1
|
Li D, Li C, Chen Q, Zhou H, Zhong Z, Huang Z, Liu H, Li X. Generalizing a Ligation Site at the N-Glycosylation Sequon for Chemical Synthesis of N-Linked Glycopeptides and Glycoproteins. J Am Chem Soc 2024; 146:29017-29027. [PMID: 39390739 DOI: 10.1021/jacs.4c09996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Chemical synthesis can generate homogeneous glycoproteins with well-defined and modifiable glycan structures at designated sites. The precision and flexibility of the chemical synthetic approach provide a solution to the heterogeneity problem of glycopeptides/glycoproteins obtained through biological approaches. In this study, we reported that the conserved N-glycosylation sequon (Asn-Xaa-Ser/Thr) of glycoproteins can serve as a general site for performing Ser/Thr ligation to achieve N-linked glycoprotein synthesis. We developed an N + 2 strategy to prepare the corresponding glycopeptide salicylaldehyde esters for Ser/Thr ligation and demonstrated that Ser/Thr ligation at the sequon was not affected by the steric hindrance brought about by the large-sized glycan structures. The effectiveness of this strategy was showcased by the total synthesis of the glycosylated receptor-binding domain (RBD) of the SARS-CoV-2 spike protein.
Collapse
Affiliation(s)
- Dongfang Li
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Pokfulam, Hong Kong SAR 999077, P. R. China
| | - Can Li
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Pokfulam, Hong Kong SAR 999077, P. R. China
| | - Qiushi Chen
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Pokfulam, Hong Kong SAR 999077, P. R. China
- Laboratory for Synthetic Chemistry and Chemical Biology Limited, Hong Kong Science Park, Pak Shek Kok, Hong Kong SAR 999077, P. R. China
| | - Haiyan Zhou
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Pokfulam, Hong Kong SAR 999077, P. R. China
- Chemistry and Chemical Engineering Guangdong Laboratory, Shantou 515063, P. R. China
| | - Zhixiang Zhong
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Pokfulam, Hong Kong SAR 999077, P. R. China
- Chemistry and Chemical Engineering Guangdong Laboratory, Shantou 515063, P. R. China
| | - Zirong Huang
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Pokfulam, Hong Kong SAR 999077, P. R. China
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, P. R. China
| | - Han Liu
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Pokfulam, Hong Kong SAR 999077, P. R. China
| | - Xuechen Li
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Pokfulam, Hong Kong SAR 999077, P. R. China
| |
Collapse
|
2
|
Liu B, Zou X, Zhang Y, Yang Y, Xu H, Tang F, Yu H, Xia F, Liu Z, Zhao J, Shi W, Huang W. Site- and Stereoselective Glycomodification of Biomolecules through Carbohydrate-Promoted Pictet-Spengler Reaction. Angew Chem Int Ed Engl 2024; 63:e202401394. [PMID: 38396356 DOI: 10.1002/anie.202401394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 02/25/2024]
Abstract
Carbohydrates play pivotal roles in an array of essential biological processes and are consequently involved in many diseases. To meet the needs of glycobiology research, chemical enzymatic and non-enzymatic methods have been developed to generate glycoconjugates with well-defined structures. Herein, harnessing the unique properties of C6-oxidized glycans, we report a straightforward and robust strategy for site- and stereoselective glycomodification of biomolecules with N-terminal tryptophan residues by a carbohydrate-promoted Pictet-Spengler reaction, which is not adapted to typical aldehyde substrates under biocompatible conditions. This method reliably delivers highly homogeneous glycoconjugates with stable linkages and thus has great potential for functional modulation of peptides and proteins in glycobiology research. Moreover, this reaction can be performed at the glycosites of glycopeptides, glycoproteins and living-cell surfaces in a site-specific manner. Control experiments indicated that the protected α-O atom of aldehyde donors and free N-H bond of the tryptamine motif are crucial for this reaction. Mechanistic investigations demonstrated that the reaction exhibited a first-order dependence on both tryptophan and glycan, and deprotonation/rearomatization of the pentahydro-β-carbolinium ion intermediate might be the rate-determining step.
Collapse
Affiliation(s)
- Bo Liu
- School of Pharmaceutical Science and Technology, Hangzhou Institute of Advanced Study, Hangzhou, 310024, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, No.555 Zuchongzhi Rd, Pudong, Shanghai, 201203, China
| | - Xiangman Zou
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, No.555 Zuchongzhi Rd, Pudong, Shanghai, 201203, China
- University of Chinese Academy of Sciences, No.19 A Yuquan Road, Beijing, 100049, China
- Key Laboratory of Structure-based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Yue Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, No.555 Zuchongzhi Rd, Pudong, Shanghai, 201203, China
- University of Chinese Academy of Sciences, No.19 A Yuquan Road, Beijing, 100049, China
- Key Laboratory of Structure-based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Yang Yang
- School of Pharmaceutical Science and Technology, Hangzhou Institute of Advanced Study, Hangzhou, 310024, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, No.555 Zuchongzhi Rd, Pudong, Shanghai, 201203, China
| | - Hao Xu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, No.555 Zuchongzhi Rd, Pudong, Shanghai, 201203, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, No. 138 Xianlin Rd, Nanjing, 210023, China
| | - Feng Tang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, No.555 Zuchongzhi Rd, Pudong, Shanghai, 201203, China
- University of Chinese Academy of Sciences, No.19 A Yuquan Road, Beijing, 100049, China
| | - Huixin Yu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, No.555 Zuchongzhi Rd, Pudong, Shanghai, 201203, China
- University of Chinese Academy of Sciences, No.19 A Yuquan Road, Beijing, 100049, China
- Key Laboratory of Structure-based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Fei Xia
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, No.555 Zuchongzhi Rd, Pudong, Shanghai, 201203, China
- University of Chinese Academy of Sciences, No.19 A Yuquan Road, Beijing, 100049, China
| | - Zhi Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, No.555 Zuchongzhi Rd, Pudong, Shanghai, 201203, China
| | - Jianwei Zhao
- Shenzhen HUASUAN Technology Co., Ltd, Shenzhen, 518055, China
| | - Wei Shi
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, No.555 Zuchongzhi Rd, Pudong, Shanghai, 201203, China
| | - Wei Huang
- School of Pharmaceutical Science and Technology, Hangzhou Institute of Advanced Study, Hangzhou, 310024, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, No.555 Zuchongzhi Rd, Pudong, Shanghai, 201203, China
- University of Chinese Academy of Sciences, No.19 A Yuquan Road, Beijing, 100049, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, No. 138 Xianlin Rd, Nanjing, 210023, China
| |
Collapse
|
3
|
Zhao J, Ye F, Huang P, Wang P. Recent advances in chemical synthesis of O-linked glycopeptides and glycoproteins: An advanced synthetic tool for exploring the biological realm. Curr Opin Chem Biol 2023; 77:102405. [PMID: 37897925 DOI: 10.1016/j.cbpa.2023.102405] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/27/2023] [Accepted: 09/29/2023] [Indexed: 10/30/2023]
Abstract
Glycoproteins play crucial roles in various biological processes. To investigate the relationship between glycan structure and function, researchers have employed various chemical methods to precisely synthesize homogeneous O-glycoproteins. This review summarizes the recent progress of their synthetic strategies, highlighting the significant advancements in this area.
Collapse
Affiliation(s)
- Jie Zhao
- Center for Chemical Glycobiology, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai 200240, China; Shenzhen Research Institute of Shanghai Jiao Tong University, Shenzhen, 518057, China
| | - Farong Ye
- Center for Chemical Glycobiology, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ping Huang
- Center for Chemical Glycobiology, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Ping Wang
- Center for Chemical Glycobiology, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai 200240, China; Shenzhen Research Institute of Shanghai Jiao Tong University, Shenzhen, 518057, China.
| |
Collapse
|
4
|
Hao Z, Guo Q, Feng Y, Zhang Z, Li T, Tian Z, Zheng J, Da LT, Peng W. Investigation of the Catalytic Mechanism of a Soluble N-glycosyltransferase Allows Synthesis of N-glycans at Noncanonical Sequons. JACS AU 2023; 3:2144-2155. [PMID: 37654596 PMCID: PMC10466321 DOI: 10.1021/jacsau.3c00214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/21/2023] [Accepted: 07/24/2023] [Indexed: 09/02/2023]
Abstract
The soluble N-glycosyltransferase from Actinobacillus pleuropneumoniae (ApNGT) can establish an N-glycosidic bond at the asparagine residue in the Asn-Xaa-Ser/Thr consensus sequon and is one of the most promising tools for N-glycoprotein production. Here, by integrating computational and experimental strategies, we revealed the molecular mechanism of the substrate recognition and following catalysis of ApNGT. These findings allowed us to pinpoint a key structural motif (215DVYM218) in ApNGT responsible for the peptide substrate recognition. Moreover, Y222 and H371 of ApNGT were found to participate in activating the acceptor Asn. The constructed models were supported by further crystallographic studies and the functional roles of the identified residues were validated by measuring the glycosylation activity of various mutants against a library of synthetic peptides. Intriguingly, with particular mutants, site-selective N-glycosylation of canonical or noncanonical sequons within natural polypeptides from the SARS-CoV-2 spike protein could be achieved, which were used to investigate the biological roles of the N-glycosylation in membrane fusion during virus entry. Our study thus provides in-depth molecular mechanisms underlying the substrate recognition and catalysis for ApNGT, leading to the synthesis of previously unknown chemically defined N-glycoproteins for exploring the biological importance of the N-glycosylation at a specific site.
Collapse
Affiliation(s)
- Zhiqiang Hao
- Key
Laboratory of Systems Biomedicine (Ministry of Education), Shanghai
Center for Systems Biomedicine, Shanghai
Jiao Tong University, Shanghai 200240, China
| | - Qiang Guo
- Key
Laboratory of Systems Biomedicine (Ministry of Education), Shanghai
Center for Systems Biomedicine, Shanghai
Jiao Tong University, Shanghai 200240, China
| | - Yuanyuan Feng
- State
Key Laboratory of Microbial Metabolism, School of Life Sciences and
Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zihan Zhang
- Shanghai
Key Laboratory of Chemical Assessment and Sustainability, School of
Chemical Science & Engineering, Tongji
University, Shanghai 200092, China
| | - Tiantian Li
- Key
Laboratory of Systems Biomedicine (Ministry of Education), Shanghai
Center for Systems Biomedicine, Shanghai
Jiao Tong University, Shanghai 200240, China
| | - Zhixin Tian
- Shanghai
Key Laboratory of Chemical Assessment and Sustainability, School of
Chemical Science & Engineering, Tongji
University, Shanghai 200092, China
| | - Jianting Zheng
- State
Key Laboratory of Microbial Metabolism, School of Life Sciences and
Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lin-Tai Da
- Key
Laboratory of Systems Biomedicine (Ministry of Education), Shanghai
Center for Systems Biomedicine, Shanghai
Jiao Tong University, Shanghai 200240, China
| | - Wenjie Peng
- Key
Laboratory of Systems Biomedicine (Ministry of Education), Shanghai
Center for Systems Biomedicine, Shanghai
Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
5
|
Mamahit YP, Maki Y, Okamoto R, Kajihara Y. Semisynthesis of homogeneous misfolded glycoprotein interleukin-8. Carbohydr Res 2023; 531:108847. [PMID: 37354703 DOI: 10.1016/j.carres.2023.108847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/12/2023] [Accepted: 05/16/2023] [Indexed: 06/26/2023]
Abstract
To uncover how cells distinguish between misfolded and correctly-folded glycoproteins, homogeneous misfolded glycoproteins are needed as a probe for analysis of their structure and chemical characteristic nature. In this study, we have synthesized misfolded glycosyl interleukin-8 (IL-8) by combining E. coli expression and chemical synthesis to improve the synthetic efficiency. In order to prepare N-terminal peptide-thioester segment (1-33), we prepared an E. coli expressed peptide and then activated the C-terminal Cys by using an intramolecular N-to-S acyl shift reaction, followed by trans-thioesterification of the Cys-thioester with an external bis(2-sulfanylethyl)amine (SEA). The glycopeptide segment (34-49) was prepared by solid phase peptide synthesis and the C-terminal peptide (50-72) was prepared in E. coli. These peptide and glycopeptide segments were successfully coupled by sequential native chemical ligation. To obtain homogeneous misfolded glycoproteins by shuffling the disulfide bond pattern, folding conditions were optimized to maximize the yield of individual homogeneous misfolded glycoproteins.
Collapse
Affiliation(s)
- Yugoviandi P Mamahit
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
| | - Yuta Maki
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan; Forefront Research Center, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
| | - Ryo Okamoto
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan; Forefront Research Center, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
| | - Yasuhiro Kajihara
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan; Forefront Research Center, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan.
| |
Collapse
|
6
|
Toul M, Slonkova V, Mican J, Urminsky A, Tomkova M, Sedlak E, Bednar D, Damborsky J, Hernychova L, Prokop Z. Identification, characterization, and engineering of glycosylation in thrombolyticsa. Biotechnol Adv 2023; 66:108174. [PMID: 37182613 DOI: 10.1016/j.biotechadv.2023.108174] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 05/09/2023] [Accepted: 05/09/2023] [Indexed: 05/16/2023]
Abstract
Cardiovascular diseases, such as myocardial infarction, ischemic stroke, and pulmonary embolism, are the most common causes of disability and death worldwide. Blood clot hydrolysis by thrombolytic enzymes and thrombectomy are key clinical interventions. The most widely used thrombolytic enzyme is alteplase, which has been used in clinical practice since 1986. Another clinically used thrombolytic protein is tenecteplase, which has modified epitopes and engineered glycosylation sites, suggesting that carbohydrate modification in thrombolytic enzymes is a viable strategy for their improvement. This comprehensive review summarizes current knowledge on computational and experimental identification of glycosylation sites and glycan identity, together with methods used for their reengineering. Practical examples from previous studies focus on modification of glycosylations in thrombolytics, e.g., alteplase, tenecteplase, reteplase, urokinase, saruplase, and desmoteplase. Collected clinical data on these glycoproteins demonstrate the great potential of this engineering strategy. Outstanding combinatorics originating from multiple glycosylation sites and the vast variety of covalently attached glycan species can be addressed by directed evolution or rational design. Directed evolution pipelines would benefit from more efficient cell-free expression and high-throughput screening assays, while rational design must employ structure prediction by machine learning and in silico characterization by supercomputing. Perspectives on challenges and opportunities for improvement of thrombolytic enzymes by engineering and evolution of protein glycosylation are provided.
Collapse
Affiliation(s)
- Martin Toul
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Kamenice 5/C13, 625 00 Brno, Czech Republic; International Clinical Research Center, St. Anne's University Hospital, Pekarska 53, 656 91 Brno, Czech Republic
| | - Veronika Slonkova
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Kamenice 5/C13, 625 00 Brno, Czech Republic; International Clinical Research Center, St. Anne's University Hospital, Pekarska 53, 656 91 Brno, Czech Republic
| | - Jan Mican
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Kamenice 5/C13, 625 00 Brno, Czech Republic; International Clinical Research Center, St. Anne's University Hospital, Pekarska 53, 656 91 Brno, Czech Republic
| | - Adam Urminsky
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53 Brno, Czech Republic
| | - Maria Tomkova
- Center for Interdisciplinary Biosciences, P. J. Safarik University in Kosice, Jesenna 5, 04154 Kosice, Slovakia
| | - Erik Sedlak
- Center for Interdisciplinary Biosciences, P. J. Safarik University in Kosice, Jesenna 5, 04154 Kosice, Slovakia
| | - David Bednar
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Kamenice 5/C13, 625 00 Brno, Czech Republic; International Clinical Research Center, St. Anne's University Hospital, Pekarska 53, 656 91 Brno, Czech Republic
| | - Jiri Damborsky
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Kamenice 5/C13, 625 00 Brno, Czech Republic; International Clinical Research Center, St. Anne's University Hospital, Pekarska 53, 656 91 Brno, Czech Republic
| | - Lenka Hernychova
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53 Brno, Czech Republic.
| | - Zbynek Prokop
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Kamenice 5/C13, 625 00 Brno, Czech Republic; International Clinical Research Center, St. Anne's University Hospital, Pekarska 53, 656 91 Brno, Czech Republic.
| |
Collapse
|
7
|
Liu Y, Nomura K, Abe J, Kajihara Y. Recent advances on the synthesis of N-linked glycoprotein for the elucidation of glycan functions. Curr Opin Chem Biol 2023; 73:102263. [PMID: 36746076 DOI: 10.1016/j.cbpa.2023.102263] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/05/2022] [Accepted: 12/30/2022] [Indexed: 02/05/2023]
Abstract
Glycoproteins play roles in many biological events, while, the glycan structure-function relationship has remained to be studied. In order to understand glycan function, homogeneous glycoproteins have been synthesized. This review introduced recent progress of their synthetic approaches.
Collapse
Affiliation(s)
- Yanbo Liu
- Department of Chemistry Osaka University, 1-1 Machikaneyama, Toyonaka, 560-0043 Japan
| | - Kota Nomura
- Department of Chemistry Osaka University, 1-1 Machikaneyama, Toyonaka, 560-0043 Japan
| | - Junpei Abe
- Department of Chemistry Osaka University, 1-1 Machikaneyama, Toyonaka, 560-0043 Japan
| | - Yasuhiro Kajihara
- Department of Chemistry Osaka University, 1-1 Machikaneyama, Toyonaka, 560-0043 Japan.
| |
Collapse
|
8
|
Tatunashvili E, Maloney CJ, Chan B, McErlean CSP. Generation and reaction of alanyl radicals in open flasks. Chem Commun (Camb) 2023; 59:2094-2097. [PMID: 36722990 DOI: 10.1039/d2cc06211a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The generation and Giese-type reaction of alanyl radicals under metal-free reaction conditions is described. The procedure is operationally simple, occurring at ambient temperature in an open reaction vessel, and requiring short reaction times (≤5 min). The reaction occurs without epimerization and provides ready access to non-proteinogenic amino acids and peptides. Importantly, the process is tolerant of light absorbing groups including commonly used fluorescent tags.
Collapse
Affiliation(s)
| | - Callan J Maloney
- School of Chemistry, University of Sydney, Sydney, NSW 2006, Australia.
| | - Bun Chan
- Graduate School of Engineering, Nagasaki University, Bunkyo-machi 1-14, Nagasaki-shi, Nagasaki, 852-8521, Japan
| | | |
Collapse
|
9
|
McBerney R, Dolan JP, Cawood EE, Webb ME, Turnbull WB. Bioorthogonal, Bifunctional Linker for Engineering Synthetic Glycoproteins. JACS AU 2022; 2:2038-2047. [PMID: 36186556 PMCID: PMC9516712 DOI: 10.1021/jacsau.2c00312] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 08/14/2022] [Accepted: 08/15/2022] [Indexed: 06/16/2023]
Abstract
Post-translational glycosylation of proteins results in complex mixtures of heterogeneous protein glycoforms. Glycoproteins have many potential applications from fundamental studies of glycobiology to potential therapeutics, but generating homogeneous recombinant glycoproteins using chemical or chemoenzymatic reactions to mimic natural glycoproteins or creating homogeneous synthetic neoglycoproteins is a challenging synthetic task. In this work, we use a site-specific bioorthogonal approach to produce synthetic homogeneous glycoproteins. We develop a bifunctional, bioorthogonal linker that combines oxime ligation and strain-promoted azide-alkyne cycloaddition chemistry to functionalize reducing sugars and glycan derivatives for attachment to proteins. We demonstrate the utility of this minimal length linker by producing neoglycoprotein inhibitors of cholera toxin in which derivatives of the disaccharide lactose and GM1os pentasaccharide are attached to a nonbinding variant of the cholera toxin B-subunit that acts as a size- and valency-matched multivalent scaffold. The resulting neoglycoproteins decorated with GM1 ligands inhibit cholera toxin B-subunit adhesion with a picomolar IC50.
Collapse
|
10
|
Maki Y, Otani Y, Okamoto R, Izumi M, Kajihara Y. Isolation and characterization of high-mannose type glycans containing five or six mannose residues from hen egg yolk. Carbohydr Res 2022; 521:108680. [PMID: 36156417 DOI: 10.1016/j.carres.2022.108680] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 09/14/2022] [Indexed: 11/24/2022]
Abstract
High-mannose type glycans play important roles in biosynthesis of glycoproteins including glycoprotein quality control system. In the endoplasmic reticulum (ER), α1,2-mannosidases cleave several mannose (Man) residues to give small high-mannose type glycans, such as glycans containing five or six mannose residues (M5-glycan or M6-glycan). These glycans are reported to act as a signal for degradation processes of glycoproteins in the ER. In this work, we isolated the M5-glycan and the M6-glycan from delipidated egg yolk and confirmed that their structures were identical to human type glycans based on rigorous NMR experiments, suggesting the potential use for semisynthesis of glycoconjugates and glycan analysis.
Collapse
Affiliation(s)
- Yuta Maki
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan; Project Research Center for Fundamental Sciences, Graduate School of Science, Osaka University 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
| | - Yuiko Otani
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
| | - Ryo Okamoto
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan; Project Research Center for Fundamental Sciences, Graduate School of Science, Osaka University 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
| | - Masayuki Izumi
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
| | - Yasuhiro Kajihara
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan.
| |
Collapse
|
11
|
Li T, Zhang Y, Li T, Zhuang H, Wang F, Wang N, Schmidt RR, Peng P. Divergent Synthesis of Core m1, Core m2 and Core m3
O
‐Mannosyl
Glycopeptides via a Chemoenzymatic Approach. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202200088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Tianlu Li
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate Based Medicine, Shandong University Qingdao Shandong 266237 China
| | - Youqin Zhang
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate Based Medicine, Shandong University Qingdao Shandong 266237 China
| | - Tong Li
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate Based Medicine, Shandong University Qingdao Shandong 266237 China
| | - Haoru Zhuang
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate Based Medicine, Shandong University Qingdao Shandong 266237 China
| | - Fengshan Wang
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate Based Medicine, Shandong University Qingdao Shandong 266237 China
| | - Ning Wang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University Wuxi Jiangsu 214122 China
| | | | - Peng Peng
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate Based Medicine, Shandong University Qingdao Shandong 266237 China
| |
Collapse
|
12
|
Nomura K, Liu Y, Kajihara Y. Synthesis of homogeneous glycoproteins with diverse N-glycans. Adv Carbohydr Chem Biochem 2022; 81:57-93. [DOI: 10.1016/bs.accb.2022.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
13
|
Shotgun scanning glycomutagenesis: A simple and efficient strategy for constructing and characterizing neoglycoproteins. Proc Natl Acad Sci U S A 2021; 118:2107440118. [PMID: 34551980 PMCID: PMC8488656 DOI: 10.1073/pnas.2107440118] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/13/2021] [Indexed: 11/18/2022] Open
Abstract
Asparagine-linked (N-linked) protein glycosylation—the covalent attachment of complex sugars to the nitrogen atom in asparagine side chains—is the most widespread posttranslational modification to proteins and also the most complex. N-glycosylation affects a significant number of cellular proteins and can have profound effects on their most important attributes such as biological activity, chemical solubility, folding and stability, immunogenicity, and serum half-life. Accordingly, the strategic installation of glycans at naïve sites has become an attractive means for endowing proteins with advantageous biological and/or biophysical properties. Here, we describe a glycoprotein engineering strategy that enables systematic investigation of the structural and functional consequences of glycan installation at every position along a protein backbone and provides a new route to bespoke glycoproteins. As a common protein modification, asparagine-linked (N-linked) glycosylation has the capacity to greatly influence the biological and biophysical properties of proteins. However, the routine use of glycosylation as a strategy for engineering proteins with advantageous properties is limited by our inability to construct and screen large collections of glycoproteins for cataloguing the consequences of glycan installation. To address this challenge, we describe a combinatorial strategy termed shotgun scanning glycomutagenesis in which DNA libraries encoding all possible glycosylation site variants of a given protein are constructed and subsequently expressed in glycosylation-competent bacteria, thereby enabling rapid determination of glycosylatable sites in the protein. The resulting neoglycoproteins can be readily subjected to available high-throughput assays, making it possible to systematically investigate the structural and functional consequences of glycan conjugation along a protein backbone. The utility of this approach was demonstrated with three different acceptor proteins, namely bacterial immunity protein Im7, bovine pancreatic ribonuclease A, and human anti-HER2 single-chain Fv antibody, all of which were found to tolerate N-glycan attachment at a large number of positions and with relatively high efficiency. The stability and activity of many glycovariants was measurably altered by N-linked glycans in a manner that critically depended on the precise location of the modification. Structural models suggested that affinity was improved by creating novel interfacial contacts with a glycan at the periphery of a protein–protein interface. Importantly, we anticipate that our glycomutagenesis workflow should provide access to unexplored regions of glycoprotein structural space and to custom-made neoglycoproteins with desirable properties.
Collapse
|
14
|
Nomura K, Maki Y, Okamoto R, Satoh A, Kajihara Y. Glycoprotein Semisynthesis by Chemical Insertion of Glycosyl Asparagine Using a Bifunctional Thioacid-Mediated Strategy. J Am Chem Soc 2021; 143:10157-10167. [PMID: 34189908 DOI: 10.1021/jacs.1c02601] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Glycosylation is a major modification of secreted and cell surface proteins, and the resultant glycans show considerable heterogeneity in their structures. To understand the biological processes arising from each glycoform, the preparation of homogeneous glycoproteins is essential for extensive biological experiments. To establish a more robust and rapid synthetic route for the synthesis of homogeneous glycoproteins, we studied several key reactions based on amino thioacids. We found that diacyl disulfide coupling (DDC) formed with glycosyl asparagine thioacid and peptide thioacid yielded glycopeptides. This efficient coupling reaction enabled us to develop a new glycoprotein synthesis method, such as the bifunctional thioacid-mediated strategy, which can couple two peptides with the N- and C-termini of glycosyl asparagine thioacid. Previous glycoprotein synthesis methods required valuable glycosyl asparagine in the early stage and subsequent multiple glycoprotein synthesis routes, whereas the developed concept can generate glycoproteins within a few steps from peptide and glycosyl asparagine thioacid. Herein, we report the characterization of the DDC of amino thioacids and the efficient ability of glycosyl asparagine thioacid to be used for robust glycoprotein semisynthesis.
Collapse
Affiliation(s)
| | | | | | - Ayano Satoh
- Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, 3-1-1, Tsushimanaka, Okayama 700-0082, Japan
| | | |
Collapse
|
15
|
Wang S, Foster SR, Sanchez J, Corcilius L, Larance M, Canals M, Stone MJ, Payne RJ. Glycosylation Regulates N-Terminal Proteolysis and Activity of the Chemokine CCL14. ACS Chem Biol 2021; 16:973-981. [PMID: 33988967 DOI: 10.1021/acschembio.1c00006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Chemokines are secreted proteins that regulate leukocyte migration during inflammatory responses by signaling through chemokine receptors. Full length CC chemokine ligand 14, CCL14(1-74), is a weak agonist for the chemokine receptor CCR1, but its activity is substantially enhanced upon proteolytic cleavage to CCL14(9-74). CCL14 is O-glycosylated at Ser7, adjacent to the site of proteolytic activation. To determine whether glycosylation regulates the activity of CCL14, we used native chemical ligation to prepare four homogeneously glycosylated variants of CCL14(1-74). Each protein was assembled from three synthetic peptide fragments in "one-pot" using two sequential ligation reactions. We show that while glycosylation of CCL14(1-74) did not affect CCR1 binding affinity or potency of activation, sialylated variants of CCL14(1-74) exhibited reduced activity after treatment with plasmin compared to nonsialylated forms. These data indicate that glycosylation may influence the biological activity of CCL14 by regulating its conversion from the full-length to the truncated, activated form.
Collapse
Affiliation(s)
- Siyao Wang
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
| | - Simon R. Foster
- Department of Biochemistry & Molecular Biology Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
- Infection & Immunity Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Julie Sanchez
- Department of Biochemistry & Molecular Biology Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
- Infection & Immunity Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Leo Corcilius
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, NSW 2006, Australia
| | - Mark Larance
- Charles Perkins Centre and School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Meritxell Canals
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, Queen’s Medical Centre, University of Nottingham, Nottingham NG7 2UH, U.K
- Centre of Membrane Proteins and Receptors, University of Birmingham and University of Nottingham, Midlands, U.K
| | - Martin J. Stone
- Department of Biochemistry & Molecular Biology Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Richard J. Payne
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
16
|
Manabe Y. Chemical Biology Study on N-glycans. TRENDS GLYCOSCI GLYC 2021. [DOI: 10.4052/tigg.2109.2j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Yoshiyuki Manabe
- Department of Chemistry, Graduate School of Science, Osaka University
- Core for Medicine and Science Collaborative Research and Education, Project Research Center for Fundamental Sciences, Osaka University
| |
Collapse
|
17
|
Manabe Y. Chemical Biology Study on N-glycans. TRENDS GLYCOSCI GLYC 2021. [DOI: 10.4052/tigg.2109.2e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Yoshiyuki Manabe
- Department of Chemistry, Graduate School of Science, Osaka University
- Core for Medicine and Science Collaborative Research and Education, Project Research Center for Fundamental Sciences, Osaka University
| |
Collapse
|
18
|
Chandrashekar C, Hossain MA, Wade JD. Chemical Glycosylation and Its Application to Glucose Homeostasis-Regulating Peptides. Front Chem 2021; 9:650025. [PMID: 33912539 PMCID: PMC8072350 DOI: 10.3389/fchem.2021.650025] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 03/22/2021] [Indexed: 11/13/2022] Open
Abstract
Peptides and proteins are attractive targets for therapeutic drug development due to their exquisite target specificity and low toxicity profiles. However, their complex structures give rise to several challenges including solubility, stability, aggregation, low bioavailability, and poor pharmacokinetics. Numerous chemical strategies to address these have been developed including the introduction of several natural and non-natural modifications such as glycosylation, lipidation, cyclization and PEGylation. Glycosylation is considered to be one of the most useful modifications as it is known to contribute to increasing the stability, to improve solubility, and increase the circulating half-lifves of these biomolecules. However, cellular glycosylation is a highly complex process that generally results in heterogenous glycan structures which confounds quality control and chemical and biological assays. For this reason, much effort has been expended on the development of chemical methods, including by solid phase peptide synthesis or chemoenzymatic processes, to enable the acquisition of homogenous glycopeptides to greatly expand possibilities in drug development. In this mini-review, we highlight the importance of such chemical glycosylation methods for improving the biophysical properties of naturally non-glycosylated peptides as applied to the therapeutically essential insulin and related peptides that are used in the treatment of diabetes.
Collapse
Affiliation(s)
- Chaitra Chandrashekar
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC, Australia
| | - Mohammed Akhter Hossain
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC, Australia
| | - John D Wade
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC, Australia.,School of Chemistry, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
19
|
Dong S, Zhao Y, Shi Y, Xu Z, Shen J, Jia Q, Li Y, Chen K, Li B, Zhu W. One step stereoselective synthesis of oxazoline-fused saccharides and their conversion into the corresponding 1,2- cis glycosylamines bearing various protected groups. Org Biomol Chem 2021; 19:1580-1588. [PMID: 33522535 DOI: 10.1039/d0ob02477e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein we disclosed a straightforward synthesis of oxazoline-fused saccharides (oxazolinoses) from peracetylated saccharides and benzonitriles under acidic conditions with stoichiometric amounts of water. The density functional theory (DFT) calculations have revealed the origin of the stereoselectivity and the key role of water in promoting the departure of the acetyl group at C-2. The resulting oxazolinoses can be concisely converted into the corresponding 1,2-cis glycosylamines bearing various protected groups, allowing the access to schisandrin derivatives.
Collapse
Affiliation(s)
- Sanfeng Dong
- Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China. and CAS Key Laboratory of Receptor Research; Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China.
| | - Yitian Zhao
- Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China. and CAS Key Laboratory of Receptor Research; Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China.
| | - Yulong Shi
- CAS Key Laboratory of Receptor Research; Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China. and School of Pharmacy, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China.
| | - Zhijian Xu
- CAS Key Laboratory of Receptor Research; Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China. and School of Pharmacy, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China.
| | - Jingshan Shen
- CAS Key Laboratory of Receptor Research; Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China. and School of Pharmacy, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China.
| | - Qi Jia
- Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China.
| | - Yiming Li
- Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China.
| | - Kaixian Chen
- Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China. and CAS Key Laboratory of Receptor Research; Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China. and School of Pharmacy, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China.
| | - Bo Li
- CAS Key Laboratory of Receptor Research; Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China. and School of Pharmacy, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China.
| | - Weiliang Zhu
- Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China. and CAS Key Laboratory of Receptor Research; Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China. and School of Pharmacy, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China.
| |
Collapse
|
20
|
Shirakawa A, Manabe Y, Fukase K. Recent Advances in the Chemical Biology of N-Glycans. Molecules 2021; 26:molecules26041040. [PMID: 33669465 PMCID: PMC7920464 DOI: 10.3390/molecules26041040] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/08/2021] [Accepted: 02/14/2021] [Indexed: 12/19/2022] Open
Abstract
Asparagine-linked N-glycans on proteins have diverse structures, and their functions vary according to their structures. In recent years, it has become possible to obtain high quantities of N-glycans via isolation and chemical/enzymatic/chemoenzymatic synthesis. This has allowed for progress in the elucidation of N-glycan functions at the molecular level. Interaction analyses with lectins by glycan arrays or nuclear magnetic resonance (NMR) using various N-glycans have revealed the molecular basis for the recognition of complex structures of N-glycans. Preparation of proteins modified with homogeneous N-glycans revealed the influence of N-glycan modifications on protein functions. Furthermore, N-glycans have potential applications in drug development. This review discusses recent advances in the chemical biology of N-glycans.
Collapse
Affiliation(s)
- Asuka Shirakawa
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan;
| | - Yoshiyuki Manabe
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan;
- Core for Medicine and Science Collaborative Research and Education, Project Research Center for Fundamental Sciences, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
- Correspondence: (Y.M.); (K.F.); Tel.: +81-6-6850-5391 (Y.M.); +81-6-6850-5388 (K.F.)
| | - Koichi Fukase
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan;
- Core for Medicine and Science Collaborative Research and Education, Project Research Center for Fundamental Sciences, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
- Correspondence: (Y.M.); (K.F.); Tel.: +81-6-6850-5391 (Y.M.); +81-6-6850-5388 (K.F.)
| |
Collapse
|
21
|
Li H, Zhang J, An C, Dong S. Probing N-Glycan Functions in Human Interleukin-17A Based on Chemically Synthesized Homogeneous Glycoforms. J Am Chem Soc 2021; 143:2846-2856. [DOI: 10.1021/jacs.0c12448] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Hongxing Li
- State Key Laboratory of Natural and Biomimetic Drugs, and Department of Chemical Biology at School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Jun Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, and Department of Chemical Biology at School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Chuanjing An
- State Key Laboratory of Natural and Biomimetic Drugs, and Department of Chemical Biology at School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Suwei Dong
- State Key Laboratory of Natural and Biomimetic Drugs, and Department of Chemical Biology at School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| |
Collapse
|
22
|
Abstract
Although the majority of proteins used for biomedical research are produced using living systems such as bacteria, biological means for producing proteins can be advantageously complemented by protein semisynthesis or total chemical synthesis. The latter approach is particularly useful when the proteins to be produced are toxic for the expression system or show unusual features that cannot be easily programmed in living organisms. The aim of this review is to provide a wide overview of the use of chemical protein synthesis in medicinal chemistry with a special focus on the production of post-translationally modified proteins and backbone cyclized proteins.
Collapse
Affiliation(s)
- Vangelis Agouridas
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019, UMR 9017, CIIL, Center for Infection and Immunity of Lille, F-59000 Lille, France.,Centrale Lille, F-59000 Lille, France
| | - Ouafâa El Mahdi
- Faculté Polydisciplinaire de Taza, University Sidi Mohamed Ben Abdellah, BP 1223 Taza gare, Morocco
| | - Oleg Melnyk
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019, UMR 9017, CIIL, Center for Infection and Immunity of Lille, F-59000 Lille, France
| |
Collapse
|
23
|
Maki Y, Okamoto R, Izumi M, Kajihara Y. Chemical Synthesis of an Erythropoietin Glycoform Having a Triantennary N-Glycan: Significant Change of Biological Activity of Glycoprotein by Addition of a Small Molecular Weight Trisaccharide. J Am Chem Soc 2020; 142:20671-20679. [PMID: 33231436 DOI: 10.1021/jacs.0c08719] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The glycosylation of proteins contributes to the modulation of the structure and biological activity of glycoproteins. Asparagine-linked glycans (N-glycans) of glycoproteins naturally exhibit diverse antennary patterns, such as bi-, tri-, and tetra-antennary forms. However, there are no chemical or biological methods to obtain homogeneous glycoproteins via the intentional alteration of the antennary form of N-glycans. Thus, the functions of the individual antennary form of N-glycan at a molecular level remain unclear. Herein, we report the chemical synthesis of an erythropoietin (EPO) glycoform having a triantennary sialylglycan at position 83, as well as two biantennary sialylglycans at both positions 24 and 38. We demonstrated efficient liquid-phase condensation reactions to prepare a sialylglycopeptide having a triantennary N-glycan prepared by the addition of a Neu5Ac-α-2,6-Gal-β-1,4-GlcNAc element to the biantennary glycan under semisynthetic conditions. The molecular weight of the newly added antennary element was ∼3% of the EPO glycoform, and the introduced position was the most distant from the bioactive protein. However, in vivo assays using mice revealed that the additional antennary element at position 83 dramatically increased the hematopoietic activity compared to a commercially available native EPO. These unprecedented data clearly indicate that the antennary pattern of N-glycans inherently plays a critical role in the modulation of protein functions.
Collapse
Affiliation(s)
- Yuta Maki
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan.,Project Research Center for Fundamental Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Ryo Okamoto
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan.,Project Research Center for Fundamental Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Masayuki Izumi
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Yasuhiro Kajihara
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan.,Project Research Center for Fundamental Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| |
Collapse
|
24
|
Ito Y, Kajihara Y, Takeda Y. Chemical‐Synthesis‐Based Approach to Glycoprotein Functions in the Endoplasmic Reticulum. Chemistry 2020; 26:15461-15470. [DOI: 10.1002/chem.202004158] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Indexed: 12/18/2022]
Affiliation(s)
- Yukishige Ito
- Project Research Center for Fundamental Sciences Graduate School of Science Osaka University Toyonaka Osaka 5600043 Japan
- RIKEN Cluster for Pioneering Research Wako Saitama 3510198 Japan
| | - Yasuhiro Kajihara
- Project Research Center for Fundamental Sciences Graduate School of Science Osaka University Toyonaka Osaka 5600043 Japan
- Department of Chemistry Graduate School of Science Osaka University Toyonaka Osaka 5600043 Japan
| | - Yoichi Takeda
- Department of Biotechnology Ritsumeikan University Kusatsu Shiga 5258577 Japan
| |
Collapse
|
25
|
Nieto-Domínguez M, Fernández de Toro B, de Eugenio LI, Santana AG, Bejarano-Muñoz L, Armstrong Z, Méndez-Líter JA, Asensio JL, Prieto A, Withers SG, Cañada FJ, Martínez MJ. Thioglycoligase derived from fungal GH3 β-xylosidase is a multi-glycoligase with broad acceptor tolerance. Nat Commun 2020; 11:4864. [PMID: 32978392 PMCID: PMC7519651 DOI: 10.1038/s41467-020-18667-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 09/02/2020] [Indexed: 11/09/2022] Open
Abstract
The synthesis of customized glycoconjugates constitutes a major goal for biocatalysis. To this end, engineered glycosidases have received great attention and, among them, thioglycoligases have proved useful to connect carbohydrates to non-sugar acceptors. However, hitherto the scope of these biocatalysts was considered limited to strong nucleophilic acceptors. Based on the particularities of the GH3 glycosidase family active site, we hypothesized that converting a suitable member into a thioglycoligase could boost the acceptor range. Herein we show the engineering of an acidophilic fungal β-xylosidase into a thioglycoligase with broad acceptor promiscuity. The mutant enzyme displays the ability to form O-, N-, S- and Se- glycosides together with sugar esters and phosphoesters with conversion yields from moderate to high. Analyses also indicate that the pKa of the target compound was the main factor to determine its suitability as glycosylation acceptor. These results expand on the glycoconjugate portfolio attainable through biocatalysis.
Collapse
Affiliation(s)
- Manuel Nieto-Domínguez
- Biotechnology for Lignocellulosic Biomass Group, Centro de Investigaciones Biológicas Margarita Salas (CSIC), C/Ramiro de Maeztu 9, 28040, Madrid, Spain.
| | - Beatriz Fernández de Toro
- NMR and Molecular Recognition Group, Centro de Investigaciones Biológicas Margarita Salas (CSIC), C/Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Laura I de Eugenio
- Biotechnology for Lignocellulosic Biomass Group, Centro de Investigaciones Biológicas Margarita Salas (CSIC), C/Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Andrés G Santana
- Glycochemistry and Molecular recognition group, Instituto de Química Orgánica General (CSIC), C/Juan de la Cierva, 3, 28006, Madrid, Spain
| | - Lara Bejarano-Muñoz
- Biotechnology for Lignocellulosic Biomass Group, Centro de Investigaciones Biológicas Margarita Salas (CSIC), C/Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Zach Armstrong
- Department of Chemistry, Centre for High-Throughput Biology, University of British Columbia, Vancouver, Canada
| | - Juan Antonio Méndez-Líter
- Biotechnology for Lignocellulosic Biomass Group, Centro de Investigaciones Biológicas Margarita Salas (CSIC), C/Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Juan Luis Asensio
- Glycochemistry and Molecular recognition group, Instituto de Química Orgánica General (CSIC), C/Juan de la Cierva, 3, 28006, Madrid, Spain
| | - Alicia Prieto
- Biotechnology for Lignocellulosic Biomass Group, Centro de Investigaciones Biológicas Margarita Salas (CSIC), C/Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Stephen G Withers
- Department of Chemistry, Centre for High-Throughput Biology, University of British Columbia, Vancouver, Canada
| | - Francisco Javier Cañada
- NMR and Molecular Recognition Group, Centro de Investigaciones Biológicas Margarita Salas (CSIC), C/Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - María Jesús Martínez
- Biotechnology for Lignocellulosic Biomass Group, Centro de Investigaciones Biológicas Margarita Salas (CSIC), C/Ramiro de Maeztu 9, 28040, Madrid, Spain.
| |
Collapse
|
26
|
Li T, Yang W, Ramadan S, Huang X. Synthesis of O-Sulfated Human Syndecan-1-like Glyco-polypeptides by Incorporating Peptide Ligation and O-Sulfated Glycopeptide Cassette Strategies. Org Lett 2020; 22:6429-6433. [PMID: 32806172 PMCID: PMC7517924 DOI: 10.1021/acs.orglett.0c02243] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A successful synthesis of O-sulfated syndecan-1-like (Q23-E120) glyco-polypeptide was accomplished. The synthesis features the integration of an O-sulfated carbohydrate-bearing glycopeptide cassette with efficient protein ligation strategies, overcoming the acid lability of carbohydrate sulfates as a major hurdle in solid-phase peptide synthesis. Crucial to the synthesis is the microwave-assisted Ag(I) ligation, which afforded the ligation product in improved overall yield. This O-sulfated syndecan-1 (Q23-E120) is the longest O-sulfated glyco-polypeptide prepared to date.
Collapse
Affiliation(s)
- Tianlu Li
- National Glycoengineering Research Center, Shandong University, Qingdao, Shandong 266237, China
- Departments of Chemistry and Biomedical Engineering, Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, Michigan 48824, United States
| | - Weizhun Yang
- Departments of Chemistry and Biomedical Engineering, Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, Michigan 48824, United States
| | - Sherif Ramadan
- Departments of Chemistry and Biomedical Engineering, Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, Michigan 48824, United States
- Chemistry Department, Faculty of Science, Benha University, Benha, Qaliobiya 13518, Egypt
| | - Xuefei Huang
- Departments of Chemistry and Biomedical Engineering, Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, Michigan 48824, United States
| |
Collapse
|
27
|
Lin JD, Liu X. Recent Development in Ligation Methods for Glycopeptide and Glycoprotein Synthesis. Chem Asian J 2020; 15:2548-2557. [DOI: 10.1002/asia.202000566] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 06/28/2020] [Indexed: 12/12/2022]
Affiliation(s)
- Junjie Desmond Lin
- Division of Chemistry and Biological Chemistry School of Physical and Mathematical Sciences Nanyang Technological University 21 Nanyang Link Singapore 637371 Singapore
| | - Xue‐Wei Liu
- Division of Chemistry and Biological Chemistry School of Physical and Mathematical Sciences Nanyang Technological University 21 Nanyang Link Singapore 637371 Singapore
| |
Collapse
|
28
|
Abstract
OBJECTIVES Osteopontin (OPN) is a multifunctional protein present abundantly in human milk, but at low levels in bovine milk and infant formula. Bovine milk OPN (bmOPN) is commercially available, and may therefore, be added to formula. OPN exerts its multiple functions by binding to its receptors to activate cell signaling pathways. The OPN receptor (integrin)-binding site is conserved across species; therefore, bmOPN may exert bioactivities in humans and mice. The objective of the present study was to evaluate bioactivities of bmOPN using an established OPN knock-out (KO) mouse model. METHODS We evaluated bioactivities of bmOPN, including effects on intestinal growth, immune response, and brain development. In the present study, wild-type (WT) pups were nursed by WT dams, KO dams, or KO dams with bmOPN supplementation from postnatal days 1 to 21 (P1--P21). RESULTS Our results show that orally ingested bmOPN is partly resistant to in vivo gastrointestinal digestion, and supplemental bmOPN exhibited similar effects as mouse milk OPN (mmOPN) on promoting growth of the small intestine revealed by histological analysis of duodenum villus height and crypt depth at P10, on modifying TNF-α response against a LPS challenge at P30, as well as promoting brain myelination by increasing expression of myelin-associated glycoprotein (MAG) and myelin basic protein (MBP) and improving cognitive development. CONCLUSIONS Our finding that bmOPN with an amino acid sequence different from mmOPN but with a conserved integrin binding site exerts bioactivities similar to mmOPN suggests that bmOPN may provide bioactivities to human infants when added to formula.
Collapse
|
29
|
Fuertes-Martín R, Correig X, Vallvé JC, Amigó N. Title: Human Serum/Plasma Glycoprotein Analysis by 1H-NMR, an Emerging Method of Inflammatory Assessment. J Clin Med 2020; 9:E354. [PMID: 32012794 PMCID: PMC7073769 DOI: 10.3390/jcm9020354] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 01/13/2020] [Accepted: 01/17/2020] [Indexed: 12/17/2022] Open
Abstract
Several studies suggest that variations in the concentration of plasma glycoproteins can influence cellular changes in a large number of diseases. In recent years, proton nuclear magnetic resonance (1H-NMR) has played a major role as an analytical tool for serum and plasma samples. In recent years, there is an increasing interest in the characterization of glycoproteins through 1H-NMR in order to search for reliable and robust biomarkers of disease. The objective of this review was to examine the existing studies in the literature related to the study of glycoproteins from an analytical and clinical point of view. There are currently several techniques to characterize circulating glycoproteins in serum or plasma, but in this review, we focus on 1H-NMR due to its great robustness and recent interest in its translation to the clinical setting. In fact, there is already a marker in H-NMR representing the acetyl groups of the glycoproteins, GlycA, which has been increasingly studied in clinical studies. A broad search of the literature was performed showing a general consensus that GlycA is a robust marker of systemic inflammation. The results also suggested that GlycA better captures systemic inflammation even more than C-reactive protein (CRP), a widely used classical inflammatory marker. The applications reviewed here demonstrated that GlycA was potentially a key biomarker in a wide range of diseases such as cancer, metabolic diseases, cardiovascular risk, and chronic inflammatory diseases among others. The profiling of glycoproteins through 1H-NMR launches an encouraging new paradigm for its future incorporation in clinical diagnosis.
Collapse
Affiliation(s)
- Rocío Fuertes-Martín
- Biosfer Teslab SL, 43201 Reus, Spain; (R.F.-M.); (N.A.)
- Metabolomic s platform, IISPV, CIBERDEM, Rovira i Virgili University, 43007 Tarragona, Spain
| | - Xavier Correig
- Metabolomic s platform, IISPV, CIBERDEM, Rovira i Virgili University, 43007 Tarragona, Spain
| | - Joan-Carles Vallvé
- Metabolomic s platform, IISPV, CIBERDEM, Rovira i Virgili University, 43007 Tarragona, Spain
- Lipids and Arteriosclerosis Research Unit, Sant Joan de Reus University Hospital, 43201 Reus, Spain
| | - Núria Amigó
- Biosfer Teslab SL, 43201 Reus, Spain; (R.F.-M.); (N.A.)
- Metabolomic s platform, IISPV, CIBERDEM, Rovira i Virgili University, 43007 Tarragona, Spain
| |
Collapse
|
30
|
Wu Y, Li Y, Cong W, Zou Y, Li X, Hu H. Total synthesis of TRADD death domain with arginine N-GlcNAcylation by hydrazide-based native chemical ligation. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2019.05.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
31
|
Cytoplasmic glycoengineering enables biosynthesis of nanoscale glycoprotein assemblies. Nat Commun 2019; 10:5403. [PMID: 31776333 PMCID: PMC6881330 DOI: 10.1038/s41467-019-13283-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 10/29/2019] [Indexed: 12/19/2022] Open
Abstract
Glycosylation of proteins profoundly impacts their physical and biological properties. Yet our ability to engineer novel glycoprotein structures remains limited. Established bacterial glycoengineering platforms require secretion of the acceptor protein to the periplasmic space and preassembly of the oligosaccharide substrate as a lipid-linked precursor, limiting access to protein and glycan substrates respectively. Here, we circumvent these bottlenecks by developing a facile glycoengineering platform that operates in the bacterial cytoplasm. The Glycoli platform leverages a recently discovered site-specific polypeptide glycosyltransferase together with variable glycosyltransferase modules to synthesize defined glycans, of bacterial or mammalian origin, directly onto recombinant proteins in the E. coli cytoplasm. We exploit the cytoplasmic localization of this glycoengineering platform to generate a variety of multivalent glycostructures, including self-assembling nanomaterials bearing hundreds of copies of the glycan epitope. This work establishes cytoplasmic glycoengineering as a powerful platform for producing glycoprotein structures with diverse future biomedical applications. Established bacterial glycoengineering platforms limit access to protein and glycan substrates. Here the authors design a cytoplasmic protein glycosylation system, Glycoli, to generate a variety of multivalent glycostructures.
Collapse
|
32
|
Marqvorsen MHS, Araman C, van Kasteren SI. Going Native: Synthesis of Glycoproteins and Glycopeptides via Native Linkages To Study Glycan-Specific Roles in the Immune System. Bioconjug Chem 2019; 30:2715-2726. [PMID: 31580646 PMCID: PMC6873266 DOI: 10.1021/acs.bioconjchem.9b00588] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 09/30/2019] [Indexed: 12/16/2022]
Abstract
Glycosylation plays a myriad of roles in the immune system: Certain glycans can interact with specific immune receptors to kickstart a pro-inflammatory response, whereas other glycans can do precisely the opposite and ameliorate the immune response. Specific glycans and glycoforms can themselves become the targets of the adaptive immune system, leading to potent antiglycan responses that can lead to the killing of altered self- or pathogenic species. This hydra-like set of roles glycans play is of particular importance in cancer immunity, where it influences the anticancer immune response, likely playing pivotal roles in tumor survival or clearance. The complexity of carbohydrate biology requires synthetic access to glycoproteins and glycopeptides that harbor homogeneous glycans allowing the probing of these systems with high precision. One particular complicating factor in this is that these synthetic structures are required to be as close to the native structures as possible, as non-native linkages can themselves elicit immune responses. In this Review, we discuss examples and current strategies for the synthesis of natively linked single glycoforms of peptides and proteins that have enabled researchers to gain new insights into glycoimmunology, with a particular focus on the application of these reagents in cancer immunology.
Collapse
Affiliation(s)
- Mikkel H. S. Marqvorsen
- Leiden
Institute of Chemistry, Institute for Chemical Immunology Gorlaeus
Laboratories, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Can Araman
- Leiden
Institute of Chemistry, Institute for Chemical Immunology Gorlaeus
Laboratories, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Sander I. van Kasteren
- Leiden
Institute of Chemistry, Institute for Chemical Immunology Gorlaeus
Laboratories, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| |
Collapse
|
33
|
Valverde P, Ardá A, Reichardt NC, Jiménez-Barbero J, Gimeno A. Glycans in drug discovery. MEDCHEMCOMM 2019; 10:1678-1691. [PMID: 31814952 PMCID: PMC6839814 DOI: 10.1039/c9md00292h] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 07/10/2019] [Indexed: 02/06/2023]
Abstract
Glycans are key players in many biological processes. They are essential for protein folding and stability and act as recognition elements in cell-cell and cell-matrix interactions. Thus, being at the heart of medically relevant biological processes, glycans have come onto the scene and are considered hot spots for biomedical intervention. The progress in biophysical techniques allowing access to an increasing molecular and structural understanding of these processes has led to the development of effective therapeutics. Indeed, strategies aimed at designing glycomimetics able to block specific lectin-carbohydrate interactions, carbohydrate-based vaccines mimicking self- and non-self-antigens as well as the exploitation of the therapeutic potential of glycosylated antibodies are being pursued. In this mini-review the most prominent contributions concerning recurrent diseases are highlighted, including bacterial and viral infections, cancer or immune-related pathologies, which certainly show the great promise of carbohydrates in drug discovery.
Collapse
Affiliation(s)
- Pablo Valverde
- CIC bioGUNE , Bizkaia Technology Park, Building 800 , 48162 Derio , Bizkaia , Spain .
| | - Ana Ardá
- CIC bioGUNE , Bizkaia Technology Park, Building 800 , 48162 Derio , Bizkaia , Spain .
| | | | - Jesús Jiménez-Barbero
- CIC bioGUNE , Bizkaia Technology Park, Building 800 , 48162 Derio , Bizkaia , Spain .
- Ikerbasque , Basque Foundation for Science , 48013 Bilbao , Bizkaia , Spain
- Department of Organic Chemistry II , University of the Basque Country , UPV/EHU , 48940 Leioa , Bizkaia , Spain
| | - Ana Gimeno
- CIC bioGUNE , Bizkaia Technology Park, Building 800 , 48162 Derio , Bizkaia , Spain .
| |
Collapse
|
34
|
Bello C, Rovero P, Papini AM. Just a spoonful of sugar: Short glycans affect protein properties and functions. J Pept Sci 2019; 25:e3167. [PMID: 30924227 DOI: 10.1002/psc.3167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 02/21/2019] [Accepted: 02/22/2019] [Indexed: 11/09/2022]
Abstract
Glycosylation has a strong impact on the chemical and physical properties of proteins and on their activity. The heterogeneous nature of this modification complicates the elucidation of the role of each glycan, thus slowing down the progress in glycobiology. Nevertheless, the great advances recently made in protein engineering and in the chemical synthesis, and semisynthesis of glycoproteins are giving impulse to the field, fostering important discoveries. In this review, we report on the findings of the last two decades on the importance that the attachment site, linkage, and composition of short glycans have in affecting protein properties and functions.
Collapse
Affiliation(s)
- Claudia Bello
- Laboratory of Peptide and Protein Chemistry and Biology, Department of Chemistry "Ugo Schiff", University of Florence, Sesto Fiorentino, Italy
| | - Paolo Rovero
- Laboratory of Peptide and Protein Chemistry and Biology, Department of NeuroFarBa, University of Florence, Sesto Fiorentino, Italy
| | - Anna Maria Papini
- Laboratory of Peptide and Protein Chemistry and Biology, Department of Chemistry "Ugo Schiff", University of Florence, Sesto Fiorentino, Italy.,PeptLab@UCP Platform and Laboratory of Chemical Biology EA4505, University Paris-Seine, Cergy-Pontoise CEDEX, France
| |
Collapse
|