1
|
Almeida J, Lima ARA, Faria AM, Lopes AR. Sand smelt larvae's resilience to hypoxia and implications for thermal tolerance. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 950:174969. [PMID: 39117224 DOI: 10.1016/j.scitotenv.2024.174969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/19/2024] [Accepted: 07/20/2024] [Indexed: 08/10/2024]
Abstract
Deoxygenation is a growing threat to marine ecosystems, with an increase in the frequency, extent and intensity of hypoxia events in recent decades. These phenomena will pose various challenges to marine species, as it affects their survival, growth, body condition, metabolism and ability to handle other environmental stressors, such as temperature. Early life stages are particularly vulnerable to these changes. Thus, it is crucial to understand how these initial phases will respond to hypoxia to predict the impacts on marine populations and ecosystems. In this work, we aimed to evaluate the effect of oxygen (O2) availability on fitness related traits (mortality, growth and body condition), metabolism (Routine metabolic rates [RMR]) and thermal tolerance (CTmax), in early stages of Atherina presbyter, exposed for two weeks, to two O2 levels: normoxia (6.5-7.2 mg L-1) and hypoxia (2-2.5 mg L-1), through an experiment setup. Our findings showed that while low oxygen levels did not negatively impact mortality, total length, weight, or body condition (Fulton K), the larvae undergo metabolic depression when exposed to hypoxia, as an energy conservation mechanism. Furthermore, CTmax suffered a significant reduction in low O2 availability, due to the inability of the circulatory and respiratory systems to fulfill energy demands. These outcomes suggest that although early life stages of Atherina presbyter can survive under low oxygen environments, they are less capable of dealing with sudden increases in temperature when oxygen is scarce.
Collapse
Affiliation(s)
- João Almeida
- MARE-Marine and Environmental Sciences Centre/ARNET-Aquatic Research Network, ISPA-Instituto Universitário, 1149 Lisbon, Portugal
| | - André R A Lima
- MARE-Marine and Environmental Sciences Centre/ARNET-Aquatic Research Network, ISPA-Instituto Universitário, 1149 Lisbon, Portugal
| | - Ana Margarida Faria
- MARE-Marine and Environmental Sciences Centre/ARNET-Aquatic Research Network, ISPA-Instituto Universitário, 1149 Lisbon, Portugal; CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, Terminal de Cruzeiros do Porto de Leixões, 4450-208 Matosinhos, Portugal
| | - Ana Rita Lopes
- MARE-Marine and Environmental Sciences Centre/ARNET-Aquatic Research Network, Faculty of Sciences, University of Lisbon, Campo Grande, 1749-016 Lisbon, Portugal; Department of Animal Biology, Faculty of Sciences, University of Lisbon, Campo Grande, 1749-016 Lisbon, Portugal.
| |
Collapse
|
2
|
Dai Y, Shen Y, Ke C, Luo X, Huang M, Huang H, You W. Carryover effects of embryonic hypoxia exposure on adult fitness of the Pacific abalone. ENVIRONMENTAL RESEARCH 2024; 260:119628. [PMID: 39048070 DOI: 10.1016/j.envres.2024.119628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/02/2024] [Accepted: 07/14/2024] [Indexed: 07/27/2024]
Abstract
The widespread and severe drop in dissolved oxygen concentration in the open ocean and coastal waters has attracted much attention, but assessments of the impacts of environmental hypoxia on aquatic organisms have focused primarily on responses to current exposure. Past stress exposure might also affect the performance of aquatic organisms through carryover effects, and whether these effects scale from positive to negative based on exposure degree is unknown. We investigated the carryover effects of varying embryonic hypoxia levels (mediate hypoxia: 3.0-3.1 mg O2/L; severe hypoxia: 2.0-2.1 mg O2/L) on the fitness traits of adult Pacific abalone (Haliotis discus hannai), including growth, hypoxia tolerance, oxygen consumption, ammonia excretion rate, and biochemical responses to acute hypoxia. Moderate embryonic hypoxia exposure significantly improved the hypoxia tolerance of adult Pacific abalone without sacrificing growth and survival. Adult abalone exposed to embryonic hypoxia exhibited physiological plasticity, including decreased oxygen consumption rates under environmental stress, increased basal methylation levels, and a more active response to acute hypoxia, which might support their higher hypoxia tolerance. Thus, moderate oxygen declines in early life have persistent effects on the fitness of abalone even two years later, further affecting population dynamics. The results suggested that incorporating the carryover effects of embryonic hypoxia exposure into genetic breeding programs would be an important step toward rapidly improving the hypoxia tolerance of aquatic animals. The study also inspires the protection of endangered wild animals and other vulnerable species under global climate change.
Collapse
Affiliation(s)
- Yue Dai
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; State Key Laboratory of Mariculture Breeding, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Yawei Shen
- State Key Laboratory of Marine Environmental Science, College of the Environmental and Ecology, Xiamen University, Xiamen 361102, China; State Key Laboratory of Mariculture Breeding, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; National Observation and Research Station for the Taiwan Strait Marine Ecosystem, Xiamen University, Zhangzhou, China.
| | - Caihuan Ke
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; State Key Laboratory of Mariculture Breeding, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; National Observation and Research Station for the Taiwan Strait Marine Ecosystem, Xiamen University, Zhangzhou, China
| | - Xuan Luo
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; State Key Laboratory of Mariculture Breeding, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Miaoqin Huang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; State Key Laboratory of Mariculture Breeding, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Huoqing Huang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; State Key Laboratory of Mariculture Breeding, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Weiwei You
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; State Key Laboratory of Mariculture Breeding, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; National Observation and Research Station for the Taiwan Strait Marine Ecosystem, Xiamen University, Zhangzhou, China.
| |
Collapse
|
3
|
Ma Q, Zhang R, Wei Y, Liang M, Xu H. Effects of Intermittent and Chronic Hypoxia on Fish Size and Nutrient Metabolism in Tiger Puffer ( Takifugu rubripes). Animals (Basel) 2024; 14:2470. [PMID: 39272255 PMCID: PMC11393956 DOI: 10.3390/ani14172470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 08/21/2024] [Accepted: 08/23/2024] [Indexed: 09/15/2024] Open
Abstract
Intermittent and chronic hypoxia are common stresses to marine fish, but the different responses of fish to intermittent and chronic hypoxia have not been well-known. In this study, tiger puffers were farmed in normoxia conditions (NO, 6.5 ± 0.5 mg/L), intermittent hypoxia (IH, 6.5 ± 0.5 mg/L in the day and 3.5 ± 0.5 mg/L in the night), or choric hypoxia (CH, 3.5 ± 0.5 mg/L) conditions for 4 weeks, after which the growth, nutrient metabolism and three hifα isoforms expression were measured. Both intermittent and chronic hypoxia decreased the fish growth and visceral weight but increased the feed conversion ratio and blood hemoglobin content. Chronic hypoxia but not intermittent hypoxia promoted protein synthesis and whole-fish protein content by activating mtor gene expression and promoted the glycolysis pathway by activating gene expression of hif1α and hif2α. Intermittent hypoxia but not chronic hypoxia decreased the hepatic lipid synthesis by inhibiting fasn and srebf1 gene expression. Meanwhile, intermittent hypoxia reduced the monounsaturated fatty acid content but increased the n-3 polyunsaturated fatty acids percentage. The results of this study clarified the adaptive mechanism of tiger puffer to intermittent and chronic hypoxia, which provides important information about mechanisms of hypoxia adaption in fish.
Collapse
Affiliation(s)
- Qiang Ma
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Renxiao Zhang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Yuliang Wei
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Mengqing Liang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Houguo Xu
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| |
Collapse
|
4
|
Ducros L, Touaibia M, Pichaud N, Lamarre SG. Resilience and phenotypic plasticity of Arctic char ( Salvelinus alpinus) facing cyclic hypoxia: insights into growth, energy stores and hepatic metabolism. CONSERVATION PHYSIOLOGY 2023; 11:coad099. [PMID: 38107465 PMCID: PMC10724465 DOI: 10.1093/conphys/coad099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 09/13/2023] [Accepted: 11/22/2023] [Indexed: 12/19/2023]
Abstract
Arctic char (Salvelinus alpinus) is facing the decline of its southernmost populations due to several factors including rising temperatures and eutrophication. These conditions are also conducive to episodes of cyclic hypoxia, another possible threat to this species. In fact, lack of oxygen and reoxygenation can both have serious consequences on fish as a result of altered ATP balance and an elevated risk of oxidative burst. Thus, fish must adjust their phenotype to survive and equilibrate their energetic budget. However, their energy allocation strategy could imply a reduction in growth which could be deleterious for their fitness. Although the impact of cyclic hypoxia is a major issue for ecosystems and fisheries worldwide, our knowledge on how salmonid deal with high oxygen fluctuations remains limited. Our objective was to characterize the effects of cyclic hypoxia on growth and metabolism in Arctic char. We monitored growth parameters (specific growth rate, condition factor), hepatosomatic and visceral indexes, relative heart mass and hematocrit of Arctic char exposed to 30 days of cyclic hypoxia. We also measured the hepatic protein synthesis rate, hepatic triglycerides as well as muscle glucose, glycogen and lactate and quantified hepatic metabolites during this treatment. The first days of cyclic hypoxia slightly reduce growth performance with a downward trend in specific growth rate in mass and condition factor variation compared to the control group. This acute exposure also induced a profound metabolome reorganization in the liver with an alteration of amino acid, carbohydrate and lipid metabolisms. However, fish rebalanced their metabolic activities and successfully maintained their growth and energetic reserves after 1 month of cyclic hypoxia. These results demonstrate the impressive ability of Arctic char to cope with its changing environment but also highlight a certain vulnerability of this species during the first days of a cyclic hypoxia event.
Collapse
Affiliation(s)
- Loïck Ducros
- Département de Biologie, Université de Moncton, 18 Antonine Maillet, Moncton E1A 3E9, NB, Canada
- Département de Chimie et Biochimie, Université de Moncton, 18 Antonine Maillet, Moncton E1A 3E9, NB, Canada
| | - Mohamed Touaibia
- Département de Chimie et Biochimie, Université de Moncton, 18 Antonine Maillet, Moncton E1A 3E9, NB, Canada
| | - Nicolas Pichaud
- Département de Chimie et Biochimie, Université de Moncton, 18 Antonine Maillet, Moncton E1A 3E9, NB, Canada
| | - Simon G Lamarre
- Département de Biologie, Université de Moncton, 18 Antonine Maillet, Moncton E1A 3E9, NB, Canada
| |
Collapse
|
5
|
Obirikorang KA, Appiah-Kubi R, Adjei-Boateng D, Sekey W, Duodu CP. Acute hyperthermia and hypoxia tolerance of two improved strains of nile tilapia (Oreochromis niloticus). STRESS BIOLOGY 2023; 3:21. [PMID: 37676332 PMCID: PMC10441896 DOI: 10.1007/s44154-023-00099-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 06/14/2023] [Indexed: 09/08/2023]
Abstract
Tilapia production in Ghana has been hit with episodes of stress and pathogen-induced mass fish kills which have anecdotally been linked to the culture of illegally imported Genetically Improved Farmed Tilapia (GIFT) strains of Nile tilapia, Oreochromis niloticus. This study was thus set up to comprehensively assess the stress tolerance of the GIFT strain and a native strain of Nile tilapia (the Akosombo strain) following exposures to hyperthermic and hypoxic stressors. In a series of experiments, oxygen consumption (MO2), aquatic surface respiration (ASR), thermal limits and hypoxia tolerance were assessed. The effects of these stressors on haematological parameters were also assessed. The GIFT strain was less tolerant of hypoxia and performed ASR at higher O2 levels than the Akosombo strain. Under progressive hypoxia, the GIFT strain exhibited higher gill ventilations frequencies (fV) than the Akosombo strain. The thermal tolerance trial indicated that the Akosombo strain of O. niloticus has higher thermotolerance than the GIFT strain and this was reflective in the higher LT50 (45.1℃) and LTmax (48℃), compared to LT50 and LTmax of 41.5℃ and 46℃ respectively. These results imply that it is crucial to consider how the GIFT strain performs under various environmental conditions and changes during culture. Particularly, raising the GIFT strain of Nile tilapia in earthen ponds rich in phytoplankton and subject to protracted episodes of extreme hypoxia may have a detrimental physiological impact on its growth and welfare.
Collapse
Affiliation(s)
- Kwasi Adu Obirikorang
- Department of Fisheries and Watershed Management, University Post Office, Kwame Nkrumah University of Science and Technology, Private Mail Bag, Kumasi, Ghana.
| | - Richard Appiah-Kubi
- Department of Fisheries and Watershed Management, University Post Office, Kwame Nkrumah University of Science and Technology, Private Mail Bag, Kumasi, Ghana
| | - Daniel Adjei-Boateng
- Department of Fisheries and Watershed Management, University Post Office, Kwame Nkrumah University of Science and Technology, Private Mail Bag, Kumasi, Ghana
| | - Wonder Sekey
- Department of Fisheries and Watershed Management, University Post Office, Kwame Nkrumah University of Science and Technology, Private Mail Bag, Kumasi, Ghana
| | - Collins Prah Duodu
- Department of Marine and Fisheries Sciences, University of Ghana, Accra, Ghana
| |
Collapse
|
6
|
Barbacariu CA, Rimbu CM, Burducea M, Dirvariu L, Miron LD, Boiangiu RS, Dumitru G, Todirascu-Ciornea E. Comparative Study of Flesh Quality, Blood Profile, Antioxidant Status, and Intestinal Microbiota of European Catfish ( Silurus glanis) Cultivated in a Recirculating Aquaculture System (RAS) and Earthen Pond System. Life (Basel) 2023; 13:1282. [PMID: 37374065 DOI: 10.3390/life13061282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/26/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
With the increasing demand for European catfish, traditional extensive growth methods in polyculture are no longer sufficient to meet market needs. Therefore, this study aimed to identify indicators for improving recirculating aquaculture system (RAS) technology by determining and comparing growth performance, flesh quality, blood profile, oxidative status, and intestinal microbiota parameters between fish cultivated in a RAS and an earthen pond. Results revealed that RAS-grown fish had a higher fat content compared to pond-grown fish, while no significant differences were found for growth parameters. Sensory analysis showed no significant difference in taste between the two groups. Blood composition analysis showed small differences. Oxidative status analyses showed higher catalase and glutathione peroxidase activities in RAS-grown fish and slightly higher superoxide dismutase activity in pond-grown fish. Microbial analysis showed differences in the intestinal microflora, with a higher total number of aerobic germs and anaerobic germs and a lower total number of sulfite-reducing clostridia in RAS-grown fish. This study provides valuable insights into the comparative performance of a RAS and a pond rearing system in European catfish production, potentially informing future growth technologies.
Collapse
Affiliation(s)
- Cristian-Alin Barbacariu
- Research and Development Station for Aquaculture and Aquatic Ecology, "Alexandru Ioan Cuza" University, Carol I, 20A, 700505 Iasi, Romania
| | - Cristina Mihaela Rimbu
- Department of Public Health, Faculty of Veterinary Medicine, University of Life Sciences "Ion Ionescu de la Brad" Iaşi, Mihail Sadoveanu Alley 6-8, 700490 Iasi, Romania
| | - Marian Burducea
- Research and Development Station for Aquaculture and Aquatic Ecology, "Alexandru Ioan Cuza" University, Carol I, 20A, 700505 Iasi, Romania
| | - Lenuta Dirvariu
- Research and Development Station for Aquaculture and Aquatic Ecology, "Alexandru Ioan Cuza" University, Carol I, 20A, 700505 Iasi, Romania
| | - Liviu-Dan Miron
- Department of Public Health, Faculty of Veterinary Medicine, University of Life Sciences "Ion Ionescu de la Brad" Iaşi, Mihail Sadoveanu Alley 6-8, 700490 Iasi, Romania
| | - Razvan Stefan Boiangiu
- Faculty of Biology, "Alexandru Ioan Cuza" University, Carol I, 20A, 700505 Iasi, Romania
| | - Gabriela Dumitru
- Faculty of Biology, "Alexandru Ioan Cuza" University, Carol I, 20A, 700505 Iasi, Romania
| | | |
Collapse
|
7
|
Obirikorang KA, Sekey W, Amenutsuor-Vondee S, Kweku-Akagbo E, Adjei-Boateng D, Kassah JE, Gyampoh BA. Functional feeding traits and fecundity as predictors of invasive success of the introduced Nile tilapia, Oreochromis niloticus in Lake Bosomtwe, Ghana. Biol Invasions 2023. [DOI: 10.1007/s10530-023-03029-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
|
8
|
He Y, Yu H, Zhang Z, Zhang J, Kang S, Zhang X. Effects of chronic hypoxia on growth performance, antioxidant capacity and protein turnover of largemouth bass (Micropterus salmoides). AQUACULTURE 2022; 561:738673. [DOI: 10.1016/j.aquaculture.2022.738673] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
9
|
García-Meilán I, Tort L, Khansari AR. Rainbow trout integrated response after recovery from short-term acute hypoxia. Front Physiol 2022; 13:1021927. [DOI: 10.3389/fphys.2022.1021927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Overcoming a stress situation, such as hypoxia episodes, which involve an allostatic load, will depend on the ability of fish to modulate physiological and biochemical systems to maintain homeostasis. The aim of the study was to determine the integrated stress response after acute hypoxia of the rainbow trout considering the different elements and areas of the stress response: systemic and mucosal, local and global, and from the systemic hypothalamic–pituitary–interrenal axis to skin mucosa. For this purpose, trout were subjected to acute hypoxia (dissolved O2 down to 2 mg/L) for 1 h and then recovered and sampled at 1, 6, and 24 h after reoxygenation. Physiological responses were significantly affected by hypoxic stress and their interaction with time after the challenge, being significant for plasma lactate and cortisol levels, in both plasma and skin mucus. At the central brain level, only trh expression was modulated 1 h after hypoxia which indicates that brain function is not heavily affected by this particular stress. Unlike the brain, the head kidney and skin were more affected by hypoxia and reoxygenation. In the head kidney, an upregulation in the expression of most of the genes studied (gr, il1β, il6, tgfβ1, lysozyme, caspase 3, enolase, hif-1, myoglobin, sod2, gpx, gst, and gsr) took place 6 h after recovery, whereas only hsp70 and il10 were upregulated after 1 h. On the contrary, in the skin, most of the analyzed genes showed a higher upregulation during 1 h after stress suggesting that, in the skin, a local response took place as soon as the stressor was detected, thus indicating the importance of the skin in the building of a stress response, whereas the interrenal tissue participated in a later time point to help prevent further alteration at the central level. The present results also show that, even though the stressor is a physical/environmental stressor, all components of the biological systems participate in the regulation of the response process and the recovery process, including neuroendocrine, metabolism, and immunity.
Collapse
|
10
|
El Basuini MF, Teiba II, Shahin SA, Mourad MM, Zaki MAA, Labib EMH, Azra MN, Sewilam H, El-Dakroury MF, Dawood MAO. Dietary Guduchi (Tinospora cordifolia) enhanced the growth performance, antioxidative capacity, immune response and ameliorated stress-related markers induced by hypoxia stress in Nile tilapia (Oreochromis niloticus). FISH & SHELLFISH IMMUNOLOGY 2022; 120:337-344. [PMID: 34883256 DOI: 10.1016/j.fsi.2021.12.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 12/02/2021] [Accepted: 12/05/2021] [Indexed: 06/13/2023]
Abstract
Nile tilapia can tolerate a wide range of farming conditions; however, fluctuations in the environmental conditions may impair their health status. The incorporation of medicinal herbs in aquafeed is suggested to overcome stressful conditions. In this study, dietary Guduchi (Tinospora cordifolia) was evaluated on the growth performance, antioxidative capacity, immune response, and resistance of Nile tilapia against hypoxia stress. Fish fed five diets incorporated with Guduchi at 0, 2, 4, 6, and 8 g/kg for 56 days then exposed with hypoxia stress for 72 h. The growth performance, feed intake, and feed efficiency ratio were significantly (P < 0.05) increased by including Guduchi in tilapia diets regardless of the inclusion level. Similarly, the lipase and protease activities were markedly (P < 0.05) increased in tilapia fed dietary Guduchi. The activities of lysozyme and bactericidal activities in serum and mucus, nitro-blue tetrazolium (NBT), and alternative complement activity (ACH50) were markedly (P < 0.05) enhanced in tilapia treated with Guduchi supplements regardless of the dose. Additionally, the activities of liver and intestinal superoxide dismutase, catalase, and glutathione peroxidase were markedly enhanced (P < 0.05) by including Guduchi in tilapia diets compared with the control. Before and after hypoxia stress, tilapia-fed dietary Guduchi had lower glucose and cortisol levels than fish-fed Guduchi-free diets (P < 0.05). In all groups, glucose and cortisol levels were markedly higher after hypoxia compared before hypoxia stress (P < 0.05). In conclusion, dietary Guduchi can be included at 5.17-5.49 g/kg to enhance the growth performance, digestive enzyme activity, immune and antioxidative responses, and the resistance of Nile tilapia against hypoxia stress.
Collapse
Affiliation(s)
- Mohammed F El Basuini
- Animal Production Department, Faculty of Agriculture, Tanta University, 31527, Tanta, Egypt; Faculty of Desert Agriculture, King Salman International University, South Sinai, Egypt.
| | - Islam I Teiba
- Microbiology, Botany Department, Faculty of Agriculture, Tanta University, 31527, Tanta, Egypt
| | - Shimaa A Shahin
- Animal and Fish Production Department, Faculty of Agriculture- Saba Basha, Alexandria University, Egypt
| | - Mona M Mourad
- National Institute of Oceanography and Fisheries, NIOF, Cairo, Egypt
| | - Mohamed A A Zaki
- Animal and Fish Production Department, Faculty of Agriculture - El Shatby, Alexandria University, Egypt
| | - Eman M H Labib
- Animal Production Research Institute, Agriculture Research Center, Dokki, Giza, Egypt
| | - Mohamad Nor Azra
- Institute for Tropical Biodiversity and Sustainable Development, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia; Institute of Marine Biotechnology, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia
| | - Hani Sewilam
- The Center for Applied Research on the Environment and Sustainability, The American University in Cairo, 11835, Cairo, Egypt; Department of Engineering Hydrology, RWTH Aachen University, Aachen, Germany
| | - M F El-Dakroury
- Department of Pharmacology, Faculty of Veterinary Medicine, Matrouh University, Egypt
| | - Mahmoud A O Dawood
- The Center for Applied Research on the Environment and Sustainability, The American University in Cairo, 11835, Cairo, Egypt; Animal Production Department, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh, 33516, Egypt.
| |
Collapse
|
11
|
Li L, Xu R, Jiang L, Xu EG, Wang M, Wang J, Li B, Hu M, Zhang L, Wang Y. Effects of Microplastics on Immune Responses of the Yellow Catfish Pelteobagrus fulvidraco Under Hypoxia. Front Physiol 2021; 12:753999. [PMID: 34621192 PMCID: PMC8490880 DOI: 10.3389/fphys.2021.753999] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 08/23/2021] [Indexed: 12/13/2022] Open
Abstract
Compared with marine organisms, research on microplastics (MPs) in freshwater organisms is still less although MPs have been widely found in the freshwater ecosystem. Hypoxia is a ubiquitous issue in freshwater aquaculture, and under such scenarios, the toxic effects of MPs on typical aquaculture fish need to be clarified. In this study, we studied the effects of MPs (polystyrene) on specific growth rate (SGR), hypoxia-inducible factor-1α (HIF-1α), tumor necrosis factor-α (TNF-α), interleukin-8 (IL-8), and interferon (IFN) in the yellow catfish (Pelteobagrus fulvidraco) under hypoxic conditions. After 15 days of exposure, the SGR was not affected by MPs or hypoxia. MPs significantly increased the expressions of HIF-1α and TNF-α but inhibited the expression of IFN at high concentration MPs under normoxia. However, hypoxia significantly inhibited the expression of IL-8 and TNF-α under high MP concentration and low MP concentration, respectively. In addition, MPs had significant concentration-dependent inhibitory effects on IFN under hypoxia. Surprisingly, a positive correction between HIF-1α and TNF-α was found in fish. Although hypoxia might alleviate the effects of MPs with low concentrations, the interaction of hypoxia and MPs aggravated the negative effects of MPs on immune factors at high concentration MPs. This study provided new insight into the complex effects of hypoxia and MPs on aquatic organisms, and future studies should focus on the cellular pathways of immune cells in fish. Given that MPs could induce the immune response in fish, considerations should be paid to the impacts of MPs on freshwater aquaculture, and hypoxia should be taken into consideration when evaluating the effects of MPs.
Collapse
Affiliation(s)
- Li'ang Li
- International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China.,Huai'an Research Centre, Institute of Hydrobiology, Chinese Academy of Sciences, Huai'an, China.,Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
| | - Ran Xu
- International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China.,Huai'an Research Centre, Institute of Hydrobiology, Chinese Academy of Sciences, Huai'an, China.,Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
| | - Lingfeng Jiang
- International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China.,Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
| | - Elvis Genbo Xu
- Department of Biology, University of Southern Denmark, Odense, Denmark
| | - Man Wang
- Huai'an Research Centre, Institute of Hydrobiology, Chinese Academy of Sciences, Huai'an, China.,The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jie Wang
- Huai'an Research Centre, Institute of Hydrobiology, Chinese Academy of Sciences, Huai'an, China.,The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Bo Li
- Fisheries Research Institute, Wuhan Academy of Agricultural Sciences, Wuhan, China
| | - Menghong Hu
- International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China.,Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
| | - Lei Zhang
- Huai'an Research Centre, Institute of Hydrobiology, Chinese Academy of Sciences, Huai'an, China.,The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Youji Wang
- International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China.,Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
| |
Collapse
|
12
|
Wang J, Yang Y, Wang Z, Xu K, Xiao X, Mu W. Comparison of effects in sustained and diel-cycling hypoxia on hypoxia tolerance, histology, physiology and expression of clock genes in high latitude fish Phoxinus lagowskii. Comp Biochem Physiol A Mol Integr Physiol 2021; 260:111020. [PMID: 34166835 DOI: 10.1016/j.cbpa.2021.111020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 06/19/2021] [Accepted: 06/19/2021] [Indexed: 01/26/2023]
Abstract
Phoxinus lagowskii is a popular fish in Chinese cuisine. Though it is found mainly in China's high-latitude regions, where diel-cycling hypoxia (DCH) is known to have unique impacts on aquatic organisms, there is little known about its response to hypoxia. Currently, nothing is known about the changes in blood parameters, gill and liver morphology, glucose and lipid metabolism, or expression of genes involved in clock and glucose metabolism in response to sustained hypoxia (SH) and diel-cycling hypoxia (DCH). To elucidate the influence of sustained and diel-cycling hypoxia on fish hypoxia tolerance, resting oxygen consumption (MO2) analysis was performed after ten days of hypoxia. This analysis revealed that hypoxia tolerance profoundly improved after ten days of either sustained or diel-cycling hypoxia acclimation, with DCH groups showing greater improvements than SH groups. Additionally, an increase in RBCs was found in P. lagowskii, suggesting an increase in the O2-carrying capacity of the blood to tolerate hypoxia. Hemoglobin (Hb) concentrations in P. lagowskii were increased at four days of diel-cycling hypoxia, confirming that physiological and metabolic adaptation to hypoxia is based on the duration of O2 exposure. Increased Hb and hematocrit (Hct) were found in DCH-exposed fish, both of which have been directly linked to high-latitude hypoxia tolerance. In the gills, lamella surface area increased in SH-exposed fish more than DCH-exposed fish, and these increases were accompanied by a decrease in the volume of interlamellar cell mass (ILCM). Histology changes in the liver showed a higher frequency of cytoplasmic vacuolization in DCH-exposed fish. PK increases in SH-exposed fish suggest that fish can use more energy sources in persistent hypoxia. Meanwhile, DCH-exposed fish use TG as an energy source. In SH-exposed fish, self-regulation of Cry1a was observed, whereas Cry1b gene was up-regulated significantly. In DCH-exposed fish, three of eight clock genes studied had increased expression, including Per1a, Clocka, and Cry1b, suggesting that SH and DCH result in different hypoxic responses. This study presents a novel approach to the study of fish responses to hypoxia in high latitude and shows that sustained hypoxia and diel-cycling hypoxia induce large differences in fish physiology.
Collapse
Affiliation(s)
- Jing Wang
- Key Laboratory of Biodiversity of Aquatic Organisms, College of Life Science and Technology, Harbin Normal University, Harbin 150025, China
| | - Yuting Yang
- Key Laboratory of Biodiversity of Aquatic Organisms, College of Life Science and Technology, Harbin Normal University, Harbin 150025, China
| | - Zhen Wang
- Key Laboratory of Biodiversity of Aquatic Organisms, College of Life Science and Technology, Harbin Normal University, Harbin 150025, China
| | - Kexin Xu
- Key Laboratory of Biodiversity of Aquatic Organisms, College of Life Science and Technology, Harbin Normal University, Harbin 150025, China
| | - Xin Xiao
- Key Laboratory of Biodiversity of Aquatic Organisms, College of Life Science and Technology, Harbin Normal University, Harbin 150025, China
| | - Weijie Mu
- Key Laboratory of Biodiversity of Aquatic Organisms, College of Life Science and Technology, Harbin Normal University, Harbin 150025, China.
| |
Collapse
|
13
|
Yu X, Megens HJ, Mengistu SB, Bastiaansen JWM, Mulder HA, Benzie JAH, Groenen MAM, Komen H. Genome-wide association analysis of adaptation to oxygen stress in Nile tilapia (Oreochromis niloticus). BMC Genomics 2021; 22:426. [PMID: 34107887 PMCID: PMC8188787 DOI: 10.1186/s12864-021-07486-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 02/25/2021] [Indexed: 11/18/2022] Open
Abstract
Background Tilapia is one of the most abundant species in aquaculture. Hypoxia is known to depress growth rate, but the genetic mechanism by which this occurs is unknown. In this study, two groups consisting of 3140 fish that were raised in either aerated (normoxia) or non-aerated pond (nocturnal hypoxia). During grow out, fish were sampled five times to determine individual body weight (BW) gains. We applied a genome-wide association study to identify SNPs and genes associated with the hypoxic and normoxic environments in the 16th generation of a Genetically Improved Farmed Tilapia population. Results In the hypoxic environment, 36 SNPs associated with at least one of the five body weight measurements (BW1 till BW5), of which six, located between 19.48 Mb and 21.04 Mb on Linkage group (LG) 8, were significant for body weight in the early growth stage (BW1 to BW2). Further significant associations were found for BW in the later growth stage (BW3 to BW5), located on LG1 and LG8. Analysis of genes within the candidate genomic region suggested that MAPK and VEGF signalling were significantly involved in the later growth stage under the hypoxic environment. Well-known hypoxia-regulated genes such as igf1rb, rora, efna3 and aurk were also associated with growth in the later stage in the hypoxic environment. Conversely, 13 linkage groups containing 29 unique significant and suggestive SNPs were found across the whole growth period under the normoxic environment. A meta-analysis showed that 33 SNPs were significantly associated with BW across the two environments, indicating a shared effect independent of hypoxic or normoxic environment. Functional pathways were involved in nervous system development and organ growth in the early stage, and oocyte maturation in the later stage. Conclusions There are clear genotype-growth associations in both normoxic and hypoxic environments, although genome architecture involved changed over the growing period, indicating a transition in metabolism along the way. The involvement of pathways important in hypoxia especially at the later growth stage indicates a genotype-by-environment interaction, in which MAPK and VEGF signalling are important components. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07486-5.
Collapse
Affiliation(s)
- Xiaofei Yu
- Wageningen University & Research, Animal Breeding and Genomics, Wageningen, The Netherlands.
| | - Hendrik-Jan Megens
- Wageningen University & Research, Animal Breeding and Genomics, Wageningen, The Netherlands
| | - Samuel Bekele Mengistu
- Wageningen University & Research, Animal Breeding and Genomics, Wageningen, The Netherlands.,School of Animal and Range Sciences, College of Agriculture, Hawassa University, Hawassa, Ethiopia
| | - John W M Bastiaansen
- Wageningen University & Research, Animal Breeding and Genomics, Wageningen, The Netherlands
| | - Han A Mulder
- Wageningen University & Research, Animal Breeding and Genomics, Wageningen, The Netherlands
| | - John A H Benzie
- WorldFish Centre, Jalan Batu Maung, Bayan Lepas, Penang, Malaysia.,School of Biological Earth and Environmental Sciences, University College Cork, Cork, Ireland
| | - Martien A M Groenen
- Wageningen University & Research, Animal Breeding and Genomics, Wageningen, The Netherlands
| | - Hans Komen
- Wageningen University & Research, Animal Breeding and Genomics, Wageningen, The Netherlands
| |
Collapse
|
14
|
Bergstedt JH, Pfalzgraff T, Skov PV. Hypoxia tolerance and metabolic coping strategies in Oreochromis niloticus. Comp Biochem Physiol A Mol Integr Physiol 2021; 257:110956. [PMID: 33857591 DOI: 10.1016/j.cbpa.2021.110956] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 04/07/2021] [Accepted: 04/07/2021] [Indexed: 10/21/2022]
Abstract
The Nile tilapia (Oreochromis niloticus) is widely farmed in tropical and subtropical pond culture. O. niloticus is recognized as a species that is tolerant of hypoxic conditions, a trait that may largely be responsible for the success of this species in aquaculture. Until now, neither coping mechanisms nor a comparison of various indices of hypoxia tolerance to characterize the response to hypoxia, have been described. In the present study, Nile tilapia were subjected to hypoxia of increasing severity and duration to examine effects on metabolic rate (MO2) and post hypoxic oxygen debt. MO2 was measured during periods of severe hypoxia at 2.1 kPa O2 (10% oxygen saturation) lasting between 2 and 24 h at 27 °C. Hypoxia tolerance was assessed by determining the critical oxygen tension (Pcrit) and the pO2 at which loss of equilibrium (LOE) occurred. We show that the tolerance of Nile tilapia to severe hypoxia is largely achieved through a capacity for metabolic depression. Despite prolonged exposure to dissolved oxygen levels below Pcrit, the fish showed little excess post-hypoxic oxygen consumption (EPHOC) upon return to normoxic conditions. LOE did not occur until conditions became near-anoxic. Blood pH was not affected by severe hypoxia (2.1 kPa O2), but a significant acidosis occurred during LOE, accompanied by a significant elevation in lactate and glucose levels. The results from the present study indicate that Nile tilapia do not switch to anaerobic metabolism during hypoxia until pO2 falls below 2.1 kPa.
Collapse
Affiliation(s)
- Julie Hansen Bergstedt
- DTU Aqua, Technical University of Denmark, Section for Aquaculture, The North Sea Research Centre, DK-9850 Hirtshals, Denmark.
| | - Tilo Pfalzgraff
- DTU Aqua, Technical University of Denmark, Section for Aquaculture, The North Sea Research Centre, DK-9850 Hirtshals, Denmark
| | - Peter Vilhelm Skov
- DTU Aqua, Technical University of Denmark, Section for Aquaculture, The North Sea Research Centre, DK-9850 Hirtshals, Denmark
| |
Collapse
|