1
|
Koszła O, Sołek P. Misfolding and aggregation in neurodegenerative diseases: protein quality control machinery as potential therapeutic clearance pathways. Cell Commun Signal 2024; 22:421. [PMID: 39215343 PMCID: PMC11365204 DOI: 10.1186/s12964-024-01791-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 08/15/2024] [Indexed: 09/04/2024] Open
Abstract
The primary challenge in today's world of neuroscience is the search for new therapeutic possibilities for neurodegenerative disease. Central to these disorders lies among other factors, the aberrant folding, aggregation, and accumulation of proteins, resulting in the formation of toxic entities that contribute to neuronal degeneration. This review concentrates on the key proteins such as β-amyloid (Aβ), tau, and α-synuclein, elucidating the intricate molecular events underlying their misfolding and aggregation. We critically evaluate the molecular mechanisms governing the elimination of misfolded proteins, shedding light on potential therapeutic strategies. We specifically examine pathways such as the endoplasmic reticulum (ER) and unfolded protein response (UPR), chaperones, chaperone-mediated autophagy (CMA), and the intersecting signaling of Keap1-Nrf2-ARE, along with autophagy connected through p62. Above all, we emphasize the significance of these pathways as protein quality control mechanisms, encompassing interventions targeting protein aggregation, regulation of post-translational modifications, and enhancement of molecular chaperones and clearance. Additionally, we focus on current therapeutic possibilities and new, multi-target approaches. In conclusion, this review systematically consolidates insights into emerging therapeutic strategies predicated on protein aggregates clearance.
Collapse
Affiliation(s)
- Oliwia Koszła
- Department of Biopharmacy, Medical University of Lublin, 4A Chodzki St., Lublin, 20-093, Poland.
| | - Przemysław Sołek
- Department of Biopharmacy, Medical University of Lublin, 4A Chodzki St., Lublin, 20-093, Poland
- Department of Biochemistry and Toxicology, University of Life Sciences, 13 Akademicka St, Lublin, 20-950, Poland
| |
Collapse
|
2
|
Afjadi MN, Dabirmanesh B, Uversky VN. Therapeutic approaches in proteinopathies. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 206:341-388. [PMID: 38811085 DOI: 10.1016/bs.pmbts.2024.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
A family of maladies known as amyloid disorders, proteinopathy, or amyloidosis, are characterized by the accumulation of abnormal protein aggregates containing cross-β-sheet amyloid fibrils in many organs and tissues. Often, proteins that have been improperly formed or folded make up these fibrils. Nowadays, most treatments for amyloid illness focus on managing symptoms rather than curing or preventing the underlying disease process. However, recent advances in our understanding of the biology of amyloid diseases have led to the development of innovative therapies that target the emergence and accumulation of amyloid fibrils. Examples of these treatments include the use of small compounds, monoclonal antibodies, gene therapy, and others. In the end, even if the majority of therapies for amyloid diseases are symptomatic, greater research into the biology behind these disorders is identifying new targets for potential therapy and paving the way for the development of more effective treatments in the future.
Collapse
Affiliation(s)
- Mohsen Nabi Afjadi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Bahareh Dabirmanesh
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Vladimir N Uversky
- Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Institute for Biological Instrumentation, Pushchino, Moscow, Russia; Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, United States.
| |
Collapse
|
3
|
de Raffele D, Ilie IM. Unlocking novel therapies: cyclic peptide design for amyloidogenic targets through synergies of experiments, simulations, and machine learning. Chem Commun (Camb) 2024; 60:632-645. [PMID: 38131333 DOI: 10.1039/d3cc04630c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Existing therapies for neurodegenerative diseases like Parkinson's and Alzheimer's address only their symptoms and do not prevent disease onset. Common therapeutic agents, such as small molecules and antibodies struggle with insufficient selectivity, stability and bioavailability, leading to poor performance in clinical trials. Peptide-based therapeutics are emerging as promising candidates, with successful applications for cardiovascular diseases and cancers due to their high bioavailability, good efficacy and specificity. In particular, cyclic peptides have a long in vivo stability, while maintaining a robust antibody-like binding affinity. However, the de novo design of cyclic peptides is challenging due to the lack of long-lived druggable pockets of the target polypeptide, absence of exhaustive conformational distributions of the target and/or the binder, unknown binding site, methodological limitations, associated constraints (failed trials, time, money) and the vast combinatorial sequence space. Hence, efficient alignment and cooperation between disciplines, and synergies between experiments and simulations complemented by popular techniques like machine-learning can significantly speed up the therapeutic cyclic-peptide development for neurodegenerative diseases. We review the latest advancements in cyclic peptide design against amyloidogenic targets from a computational perspective in light of recent advancements and potential of machine learning to optimize the design process. We discuss the difficulties encountered when designing novel peptide-based inhibitors and we propose new strategies incorporating experiments, simulations and machine learning to design cyclic peptides to inhibit the toxic propagation of amyloidogenic polypeptides. Importantly, these strategies extend beyond the mere design of cyclic peptides and serve as template for the de novo generation of (bio)materials with programmable properties.
Collapse
Affiliation(s)
- Daria de Raffele
- University of Amsterdam, van 't Hoff Institute for Molecular Sciences, Science Park 904, P.O. Box 94157, 1090 GD Amsterdam, The Netherlands.
- Amsterdam Center for Multiscale Modeling (ACMM), University of Amsterdam, P.O. Box 94157, 1090 GD Amsterdam, The Netherlands
| | - Ioana M Ilie
- University of Amsterdam, van 't Hoff Institute for Molecular Sciences, Science Park 904, P.O. Box 94157, 1090 GD Amsterdam, The Netherlands.
- Amsterdam Center for Multiscale Modeling (ACMM), University of Amsterdam, P.O. Box 94157, 1090 GD Amsterdam, The Netherlands
| |
Collapse
|
4
|
Krokidis MG, Dimitrakopoulos GN, Vrahatis AG, Exarchos TP, Vlamos P. Challenges and limitations in computational prediction of protein misfolding in neurodegenerative diseases. Front Comput Neurosci 2024; 17:1323182. [PMID: 38250244 PMCID: PMC10796696 DOI: 10.3389/fncom.2023.1323182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 12/19/2023] [Indexed: 01/23/2024] Open
Affiliation(s)
| | | | | | | | - Panagiotis Vlamos
- Bioinformatics and Human Electrophysiology Laboratory, Department of Informatics, Ionian University, Corfu, Greece
| |
Collapse
|
5
|
Dai J, Peng Z, Shen S, Huang B, Ren L, Liu J, Chen CH, Chen G. Evaluation of exogenous therapeutic protein activity under confinement and crowding effects. NANOSCALE 2023; 15:13450-13458. [PMID: 37548227 DOI: 10.1039/d3nr02968a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Dysfunction of intracellular proteins is frequently associated with various diseases, such as cancer. The exogenous proteins in cells are usually assembled with specific configurations due to physiological confinement/crowding to exhibit novel features in the protein structure, folding or conformational stability, distinguished with their behaviors in buffer solutions. Here, we synthesized exogenous proteins under confined/crowded conditions, to explore protein activity within cells. The findings suggested that the confinement and crowding effects on protein activity are heterogeneous; they showed an inhibitory effect on HRP by decreasing Km from ∼9.5- and ∼21.7-fold and Vmax from ∼6.8- and ∼20.2-fold lower than that of dilute solutions. Interestingly, the effects on Cyt C seem to be more complicated, and crowding exerts a positive effect by increasing Km ∼ 3.6-fold and Vmax ∼ 1.5-fold higher than that of dilute solutions; however, confinement exhibits a negative effect by decreasing Km ∼2.0 and Vmax ∼8.3 times. Additionally, in contrast to traditional nanoparticle-based confinement models, we synthesized a biodegradable nanoparticle to mimic the confined space, and the biggest advantage of this novel model is that the particles can be degraded and thus it can provide more intuitive observations of the properties of the target proteins under confinement and after release. Furthermore, we also evaluated protein activity in different cellular environments, indicating that the exogenous protein activity was closely related to the crowdedness of cellular environments, and the inhibition of protein activity in MDA-MB-231 cancer cells was more obvious than in HEK293 normal cells. Finally, SAXS analysis revealed the correlation between the protein conformation and the different environments. Our work will provide a unique method for precisely assessing whether the target cellular environments are native matrix in which specific exogenous protein drugs are delivered to function or whether they display a therapeutic role, which is of great significance for screening and development of new drugs.
Collapse
Affiliation(s)
- Jie Dai
- School of Pharmaceutical Sciences, Nanjing Tech University, 30th Puzhu South Road, Nanjing 211816, China.
| | - Zhiyi Peng
- School of Pharmaceutical Sciences, Nanjing Tech University, 30th Puzhu South Road, Nanjing 211816, China.
| | - Shuwei Shen
- School of Pharmaceutical Sciences, Nanjing Tech University, 30th Puzhu South Road, Nanjing 211816, China.
| | - Binbin Huang
- School of Pharmaceutical Sciences, Nanjing Tech University, 30th Puzhu South Road, Nanjing 211816, China.
| | - Lili Ren
- School of Pharmaceutical Sciences, Nanjing Tech University, 30th Puzhu South Road, Nanjing 211816, China.
| | - Jia Liu
- School of Pharmaceutical Sciences, Nanjing Tech University, 30th Puzhu South Road, Nanjing 211816, China.
| | - Chia-Hung Chen
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Tong, Hong Kong SAR, China.
| | - Guoguang Chen
- School of Pharmaceutical Sciences, Nanjing Tech University, 30th Puzhu South Road, Nanjing 211816, China.
| |
Collapse
|
6
|
Arar S, Haque MA, Kayed R. Protein aggregation and neurodegenerative disease: Structural outlook for the novel therapeutics. Proteins 2023:10.1002/prot.26561. [PMID: 37530227 PMCID: PMC10834863 DOI: 10.1002/prot.26561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/12/2023] [Accepted: 07/13/2023] [Indexed: 08/03/2023]
Abstract
Before the controversial approval of humanized monoclonal antibody lecanemab, which binds to the soluble amyloid-β protofibrils, all the treatments available earlier, for Alzheimer's disease (AD) were symptomatic. The researchers are still struggling to find a breakthrough in AD therapeutic medicine, which is partially attributable to lack in understanding of the structural information associated with the intrinsically disordered proteins and amyloids. One of the major challenges in this area of research is to understand the structural diversity of intrinsically disordered proteins under in vitro conditions. Therefore, in this review, we have summarized the in vitro applications of biophysical methods, which are aimed to shed some light on the heterogeneity, pathogenicity, structures and mechanisms of the intrinsically disordered protein aggregates associated with proteinopathies including AD. This review will also rationalize some of the strategies in modulating disease-relevant pathogenic protein entities by small molecules using structural biology approaches and biophysical characterization. We have also highlighted tools and techniques to simulate the in vivo conditions for native and cytotoxic tau/amyloids assemblies, urge new chemical approaches to replicate tau/amyloids assemblies similar to those in vivo conditions, in addition to designing novel potential drugs.
Collapse
Affiliation(s)
- Sharif Arar
- Mitchell Center for Neurodegenerative Diseases
- Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas, 77555, USA
- Department of Chemistry, School of Science, The University of Jordan, Amman 11942, Jordan
| | - Md Anzarul Haque
- Mitchell Center for Neurodegenerative Diseases
- Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas, 77555, USA
| | - Rakez Kayed
- Mitchell Center for Neurodegenerative Diseases
- Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas, 77555, USA
| |
Collapse
|
7
|
Tong Z, Chu G, Wan C, Wang Q, Yang J, Meng Z, Du L, Yang J, Ma H. Multiple Metabolites Derived from Mushrooms and Their Beneficial Effect on Alzheimer's Diseases. Nutrients 2023; 15:2758. [PMID: 37375662 DOI: 10.3390/nu15122758] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/10/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
Mushrooms with edible and medicinal potential have received widespread attention because of their diverse biological functions, nutritional value, and delicious taste, which are closely related to their rich active components. To date, many bioactive substances have been identified and purified from mushrooms, including proteins, carbohydrates, phenols, and vitamins. More importantly, molecules derived from mushrooms show great potential to alleviate the pathological manifestations of Alzheimer's disease (AD), which seriously affects the health of elderly people. Compared with current therapeutic strategies aimed at symptomatic improvement, it is particularly important to identify natural products from resource-rich mushrooms that can modify the progression of AD. This review summarizes recent investigations of multiple constituents (carbohydrates, peptides, phenols, etc.) isolated from mushrooms to combat AD. In addition, the underlying molecular mechanisms of mushroom metabolites against AD are discussed. The various mechanisms involved in the antiAD activities of mushroom metabolites include antioxidant and anti-neuroinflammatory effects, apoptosis inhibition, and stimulation of neurite outgrowth, etc. This information will facilitate the application of mushroom-derived products in the treatment of AD. However, isolation of new metabolites from multiple types of mushrooms and further in vivo exploration of the molecular mechanisms underlying their antiAD effect are still required.
Collapse
Affiliation(s)
- Zijian Tong
- College of Life Science, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun 130118, China
| | - Guodong Chu
- College of Life Science, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun 130118, China
| | - Chenmeng Wan
- College of Life Science, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun 130118, China
| | - Qiaoyu Wang
- College of Life Science, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun 130118, China
| | - Jialing Yang
- College of Life Science, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun 130118, China
| | - Zhaoli Meng
- Laboratory of Tumor Immunolgy, The First Hospital of Jilin University, Changchun 130061, China
| | - Linna Du
- College of Life Science, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun 130118, China
| | - Jing Yang
- College of Life Science, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun 130118, China
| | - Hongxia Ma
- College of Life Science, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun 130118, China
| |
Collapse
|
8
|
Paul S, Lyons A, Kirchner R, Woodside MT. Quantifying Oligomer Populations in Real Time during Protein Aggregation Using Single-Molecule Mass Photometry. ACS NANO 2022; 16:16462-16470. [PMID: 36126253 PMCID: PMC9620981 DOI: 10.1021/acsnano.2c05739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 09/12/2022] [Indexed: 06/15/2023]
Abstract
Protein aggregation is a hallmark of many neurodegenerative diseases. The early stages of the aggregation cascade are crucial because small oligomers are thought to be key neurotoxic species, but they are difficult to study because they feature heterogeneous mixtures of transient states. We show how the populations of different oligomers can be tracked as they evolve over time during aggregation using single-molecule mass photometry to measure individually the masses of the oligomers present in solution. By applying the approach to tau protein, whose aggregates are linked to diseases including Alzheimer's and frontotemporal dementia, we found that tau existed in an equilibrium between monomers, dimers, and trimers before aggregation was triggered. Once aggregation commenced, the monomer population dropped continuously, paired first with a rise in the population of the smallest oligomers and then a steep drop as the protein was incorporated into larger oligomers and fibrils. Fitting these populations to kinetic models allowed different models of aggregation to be tested, identifying the most likely mechanism and quantifying the microscopic rates for each step in the mechanism. This work demonstrates a powerful approach for the characterization of previously inaccessible regimes in protein aggregation and building quantitative mechanistic models.
Collapse
Affiliation(s)
- Simanta
Sarani Paul
- Department
of Physics, University of Alberta, Edmonton, Alberta T6G2E1, Canada
| | - Aaron Lyons
- Department
of Physics, University of Alberta, Edmonton, Alberta T6G2E1, Canada
| | - Russell Kirchner
- Department
of Physics, University of Alberta, Edmonton, Alberta T6G2E1, Canada
| | - Michael T. Woodside
- Department
of Physics, University of Alberta, Edmonton, Alberta T6G2E1, Canada
- Centre
for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta T6G2E1, Canada
- Li Ka
Shing Institute of Virology, University
of Alberta, Edmonton, Alberta T6G2E1, Canada
| |
Collapse
|
9
|
Lee J, Lee S, Jung W, Kim GB, Kim T, Seong J, Jang H, Noh Y, Lee NK, Lee BR, Lee JI, Choi SJ, Oh W, Kim N, Lee S, Na DL. IntraBrain Injector (IBI): A Stereotactic-Guided Device for Repeated Delivery of Therapeutic Agents Into the Brain Parenchyma. J Korean Med Sci 2022; 37:e244. [PMID: 35942557 PMCID: PMC9359919 DOI: 10.3346/jkms.2022.37.e244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 06/30/2022] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND To deliver therapeutics into the brain, it is imperative to overcome the issue of the blood-brain-barrier (BBB). One of the ways to circumvent the BBB is to administer therapeutics directly into the brain parenchyma. To enhance the treatment efficacy for chronic neurodegenerative disorders, repeated administration to the target location is required. However, this increases the number of operations that must be performed. In this study, we developed the IntraBrain Injector (IBI), a new implantable device to repeatedly deliver therapeutics into the brain parenchyma. METHODS We designed and fabricated IBI with medical grade materials, and evaluated the efficacy and safety of IBI in 9 beagles. The trajectory of IBI to the hippocampus was simulated prior to surgery and the device was implanted using 3D-printed adaptor and surgical guides. Ferumoxytol-labeled mesenchymal stem cells (MSCs) were injected into the hippocampus via IBI, and magnetic resonance images were taken before and after the administration to analyze the accuracy of repeated injection. RESULTS We compared the planned vs. insertion trajectory of IBI to the hippocampus. With a similarity of 0.990 ± 0.001 (mean ± standard deviation), precise targeting of IBI was confirmed by comparing planned vs. insertion trajectories of IBI. Multiple administrations of ferumoxytol-labeled MSCs into the hippocampus using IBI were both feasible and successful (success rate of 76.7%). Safety of initial IBI implantation, repeated administration of therapeutics, and long-term implantation have all been evaluated in this study. CONCLUSION Precise and repeated delivery of therapeutics into the brain parenchyma can be done without performing additional surgeries via IBI implantation.
Collapse
Affiliation(s)
- Jeongmin Lee
- Cell and Gene Therapy Institute, Samsung Medical Center, Seoul, Korea
| | | | - Wooram Jung
- Cell and Gene Therapy Institute, Samsung Medical Center, Seoul, Korea
| | | | - Taehun Kim
- Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
- Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | | | - Hyemin Jang
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
- Neuroscience Center, Samsung Medical Center, Seoul, Korea
- Samsung Alzheimer Convergence Research Center, Samsung Medical Center, Seoul, Korea
| | - Young Noh
- Department of Neurology, Gil Medical Center, Gachon University College of Medicine, Incheon, Korea
| | - Na Kyung Lee
- Cell and Gene Therapy Institute, Samsung Medical Center, Seoul, Korea
- Samsung Alzheimer Convergence Research Center, Samsung Medical Center, Seoul, Korea
- Sungkyunkwan University School of Medicine, Seoul, Korea
| | | | - Jung-Il Lee
- Neuroscience Center, Samsung Medical Center, Seoul, Korea
- Department of Neurosurgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Soo Jin Choi
- Biomedical Research Institute, MEDIPOST Co., Ltd., Seongnam, Korea
| | - Wonil Oh
- Biomedical Research Institute, MEDIPOST Co., Ltd., Seongnam, Korea
| | - Namkug Kim
- Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
- Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Seunghoon Lee
- Neuroscience Center, Samsung Medical Center, Seoul, Korea
- Department of Neurosurgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.
| | - Duk L Na
- Cell and Gene Therapy Institute, Samsung Medical Center, Seoul, Korea
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
- Samsung Alzheimer Convergence Research Center, Samsung Medical Center, Seoul, Korea. ,
| |
Collapse
|
10
|
Khan AN, Qureshi IA, Khan UK, Uversky VN, Khan RH. Inhibition and disruption of amyloid formation by the antibiotic levofloxacin: A new direction for antibiotics in an era of multi-drug resistance. Arch Biochem Biophys 2021; 714:109077. [PMID: 34728171 DOI: 10.1016/j.abb.2021.109077] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/16/2021] [Accepted: 10/29/2021] [Indexed: 12/24/2022]
Abstract
Neurodegenerative diseases are a group of debilitating maladies involving protein aggregation. To this day, all advances in neurodegenerative disease therapeutics have helped symptomatically but have not prevented the root cause of the disease, i.e., the aggregation of involved proteins. Antibiotics are becoming increasingly obsolete due to the rising multidrug resistance strains of bacteria. Thus, antibiotics, if put to different use as therapeutics against other diseases, could pave a new direction to the world of antibiotics. Hence, we studied the antibiotic levofloxacin for its potential anti-amyloidogenic behavior using human lysozyme, a protein involved in non-systemic amyloidosis, as a model system. At the sub-stoichiometric level, levofloxacin was able to inhibit amyloid formation in human lysozyme as observed by various spectroscopic and microscopic methods, with IC50 values as low as 8.8 ± 0.1 μM. Levofloxacin also displayed a retarding effect on seeding phenomena by elongating the lag-phase (from 0 to 88 h) at lower concentration, and arresting lysozyme fibrillation at the lag stage in sub-stoichiometric concentrations. Structural and computational analyses provided mechanistic insight showing that levofloxacin stabilizes the lysozyme in the native state by binding to the aggregation-prone residues, and thereby inhibiting amyloid fibrillation. Levofloxacin also showed the property of disrupting amyloid fibrils into a smaller polymeric form of proteins which were less cytotoxic as confirmed by hemolytic assay. Therefore, we throw new light on levofloxacin as an amyloid inhibitor and disruptor which could pave way to utilization of levofloxacin as a potential therapeutic against non-systemic amyloidosis and neurodegenerative diseases.
Collapse
Affiliation(s)
- Asra Nasir Khan
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, 202002, India
| | - Insaf Ahmed Qureshi
- Department of Biotechnology & Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Umar Khalid Khan
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, 202002, India
| | - Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, 33612, USA
| | - Rizwan Hasan Khan
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, 202002, India.
| |
Collapse
|
11
|
Rossi M, Baiardi S, Teunissen CE, Quadalti C, van de Beek M, Mammana A, Maserati MS, Van der Flier WM, Sambati L, Zenesini C, Caughey B, Capellari S, Lemstra A, Parchi P. Diagnostic Value of the CSF α-Synuclein Real-Time Quaking-Induced Conversion Assay at the Prodromal MCI Stage of Dementia With Lewy Bodies. Neurology 2021; 97:e930-e940. [PMID: 34210822 DOI: 10.1212/wnl.0000000000012438] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 06/03/2021] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVE To investigate whether the cerebrospinal fluid (CSF) α-synuclein (α-syn) real-time quaking-induced conversion (RT-QuIC) assay accurately identifies patients with mild cognitive impairment due to probable Lewy body disease (MCI-LB). METHODS We applied α-syn RT-QuIC to 289 CSF samples obtained from two independent cohorts, including 81 patients with probable MCI-LB (70.7±6.6 y, 13.6% F, MMSE 26.1±2.4), 120 with probable MCI-AD (68.6±7.4 y, 45.8% F, MMSE 25.5±2.8), and 30 with unspecified MCI (65.4±9.3 y, 30.0% F, MMSE 27.0±3.0). Fifty-eight individuals with no cognitive decline or evidence of neurodegenerative disease and 121 individuals lacking brain α-syn deposits at the neuropathological examination were used as controls. RESULTS RT-QuIC identified MCI-LB patients against cognitively unimpaired controls with 95% sensitivity, 97% specificity, and 96% accuracy, and showed 98% specificity in neuropathological controls. The accuracy of the test for MCI-LB was consistent between the two cohorts (97.3% vs. 93.7%). Thirteen percent of MCI-AD patients also had a positive test; of note, 44% of them developed one core or supportive clinical feature of dementia with Lewy bodies (DLB) at follow-up, suggesting an underlying LB co-pathology. CONCLUSIONS These findings indicate that CSF α-syn RT-QuIC is a robust biomarker for prodromal DLB. Further studies are needed to fully explore the added value of the assay to the current research criteria for MCI-LB. CLASSIFICATION OF EVIDENCE This study provides Class III evidence that CSF α-syn RT-QuIC accurately identifies patients with MCI due to LB disease.
Collapse
Affiliation(s)
- Marcello Rossi
- IRCCS, Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Simone Baiardi
- IRCCS, Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy.,Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Charlotte E Teunissen
- Neurochemistry Lab, Department of Clinical Chemistry, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Corinne Quadalti
- IRCCS, Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Marleen van de Beek
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Angela Mammana
- IRCCS, Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | | | - Wiesje M Van der Flier
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Luisa Sambati
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Corrado Zenesini
- IRCCS, Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Byron Caughey
- LPVD, Rocky Mountain Laboratories, NIAID, NIH, Hamilton, MT, USA
| | - Sabina Capellari
- IRCCS, Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy.,Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Afina Lemstra
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Piero Parchi
- IRCCS, Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy .,Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| |
Collapse
|
12
|
Niu H, Hou X, Zhang Y, Wu X, Deng F, Huang F, Shi L, Ma R. Self-Assembled Nanochaperones Inhibit the Aggregation of Human Islet Amyloid Polypeptide Associated with Type 2 Diabetes. ACS Macro Lett 2021; 10:662-670. [PMID: 35549098 DOI: 10.1021/acsmacrolett.1c00200] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Human islet amyloid polypeptide (hIAPP) aggregation is closely associated with dysfunction and apoptosis of pancreatic β-cells in type 2 diabetes (T2D). Accordingly, hIAPP amyloid inhibitors have shown promise against T2D. Here, by mimicking the function of natural molecular chaperones, nanochaperones (nChaps) based on self-assembled polymeric micelles with tunable surface microdomains for T2D treatment are reported. By capturing the aggregation-prone species of hIAPP onto the hydrophobic microdomains and segregating them by hydrophilic PEG chains, this kind of nChaps could effectively prevent hIAPP aggregation, block cell adhesion of hIAPP, facilitate hIAPP aggregates degradation and reduce hIAPP-related cytotoxicity. Therefore, our work will provide useful insights to develop a biomimetic strategy for the treatment of T2D.
Collapse
Affiliation(s)
- Haihong Niu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials of Ministry of Education, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Xiaoxue Hou
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Yanli Zhang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials of Ministry of Education, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Xiaohui Wu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials of Ministry of Education, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Fei Deng
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials of Ministry of Education, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Fan Huang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Linqi Shi
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials of Ministry of Education, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Rujiang Ma
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials of Ministry of Education, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
13
|
Gonçalves PB, Sodero ACR, Cordeiro Y. Green Tea Epigallocatechin-3-gallate (EGCG) Targeting Protein Misfolding in Drug Discovery for Neurodegenerative Diseases. Biomolecules 2021; 11:767. [PMID: 34065606 PMCID: PMC8160836 DOI: 10.3390/biom11050767] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/14/2021] [Accepted: 05/16/2021] [Indexed: 12/15/2022] Open
Abstract
The potential to treat neurodegenerative diseases (NDs) of the major bioactive compound of green tea, epigallocatechin-3-gallate (EGCG), is well documented. Numerous findings now suggest that EGCG targets protein misfolding and aggregation, a common cause and pathological mechanism in many NDs. Several studies have shown that EGCG interacts with misfolded proteins such as amyloid beta-peptide (Aβ), linked to Alzheimer's disease (AD), and α-synuclein, linked to Parkinson's disease (PD). To date, NDs constitute a serious public health problem, causing a financial burden for health care systems worldwide. Although current treatments provide symptomatic relief, they do not stop or even slow the progression of these devastating disorders. Therefore, there is an urgent need to develop effective drugs for these incurable ailments. It is expected that targeting protein misfolding can serve as a therapeutic strategy for many NDs since protein misfolding is a common cause of neurodegeneration. In this context, EGCG may offer great potential opportunities in drug discovery for NDs. Therefore, this review critically discusses the role of EGCG in NDs drug discovery and provides updated information on the scientific evidence that EGCG can potentially be used to treat many of these fatal brain disorders.
Collapse
Affiliation(s)
| | | | - Yraima Cordeiro
- Faculty of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro 21949-900, Brazil; (P.B.G.); (A.C.R.S.)
| |
Collapse
|
14
|
Ghaffari M, Sanadgol N, Abdollahi M. A Systematic Review of Current Progresses in the Nucleic Acid-Based Therapies for Neurodegeneration with Implications for Alzheimer's Disease. Mini Rev Med Chem 2021; 20:1499-1517. [PMID: 32400332 DOI: 10.2174/1389557520666200513122357] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 01/31/2020] [Accepted: 04/20/2020] [Indexed: 12/30/2022]
Abstract
Recently, manipulation of gene expression and switching genes on or off highlight the potential of nucleic acid-based therapies (NA-BTs). Alzheimer's Disease (AD) is a common devastating neurodegenerative disease (NDs) responsible for 60-80% of all cases of dementia and predicted as a main public health concern among aged populations. The aim of this study was to outline the current research in the field of NA-BTs for the treatment of AD disabilities, including strategies to suppress the memory and learning defects, to promote recovery processes, and to reinforce social relationships in these patients. This review was performed via evaluating PubMed reported studies from January 2010 to November 2019. Also, reference lists were checked to find additional studies. All intermediation or complementarity of animal models, case-control and cohort studies, and controlled trials (CTs) on specific NA-BTs to AD were acceptable, although in vitro studies were excluded due to the considerable diversities and heterogeneities. After removing the duplicates according to preferred reporting items for systematic reviews and meta-analyses (PRISMA) instruction, we merged remaining titles across search databases. There are 48 ongoing studies related to the application of nucleic acids in the treatment and diagnosis of AD where more consideration is given to DNA targeting strategies (18 targets for vectors and aptamers), antisense oligonucleotides (10 targets), micro-RNAs mimics (7 targets), antagomiRs (6 targets), small interferences-RNAs (5 targets), as well as mRNAs (2 targets) respectively. All of these targets are grouped into 4 categories according to their role in molecular pathways where amyloid-β (18 targets), neural survival (11 targets), memory and cognition (8 targets), and tau (3 targets) are more targeted pathways, respectively. With recent successes in the systemic delivery of nucleic acids via intravenous injection; it is worth investing in the production of new-generation medicines. There are still several challenges for NA-BTs including, their delivery to the effective modulators, mass production at low cost, sustaining efficacy and minimizing off-target effects. Regarding miRNA-based therapies, given the obvious involvement of miRNAs in numerous facets of brain disease, and the many sophisticated techniques for delivery to the brain, miRNA-based therapies will make new hope for the treatment of neurological diseases such as AD.
Collapse
Affiliation(s)
- Maryam Ghaffari
- Department of Biology, Faculty of Sciences, University of Zabol, Zabol, Iran
| | - Nima Sanadgol
- Department of Biology, Faculty of Sciences, University of Zabol, Zabol, Iran
| | - Mohammad Abdollahi
- Toxicology and Diseases Group, Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), and Department of Toxicology and Pharmacology, School of Pharmacy, Tehran University of Medical Sciences, Iran
| |
Collapse
|
15
|
Inhibition of p38 Mitogen-Activated Protein Kinase Ameliorates HAP40 Depletion-Induced Toxicity and Proteasomal Defect in Huntington's Disease Model. Mol Neurobiol 2021; 58:2704-2723. [PMID: 33492644 DOI: 10.1007/s12035-020-02280-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 12/30/2020] [Indexed: 02/07/2023]
Abstract
Huntington's disease (HD) is a progressive neurodegenerative disorder caused by an expansion of polyglutamine stretch (polyQ) at the N-terminus of huntingtin (Htt) protein. The abnormally expanded polyQ stretch of mutant Htt makes it prone to aggregate, leading to neuropathology. HAP40 is a 40-kDa huntingtin-associated protein with undefined functions. HAP40 protein has been shown to increase in HD patients and HD mouse model cells. However, recent proteomic analysis provides new evidence that HAP40 protein is decreased in the striatum of HD knockin model mice. In this study, we developed HAP40-specific antibody and showed that both HAP40 mRNA and its encoded protein were reduced in HD striatal neuronal STHDHQ111/Q111 cells. Depletion of endogenous HAP40 led to cytotoxicity that was linked to increased accumulation of aggregated and soluble forms of mutant Htt, which recapitulates HD pathology. Moreover, we found that HAP40 depletion reduced the proteasomal chymotrypsin-like activity and increased the autophagic flux. Importantly, inhibition of p38 MAPK pathway by PD169316 increased chymotrypsin-like activity and reduced accumulation of aggregated and soluble forms of mutant Htt in HAP40-depleted cells to alleviate HAP40-depletion induced cytotoxicity. Taken together, our results suggest that modulation of p38 MAPK-mediated proteasomal peptidase activity may provide a new therapeutic target to restore proteostasis in neurodegenerative diseases.
Collapse
|
16
|
Suzuki Y. Chaperone therapy for molecular pathology in lysosomal diseases. Brain Dev 2021; 43:45-54. [PMID: 32736903 DOI: 10.1016/j.braindev.2020.06.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 06/10/2020] [Accepted: 06/24/2020] [Indexed: 12/19/2022]
Abstract
In lysosomal diseases, enzyme deficiency is caused by misfolding of mutant enzyme protein with abnormal steric structure that is expressed by gene mutation. Chaperone therapy is a new molecular therapeutic approach primarily for lysosomal diseases. The misfolded mutant enzyme is digested rapidly or aggregated to induce endoplasmic reticulum stress. As a result, the catalytic activity is lost. The following sequence of events results in chaperone therapy to achieve correction of molecular pathology. An orally administered low molecular competitive inhibitor (chaperone) is absorbed into the bloodstream and reaches the target cells and tissues. The mutant enzyme is stabilized by the chaperone and subjected to normal enzyme proteinfolding (proteostasis). The first chaperone drug was developed for Fabry disease and is currently available in medical practice. At present three types of chaperones are available: competitive chaperone with enzyme inhibitory bioactivity (exogenous), non-competitive (or allosteric) chaperone without inhibitory bioactivity (exogenous), and molecular chaperone (heat shock protein; endogenous). The third endogenous chaperone would be directed to overexpression or activated by an exogenous low-molecular inducer. This new molecular therapeutic approach, utilizing the three types of chaperone, is expected to apply to a variety of diseases, genetic or non-genetic, and neurological or non-neurological, in addition to lysosomal diseases.
Collapse
|
17
|
Nascimento AC, Erustes AG, Reckziegel P, Bincoletto C, Ureshino RP, Pereira GJS, Smaili SS. α-Synuclein Overexpression Induces Lysosomal Dysfunction and Autophagy Impairment in Human Neuroblastoma SH-SY5Y. Neurochem Res 2020; 45:2749-2761. [PMID: 32915398 DOI: 10.1007/s11064-020-03126-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/27/2020] [Accepted: 09/05/2020] [Indexed: 12/13/2022]
Abstract
Although the etiology of Parkinson's disease (PD) is multifactorial, it has been linked to abnormal accumulation of α-synuclein (α-syn) in dopaminergic neurons, which could lead to dysfunctions on intracellular organelles, with potential neurodegeneration. Patients with familial early-onset PD frequently present mutation in the α-syn gene (SNCA), which encodes mutant α-syn forms, such as A30P and A53T, which potentially regulate Ca2+ unbalance. Here we investigated the effects of overexpression of wild-type α-syn (WT) and the mutant forms A30P and A53T, on modulation of lysosomal Ca2+ stores and further autophagy activation. We found that in α-syn-overexpressing cells, there was a decrease in Ca2+ released from endoplasmic reticulum (ER) which is related to the increase in lysosomal Ca2+ release, coupled to lysosomal pH alkalization. Interestingly, α-syn-overexpressing cells showed lower LAMP1 levels, and a disruption of lysosomal morphology and distribution, affecting autophagy. Interestingly, all these effects were more evident with A53T mutant isoform when compared to A30P and WT α-syn types, indicating that the pathogenic phenotype for PD is potentially related to impairment of α-syn degradation. Taken together, these events directly impact PD-related dysfunctions, being considered possible molecular targets for neuroprotection.
Collapse
Affiliation(s)
- Ana Carolina Nascimento
- Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), Rua Três de Maio Street, 100, São Paulo, SP, 04044-020, Brazil
| | - Adolfo G Erustes
- Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), Rua Três de Maio Street, 100, São Paulo, SP, 04044-020, Brazil
| | - Patrícia Reckziegel
- Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), Rua Três de Maio Street, 100, São Paulo, SP, 04044-020, Brazil
| | - Claudia Bincoletto
- Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), Rua Três de Maio Street, 100, São Paulo, SP, 04044-020, Brazil
| | - Rodrigo P Ureshino
- Department of Biological Sciences, Diadema Campus, Universidade Federal de São Paulo (UNIFESP), Professor Arthur Riedel Street, Diadema, SP, 09972-270, Brazil
| | - Gustavo J S Pereira
- Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), Rua Três de Maio Street, 100, São Paulo, SP, 04044-020, Brazil.
| | - Soraya S Smaili
- Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), Rua Três de Maio Street, 100, São Paulo, SP, 04044-020, Brazil.
| |
Collapse
|
18
|
Silva AC, Lobo DD, Martins IM, Lopes SM, Henriques C, Duarte SP, Dodart JC, Nobre RJ, Pereira de Almeida L. Antisense oligonucleotide therapeutics in neurodegenerative diseases: the case of polyglutamine disorders. Brain 2020; 143:407-429. [PMID: 31738395 DOI: 10.1093/brain/awz328] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 08/09/2019] [Accepted: 08/22/2019] [Indexed: 12/20/2022] Open
Abstract
Polyglutamine (polyQ) disorders are a group of nine neurodegenerative diseases that share a common genetic cause, which is an expansion of CAG repeats in the coding region of the causative genes that are otherwise unrelated. The trinucleotide expansion encodes for an expanded polyQ tract in the respective proteins, resulting in toxic gain-of-function and eventually in neurodegeneration. Currently, no disease-modifying therapies are available for this group of disorders. Nevertheless, given their monogenic nature, polyQ disorders are ideal candidates for therapies that target specifically the gene transcripts. Antisense oligonucleotides (ASOs) have been under intense investigation over recent years as gene silencing tools. ASOs are small synthetic single-stranded chains of nucleic acids that target specific RNA transcripts through several mechanisms. ASOs can reduce the levels of mutant proteins by breaking down the targeted transcript, inhibit mRNA translation or alter the maturation of the pre-mRNA via splicing correction. Over the years, chemical optimization of ASO molecules has allowed significant improvement of their pharmacological properties, which has in turn made this class of therapeutics a very promising strategy to treat a variety of neurodegenerative diseases. Indeed, preclinical and clinical strategies have been developed in recent years for some polyQ disorders using ASO therapeutics. The success of ASOs in several animal models, as well as encouraging results in the clinic for Huntington's disease, points towards a promising future regarding the application of ASO-based therapies for polyQ disorders in humans, offering new opportunities to address unmet medical needs for this class of disorders. This review aims to present a brief overview of key chemical modifications, mechanisms of action and routes of administration that have been described for ASO-based therapies. Moreover, it presents a review of the most recent and relevant preclinical and clinical trials that have tested ASO therapeutics in polyQ disorders.
Collapse
Affiliation(s)
- Ana C Silva
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Diana D Lobo
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Inês M Martins
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Sara M Lopes
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Carina Henriques
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,ViraVector, Viral Vector for Gene Transfer Core Facility, University of Coimbra, Coimbra, Portugal
| | - Sónia P Duarte
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | | | - Rui Jorge Nobre
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal.,ViraVector, Viral Vector for Gene Transfer Core Facility, University of Coimbra, Coimbra, Portugal
| | - Luis Pereira de Almeida
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,ViraVector, Viral Vector for Gene Transfer Core Facility, University of Coimbra, Coimbra, Portugal.,Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
19
|
Gopalan D, Pandey A, Udupa N, Mutalik S. Receptor specific, stimuli responsive and subcellular targeted approaches for effective therapy of Alzheimer: Role of surface engineered nanocarriers. J Control Release 2019; 319:183-200. [PMID: 31866505 DOI: 10.1016/j.jconrel.2019.12.034] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 12/18/2019] [Indexed: 12/23/2022]
Abstract
The present review deals in-depth with the current application of nanotechnology in targeting the major pathological hallmarks of Alzheimer's disease. This review further focuses on the surface modification of the nanocarriers using antibody, aptamers, proteins and peptides for specific targeting in the brain by overcoming the biological barriers such as blood brain barrier. The stimuli responsive/pulsatile drug delivery nanoplatforms using stimuli such as pH, temperature, photo-thermal, reactive oxygen species, ultrasonic stimulation and electrical stimulation, which help to create a micro-environment to either trigger the site-specific drug release from the nanoplatform or to reduce the disease burden in the brain, have been discussed. The targeting of nanoplatforms to sub-cellular compartments such as mitochondria, nuclei, endoplasmic reticulum, golgi apparatus and lysosomes along with receptor specific interactions such as such folate, lactoferrin, transferrin, insulin and low-density lipoprotein (LDL) receptors has been included to give reader an idea about strategies to enhance cellular co-localization and receptor based targeting of nanoparticles to enhance efficacy of delivery platform. This article describes the various type of nanoplatforms which include lipidic nanoplatforms, polymeric nanoplatforms, inorganic nanoplatforms (metallic nanocarriers, quantum dots, ceramic based nanocarriers), carbon based nanocarriers and cell derived or biomimetic (exosomes and virus based) nanoplatforms, to either deliver the active ingredient or to themselves target the Alzheimer's disease pathology. Thus the review gives a detailed insight of all the recent research studies carried out using nanotechnology in the field of Alzheimer's disease.
Collapse
Affiliation(s)
- Divya Gopalan
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Research, Manipal, Karnataka, India
| | - Abhijeet Pandey
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Research, Manipal, Karnataka, India
| | - Nayanabhirama Udupa
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Research, Manipal, Karnataka, India
| | - Srinivas Mutalik
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Research, Manipal, Karnataka, India.
| |
Collapse
|
20
|
Penke B, Bogár F, Paragi G, Gera J, Fülöp L. Key Peptides and Proteins in Alzheimer's Disease. Curr Protein Pept Sci 2019; 20:577-599. [PMID: 30605056 DOI: 10.2174/1389203720666190103123434] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 12/03/2018] [Accepted: 12/27/2018] [Indexed: 02/02/2023]
Abstract
Alzheimer's Disease (AD) is a form of progressive dementia involving cognitive impairment, loss of learning and memory. Different proteins (such as amyloid precursor protein (APP), β- amyloid (Aβ) and tau protein) play a key role in the initiation and progression of AD. We review the role of the most important proteins and peptides in AD pathogenesis. The structure, biosynthesis and physiological role of APP are shortly summarized. The details of trafficking and processing of APP to Aβ, the cytosolic intracellular Aβ domain (AICD) and small soluble proteins are shown, together with other amyloid-forming proteins such as tau and α-synuclein (α-syn). Hypothetic physiological functions of Aβ are summarized. The mechanism of conformational change, the formation and the role of neurotoxic amyloid oligomeric (oAβ) are shown. The fibril formation process and the co-existence of different steric structures (U-shaped and S-shaped) of Aβ monomers in mature fibrils are demonstrated. We summarize the known pathogenic and non-pathogenic mutations and show the toxic interactions of Aβ species after binding to cellular receptors. Tau phosphorylation, fibrillation, the molecular structure of tau filaments and their toxic effect on microtubules are shown. Development of Aβ and tau imaging in AD brain and CSF as well as blood biomarkers is shortly summarized. The most probable pathomechanisms of AD including the toxic effects of oAβ and tau; the three (biochemical, cellular and clinical) phases of AD are shown. Finally, the last section summarizes the present state of Aβ- and tau-directed therapies and future directions of AD research and drug development.
Collapse
Affiliation(s)
- Botond Penke
- Department of Medical Chemistry, Interdisciplinary Excellence Centre, University of Szeged, Dom square 8, Szeged, H-6720, Hungary
| | - Ferenc Bogár
- Department of Medical Chemistry, Interdisciplinary Excellence Centre, University of Szeged, Dom square 8, Szeged, H-6720, Hungary.,MTA-SZTE Biomimetic Systems Research Group, University of Szeged, H-6720 Szeged, Dom square 8, Hungary
| | - Gábor Paragi
- MTA-SZTE Biomimetic Systems Research Group, University of Szeged, H-6720 Szeged, Dom square 8, Hungary.,Institute of Physics, University of Pécs, H-7624 Pecs, Ifjusag utja 6, Hungary
| | - János Gera
- Department of Medical Chemistry, Interdisciplinary Excellence Centre, University of Szeged, Dom square 8, Szeged, H-6720, Hungary
| | - Lívia Fülöp
- Department of Medical Chemistry, Interdisciplinary Excellence Centre, University of Szeged, Dom square 8, Szeged, H-6720, Hungary
| |
Collapse
|
21
|
Tiwari S, Atluri V, Kaushik A, Yndart A, Nair M. Alzheimer's disease: pathogenesis, diagnostics, and therapeutics. Int J Nanomedicine 2019; 14:5541-5554. [PMID: 31410002 PMCID: PMC6650620 DOI: 10.2147/ijn.s200490] [Citation(s) in RCA: 632] [Impact Index Per Article: 126.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Accepted: 03/02/2019] [Indexed: 12/12/2022] Open
Abstract
Currently, 47 million people live with dementia globally, and it is estimated to increase more than threefold (~131 million) by 2050. Alzheimer's disease (AD) is one of the major causative factors to induce progressive dementia. AD is a neurodegenerative disease, and its pathogenesis has been attributed to extracellular aggregates of amyloid β (Aβ) plaques and intracellular neurofibrillary tangles made of hyperphosphorylated τ-protein in cortical and limbic areas of the human brain. It is characterized by memory loss and progressive neurocognitive dysfunction. The anomalous processing of APP by β-secretases and γ-secretases leads to production of Aβ40 and Aβ42 monomers, which further oligomerize and aggregate into senile plaques. The disease also intensifies through infectious agents like HIV. Additionally, during disease pathogenesis, the presence of high concentrations of Aβ peptides in central nervous system initiates microglial infiltration. Upon coming into vicinity of Aβ, microglia get activated, endocytose Aβ, and contribute toward their clearance via TREM2 surface receptors, simultaneously triggering innate immunoresponse against the aggregation. In addition to a detailed report on causative factors leading to AD, the present review also discusses the current state of the art in AD therapeutics and diagnostics, including labeling and imaging techniques employed as contrast agents for better visualization and sensing of the plaques. The review also points to an urgent need for nanotechnology as an efficient therapeutic strategy to increase the bioavailability of drugs in the central nervous system.
Collapse
Affiliation(s)
- Sneham Tiwari
- Department of Immunology and Nano-Medicine, Institute of NeuroImmune Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL33199, USA
| | - Venkata Atluri
- Department of Immunology and Nano-Medicine, Institute of NeuroImmune Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL33199, USA
| | - Ajeet Kaushik
- Department of Immunology and Nano-Medicine, Institute of NeuroImmune Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL33199, USA
| | - Adriana Yndart
- Department of Immunology and Nano-Medicine, Institute of NeuroImmune Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL33199, USA
| | - Madhavan Nair
- Department of Immunology and Nano-Medicine, Institute of NeuroImmune Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL33199, USA
| |
Collapse
|
22
|
Gandhi J, Antonelli AC, Afridi A, Vatsia S, Joshi G, Romanov V, Murray IVJ, Khan SA. Protein misfolding and aggregation in neurodegenerative diseases: a review of pathogeneses, novel detection strategies, and potential therapeutics. Rev Neurosci 2019; 30:339-358. [PMID: 30742586 DOI: 10.1515/revneuro-2016-0035] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 08/03/2018] [Indexed: 12/13/2022]
Abstract
Protein folding is a complex, multisystem process characterized by heavy molecular and cellular footprints. Chaperone machinery enables proper protein folding and stable conformation. Other pathways concomitant with the protein folding process include transcription, translation, post-translational modifications, degradation through the ubiquitin-proteasome system, and autophagy. As such, the folding process can go awry in several different ways. The pathogenic basis behind most neurodegenerative diseases is that the disruption of protein homeostasis (i.e. proteostasis) at any level will eventually lead to protein misfolding. Misfolded proteins often aggregate and accumulate to trigger neurotoxicity through cellular stress pathways and consequently cause neurodegenerative diseases. The manifestation of a disease is usually dependent on the specific brain region that the neurotoxicity affects. Neurodegenerative diseases are age-associated, and their incidence is expected to rise as humans continue to live longer and pursue a greater life expectancy. We presently review the sequelae of protein misfolding and aggregation, as well as the role of these phenomena in several neurodegenerative diseases including Alzheimer's disease, Huntington's disease, amyotrophic lateral sclerosis, Parkinson's disease, transmissible spongiform encephalopathies, and spinocerebellar ataxia. Strategies for treatment and therapy are also conferred with respect to impairing, inhibiting, or reversing protein misfolding.
Collapse
Affiliation(s)
- Jason Gandhi
- Department of Physiology and Biophysics, Stony Brook University School of Medicine, 101 Nicolls Road, Health Sciences Center, Stony Brook, NY 11794-8434, USA.,Medical Student Research Institute, St. George's University School of Medicine, Grenada, West Indies
| | - Anthony C Antonelli
- Department of Pathology, Stony Brook University School of Medicine, 101 Nicolls Road, Health Sciences Center, Stony Brook, NY 11794-8434, USA
| | - Adil Afridi
- Department of Physiology and Biophysics, Stony Brook University School of Medicine, 101 Nicolls Road, Health Sciences Center, Stony Brook, NY 11794-8434, USA
| | - Sohrab Vatsia
- Department of Cardiothoracic Surgery, Lenox Hill Hospital, 130 East 77th Street, New York, NY 10075, USA
| | - Gunjan Joshi
- Department of Internal Medicine, Stony Brook Southampton Hospital, 240 Meeting House Lane, Southampton, NY 11968, USA
| | - Victor Romanov
- Department of Urology, Health Sciences Center T9-040, Stony Brook University School of Medicine, 101 Nicolls Road, Stony Brook, NY 11794-8093, USA
| | - Ian V J Murray
- Department of Physiology and Neuroscience, St. George's University School of Medicine, Grenada, West Indies
| | - Sardar Ali Khan
- Department of Physiology and Biophysics, Stony Brook University School of Medicine, 101 Nicolls Road, Health Sciences Center, Stony Brook, NY 11794-8434, USA.,Department of Urology, Health Sciences Center T9-040, Stony Brook University School of Medicine, 101 Nicolls Road, Stony Brook, NY 11794-8093, USA
| |
Collapse
|
23
|
Fernández-Higuero JÁ, Betancor-Fernández I, Mesa-Torres N, Muga A, Salido E, Pey AL. Structural and functional insights on the roles of molecular chaperones in the mistargeting and aggregation phenotypes associated with primary hyperoxaluria type I. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2018; 114:119-152. [PMID: 30635080 DOI: 10.1016/bs.apcsb.2018.09.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
To carry out their biological function in cells, proteins must be folded and targeted to the appropriate subcellular location. These processes are controlled by a vast collection of interacting proteins collectively known as the protein homeostasis network, in which molecular chaperones play a prominent role. Protein homeostasis can be impaired by inherited mutations leading to genetic diseases. In this chapter, we focus on a particular disease, primary hyperoxaluria type 1 (PH1), in which disease-associated mutations exacerbate protein aggregation in the cell and mistarget the peroxisomal alanine:glyoxylate aminotransferase (AGT) protein to mitochondria, in part due to native state destabilization and enhanced interaction with Hsp60, 70 and 90 chaperone systems. After a general introduction of molecular chaperones and PH1, we review our current knowledge on the structural and energetic features of PH1-causing mutants that lead to these particular pathogenic mechanisms. From this perspective, and in the context of the key role of molecular chaperones in PH1 pathogenesis, we present and discuss current and future perspectives for pharmacological treatments for this disease.
Collapse
Affiliation(s)
- José Ángel Fernández-Higuero
- Biofisika Institute (CSIC, UPV/EHU) and Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Bilbao, Spain
| | - Isabel Betancor-Fernández
- Centre for Biomedical Research on Rare Diseases (CIBERER), Hospital Universitario de Canarias, ITB, University of La Laguna, Tenerife, Spain
| | - Noel Mesa-Torres
- Department of Physical Chemistry, University of Granada, Granada, Spain
| | - Arturo Muga
- Biofisika Institute (CSIC, UPV/EHU) and Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Bilbao, Spain
| | - Eduardo Salido
- Centre for Biomedical Research on Rare Diseases (CIBERER), Hospital Universitario de Canarias, ITB, University of La Laguna, Tenerife, Spain
| | - Angel L Pey
- Department of Physical Chemistry, University of Granada, Granada, Spain.
| |
Collapse
|