem 2019; 400:1397-1427. [DOI: 10.1515/hsz-2019-0182] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 06/01/2019] [Indexed: 12/24/2022]
Abstract
Abstract
Post-translational modifications (PTM) are the evolutionary solution to challenge and extend the boundaries of genetically predetermined proteomic diversity. As PTMs are highly dynamic, they also hold an enormous regulatory potential. It is therefore not surprising that out of the 20 proteinogenic amino acids, 15 can be post-translationally modified. Even the relatively inert guanidino group of arginine is subject to a multitude of mostly enzyme mediated chemical changes. The resulting alterations can have a major influence on protein function. In this review, we will discuss how bacteria control their cellular processes and develop pathogenicity based on post-translational protein-arginine modifications.
Collapse
Affiliation(s)
- Jürgen Lassak
- Center for Integrated Protein Science Munich (CiPSM), Department of Biology I, Microbiology , Ludwig-Maximilians-Universität München , Grosshaderner Strasse 2-4 , D-82152 Planegg , Germany
| | - Franziska Koller
- Center for Integrated Protein Science Munich (CiPSM), Department of Biology I, Microbiology , Ludwig-Maximilians-Universität München , Grosshaderner Strasse 2-4 , D-82152 Planegg , Germany
| | - Ralph Krafczyk
- Center for Integrated Protein Science Munich (CiPSM), Department of Biology I, Microbiology , Ludwig-Maximilians-Universität München , Grosshaderner Strasse 2-4 , D-82152 Planegg , Germany
| | - Wolfram Volkwein
- Center for Integrated Protein Science Munich (CiPSM), Department of Biology I, Microbiology , Ludwig-Maximilians-Universität München , Grosshaderner Strasse 2-4 , D-82152 Planegg , Germany
| |
Collapse
|
37
|
Al Temimi AHK, van der Wekken-de Bruijne R, Proietti G, Guo H, Qian P, Mecinović J. γ-Thialysine versus Lysine: An Insight into the Epigenetic Methylation of Histones. Bioconjug Chem 2019; 30:1798-1804. [DOI: 10.1021/acs.bioconjchem.9b00313] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Abbas H. K. Al Temimi
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | | | - Giordano Proietti
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark
| | - Hong Guo
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996, United States
- UT/ORNL Center for Molecular Biophysics, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| | - Ping Qian
- Chemistry and Material Science Faculty, Shandong Agricultural University, Tai’an 271018, P.R. China
| | - Jasmin Mecinović
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark
| |
Collapse
|
38
|
Pellois JP. Efficient and Innocuous Live-Cell Delivery: Making Membrane Barriers Disappear to Enable Cellular Biochemistry: How Better Cellular Delivery Tools Can Contribute to Precise and Quantitative Cell Biology Assays. Bioessays 2019; 41:e1900031. [PMID: 31087674 DOI: 10.1002/bies.201900031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 03/26/2019] [Indexed: 11/09/2022]
Abstract
The confluence of protein engineering techniques and delivery protocols are providing new opportunities in cell biology. In particular, techniques that render the membrane of cells transiently permeable make the introduction of nongenetically encodable macromolecular probes into cells possible. This, in turn, can enable the monitoring of intracellular processes in ways that can be both precise and quantitative, ushering an area that one may envision as cellular biochemistry. Herein, the author reviews pioneering examples of such new cell-based assays, provides evidence that challenges the paradigm that cell penetration is a necessarily damaging and stressful event for cells, and highlights some of the challenges that should be addressed to fully unlock the potential of this nascent field.
Collapse
Affiliation(s)
- Jean-Philippe Pellois
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Bldg, room 436, 300 Olsen Blvd, TX, 77843-2128, USA.,Department of Chemistry, Texas A&M University, College Station, TX, USA
| |
Collapse
|
39
|
Musselman CA, Kutateladze TG. Strategies for Generating Modified Nucleosomes: Applications within Structural Biology Studies. ACS Chem Biol 2019; 14:579-586. [PMID: 30817115 DOI: 10.1021/acschembio.8b01049] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Post-translational modifications on histone proteins play critical roles in the regulation of chromatin structure and all DNA-templated processes. Accumulating evidence suggests that these covalent modifications can directly alter chromatin structure, or they can modulate activities of chromatin-modifying and -remodeling factors. Studying these modifications in the context of the nucleosome, the basic subunit of chromatin, is thus of great interest; however, the generation of specifically modified nucleosomes remains challenging. This is especially problematic for most structural biology approaches in which a large amount of material is often needed. Here we discuss the strategies currently available for generation of these substrates. We in particular focus on novel ideas and discuss challenges in the application to structural biology studies.
Collapse
Affiliation(s)
- Catherine A. Musselman
- Department of Biochemistry, University of Iowa Carver College of Medicine, Iowa City, Iowa 52246, United States
| | - Tatiana G. Kutateladze
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, Colorado 80045, United States
| |
Collapse
|
40
|
Bogart JW, Bowers AA. Dehydroamino acids: chemical multi-tools for late-stage diversification. Org Biomol Chem 2019; 17:3653-3669. [PMID: 30849157 PMCID: PMC6637761 DOI: 10.1039/c8ob03155j] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
α,β-Dehydroamino acids (dhAAs) are noncanonical amino acids that are found in a wide array of natural products and can be easily installed into peptides and proteins. dhAAs exhibit remarkable synthetic flexibility, readily undergoing a number of reactions, such as polar and single-electron additions, transition metal catalyzed cross-couplings, and cycloadditions. Because of the relatively mild conditions required for many of these reactions, dhAAs are increasingly being used as orthogonal chemical handles for late-stage modification of biomolecules. Still, only a fraction of the chemical reactivity of dhAAs has been exploited in such biorthogonal applications. Herein, we provide an overview of the broad spectrum of chemical reactivity of dhAAs, with special emphasis on recent efforts to adapt such transformations for biomolecules such as natural products, peptides, and proteins. We also discuss examples of enzymes from natural product biosynthetic pathways that have been found to catalyze many similar reactions; these enzymes provide mild, regio- and stereoselective, biocatalytic alternatives for future development. We anticipate that the continued investigation of the innate reactivity of dhAAs will furnish a diverse portfolio dhAA-based chemistries for use in chemical biology and drug discovery.
Collapse
Affiliation(s)
- Jonathan W Bogart
- Division of Chemical Biology and Medicinal Chemistry Eshelman School of Pharmacy, and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.
| | | |
Collapse
|
41
|
|
42
|
Pieters BJGE, Hintzen JCJ, Grobben Y, Al Temimi AHK, Kamps JJAG, Mecinović J. Installation of Trimethyllysine Analogs on Intact Histones via Cysteine Alkylation. Bioconjug Chem 2019; 30:952-958. [DOI: 10.1021/acs.bioconjchem.9b00065] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Bas J. G. E. Pieters
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Jordi C. J. Hintzen
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark
| | - Yvonne Grobben
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Abbas H. K. Al Temimi
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Jos J. A. G. Kamps
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Jasmin Mecinović
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark
| |
Collapse
|
43
|
Affiliation(s)
- Seiji SAKAMOTO
- Graduate School of Engineering, Department of Synthetic Chemistry and Biological Chemistry, Kyoto University
| | - Itaru HAMACHI
- Graduate School of Engineering, Department of Synthetic Chemistry and Biological Chemistry, Kyoto University
- ERATO Innovative Molecular Technology for Neuroscience Project, Japan Science and Technology Agency (JST)
| |
Collapse
|
44
|
Zuo C, Zhang B, Yan B, Zheng JS. One-pot multi-segment condensation strategies for chemical protein synthesis. Org Biomol Chem 2019; 17:727-744. [DOI: 10.1039/c8ob02610f] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
This paper describes recent advances of one-pot multi-segment condensation strategies based on kinetically controlled strategies and/or protecting group-removal strategies in chemical protein synthesis.
Collapse
Affiliation(s)
- Chong Zuo
- School of Life Sciences
- University of Science and Technology of China
- Hefei 230027
- China
- Department of Chemistry
| | - Baochang Zhang
- Department of Chemistry
- Tsinghua University
- Beijing 100084
- China
| | - Bingjia Yan
- Department of Chemistry
- Tsinghua University
- Beijing 100084
- China
| | - Ji-Shen Zheng
- School of Life Sciences
- University of Science and Technology of China
- Hefei 230027
- China
| |
Collapse
|
45
|
Zhou K, Gaullier G, Luger K. Nucleosome structure and dynamics are coming of age. Nat Struct Mol Biol 2018; 26:3-13. [PMID: 30532059 DOI: 10.1038/s41594-018-0166-x] [Citation(s) in RCA: 194] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 11/07/2018] [Indexed: 11/09/2022]
Abstract
Since the first high-resolution structure of the nucleosome was reported in 1997, the available information on chromatin structure has increased very rapidly. Here, we review insights derived from cutting-edge biophysical and structural approaches applied to the study of nucleosome dynamics and nucleosome-binding factors, with a focus on the experimental advances driving the research. In addition, we highlight emerging challenges in nucleosome structural biology.
Collapse
Affiliation(s)
- Keda Zhou
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO, USA
| | - Guillaume Gaullier
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO, USA.,Howard Hughes Medical Institute, University of Colorado Boulder, Boulder, CO, USA
| | - Karolin Luger
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO, USA. .,Howard Hughes Medical Institute, University of Colorado Boulder, Boulder, CO, USA.
| |
Collapse
|
46
|
Vaijayanthi T, Pandian GN, Sugiyama H. Chemical Control System of Epigenetics. CHEM REC 2018; 18:1833-1853. [DOI: 10.1002/tcr.201800067] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 10/07/2018] [Indexed: 12/28/2022]
Affiliation(s)
- Thangavel Vaijayanthi
- Department of ChemistryGraduate School of ScienceKyoto University Kitashirakawa-Oiwakecho, Sakyo-ku Kyoto 606-8502, Japan
| | - Ganesh N. Pandian
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS)Kyoto University Yoshida-Ushinomaecho, Sakyo-ku Kyoto 606-8501 Japan
| | - Hiroshi Sugiyama
- Department of ChemistryGraduate School of ScienceKyoto University Kitashirakawa-Oiwakecho, Sakyo-ku Kyoto 606-8502, Japan
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS)Kyoto University Yoshida-Ushinomaecho, Sakyo-ku Kyoto 606-8501 Japan
| |
Collapse
|
47
|
Heck C, Michaeli Y, Bald I, Ebenstein Y. Analytical epigenetics: single-molecule optical detection of DNA and histone modifications. Curr Opin Biotechnol 2018; 55:151-158. [PMID: 30326408 DOI: 10.1016/j.copbio.2018.09.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 09/12/2018] [Accepted: 09/16/2018] [Indexed: 12/13/2022]
Abstract
The field of epigenetics describes the relationship between genotype and phenotype, by regulating gene expression without changing the canonical base sequence of DNA. It deals with molecular genomic information that is encoded by a rich repertoire of chemical modifications and molecular interactions. This regulation involves DNA, RNA and proteins that are enzymatically tagged with small molecular groups that alter their physical and chemical properties. It is now clear that epigenetic alterations are involved in development and disease, and thus, are the focus of intensive research. The ability to record epigenetic changes and quantify them in rare medical samples is critical for next generation diagnostics. Optical detection offers the ultimate single-molecule sensitivity and the potential for spectral multiplexing. Here we review recent progress in ultrasensitive optical detection of DNA and histone modifications.
Collapse
Affiliation(s)
- Christian Heck
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel; Institute of Chemistry, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany
| | - Yael Michaeli
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Ilko Bald
- Institute of Chemistry, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany; BAM Federal Institute for Materials Research and Testing, Richard-Willstätter-Str. 11, 12489 Berlin, Germany.
| | - Yuval Ebenstein
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
48
|
Bertoldo JB, Terenzi H, Hüttelmaier S, Bernardes GJL. Posttranslational Chemical Mutagenesis: To Reveal the Role of Noncatalytic Cysteine Residues in Pathogenic Bacterial Phosphatases. Biochemistry 2018; 57:6144-6152. [DOI: 10.1021/acs.biochem.8b00639] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Jean B. Bertoldo
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K
- Institut für Molekulare Medizin, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, Kurt-Mothes-Stra 3a, 06108 Halle, Germany
| | - Hernán Terenzi
- Centro de Biologia Molecular Estrutural, Departamento de Bioquímica, Universidade Federal de Santa Catarina, 88040-970 Florianópolis, SC, Brazil
| | - Stefan Hüttelmaier
- Institut für Molekulare Medizin, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, Kurt-Mothes-Stra 3a, 06108 Halle, Germany
| | - Gonçalo J. L. Bernardes
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028 Lisboa, Portugal
| |
Collapse
|
49
|
Reiter RJ, Tan DX, Rosales-Corral S, Galano A, Jou MJ, Acuna-Castroviejo D. Melatonin Mitigates Mitochondrial Meltdown: Interactions with SIRT3. Int J Mol Sci 2018; 19:E2439. [PMID: 30126181 PMCID: PMC6121285 DOI: 10.3390/ijms19082439] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 08/03/2018] [Accepted: 08/08/2018] [Indexed: 02/07/2023] Open
Abstract
Melatonin exhibits extraordinary diversity in terms of its functions and distribution. When discovered, it was thought to be uniquely of pineal gland origin. Subsequently, melatonin synthesis was identified in a variety of organs and recently it was shown to be produced in the mitochondria. Since mitochondria exist in every cell, with a few exceptions, it means that every vertebrate, invertebrate, and plant cell produces melatonin. The mitochondrial synthesis of melatonin is not photoperiod-dependent, but it may be inducible under conditions of stress. Mitochondria-produced melatonin is not released into the systemic circulation, but rather is used primarily in its cell of origin. Melatonin's functions in the mitochondria are highly diverse, not unlike those of sirtuin 3 (SIRT3). SIRT3 is an NAD+-dependent deacetylase which regulates, among many functions, the redox state of the mitochondria. Recent data proves that melatonin and SIRT3 post-translationally collaborate in regulating free radical generation and removal from mitochondria. Since melatonin and SIRT3 have cohabitated in the mitochondria for many eons, we predict that these molecules interact in many other ways to control mitochondrial physiology. It is predicted that these mutual functions will be intensely investigated in the next decade and importantly, we assume that the findings will have significant applications for preventing/delaying some age-related diseases and aging itself.
Collapse
Affiliation(s)
- Russel J Reiter
- Department of Cell Systems and Anatomy, UT Health San Antonio, San Antonio, TX 78229, USA.
| | - Dun Xian Tan
- Department of Cell Systems and Anatomy, UT Health San Antonio, San Antonio, TX 78229, USA.
| | - Sergio Rosales-Corral
- Centro de Investigacion Biomedica de Occidente, Instituto Mexicano del Seguro Social, Guardalajara, 4436 Jalisco, Mexico.
| | - Annia Galano
- Departamento de Quimica, Universidad Antonoma Metropolitana-Unidad Iztapalapa, San Rafael Atlixco 186, Col. Vicentina, Iztapalapa, C.P. 09340 Mexico D.F., Mexico.
| | - Mei-Jie Jou
- Department of Physiology and Pharmacology, Chang Gung University, 259 Wen-Hwa 1st Road, Kwei-Shan, Tao-Yuan 333, Taiwan.
| | - Dario Acuna-Castroviejo
- Departamento de Fisiologia, Instituto de Biotecnologia, Universidad de Granada, Avenida de Conocimiento S/U, 18016 Granada, Spain.
| |
Collapse
|
50
|
Dadová J, Galan SR, Davis BG. Synthesis of modified proteins via functionalization of dehydroalanine. Curr Opin Chem Biol 2018; 46:71-81. [PMID: 29913421 DOI: 10.1016/j.cbpa.2018.05.022] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 05/02/2018] [Accepted: 05/29/2018] [Indexed: 12/17/2022]
Abstract
Dehydroalanine has emerged in recent years as a non-proteinogenic residue with strong chemical utility in proteins for the study of biology. In this review we cover the several methods now available for its flexible and site-selective incorporation via a variety of complementary chemical and biological techniques and examine its reactivity, allowing both creation of modified protein side-chains through a variety of bond-forming methods (C-S, C-N, C-Se, C-C) and as an activity-based probe in its own right. We illustrate its utility with selected examples of biological and technological discovery and application.
Collapse
Affiliation(s)
- Jitka Dadová
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Sébastien Rg Galan
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Benjamin G Davis
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford OX1 3TA, United Kingdom.
| |
Collapse
|