1
|
Ranard KM, Appel B. Creation of a novel zebrafish model with low DHA status to study the role of maternal nutrition during neurodevelopment. J Lipid Res 2024:100716. [PMID: 39608569 DOI: 10.1016/j.jlr.2024.100716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 11/08/2024] [Accepted: 11/23/2024] [Indexed: 11/30/2024] Open
Abstract
Docosahexaenoic acid (DHA), a dietary omega-3 fatty acid, is a major building block of brain cell membranes. Offspring rely on maternal DHA transfer to meet their neurodevelopmental needs, but DHA sources are lacking in the American diet. Low DHA status is linked to altered immune responses, white matter defects, impaired vision, and an increased risk of psychiatric disorders during development. However, the underlying cellular mechanisms involved are largely unknown, and advancements in the field have been limited by the existing tools and animal models. Zebrafish are an excellent model for studying neurodevelopmental mechanisms. Embryos undergo rapid external development and are optically transparent, enabling direct observation of individual cells and dynamic cell-cell interactions in a way that is not possible in rodents. Here, we create a novel DHA-deficient zebrafish model by 1) disrupting elovl2, a key gene in the DHA biosynthesis pathway, via CRISPR-Cas9 genome editing, and 2) feeding mothers a DHA-deficient diet. We show that low DHA status during development is associated with an abnormal eye phenotype and demonstrate that even morphologically normal siblings exhibit dysregulated vision and stress response gene pathways. Future work using our zebrafish model could reveal the cellular and molecular mechanisms by which low DHA status leads to neurodevelopmental abnormalities, and provide insight into maternal nutritional strategies that optimize infant brain health.
Collapse
Affiliation(s)
- Katherine M Ranard
- Department of Pediatrics, Section of Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| | - Bruce Appel
- Department of Pediatrics, Section of Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
2
|
Ranard KM, Appel B. Creation of a novel zebrafish model with low DHA status to study the role of maternal nutrition during neurodevelopment. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.30.605803. [PMID: 39131270 PMCID: PMC11312534 DOI: 10.1101/2024.07.30.605803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Docosahexaenoic acid (DHA), a dietary omega-3 fatty acid, is a major building block of brain cell membranes. Offspring rely on maternal DHA transfer to meet their neurodevelopmental needs, but DHA sources are lacking in the American diet. Low DHA status is linked to altered immune responses, white matter defects, impaired vision, and an increased risk of psychiatric disorders during development. However, the underlying cellular mechanisms involved are largely unknown, and advancements in the field have been limited by the existing tools and animal models. Zebrafish are an excellent model for studying neurodevelopmental mechanisms. Embryos undergo rapid external development and are optically transparent, enabling direct observation of individual cells and dynamic cell-cell interactions in a way that is not possible in rodents. Here, we create a novel DHA-deficient zebrafish model by 1) disrupting elovl2, a key gene in the DHA biosynthesis pathway, via CRISPR-Cas9 genome editing, and 2) feeding mothers a DHA-deficient diet. We show that low DHA status during development is associated with a small eye morphological phenotype and demonstrate that even the morphologically normal siblings exhibit dysregulated gene pathways related to vision and stress response. Future work using our zebrafish model could reveal the cellular and molecular mechanisms by which low DHA status leads to neurodevelopmental abnormalities and provide insight into maternal nutritional strategies that optimize infant brain health.
Collapse
Affiliation(s)
- Katherine M Ranard
- Department of Pediatrics, Section of Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Bruce Appel
- Department of Pediatrics, Section of Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
3
|
Péron M, Gonzalvez R, Hue S, Soudant P, Le Grand F, Mazurais D, Vagner M. Spatial and ontogenetic modulation of fatty acid composition in juvenile European sea bass (Dicentrarchus labrax) from two French estuaries. MARINE ENVIRONMENTAL RESEARCH 2024; 197:106456. [PMID: 38522120 DOI: 10.1016/j.marenvres.2024.106456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 01/25/2024] [Accepted: 03/14/2024] [Indexed: 03/26/2024]
Abstract
This study evaluated how estuary of origin and ontogenetic stage influence the fatty acid (FA) composition in the tissues of wild European sea bass juvenile. We evidenced tissue-specific patterns, with the brain exhibiting a distinct FA composition from the liver and muscle. Ontogenetic stage and estuary influenced the general FA profile, and particularly the essential FA (EFA) like docosahexaenoic acid (DHA), eicosapentaenoic acid (EPA), and arachidonic acid (ARA) in all tissues. The data also revealed the ability of wild sea bass to modulate, at the molecular level, FA biosynthesis pathways and suggest a potential dietary DHA limitation in the natural environment. The distribution of FA within tissues might reflect shifts in diet, metabolic demands, or adaptations to environmental conditions. This study provides insights about FA dynamics in euryhaline fish during juvenile life stage, improving our understanding of the metabolism need and EFA trophic availability in a changing environment.
Collapse
Affiliation(s)
- Mickaël Péron
- Univ Brest, CNRS, IRD, Ifremer, UMR 6539, LEMAR, Plouzané, France.
| | - Romain Gonzalvez
- Univ Brest, CNRS, IRD, Ifremer, UMR 6539, LEMAR, Plouzané, France
| | - Sarah Hue
- UMR-I 02 SEBIO - Stress Environnementaux et BIOsurveillance des milieux aquatiques, Université du Havre Normandie, France
| | - Philippe Soudant
- Univ Brest, CNRS, IRD, Ifremer, UMR 6539, LEMAR, Plouzané, France
| | | | - David Mazurais
- Univ Brest, CNRS, IRD, Ifremer, UMR 6539, LEMAR, Plouzané, France
| | - Marie Vagner
- Univ Brest, CNRS, IRD, Ifremer, UMR 6539, LEMAR, Plouzané, France
| |
Collapse
|
4
|
Huang Y, Yang H, Li Y, Guo Y, Li G, Chen H. Comparative Transcriptome Analysis Reveals the Effect of Aurantiochytrium sp. on Gonadal Development in Zebrafish. Animals (Basel) 2023; 13:2482. [PMID: 37570291 PMCID: PMC10417364 DOI: 10.3390/ani13152482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/23/2023] [Accepted: 07/29/2023] [Indexed: 08/13/2023] Open
Abstract
Aurantiochytrium sp. has received much attention as a potential resource for mass production of omega-3 fatty acids, which contribute to improved growth and reproduction in aquatic animals. In this study, we evaluated the gonadal index changes in zebrafish supplemented with 1-3% Aurantiochytrium sp. crude extract (TE) and the effects of ex vivo environmental Aurantiochytrium sp. on oocytes. 1% TE group showed significant improvement in the gonadal index, and both in vitro incubation and intraperitoneal injection promoted the maturation of zebrafish oocytes. In contrast, the transcriptome revealed 576 genes that were differentially expressed between the 1% TE group and the control group, including 456 up-regulated genes and 120 down-regulated genes. Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) pathway analysis of differentially expressed genes indicated that Aurantiochytrium sp. potentially affects pathways such as lipid metabolism, immune regulation, and oocyte development in zebrafish. The results of this study enriched the knowledge of Aurantiochytrium sp. in regulating gonadal development in zebrafish and provided a theoretical basis for its application in aquaculture.
Collapse
Affiliation(s)
- Yanlin Huang
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China; (Y.H.); (H.Y.); (Y.L.); (Y.G.); (G.L.)
| | - Hao Yang
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China; (Y.H.); (H.Y.); (Y.L.); (Y.G.); (G.L.)
| | - Yikai Li
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China; (Y.H.); (H.Y.); (Y.L.); (Y.G.); (G.L.)
| | - Yuwen Guo
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China; (Y.H.); (H.Y.); (Y.L.); (Y.G.); (G.L.)
| | - Guangli Li
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China; (Y.H.); (H.Y.); (Y.L.); (Y.G.); (G.L.)
| | - Huapu Chen
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China; (Y.H.); (H.Y.); (Y.L.); (Y.G.); (G.L.)
- Key Laboratory of Utilization and Conservation for Tropical Marine Bioresources of Ministry of Education, Hainan Key Laboratory for Conservation and Utilization of Tropical Marine Fishery Resources, Yazhou Bay Innovation Institute, Hainan Tropical Ocean University, Sanya 572022, China
| |
Collapse
|
5
|
Ding L, Liu Y, Kang M, Wei X, Geng C, Liu W, Han L, Yuan F, Wang P, Wang B, Sun Y. UPLC-QTOF/MS Metabolomics and Biochemical Assays Reveal Changes in Hepatic Nutrition and Energy Metabolism during Sexual Maturation in Female Rainbow Trout ( Oncorhynchus mykiss). BIOLOGY 2022; 11:1679. [PMID: 36421392 PMCID: PMC9687450 DOI: 10.3390/biology11111679] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/16/2022] [Accepted: 11/17/2022] [Indexed: 09/20/2024]
Abstract
Mobilization and repartition of nutrients and energy are prerequisites for the normal sexual maturity of broodstock. However, there are few studies on the mechanisms of hepatic nutrients and energy metabolism during sexual maturation in female rainbow trout (Oncorhynchus mykiss). This study investigated hepatic metabolite changes and explored the potential nutritional regulation mechanism between mature and immature female rainbow trout by combining UPLC-QTOF/MS metabolomics and biochemical assays. It was observed that hepatic biochemical assays differed considerably between the two groups, such as glucose, triglycerides, hexokinase, lipase, and aspartate aminotransferase. Liver metabolomics showed that various differential metabolites involved in amino acid and lipid metabolism markedly increased, suggesting the enhancement of lipid metabolism and amino acid anabolism in the liver provides the necessary material basis for ovarian development. Meanwhile, glycogen catabolism and glycolysis hold the key to maintaining organismal energy homeostasis with normal sexual maturation of female rainbow trout. Overall, the results from this study suggested that the liver undergoes drastic reprogramming of the metabolic profile in response to mobilization and repartition of nutrients and energy during the sexual maturation of female rainbow trout. This study further deepened the understanding of the reproductive biology of rainbow trout, and provided the theoretical basis and practical ramifications for nutritional requirements of breeding high-quality broodstock in the artificial propagation of rainbow trout.
Collapse
Affiliation(s)
- Lu Ding
- Laboratory of Quality & Safety Risk Assessment for Aquatic Products (Harbin), Heilongjiang River Fisheries Research Institute of Chinese Academy of Fishery Sciences, Ministry of Agriculture and Rural Areas, Harbin 150070, China
- Department of Food Science and Engineering, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Yingjie Liu
- Laboratory of Quality & Safety Risk Assessment for Aquatic Products (Harbin), Heilongjiang River Fisheries Research Institute of Chinese Academy of Fishery Sciences, Ministry of Agriculture and Rural Areas, Harbin 150070, China
- Department of Food Science and Engineering, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Meng Kang
- Heilongjiang Provincial Fishery Extension Center, Harbin 150080, China
| | - Xiaofeng Wei
- Laboratory of Quality & Safety Risk Assessment for Aquatic Products (Harbin), Heilongjiang River Fisheries Research Institute of Chinese Academy of Fishery Sciences, Ministry of Agriculture and Rural Areas, Harbin 150070, China
- Department of Food Science and Engineering, College of Food Science and Engineering, Dalian Ocean University, Dalian 116023, China
| | - Chuanye Geng
- Laboratory of Quality & Safety Risk Assessment for Aquatic Products (Harbin), Heilongjiang River Fisheries Research Institute of Chinese Academy of Fishery Sciences, Ministry of Agriculture and Rural Areas, Harbin 150070, China
- Department of Food Science and Engineering, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Wenzhi Liu
- Laboratory of Quality & Safety Risk Assessment for Aquatic Products (Harbin), Heilongjiang River Fisheries Research Institute of Chinese Academy of Fishery Sciences, Ministry of Agriculture and Rural Areas, Harbin 150070, China
- Department of Food Science and Engineering, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Lin Han
- Laboratory of Quality & Safety Risk Assessment for Aquatic Products (Harbin), Heilongjiang River Fisheries Research Institute of Chinese Academy of Fishery Sciences, Ministry of Agriculture and Rural Areas, Harbin 150070, China
- Department of Food Science and Engineering, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Fangying Yuan
- Laboratory of Quality & Safety Risk Assessment for Aquatic Products (Harbin), Heilongjiang River Fisheries Research Institute of Chinese Academy of Fishery Sciences, Ministry of Agriculture and Rural Areas, Harbin 150070, China
- Department of Chemical Engineering and Technology, College of Materials and Chemical Engineering, Harbin University of Science and Technology, Harbin 150080, China
| | - Peng Wang
- Laboratory of Quality & Safety Risk Assessment for Aquatic Products (Harbin), Heilongjiang River Fisheries Research Institute of Chinese Academy of Fishery Sciences, Ministry of Agriculture and Rural Areas, Harbin 150070, China
| | - Bingqian Wang
- Laboratory of Quality & Safety Risk Assessment for Aquatic Products (Harbin), Heilongjiang River Fisheries Research Institute of Chinese Academy of Fishery Sciences, Ministry of Agriculture and Rural Areas, Harbin 150070, China
| | - Yanchun Sun
- Laboratory of Quality & Safety Risk Assessment for Aquatic Products (Harbin), Heilongjiang River Fisheries Research Institute of Chinese Academy of Fishery Sciences, Ministry of Agriculture and Rural Areas, Harbin 150070, China
- Department of Food Science and Engineering, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
- Department of Food Science and Engineering, College of Food Science and Engineering, Dalian Ocean University, Dalian 116023, China
- Department of Chemical Engineering and Technology, College of Materials and Chemical Engineering, Harbin University of Science and Technology, Harbin 150080, China
| |
Collapse
|
6
|
Guo L, Gao Q, Zhu J, Jin X, Yin H, Liu T. A Docosahexaenoic Acid Derivative ( N-Benzyl Docosahexaenamide) as a Potential Therapeutic Candidate for Treatment of Ovarian Injury in the Mouse Model. Molecules 2022; 27:molecules27092754. [PMID: 35566104 PMCID: PMC9102315 DOI: 10.3390/molecules27092754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/20/2022] [Accepted: 04/23/2022] [Indexed: 02/04/2023] Open
Abstract
Commonly used clinical chemotherapy drugs, such as cyclophosphamide (CTX), may cause injury to the ovaries. Hormone therapies can reduce the ovarian injury risk; however, they do not achieve the desired effect and have obvious side effects. Therefore, it is necessary to find a potential therapeutic candidate for ovarian injury after chemotherapy. N-Benzyl docosahexaenamide (NB-DHA) is a docosahexaenoic acid derivative. It was recently identified as the specific macamide with a high degree of unsaturation in maca (Lepidium meyenii). In this study, the purified NB-DHA was administered intragastrically to the mice with CTX-induced ovarian injury at three dose levels. Blood and tissue samples were collected to assess the regulation of NB-DHA on ovarian function. The results indicated that NB-DHA was effective in improving the disorder of estrous cycle, and the CTX+NB-H group can be recovered to normal levels. NB-DHA also significantly increased the number of primordial follicles, especially in the CTX+NB-M and CTX+NB-H groups. Follicle-stimulating hormone and luteinizing hormone levels in all treatment groups and estradiol levels in the CTX+NB-H group returned to normal. mRNA expression of ovarian development-related genes was positive regulated. The proportion of granulosa cell apoptosis decreased significantly, especially in the CTX+NB-H group. The expression of anti-Müllerian hormone and follicle-stimulating hormone receptor significantly increased in ovarian tissues after NB-DHA treatment. NB-DHA may be a promising agent for treating ovarian injury.
Collapse
Affiliation(s)
- Lirong Guo
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China; (L.G.); (Q.G.); (J.Z.); (X.J.)
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Qing Gao
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China; (L.G.); (Q.G.); (J.Z.); (X.J.)
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Jieqiong Zhu
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China; (L.G.); (Q.G.); (J.Z.); (X.J.)
| | - Xiaobao Jin
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China; (L.G.); (Q.G.); (J.Z.); (X.J.)
| | - Hui Yin
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China; (L.G.); (Q.G.); (J.Z.); (X.J.)
- Correspondence: (H.Y.); (T.L.)
| | - Tao Liu
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China; (L.G.); (Q.G.); (J.Z.); (X.J.)
- Correspondence: (H.Y.); (T.L.)
| |
Collapse
|
7
|
Yoshinaga K, Usami Y, Yoshinaga-Kiriake A, Shikano H, Taira S, Nagasaka R, Tanaka S, Gotoh N. Visualization of dietary docosahexaenoic acid in whole-body zebrafish using matrix-assisted laser desorption/ionization mass spectrometry imaging. J Nutr Biochem 2021; 100:108897. [PMID: 34748923 DOI: 10.1016/j.jnutbio.2021.108897] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 08/19/2021] [Accepted: 09/29/2021] [Indexed: 10/19/2022]
Abstract
Zebrafish models have been developed for several studies involving lipid metabolism and lipid-related diseases. In the present study, the migration of dietary docosahexaenoic acid (DHA) in whole-body zebrafish was estimated by stable-isotope tracer and matrix-assisted laser desorption/ionization mass spectrometry imaging. Administration of 1-13C-2,2-D2-labeled DHA ((+3)DHA) ethyl ester to male zebrafish was conducted to evaluate its accumulation, migration, and distribution in the body. The (+3)DHA content in the body of zebrafish after administering (+3)DHA for 10 and 15 d was significantly higher than that in the control group. (+3)DHA was observed as a constituent of phosphatidylcholine (PC) in the intestine of zebrafish that were administered (+3)DHA for 5 and 10 d. (+3)DHA-containing PC tended to accumulate in the intestines of zebrafish administered (+3)DHA for 1 d, indicating that recombination of (+3)DHA from ethyl ester to PC occurs quickly at intestine. After administration for 15 d, (+3)DHA-containing PC accumulated in the intestine, liver, and muscle of whole-body zebrafish. In contrast, (+3)DHA-containing PC was not detected in the brain. These results showed that dietary DHA is initially constructed into PC as a structural component of intestinal cell membranes and gradually migrates into peripheral tissues such as muscle.
Collapse
Affiliation(s)
- Kazuaki Yoshinaga
- Food and Agricultural Sciences, Fukushima University, Fukushima, Japan
| | - Yuka Usami
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, Tokyo, Japan
| | | | - Hitomi Shikano
- Food and Agricultural Sciences, Fukushima University, Fukushima, Japan
| | - Shu Taira
- Food and Agricultural Sciences, Fukushima University, Fukushima, Japan
| | - Reiko Nagasaka
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, Tokyo, Japan
| | - Seiya Tanaka
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, Tokyo, Japan
| | - Naohiro Gotoh
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, Tokyo, Japan.
| |
Collapse
|
8
|
Zhu Y, Wu J, Leng X, Du H, Wu J, He S, Luo J, Liang X, Liu H, Wei Q, Tan Q. Metabolomics and gene expressions revealed the metabolic changes of lipid and amino acids and the related energetic mechanism in response to ovary development of Chinese sturgeon (Acipenser sinensis). PLoS One 2020; 15:e0235043. [PMID: 32589675 PMCID: PMC7319304 DOI: 10.1371/journal.pone.0235043] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 05/19/2020] [Indexed: 12/16/2022] Open
Abstract
Captive breeding has been explored in Chinese sturgeon (Acipenser sinensis) for species protection. However, gonad development from stage II to IV of cultured female broodstocks is a handicap. This study aimed to explore the physiological and metabolic changes during the ovary development from stage II to IV of female Chinese sturgeon and the related energy regulatory mechanism, which may be helpful to address the developmental obstacle. The results showed that the oocyte volume increased and the muscle lipid content decreased with the ovary development. Ovarian RNA levels of most genes related to lipid and amino acid metabolism were higher in stage II and III than in stage IV. Serum contents of differential metabolites in arginine, cysteine, methionine, purine, tyrosine, lysine, valine, leucine and isoleucine metabolism pathways peaked at stage III, while the contents of sarcosine, alanine and histidine, as well as most oxylipins derived from fatty acids peaked at stage IV. These results indicated the more active amino acids, lipid metabolism, and energy dynamics of fish body in response to the high energy input of ovary developing from stage II to III, and the importance of alanine, histidine, taurine, folate and oxylipins for fish with ovary at stage IV.
Collapse
Affiliation(s)
- Yanhong Zhu
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affairs, PRC, Hubei Provincial Engineering Laboratory for Pond Aquaculture, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Jinming Wu
- Key Laboratory of Freshwater Biodiversity Conservation and Utilization, Ministry of Agriculture and Rural Affairs, PRC, Yangtze River Fisheries Research Institute, Chinese Academy of Fisheries Science, Wuhan, China
| | - Xiaoqian Leng
- Key Laboratory of Freshwater Biodiversity Conservation and Utilization, Ministry of Agriculture and Rural Affairs, PRC, Yangtze River Fisheries Research Institute, Chinese Academy of Fisheries Science, Wuhan, China
| | - Hao Du
- Key Laboratory of Freshwater Biodiversity Conservation and Utilization, Ministry of Agriculture and Rural Affairs, PRC, Yangtze River Fisheries Research Institute, Chinese Academy of Fisheries Science, Wuhan, China
| | - Jinping Wu
- Key Laboratory of Freshwater Biodiversity Conservation and Utilization, Ministry of Agriculture and Rural Affairs, PRC, Yangtze River Fisheries Research Institute, Chinese Academy of Fisheries Science, Wuhan, China
| | - Shan He
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affairs, PRC, Hubei Provincial Engineering Laboratory for Pond Aquaculture, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Jiang Luo
- Key Laboratory of Freshwater Biodiversity Conservation and Utilization, Ministry of Agriculture and Rural Affairs, PRC, Yangtze River Fisheries Research Institute, Chinese Academy of Fisheries Science, Wuhan, China
| | - Xufang Liang
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affairs, PRC, Hubei Provincial Engineering Laboratory for Pond Aquaculture, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Hong Liu
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affairs, PRC, Hubei Provincial Engineering Laboratory for Pond Aquaculture, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Qiwei Wei
- Key Laboratory of Freshwater Biodiversity Conservation and Utilization, Ministry of Agriculture and Rural Affairs, PRC, Yangtze River Fisheries Research Institute, Chinese Academy of Fisheries Science, Wuhan, China
| | - Qingsong Tan
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affairs, PRC, Hubei Provincial Engineering Laboratory for Pond Aquaculture, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
9
|
Comparison of Chemical Composition and Safety Issues in Fish Roe Products: Application of Chemometrics to Chemical Data. Foods 2020; 9:foods9050540. [PMID: 32349203 PMCID: PMC7278670 DOI: 10.3390/foods9050540] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 04/21/2020] [Accepted: 04/21/2020] [Indexed: 11/25/2022] Open
Abstract
Processed fish roes are acquiring considerable importance in the modern food market, entering more and more often as an ingredient in food preparation and as caviar substitutes. In this study, we defined quality, traceability and safety issues related to processed fish roe products from different species. The results obtained allowed to distinguish eggs originated from different fish species and to discriminate between fish roes and caviar samples obtained from four different sturgeons species. We observed that roes showed a trend of grouping according to ecological and reproductive habits of fish species. We highlighted the differences between eggs originated by farmed and freshwater fish, enriched in n6 polyunsaturated fatty acids (PUFAs), and all the others, in which n3 PUFAs were prevalent. In addition, we evaluated processed fish roes under a food safety point of view, combining microbiological analysis with the determination of organic acids, used in some products as authorized preservatives. Microbiological characterization has proved a general good hygienic level for these products. Organic acids determination showed values in compliance with European Union (EU) regulations in almost of samples; in some cases, we found a mismatch between the organic acids detected and what was reported in labels. Processed fish roes could be considered a safe product that can provide to human nutrition a valuable content of essential fatty acids.
Collapse
|