1
|
Shi L, Zang C, Liu Z, Zhao G. Molecular mechanisms of natural antifreeze phenomena and their application in cryopreservation. Biotechnol Bioeng 2024; 121:3655-3671. [PMID: 39210560 DOI: 10.1002/bit.28832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/11/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024]
Abstract
Cryopreservation presents a critical challenge due to cryo-damage, such as crystallization and osmotic imbalances that compromise the integrity of biological tissues and cells. In contrast, various organisms in nature exhibit remarkable freezing tolerance, leveraging complex molecular mechanisms to survive extreme cold. This review explores the adaptive strategies of freeze-tolerant species, including the regulation of specific genes, proteins, and metabolic pathways, to enhance survival in low-temperature environments. We then discuss recent advancements in cryopreservation technologies that aim to mimic these natural phenomena to preserve cellular and tissue integrity. Special focus is given to the roles of glucose metabolism, microRNA expression, and cryoprotective protein modulation in improving cryopreservation outcomes. The insights gained from studying natural antifreeze mechanisms offer promising directions for advancing cryopreservation techniques, with potential applications in medical, agricultural, and conservation fields. Future research should aim to further elucidate these molecular mechanisms to develop more effective and reliable cryopreservation methods.
Collapse
Affiliation(s)
- Lingyu Shi
- Department of Electronic Engineering and Information Sciences, University of Science and Technology of China, Hefei, China
| | - Chuanbao Zang
- Yinfeng Cryomedicine Technology Co., Ltd., Jinan, China
| | - Zhicheng Liu
- Yinfeng Cryomedicine Technology Co., Ltd., Jinan, China
| | - Gang Zhao
- Department of Electronic Engineering and Information Sciences, University of Science and Technology of China, Hefei, China
| |
Collapse
|
2
|
Lun W, Yan Q, Guo X, Zhou M, Bai Y, He J, Cao H, Che Q, Guo J, Su Z. Mechanism of action of the bile acid receptor TGR5 in obesity. Acta Pharm Sin B 2024; 14:468-491. [PMID: 38322325 PMCID: PMC10840437 DOI: 10.1016/j.apsb.2023.11.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 09/17/2023] [Accepted: 10/24/2023] [Indexed: 02/08/2024] Open
Abstract
G protein-coupled receptors (GPCRs) are a large family of membrane protein receptors, and Takeda G protein-coupled receptor 5 (TGR5) is a member of this family. As a membrane receptor, TGR5 is widely distributed in different parts of the human body and plays a vital role in regulating metabolism, including the processes of energy consumption, weight loss and blood glucose homeostasis. Recent studies have shown that TGR5 plays an important role in glucose and lipid metabolism disorders such as fatty liver, obesity and diabetes. With the global obesity situation becoming more and more serious, a comprehensive explanation of the mechanism of TGR5 and filling the gaps in knowledge concerning clinical ligand drugs are urgently needed. In this review, we mainly explain the anti-obesity mechanism of TGR5 to promote the further study of this target, and show the electron microscope structure of TGR5 and review recent studies on TGR5 ligands to illustrate the specific binding between TGR5 receptor binding sites and ligands, which can effectively provide new ideas for ligand research and promote drug research.
Collapse
Affiliation(s)
- Weijun Lun
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Qihao Yan
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Xinghua Guo
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Minchuan Zhou
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yan Bai
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou 510310, China
| | - Jincan He
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou 510310, China
| | - Hua Cao
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan 528458, China
| | - Qishi Che
- Guangzhou Rainhome Pharm & Tech Co., Ltd., Science City, Guangzhou 510663, China
| | - Jiao Guo
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Zhengquan Su
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China
| |
Collapse
|
3
|
Varma A, Storey KB. Hepatic citrate synthase suppression in the freeze-tolerant wood frog (Rana sylvatica). Int J Biol Macromol 2023; 242:124718. [PMID: 37148930 DOI: 10.1016/j.ijbiomac.2023.124718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/11/2023] [Accepted: 04/30/2023] [Indexed: 05/08/2023]
Abstract
The wood frog, Rana sylvatica endures whole body freezing for weeks/months while overwintering at subzero temperatures. Survival of long-term freezing requires not only cryoprotectants but also strong metabolic rate depression (MRD) and reorganization of essential processes in order to maintain a balance between ATP-producing and ATP-consuming processes. Citrate synthase (CS) (E.C. 2.3.3.1) is an important irreversible enzyme of the tricarboxylic acid (TCA) cycle and forms a crucial checkpoint for many metabolic processes. Present study investigated the regulation of CS from wood frog liver during freezing. CS was purified to homogeneity by a two-step chromatographic process. Kinetic and regulatory parameters of the enzyme were investigated and, notably, demonstrated a significant decrease in the Vmax of the purified form of CS from frozen frogs as compared to controls when assayed at both 22 °C and 5 °C. This was further supported by a decrease in the maximum activity of CS from liver of frozen frogs. Immunoblotting also showed changes in posttranslational modifications with a significant decrease in threonine phosphorylation (by 49 %) for CS from frozen frogs. Taken together, these results suggest that CS is suppressed and TCA flux is inhibited during freezing, likely to support MRD survival of harsh winters.
Collapse
Affiliation(s)
- Anchal Varma
- Institute of Biochemistry & Department of Biology, Carleton University, 1125 Colonel by Drive, Ottawa, Ontario K1S 5B6, Canada
| | - Kenneth B Storey
- Institute of Biochemistry & Department of Biology, Carleton University, 1125 Colonel by Drive, Ottawa, Ontario K1S 5B6, Canada.
| |
Collapse
|
4
|
Varma A, Storey KB. Freeze-induced suppression of pyruvate kinase in liver of the wood frog (Rana sylvatica). Adv Biol Regul 2023; 88:100944. [PMID: 36542984 DOI: 10.1016/j.jbior.2022.100944] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/22/2022] [Accepted: 12/14/2022] [Indexed: 05/22/2023]
Abstract
The wood frog (Rana sylvatica) undergoes physiological and metabolic changes to withstand subzero temperatures and whole body freezing during the winter months. Along with metabolic rate depression, high concentrations of glucose are produced as a cryoprotectant by liver and distributed to all other tissues. Pyruvate kinase (PK; EC:2.7.1.40), the final enzyme of glycolysis, plays an important role in the modulation of glucose metabolism and, therefore, overall metabolic regulation. The present study investigated the functional and kinetic properties of purified PK from liver of control (5 °C acclimated) and frozen (-2.5 °C for 24 h) wood frogs. Liver PK was purified to homogeneity by a two-step chromatographic process, followed by analysis of enzyme properties. A significant decrease in the affinity of PK for its substrates, phosphoenolpyruvate (PEP) and adenosine diphosphate (ADP) at 22 °C and 5 °C was noted in liver from frozen frogs, as compared with controls. Immunoblotting also revealed freeze-responsive changes in posttranslational modifications with a significant increase in serine and threonine phosphorylation by 1.46-fold and 1.73- fold for PK from frozen frogs as compared with controls. Furthermore, a test of thermal stability showed that PK from liver of frozen wood frogs showed greater stability as compared with PK from control animals. Taken together, these results suggest that PK is negatively regulated, and glycolysis is suppressed, during freezing. This response acts as an important survival strategy for maintaining continuously elevated levels of cryoprotectant in frogs while they remain in a hypometabolic frozen state.
Collapse
Affiliation(s)
- Anchal Varma
- Institute of Biochemistry & Department of Biology, Carleton University, 1125 Colonel by Drive, Ottawa, Ontario, K1S 5B6, Canada
| | - Kenneth B Storey
- Institute of Biochemistry & Department of Biology, Carleton University, 1125 Colonel by Drive, Ottawa, Ontario, K1S 5B6, Canada.
| |
Collapse
|
5
|
Zeng LF, Lee J, Lim G, Yang YF, Lin RL, Yin SJ, Wang W, Park YD. Characterization and tissue expression analysis of mitochondrial creatine kinases (types I and II) from Pelodiscus sinensis. J Biomol Struct Dyn 2023; 41:1388-1402. [PMID: 34939522 DOI: 10.1080/07391102.2021.2020168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The aim of this study was to characterize the functions of the mitochondrial creatine kinases in the Chinese soft-shelled turtle Pelodiscus sinensis (PSCK-MT1 and PSCK-MT2) to characterize function in relation to hibernation. Computational prediction via molecular dynamics simulations showed that PSCK-MT1 had stronger kinase- and creatine-binding affinity than PSCK-MT2. We measured PSCK-MT1 and PSCK-MT2 levels in the myocardium, liver, spleen, lung, kidney, and ovary of P. sinensis before and after hibernation and found that the expression of these enzymes was the most significantly upregulated in the ovary. We enumerated the ovarian follicles and evaluated the physiological indices of P. sinensis and discovered that fat was the main form of energy storage in P. sinensis. Moreover, both PSCK-MTs promoted follicular development during hibernation. Immunohistochemistry was used to study follicular development and revealed that both PSCK-MTs were expressed primarily in the follicular fluid and granulosa layer before and after hibernation. We found that PSCK-MT1 and PSCK-MT2 could play important roles in ovarian follicular development under hibernation. Hence, both PSCK-MTs probably function effectively under the conditions of low temperature and oxygen during hibernation. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Li-Fang Zeng
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, PR China
| | - Jinhyuk Lee
- Genome Editing Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Korea.,Department of Bioinformatics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon, Korea
| | - Gyutae Lim
- Genome Editing Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Korea.,Department of Bioinformatics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon, Korea
| | - Yu-Fei Yang
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, PR China
| | - Run-Lan Lin
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, PR China
| | - Shang-Jun Yin
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, PR China
| | - Wei Wang
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, PR China
| | - Yong-Doo Park
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, PR China.,Skin Diseases Research Center, Yangtze Delta Region Institute of Tsinghua University, Jiaxing, PR China.,Zhejiang Provincial Key Laboratory of Applied Enzymology, Yangtze Delta Region Institute of Tsinghua University, Jiaxing, PR China
| |
Collapse
|
6
|
DNA Hypomethylation May Contribute to Metabolic Recovery of Frozen Wood Frog Brains. EPIGENOMES 2022; 6:epigenomes6030017. [PMID: 35893013 PMCID: PMC9326605 DOI: 10.3390/epigenomes6030017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/14/2022] [Accepted: 07/07/2022] [Indexed: 02/04/2023] Open
Abstract
Transcriptional suppression is characteristic of extreme stress responses, speculated to preserve energetic resources in the maintenance of hypometabolism. In recent years, epigenetic regulation has become heavily implicated in stress adaptation of many animals, including supporting freeze tolerance of the wood frog (Rana sylvatica). However, nervous tissues are frequently lacking in these multi-tissue analyses which warrants investigation. The present study examines the role of DNA methylation, a core epigenetic mechanism, in the response of wood frog brains to freezing. We use immunoblot analysis to track the relative expression of DNA methyltransferases (DNMT), methyl-CpG-binding domain (MBD) proteins and ten-eleven-translocation (TET) demethylases across the freeze-thaw cycle in R. sylvatica brain, including selected comparisons to freeze-associated sub-stresses (anoxia and dehydration). Global methyltransferase activities and 5-hmC content were also assessed. The data show coordinated evidence for DNA hypomethylation in wood frog brains during freeze-recovery through the combined roles of depressed DNMT3A/3L expression driving lowered DNMT activity and increased TET2/3 levels leading to elevated 5-hmC genomic content (p < 0.05). Raised levels of DNMT1 during high dehydration were also noteworthy. The above suggest that alleviation of transcriptionally repressive 5-mC DNA methylation is a necessary component of the wood frog freeze-thaw cycle, potentially facilitating the resumption of a normoxic transcriptional state as frogs thaw and resume normal metabolic activities.
Collapse
|
7
|
Varma A, Storey KB. One-step purification and regulation of fructose 1,6-bisphosphatase from the liver of the freeze-tolerant wood frog, Rana sylvatica. Cell Biochem Funct 2022; 40:491-500. [PMID: 35604283 DOI: 10.1002/cbf.3710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 04/13/2022] [Accepted: 05/08/2022] [Indexed: 11/08/2022]
Abstract
The wood frog (Rana sylvatica) undergoes numerous changes to its physiology and metabolic processes to survive the winter months, including adaptations that let them endure whole-body freezing. The regulation of key enzymes of central carbohydrate metabolism in the liver plays a crucial role in mediating the synthesis and maintenance of high concentrations of glucose as a cryoprotectant during freezing as well as glucose reconversion to glycogen after thawing. The present study characterized the regulation of fructose-1,6-bisphosphatase (FBPase; EC 3.1.3.11) from wood frog liver during freezing, FBPase being a crucial enzyme regulating gluconeogenesis. Liver FBPase was purified to homogeneity from control and frozen wood frogs by a one-step chromatographic process. Kinetic and regulatory parameters of the enzyme were investigated and demonstrated a significant decrease in sensitivity to its substrate fructose-1,6-bisphosphate in the liver of frozen frogs, as compared with controls. Immunoblotting also revealed freeze-responsive changes in posttranslational modifications with a significant decrease in serine phosphorylation (by 53%) for FBPase from frozen frogs. Taken together, these results suggest that FBPase is suppressed, and gluconeogenesis is inhibited during freezing. This response acts as an important component of the metabolic survival strategy of the wood frog.
Collapse
Affiliation(s)
- Anchal Varma
- Department of Biology, Institute of Biochemistry, Carleton University, Ottawa, Ontario, Canada
| | - Kenneth B Storey
- Department of Biology, Institute of Biochemistry, Carleton University, Ottawa, Ontario, Canada
| |
Collapse
|
8
|
Intestinal hypoxia-inducible factor 2α regulates lactate levels to shape the gut microbiome and alter thermogenesis. Cell Metab 2021; 33:1988-2003.e7. [PMID: 34329568 DOI: 10.1016/j.cmet.2021.07.007] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 04/12/2021] [Accepted: 07/07/2021] [Indexed: 12/17/2022]
Abstract
Accumulating evidence suggests that the gut microbiota regulates obesity through metabolite-host interactions. However, the mechanisms underlying such interactions have been unclear. Here, we found that intestinal hypoxia-inducible factor 2α (HIF-2α) positively regulates gut lactate by controlling the expression of intestinal Ldha. Intestine-specific HIF-2α ablation in mice resulted in lower lactate levels, and less Bacteroides vulgatus and greater Ruminococcus torques abundance, respectively. Together, these changes resulted in elevated taurine-conjugated cholic acid (TCA) and deoxycholic acid (DCA) levels and activation of the adipose G-protein-coupled bile acid receptor, GPBAR1 (TGR5). This activation upregulated expression of uncoupling protein (UCP) 1 and mitochondrial creatine kinase (CKMT) 2, resulting in elevation of white adipose tissue thermogenesis. Administration of TCA and DCA mirrored these phenotypes, and colonization with B. vulgatus and R. torques inhibited and induced thermogenesis, respectively. This work deepens our understanding of how host genes regulate the microbiome and provides novel strategies for alleviating obesity.
Collapse
|
9
|
Zhang J, Hadj-Moussa H, Storey KB. Marine periwinkle stress-responsive microRNAs: A potential factor to reflect anoxia and freezing survival adaptations. Genomics 2020; 112:4385-4398. [DOI: 10.1016/j.ygeno.2020.07.036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 07/17/2020] [Accepted: 07/22/2020] [Indexed: 12/12/2022]
|
10
|
Freeze tolerance and the underlying metabolite responses in the Xizang plateau frog, Nanorana parkeri. J Comp Physiol B 2020; 191:173-184. [PMID: 33025179 DOI: 10.1007/s00360-020-01314-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 09/05/2020] [Accepted: 09/16/2020] [Indexed: 10/23/2022]
Abstract
The frog Nanorana parkeri (Dicroglossidae) is endemic to the Tibetan Plateau, and overwinters shallow pond within damp caves for up to 6 months. Herein, we investigate the freeze tolerance of this species and profile changes in liver and skeletal muscle metabolite levels using an untargeted LC-MS-based metabolomic approach to investigate molecular mechanisms that may contribute to freezing survival. We found that three of seven specimens of N. parkeri could survive after being frozen for 12 h at - 2.0 °C with 39.91% ± 5.4% (n = 7) of total body water converted to ice. Freezing exposure induced partial dehydration of the muscle, which contributed to decreasing the amount of freezable water within the muscle and could be protective for the myocytes themselves. A comparative metabolomic analysis showed that freezing elicited significant responses, and a total of 33 and 36 differentially expressed metabolites were identified in the liver and muscle, respectively. These metabolites mainly participate in alanine, aspartic acid and glutamic acid metabolism, arginine and proline metabolism, and D-glutamine and D-glutamate metabolism. After freezing exposure, the contents of ornithine, melezitose, and maltotriose rose significantly; these may act as cryoprotectants. Additionally, the content of 8-hydroxy-2-deoxyguanine, 7-Ketocholesterol and hypoxanthine showed a marked increase, suggesting that freezing induced oxidative stress in the frogs. In summary, N. parkeri can tolerate a brief and partial freezing of their body, which was accompanied by substantial changes in metabolomic profiles after freezing exposure.
Collapse
|
11
|
Peris-Moreno D, Taillandier D, Polge C. MuRF1/TRIM63, Master Regulator of Muscle Mass. Int J Mol Sci 2020; 21:ijms21186663. [PMID: 32933049 PMCID: PMC7555135 DOI: 10.3390/ijms21186663] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/04/2020] [Accepted: 09/08/2020] [Indexed: 02/07/2023] Open
Abstract
The E3 ubiquitin ligase MuRF1/TRIM63 was identified 20 years ago and suspected to play important roles during skeletal muscle atrophy. Since then, numerous studies have been conducted to decipher the roles, molecular mechanisms and regulation of this enzyme. This revealed that MuRF1 is an important player in the skeletal muscle atrophy process occurring during catabolic states, making MuRF1 a prime candidate for pharmacological treatments against muscle wasting. Indeed, muscle wasting is an associated event of several diseases (e.g., cancer, sepsis, diabetes, renal failure, etc.) and negatively impacts the prognosis of patients, which has stimulated the search for MuRF1 inhibitory molecules. However, studies on MuRF1 cardiac functions revealed that MuRF1 is also cardioprotective, revealing a yin and yang role of MuRF1, being detrimental in skeletal muscle and beneficial in the heart. This review discusses data obtained on MuRF1, both in skeletal and cardiac muscles, over the past 20 years, regarding the structure, the regulation, the location and the different functions identified, and the first inhibitors reported, and aim to draw the picture of what is known about MuRF1. The review also discusses important MuRF1 characteristics to consider for the design of future drugs to maintain skeletal muscle mass in patients with different pathologies.
Collapse
|
12
|
UCP1-independent thermogenesis. Biochem J 2020; 477:709-725. [PMID: 32059055 DOI: 10.1042/bcj20190463] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 01/20/2020] [Accepted: 01/21/2020] [Indexed: 12/24/2022]
Abstract
Obesity results from energy imbalance, when energy intake exceeds energy expenditure. Brown adipose tissue (BAT) drives non-shivering thermogenesis which represents a powerful mechanism of enhancing the energy expenditure side of the energy balance equation. The best understood thermogenic system in BAT that evolved to protect the body from hypothermia is based on the uncoupling of protonmotive force from oxidative phosphorylation through the actions of uncoupling protein 1 (UCP1), a key regulator of cold-mediated thermogenesis. Similarly, energy expenditure is triggered in response to caloric excess, and animals with reduced thermogenic fat function can succumb to diet-induced obesity. Thus, it was surprising when inactivation of Ucp1 did not potentiate diet-induced obesity. In recent years, it has become clear that multiple thermogenic mechanisms exist, based on ATP sinks centered on creatine, lipid, or calcium cycling, along with Fatty acid-mediated UCP1-independent leak pathways driven by the ADP/ATP carrier (AAC). With a key difference between cold- and diet-induced thermogenesis being the dynamic changes in purine nucleotide (primarily ATP) levels, ATP-dependent thermogenic pathways may play a key role in diet-induced thermogenesis. Additionally, the ubiquitous expression of AAC may facilitate increased energy expenditure in many cell types, in the face of over feeding. Interest in UCP1-independent energy expenditure has begun to showcase the therapeutic potential that lies in refining our understanding of the diversity of biochemical pathways controlling thermogenic respiration.
Collapse
|
13
|
Do BH, Nguyen TN, Baba R, Ohbuchi T, Ohkubo JI, Kitamura T, Wakasugi T, Morimoto H, Suzuki H. Calmodulin and protein kinases A/G mediate ciliary beat response in the human nasal epithelium. Int Forum Allergy Rhinol 2019; 9:1352-1359. [PMID: 31574592 DOI: 10.1002/alr.22442] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 09/01/2019] [Accepted: 09/06/2019] [Indexed: 01/08/2023]
Abstract
BACKGROUND Mucociliary clearance of the airway epithelium is an essential function for mucosal defense. We recently proposed a hypothetical mechanism of ciliary beat regulation, in which the pannexin-1 (Panx1)-P2X7 unit serves as an oscillator generating a periodic increase in intracellular Ca2+ ([Ca2+ ]i ). In the present study, we examined the localization of Panx1 and P2X7 at the ultrastructural level, and investigated the regulatory pathway subsequent to [Ca2+ ]i increase. METHODS The inferior turbinate mucosa was collected from patients with chronic hypertrophic rhinitis during endoscopic sinonasal surgery. The mucosa was examined by transmission immunoelectron microscopy for Panx1 and P2X7. Alternatively, the mucosa was cut into thin strips, and ciliary beat frequency (CBF) was measured under a phase-contrast light microscope with a high-speed digital video camera. RESULTS In immunoelectron microscopy, immunoreactivities for Panx1 and P2X7 were localized along the plasma membrane of the entire length of the cilia. CBF was significantly increased by stimulation with 100 µM acetylcholine (Ach). The Ach-induced CBF increase was significantly inhibited by calmidazolium (calmodulin antagonist), SQ22536 (adenylate cyclase inhibitor), ODQ (guanylate cyclase inhibitor), KT5720 (protein kinase A inhibitor), and KT5823 (protein kinase G inhibitor). Fluorodinitrobenzene (creatine kinase inhibitor) completely inhibited the ciliary beat in a time- and dose-dependent manner. CONCLUSION These results indicate that Panx1 and P2X7 coexist at the cilia of the human nasal epithelial cells and that the ciliary beat is regulated by calmodulin, adenylate/guanylate cyclases and protein kinases A/G, and crucially depends on creatine kinase.
Collapse
Affiliation(s)
- Ba Hung Do
- Department of Otorhinolaryngology-Head and Neck Surgery, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan.,Department of Otorhinolaryngology, Hanoi Medical University, Hanoi, Vietnam
| | - Thi Nga Nguyen
- Department of Otorhinolaryngology-Head and Neck Surgery, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Ryoko Baba
- Department of Anatomy, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Toyoaki Ohbuchi
- Department of Otorhinolaryngology-Head and Neck Surgery, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Jun-Ichi Ohkubo
- Department of Otorhinolaryngology-Head and Neck Surgery, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Takuro Kitamura
- Department of Otorhinolaryngology-Head and Neck Surgery, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Tetsuro Wakasugi
- Department of Otorhinolaryngology-Head and Neck Surgery, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Hiroyuki Morimoto
- Department of Anatomy, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Hideaki Suzuki
- Department of Otorhinolaryngology-Head and Neck Surgery, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| |
Collapse
|
14
|
Hawkins LJ, Wang M, Zhang B, Xiao Q, Wang H, Storey KB. Glucose and urea metabolic enzymes are differentially phosphorylated during freezing, anoxia, and dehydration exposures in a freeze tolerant frog. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2019; 30:1-13. [PMID: 30710892 DOI: 10.1016/j.cbd.2019.01.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 01/19/2019] [Accepted: 01/21/2019] [Indexed: 02/08/2023]
Abstract
Vertebrate freeze tolerance requires multiple adaptations underpinned by specialized biochemistry. Freezing of extracellular water leads to intracellular dehydration as pure water is incorporated into growing ice crystals and also results in the cessation of blood supply to tissues, creating an anoxic cellular environment. Hence, the freeze tolerant wood frog, Rana sylvatica, must endure both dehydration and anoxia stresses in addition to freezing. The metabolic responses to freezing, dehydration and anoxia involve both protein/enzyme adaptations and the production of metabolites with metabolic or osmotic functions, particularly glucose and urea. The present study uses a phosphoproteome analysis to examine the differential phosphorylation of metabolic enzymes involved in the production of these two metabolites in liver in response to freezing, anoxia, or dehydration exposures. Our results show stress-specific responses in the abundance of phosphopeptides retrieved from nine glycolytic enzymes and three urea cycle enzymes in liver of wood frogs exposed to 24 h freezing, 24 h anoxia, or dehydration to 40% of total body water loss, as compared with 5 °C acclimated controls. Data show changes in the abundance of phosphopeptides belonging to glycogen phosphorylase (GP) and phosphofructokinase 2 (PFK2) that were consistent with differential phosphorylation control of glycogenolysis and a metabolic block at PFK1 that can facilitate glucose synthesis as the cryoprotectant during freezing. Anoxia-exposed animals showed similar changes in GP phosphorylation but no changes to PFK2; changes that would facilitate mobilization of glycogen as a fermentative fuel for anaerobic glycolysis. Urea is commonly produced as a compatible osmolyte in response to amphibian dehydration. Selected urea cycle enzymes showed small changes in phosphopeptide abundance in response to dehydration, but during freezing differential phosphorylation occurred that may facilitate this ATP expensive process when energy resources are sparse. These results add to the growing body of literature demonstrating the importance and efficiency of reversible protein phosphorylation as a regulatory mechanism allowing animals to rapidly respond to environmental stress.
Collapse
Affiliation(s)
- Liam J Hawkins
- Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada
| | - Minjing Wang
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China
| | - Baowen Zhang
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China
| | - Qi Xiao
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China
| | - Hui Wang
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China.
| | - Kenneth B Storey
- Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada.
| |
Collapse
|
15
|
Craig PM, Moyes CD, LeMoine CM. Sensing and responding to energetic stress: Evolution of the AMPK network. Comp Biochem Physiol B Biochem Mol Biol 2018; 224:156-169. [DOI: 10.1016/j.cbpb.2017.11.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 11/01/2017] [Accepted: 11/01/2017] [Indexed: 01/24/2023]
|
16
|
Hoyeck MP, Hadj-Moussa H, Storey KB. The role of MEF2 transcription factors in dehydration and anoxia survival in Rana sylvatica skeletal muscle. PeerJ 2017; 5:e4014. [PMID: 29134152 PMCID: PMC5682099 DOI: 10.7717/peerj.4014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 10/19/2017] [Indexed: 11/20/2022] Open
Abstract
The wood frog (Rana sylvatica) can endure freezing of up to 65% of total body water during winter. When frozen, wood frogs enter a dormant state characterized by a cessation of vital functions (i.e., no heartbeat, blood circulation, breathing, brain activity, or movement). Wood frogs utilize various behavioural and biochemical adaptations to survive extreme freezing and component anoxia and dehydration stresses, including a global suppression of metabolic functions and gene expression. The stress-responsive myocyte enhancer factor-2 (MEF2) transcription factor family regulates the selective expression of genes involved in glucose transport, protein quality control, and phosphagen homeostasis. This study examined the role of MEF2A and MEF2C proteins as well as select downstream targets (glucose transporter-4, calreticulin, and muscle and brain creatine kinase isozymes) in 40% dehydration and 24 h anoxia exposure at the transcriptional, translational, and post-translational levels using qRT-PCR, immunoblotting, and subcellular localization. Mef2a/c transcript levels remained constant during dehydration and anoxia. Total, cytoplasmic, and nuclear MEF2A/C and phospho-MEF2A/C protein levels remained constant during dehydration, whereas a decrease in total MEF2C levels was observed during rehydration. Total and phospho-MEF2A levels remained constant during anoxia, whereas total MEF2C levels decreased during 24 h anoxia and P-MEF2C levels increased during 4 h anoxia. In contrast, cytoplasmic MEF2A levels and nuclear phospho-MEF2A/C levels were upregulated during anoxia. MEF2 downstream targets remained constant during dehydration and anoxia, with the exception of glut4 which was upregulated during anoxia. These results suggest that the upregulated MEF2 response reported in wood frogs during freezing may in part stem from their cellular responses to surviving prolonged anoxia, rather than dehydration, leading to an increase in GLUT4 expression which may have an important role during anoxia survival.
Collapse
Affiliation(s)
- Myriam P Hoyeck
- Institute of Biochemistry, Departments of Biology and Chemistry, Carleton University, Ottawa, Canada
| | - Hanane Hadj-Moussa
- Institute of Biochemistry, Departments of Biology and Chemistry, Carleton University, Ottawa, Canada
| | - Kenneth B Storey
- Institute of Biochemistry, Departments of Biology and Chemistry, Carleton University, Ottawa, Canada
| |
Collapse
|
17
|
Comparative analysis of muscle phosphoproteome induced by salt curing. Meat Sci 2017; 133:19-25. [DOI: 10.1016/j.meatsci.2017.05.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 05/21/2017] [Accepted: 05/22/2017] [Indexed: 11/21/2022]
|
18
|
Chikwanda AT, Muchenje V. Grazing system and floor type effects on blood biochemistry, growth and carcass characteristics of Nguni goats. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2017; 30:1253-1260. [PMID: 28002930 PMCID: PMC5582281 DOI: 10.5713/ajas.16.0334] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 06/19/2016] [Accepted: 12/10/2016] [Indexed: 11/27/2022]
Abstract
OBJECTIVE Purpose was to determine the effects of grazing system and floor type on concentrations of blood metabolites, activity of creatine kinase, body weight and carcass characteristics of castrated Nguni goats. METHODS Forty eight, 7 month old goats were randomly allocated to herding and tethering treatments from 0800 to 1300 hours and accommodated on slatted and earth floors daily. Blood samples were collected by jugular venipuncture every fifteenth day for metabolite analysis. Slaughter was done at a commercial abattoir following 5 months of monitoring. RESULTS Tethered goats had significantly higher concentrations of urea (5.19 mmol/L) (p< 0.001), creatinine (55.87 μmol/L) (p<0.05), total protein (64.60 g/L) (p<0.01), and globulin (49.79 g/L) (p<0.001), whereas herded goats had higher glucose (3.38 mmol/L) (p<0.001), albumin (15.33 g/L) (p<0.05), albumin/globulin ratio (0.34) (p<0.01), and body weight (24.87 kg) (p< 0.001). Slatted floors caused higher (p<0.01) albumin at 15.37 g/L. The interaction of grazing system and floor type affected creatinine, total protein, globulin at (p<0.01) and albumen/globulin ratio at (p<0.01). The least creatinine concentration and albumin/globulin ratio was in herded and tethered goats that were accommodated on earth floors, respectively. The highest total protein and globulin concentrations were in serum of tethered goats that were accommodated on earth floors. The highest (p<0.05) dressing percentage (45.26%) was in herded goats accommodated on slatted floors. CONCLUSION Herding of goats lowered globulin concentration, improved estimated feed intake, blood glucose and albumin concentrations, albumin globulin ratio, increased body weights and weight related carcass characteristics. Floor type had very little effects on metabolites where earth floors only reduced albumin concentration. Tethering and housing goats on earth floors resulted in double stress that increased chronic infections.
Collapse
Affiliation(s)
- Allen Tapiwa Chikwanda
- Department of Livestock and Pasture Science, Faculty of Science and Agriculture, University of Fort Hare, P. Bag X1314, Alice 5700, South Africa
- Animal Science Department, Faculty of Agriculture and Environmental Sciences, Bindura University of Science Education, No. 741 Chimurenga Road P Bag 1020, Bindura 0271, Zimbabwe
| | - Voster Muchenje
- Department of Livestock and Pasture Science, Faculty of Science and Agriculture, University of Fort Hare, P. Bag X1314, Alice 5700, South Africa
| |
Collapse
|
19
|
Smolinski MB, Mattice JJ, Storey KB. Regulation of pyruvate kinase in skeletal muscle of the freeze tolerant wood frog, Rana sylvatica. Cryobiology 2017; 77:25-33. [DOI: 10.1016/j.cryobiol.2017.06.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 05/25/2017] [Accepted: 06/05/2017] [Indexed: 10/19/2022]
|
20
|
Aguilar OA, Hadj-Moussa H, Storey KB. Freeze-responsive regulation of MEF2 proteins and downstream gene networks in muscles of the wood frog, Rana sylvatica. J Therm Biol 2017; 67:1-8. [DOI: 10.1016/j.jtherbio.2017.04.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 03/24/2017] [Accepted: 04/18/2017] [Indexed: 01/21/2023]
|
21
|
Abstract
Freeze tolerance is an amazing winter survival strategy used by various amphibians and reptiles living in seasonally cold environments. These animals may spend weeks or months with up to ∼65% of their total body water frozen as extracellular ice and no physiological vital signs, and yet after thawing they return to normal life within a few hours. Two main principles of animal freeze tolerance have received much attention: the production of high concentrations of organic osmolytes (glucose, glycerol, urea among amphibians) that protect the intracellular environment, and the control of ice within the body (the first putative ice-binding protein in a frog was recently identified), but many other strategies of biochemical adaptation also contribute to freezing survival. Discussed herein are recent advances in our understanding of amphibian and reptile freeze tolerance with a focus on cell preservation strategies (chaperones, antioxidants, damage defense mechanisms), membrane transporters for water and cryoprotectants, energy metabolism, gene/protein adaptations, and the regulatory control of freeze-responsive hypometabolism at multiple levels (epigenetic regulation of DNA, microRNA action, cell signaling and transcription factor regulation, cell cycle control, and anti-apoptosis). All are providing a much more complete picture of life in the frozen state.
Collapse
Affiliation(s)
| | - Janet M. Storey
- Department of Biology, Carleton University, Ottawa, Ontario, Canada
| |
Collapse
|
22
|
Dawson NJ, Storey KB. Passive regeneration of glutathione: Glutathione reductase regulation from the freeze-tolerant North American wood frog, Rana sylvatica. J Exp Biol 2017; 220:3162-3171. [DOI: 10.1242/jeb.159475] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 06/25/2017] [Indexed: 11/20/2022]
Abstract
Wood frogs inhabit a broad range across North America, extending from the southern tip of the Appalachian Mountains to the northern boreal forest. Remarkably they can survive the winter in a frozen state, where as much as 70% of their body water is converted into ice. During the frozen state, their hearts cease to pump blood, causing their cells to experience ischemia which can dramatically increase the production of reactive oxygen species produced within the cell. To overcome this, wood frogs have elevated levels of glutathione, a primary antioxidant. We examined the regulation of glutathione reductase, the enzyme involved in recycling glutathione, in both the frozen and unfrozen state (control). Glutathione reductase activity from both the control and frozen state showed dramatic reduction in substrate specificity (Km) for oxidized glutathione (50%) when measured in the presence of glucose (300mM) and a increase (157%) when measured in the presence of levels of urea (75mM) encountered in the frozen state. However, when we tested the synergistic effect of urea and glucose simultaneously, we observed a substantial reduction in the Km for oxidized glutathione (43%) to a value similar to that of glucose alone. In fact, we found no observable differences in the kinetic and structural properties of glutathione reductase between the two states. Therefore, a significant increase in the affinity for oxidized glutathione in the presence of endogenous levels of glucose, suggests that increased glutathione recycling may result due to passive regulation of glutathione reductase by rising levels of glucose during freezing.
Collapse
Affiliation(s)
- Neal J. Dawson
- Department of Biology and Institute of Biochemistry Carleton University, Ottawa, ON, Canada
| | - Kenneth B. Storey
- Department of Biology and Institute of Biochemistry Carleton University, Ottawa, ON, Canada
| |
Collapse
|
23
|
Dawson NJ, Storey KB. A hydrogen peroxide safety valve: The reversible phosphorylation of catalase from the freeze-tolerant North American wood frog, Rana sylvatica. Biochim Biophys Acta Gen Subj 2015; 1860:476-85. [PMID: 26691137 DOI: 10.1016/j.bbagen.2015.12.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 11/26/2015] [Accepted: 12/11/2015] [Indexed: 01/14/2023]
Abstract
BACKGROUND The North American wood frog, Rana sylvatica, endures whole body freezing while wintering on land and has developed multiple biochemical adaptations to elude cell/tissue damage and optimize its freeze tolerance. Blood flow is halted in the frozen state, imparting both ischemic and oxidative stress on cells. A potential build-up of H2O2 may occur due to increased superoxide dismutase activity previously discovered. The effect of freezing on catalase (CAT), which catalyzes the breakdown of H2O2 into molecular oxygen and water, was investigated as a result. METHODS The present study investigated the purification and kinetic profile of CAT in relation to the phosphorylation state of CAT from the skeletal muscle of control and frozen R. sylvatica. RESULTS Catalase from skeletal muscle of frozen wood frogs showed a significantly higher Vmax (1.48 fold) and significantly lower Km for H2O2 (0.64 fold) in comparison to CAT from control frogs (5°C acclimated). CAT from frozen frogs also showed higher overall phosphorylation (1.73 fold) and significantly higher levels of phosphoserine (1.60 fold) and phosphotyrosine (1.27 fold) compared to control animals. Phosphorylation via protein kinase A or the AMP-activated protein kinase significantly decreased the Km for H2O2 of CAT, whereas protein phosphatase 2B or 2C action significantly increased the Km. CONCLUSION The physiological consequence of freeze-induced CAT phosphorylation appears to improve CAT function to alleviate H2O2 build-up in freezing frogs. GENERAL SIGNIFICANCE Augmented CAT activity via reversible phosphorylation may increase the ability of R. sylvatica to overcome oxidative stress associated with ischemia.
Collapse
Affiliation(s)
- Neal J Dawson
- Department of Biology and Institute of Biochemistry, Carleton University, Ottawa, ON, Canada
| | - Kenneth B Storey
- Department of Biology and Institute of Biochemistry, Carleton University, Ottawa, ON, Canada.
| |
Collapse
|
24
|
Hermes-Lima M, Moreira DC, Rivera-Ingraham GA, Giraud-Billoud M, Genaro-Mattos TC, Campos ÉG. Preparation for oxidative stress under hypoxia and metabolic depression: Revisiting the proposal two decades later. Free Radic Biol Med 2015; 89:1122-43. [PMID: 26408245 DOI: 10.1016/j.freeradbiomed.2015.07.156] [Citation(s) in RCA: 136] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 07/11/2015] [Accepted: 07/25/2015] [Indexed: 12/22/2022]
Abstract
Organisms that tolerate wide variations in oxygen availability, especially to hypoxia, usually face harsh environmental conditions during their lives. Such conditions include, for example, lack of food and/or water, low or high temperatures, and reduced oxygen availability. In contrast to an expected strong suppression of protein synthesis, a great number of these animals present increased levels of antioxidant defenses during oxygen deprivation. These observations have puzzled researchers for more than 20 years. Initially, two predominant ideas seemed to be irreconcilable: on one hand, hypoxia would decrease reactive oxygen species (ROS) production, while on the other the induction of antioxidant enzymes would require the overproduction of ROS. This induction of antioxidant enzymes during hypoxia was viewed as a way to prepare animals for oxidative damage that may happen ultimately during reoxygenation. The term "preparation for oxidative stress" (POS) was coined in 1998 based on such premise. However, there are many cases of increased oxidative damage in several hypoxia-tolerant organisms under hypoxia. In addition, over the years, the idea of an assured decrease in ROS formation under hypoxia was challenged. Instead, several findings indicate that the production of ROS actually increases in response to hypoxia. Recently, it became possible to provide a comprehensive explanation for the induction of antioxidant enzymes under hypoxia. The supporting evidence and the limitations of the POS idea are extensively explored in this review as we discuss results from research on estivation and situations of low oxygen stress, such as hypoxia, freezing exposure, severe dehydration, and air exposure of water-breathing animals. We propose that, under some level of oxygen deprivation, ROS are overproduced and induce changes leading to hypoxic biochemical responses. These responses would occur mainly through the activation of specific transcription factors (FoxO, Nrf2, HIF-1, NF-κB, and p53) and post translational mechanisms, both mechanisms leading to enhanced antioxidant defenses. Moreover, reactive nitrogen species are candidate modulators of ROS generation in this scenario. We conclude by drawing out the future perspectives in this field of research, and how advances in the knowledge of the mechanisms involved in the POS strategy will offer new and innovative study scenarios of biological and physiological cellular responses to environmental stress.
Collapse
Affiliation(s)
- Marcelo Hermes-Lima
- Laboratório de Radicais Livres, Departamento de Biologia Celular, Universidade de Brasília, Brasí;lia, DF, 70910-900, Brazil.
| | - Daniel C Moreira
- Laboratório de Radicais Livres, Departamento de Biologia Celular, Universidade de Brasília, Brasí;lia, DF, 70910-900, Brazil
| | - Georgina A Rivera-Ingraham
- Groupe Fonctionnel AEO (Adaptation Ecophysiologique et Ontogenèse), UMR 9190 MARBEC, Place Eugène Bataillon, 34095 Montpellier Cedex 05, France
| | - Maximiliano Giraud-Billoud
- Laboratorio de Fisiología (IHEM-CONICET), and Instituto de Fisiología (Facultad de Ciencias Médicas, Universidad Nacional de Cuyo), Casilla de Correo 33, 5500 Mendoza, Argentina
| | - Thiago C Genaro-Mattos
- Laboratório de Radicais Livres, Departamento de Biologia Celular, Universidade de Brasília, Brasí;lia, DF, 70910-900, Brazil; Laboratório de Espectrometria de Massa, Embrapa Recursos Genéticos e Biotecnologia, Brasí;lia, DF, Brazil
| | - Élida G Campos
- Laboratório de Radicais Livres, Departamento de Biologia Celular, Universidade de Brasília, Brasí;lia, DF, 70910-900, Brazil
| |
Collapse
|
25
|
Free-radical first responders: the characterization of CuZnSOD and MnSOD regulation during freezing of the freeze-tolerant North American wood frog, Rana sylvatica. Biochim Biophys Acta Gen Subj 2014; 1850:97-106. [PMID: 25316288 DOI: 10.1016/j.bbagen.2014.10.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 10/03/2014] [Accepted: 10/06/2014] [Indexed: 11/21/2022]
Abstract
BACKGROUND The North American wood frog, Rana sylvatica, is able to overcome subzero conditions through overwintering in a frozen state. Freezing imposes ischemic and oxidative stress on cells as a result of cessation of blood flow. Superoxide dismutases (SODs) catalyze the redox reaction involving the dismutation of superoxide (O(2)(-)) to molecular oxygen and hydrogen peroxide. METHODS The present study investigated the regulation of CuZnSOD and MnSOD kinetics as well as the transcript, protein and phosphorylation levels of purified enzyme from the muscle of control and frozen R. sylvatica. RESULTS CuZnSOD from frozen muscle showed a significantly higher V(max) (1.52 fold) in comparison to CuZnSOD from the muscle of control frogs. MnSOD from frozen muscle showed a significantly lower Km for O(2)(-) (0.66 fold) in comparison to CuZnSOD from control frogs. MnSOD from frozen frogs showed higher phosphorylation of serine (2.36 fold) and tyrosine (1.27 fold) residues in comparison to MnSOD from control animals. Susceptibility to digestion via thermolysin after incubation with increasing amount of urea (C(m)) was tested, resulting in no significant changes for CuZnSOD, whereas a significant change in MnSOD stability was observed between control (2.53 M urea) and frozen (2.92 M urea) frogs. Expressions of CuZnSOD and MnSOD were quantified at both mRNA and protein levels in frog muscle, but were not significantly different. CONCLUSION The physiological consequence of freeze-induced SOD modification appears to adjust SOD function in freezing frogs. GENERAL SIGNIFICANCE Augmented SOD activity may increase the ability of R. sylvatica to overcome oxidative stress associated with ischemia.
Collapse
|
26
|
Mpakama T, Chulayo AY, Muchenje V. Bruising in slaughter cattle and its relationship with creatine kinase levels and beef quality as affected by animal related factors. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2014; 27:717-25. [PMID: 25050007 PMCID: PMC4093197 DOI: 10.5713/ajas.2013.13483] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Revised: 10/14/2013] [Accepted: 11/23/2013] [Indexed: 11/27/2022]
Abstract
The objective of the study was to determine the effects of animal related factors on bruising in slaughter cattle, creatine kinase (CK) and beef quality. Three hundred and twenty one cattle from three breeds (108 Bonsmara, 130 Beefmaster and 83 Brahman) were used in this study. The animals were grouped as follows: Group 1 (16 months old), Group 2 (18 months old) and Group 3 (24 months old). At exsanguinations, blood samples for CK determination were collected using disposable vacutainer tubes. Muscularis longissimus thoracis et lumborum (LTL) was collected 24 h after slaughter to determine the colour (L*, a*, and b*) and ultimate pH (pHu) of beef. Breed, sex and age had significant effects (p<0.05) on bruising score, CK levels and beef quality. Bonsmara breed had the highest (80%) bruising score percentage, CK (705.3±80.57 U/L) and pHu (6.3±0.05) values while the Bonsmara had the highest L* (24.8±0.78) a* (17.5±0.53) and b* (12.8±0.53) values. Higher CK levels were also observed in winter compared to summer, spring and autumn respectively. Therefore, animal factors (sex, breed and animal age at slaughter) contribute to the development of bruises and have an effect on the levels of CK and meat quality. It was also concluded that there is no significant relationship between meat parameters (L,* a*, and b*) and CK levels.
Collapse
|
27
|
Ramírez Ríos S, Lamarche F, Cottet-Rousselle C, Klaus A, Tuerk R, Thali R, Auchli Y, Brunisholz R, Neumann D, Barret L, Tokarska-Schlattner M, Schlattner U. Regulation of brain-type creatine kinase by AMP-activated protein kinase: interaction, phosphorylation and ER localization. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2014; 1837:1271-83. [PMID: 24727412 DOI: 10.1016/j.bbabio.2014.03.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 03/25/2014] [Accepted: 03/31/2014] [Indexed: 12/25/2022]
Abstract
AMP-activated protein kinase (AMPK) and cytosolic brain-type creatine kinase (BCK) cooperate under energy stress to compensate for loss of adenosine triphosphate (ATP) by either stimulating ATP-generating and inhibiting ATP-consuming pathways, or by direct ATP regeneration from phosphocreatine, respectively. Here we report on AMPK-dependent phosphorylation of BCK from different species identified by in vitro screening for AMPK substrates in mouse brain. Mass spectrometry, protein sequencing, and site-directed mutagenesis identified Ser6 as a relevant residue with one site phosphorylated per BCK dimer. Yeast two-hybrid analysis revealed interaction of active AMPK specifically with non-phosphorylated BCK. Pharmacological activation of AMPK mimicking energy stress led to BCK phosphorylation in astrocytes and fibroblasts, as evidenced with a highly specific phospho-Ser6 antibody. BCK phosphorylation at Ser6 did not affect its enzymatic activity, but led to the appearance of the phosphorylated enzyme at the endoplasmic reticulum (ER), close to the ER calcium pump, a location known for muscle-type cytosolic creatine kinase (CK) to support Ca²⁺-pumping.
Collapse
Affiliation(s)
- Sacnicte Ramírez Ríos
- Univ. Grenoble Alpes, Laboratory of Fundamental and Applied Bioenergetics, Grenoble, France; Inserm, U1055, Grenoble, France
| | - Frédéric Lamarche
- Univ. Grenoble Alpes, Laboratory of Fundamental and Applied Bioenergetics, Grenoble, France; Inserm, U1055, Grenoble, France
| | - Cécile Cottet-Rousselle
- Univ. Grenoble Alpes, Laboratory of Fundamental and Applied Bioenergetics, Grenoble, France; Inserm, U1055, Grenoble, France
| | - Anna Klaus
- Univ. Grenoble Alpes, Laboratory of Fundamental and Applied Bioenergetics, Grenoble, France; Inserm, U1055, Grenoble, France
| | - Roland Tuerk
- Institute of Cell Biology, ETH Zurich, Switzerland
| | - Ramon Thali
- Institute of Cell Biology, ETH Zurich, Switzerland
| | - Yolanda Auchli
- Functional Genomics Center Zurich, ETH Zurich/University of Zurich, Switzerland
| | - René Brunisholz
- Functional Genomics Center Zurich, ETH Zurich/University of Zurich, Switzerland
| | | | - Luc Barret
- Univ. Grenoble Alpes, Laboratory of Fundamental and Applied Bioenergetics, Grenoble, France; Inserm, U1055, Grenoble, France
| | - Malgorzata Tokarska-Schlattner
- Univ. Grenoble Alpes, Laboratory of Fundamental and Applied Bioenergetics, Grenoble, France; Inserm, U1055, Grenoble, France
| | - Uwe Schlattner
- Univ. Grenoble Alpes, Laboratory of Fundamental and Applied Bioenergetics, Grenoble, France; Inserm, U1055, Grenoble, France.
| |
Collapse
|
28
|
Saks V, Schlattner U, Tokarska-Schlattner M, Wallimann T, Bagur R, Zorman S, Pelosse M, Santos PD, Boucher F, Kaambre T, Guzun R. Systems Level Regulation of Cardiac Energy Fluxes Via Metabolic Cycles: Role of Creatine, Phosphotransfer Pathways, and AMPK Signaling. SYSTEMS BIOLOGY OF METABOLIC AND SIGNALING NETWORKS 2014. [DOI: 10.1007/978-3-642-38505-6_11] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
29
|
Chulayo AY, Muchenje V. The Effects of Pre-slaughter Stress and Season on the Activity of Plasma Creatine Kinase and Mutton Quality from Different Sheep Breeds Slaughtered at a Smallholder Abattoir. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2013; 26:1762-72. [PMID: 25049767 PMCID: PMC4092882 DOI: 10.5713/ajas.2013.13141] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Revised: 07/21/2013] [Accepted: 06/08/2013] [Indexed: 11/27/2022]
Abstract
The objective of the current study was to determine the effect of pre-slaughter stress, season and breed on the activity of plasma creatine kinase (CK) and the quality of mutton. One hundred and seventy-three (173) castrated sheep from Dormer (DM), South African Mutton Merino (SAMM), Dorper (DP) and Blackhead Persian (BP) sheep breeds were used in the study. The animals were grouped according to age-groups as follows: Group 1 (6 to 8 months), Group 2 (9 to 12 months) and Group 3 (13 to 16 months). Blood samples were collected during exsanguinations using disposable vacutainer tubes for CK analysis. Representative samples of the Muscularis longissimuss thoracis et. lumborum (LTL) were collected from 84 castrated sheep, of different breeds (28 per breed) 24 h after slaughter. The following physico-chemical characteristics of mutton were determined; meat pH (pH24), color (L*, a* and b*), thawing and cooking losses and Warner Braztler Shear Force (WBSF). The activity of plasma CK was significantly higher (p<0.001) in summer (1,026.3±105.06) and lower in winter (723.3±77.75). There were higher values for L* (33.7±0.94), b* (11.5±0.48) and WBSF (29.5±1.46) in summer season than in winter season; L* (29.4±0.64), b* (10.2±0.33) and WBSF (21.2±0.99). The activity of plasma CK was influenced by the type of breed with Dormer having the highest (p>0.001) levels (1,358.6±191.08) of CK. South African Mutton Merino had higher values for pH24 (5.9±0.06), L* (34.2±0.97), b* (12.2±0.50) and WBSF (26.8±1.51) and Blackhead Persian had higher values (35.5±2.17) for cooking loss (CL%) than the other breeds. Computed Principal Component Analyses (PCA) on the activity of plasma CK and physico-chemical characteristics of mutton revealed no correlations between these variables. However, positive correlations were observed between pH24, L*, a*, b*, CL% and WBSF. Relationships between pre-slaughter stress, CK activity and physico-chemical characteristics of mutton were also observed. It was therefore concluded that although mutton quality and creatine kinase were not related, pre-slaughter stress, season and breed affected the activity of creatine kinase and mutton quality.
Collapse
Affiliation(s)
- A. Y. Chulayo
- Department of Livestock and Pasture Science, Faculty of Science and Agriculture, University of Fort Hare, P Bag X 1314, Alice, 5700,
South Africa
| | - V. Muchenje
- Department of Livestock and Pasture Science, Faculty of Science and Agriculture, University of Fort Hare, P Bag X 1314, Alice, 5700,
South Africa
| |
Collapse
|
30
|
Biggar KK, Dawson NJ, Storey KB. Real-time protein unfolding: a method for determining the kinetics of native protein denaturation using a quantitative real-time thermocycler. Biotechniques 2012; 53:231-8. [DOI: 10.2144/0000113922] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Accepted: 09/13/2012] [Indexed: 11/23/2022] Open
Abstract
Protein stability can be monitored by many different techniques. However, these protocols are often lengthy, consume large amounts of protein, and require expensive and specialized instruments. Here we present a new protocol to analyze protein unfolding kinetics using a quantified real-time thermocycler. This technique enables the analysis of a wide range of denaturants (and their interactions with temperature change) on protein stability in a multi-well platform, where samples can be run in parallel under virtually identical conditions and with highly sensitive detection. Using this set-up, researchers can evaluate the half-maximal rate of protein denaturation (Knd), maximum rate of denaturation (Dmax), and the cooperativity of individual denaturants in protein unfolding (µ-coefficient). Both lysozyme and hexokinase are used as model proteins and urea as a model denaturant to illustrate this new method and the kinetics of protein unfolding that it provides. Overall, this method allows the researcher to explore a large number of denaturants, at either constant or variable temperatures, within the same assay, providing estimates of denaturation kinetics that have been previously inaccessible.
Collapse
Affiliation(s)
- Kyle K. Biggar
- Institute of Biochemistry & Department of Biology, Carleton University, Ottawa, Ontario, Canada
| | - Neal J. Dawson
- Institute of Biochemistry & Department of Biology, Carleton University, Ottawa, Ontario, Canada
| | - Kenneth B. Storey
- Institute of Biochemistry & Department of Biology, Carleton University, Ottawa, Ontario, Canada
| |
Collapse
|
31
|
Dieni CA, Bouffard MC, Storey KB. Glycogen synthase kinase-3: cryoprotection and glycogen metabolism in the freeze-tolerant wood frog. ACTA ACUST UNITED AC 2012; 215:543-51. [PMID: 22246263 DOI: 10.1242/jeb.065961] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The terrestrial anuran Rana sylvatica tolerates extended periods of whole-body freezing during the winter. Freezing survival is facilitated by extensive glycogen hydrolysis and distribution of high concentrations of the cryoprotectant glucose into blood and all tissues. As glycogenesis is both an energy-expensive process and counter-productive to maintaining sustained high cryoprotectant levels, we proposed that glycogen synthase kinase-3 (GSK-3) would be activated when wood frogs froze and would phosphorylate its downstream substrates to inactivate glycogen synthesis. Western blot analysis determined that the amount of phosphorylated (inactive) GSK-3 decreased in all five tissues tested in 24 h frozen frogs compared with unfrozen controls. Total GSK-3 protein levels did not change, with the exception of heart GSK-3, indicating that post-translational modification was the primary regulatory mechanism for this kinase. Kinetic properties of skeletal muscle GSK-3 from control and frozen frogs displayed differential responses to a temperature change (22 versus 4°C) and high glucose. For example, when assayed at 4°C, the K(m) for the GSK-3 substrate peptide was ∼44% lower for frozen frogs than the corresponding value in control frogs, indicating greater GSK-3 affinity for its substrates in the frozen state. This indicates that at temperatures similar to the environment encountered by frogs, GSK-3 in frozen frogs will phosphorylate its downstream targets more readily than in unfrozen controls. GSK-3 from skeletal muscle of control frogs was also allosterically regulated. AMP and phosphoenolpyruvate activated GSK-3 whereas inhibitors included glucose, glucose 6-phosphate, pyruvate, ATP, glutamate, glutamine, glycerol, NH(4)Cl, NaCl and KCl. The combination of phosphorylation and allosteric control argues for a regulatory role of GSK-3 in inactivating glycogenesis to preserve high glucose cryoprotectant levels throughout each freezing bout.
Collapse
Affiliation(s)
- Christopher A Dieni
- Micropharma Ltd, 141 President Kennedy Avenue, Université de Quebec à Montreal (UQAM), Biological Sciences Building Unit 5569, Montreal, QC, Canada, H2X 3Y7.
| | | | | |
Collapse
|
32
|
Insights into the in vivo regulation of glutamate dehydrogenase from the foot muscle of an estivating land snail. Enzyme Res 2012; 2012:317314. [PMID: 22536484 PMCID: PMC3318891 DOI: 10.1155/2012/317314] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Accepted: 01/12/2012] [Indexed: 12/02/2022] Open
Abstract
Land snails, Otala lactea, survive in seasonally hot and dry environments by entering a state of aerobic torpor called estivation. During estivation, snails must prevent excessive dehydration and reorganize metabolic fuel use so as to endure prolonged periods without food. Glutamate dehydrogenase (GDH) was hypothesized to play a key role during estivation as it shuttles amino acid carbon skeletons into the Krebs cycle for energy production and is very important to urea biosynthesis (a key molecule used for water retention). Analysis of purified foot muscle GDH from control and estivating conditions revealed that estivated GDH was approximately 3-fold more active in catalyzing glutamate deamination as compared to control. This kinetic difference appears to be regulated by reversible protein phosphorylation, as indicated by ProQ Diamond phosphoprotein staining and incubations that stimulate endogenous protein kinases and phosphatases. The increased activity of the high-phosphate form of GDH seen in the estivating land snail foot muscle correlates well with the increased use of amino acids for energy and increased synthesis of urea for water retention during prolonged estivation.
Collapse
|
33
|
Huang H, Larsen MR, Karlsson AH, Pomponio L, Costa LN, Lametsch R. Gel-based phosphoproteomics analysis of sarcoplasmic proteins in postmortem porcine muscle with pH decline rate and time differences. Proteomics 2011; 11:4063-76. [DOI: 10.1002/pmic.201100173] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Revised: 06/21/2011] [Accepted: 07/11/2011] [Indexed: 11/08/2022]
|
34
|
Dieni CA, Storey KB. Regulation of hexokinase by reversible phosphorylation in skeletal muscle of a freeze-tolerant frog. Comp Biochem Physiol B Biochem Mol Biol 2011; 159:236-43. [PMID: 21616160 DOI: 10.1016/j.cbpb.2011.05.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Revised: 05/09/2011] [Accepted: 05/10/2011] [Indexed: 02/02/2023]
Abstract
Hexokinase (HK) was isolated from hind leg skeletal muscle of the wood frog, Rana sylvatica, a freeze tolerant species that uses glucose as a cryoprotectant. Analysis of kinetic parameters (K(m) and V(max)) of HK showed significant increases in K(m) glucose (from 144 ± 4.4 to 248 ± 1 2.0 μM) and K(m) ATP (from 248 ± 8.5 to 330 ± 20.9 μM), as well as a decrease in V(max) (from 86.1 ± 0.40 to 52 ± 0.49 mUmg(-1) of protein) in frogs following freezing exposure, indicating lower affinity for HK substrates and lower enzyme activity in this state. Subsequent analyses indicated that differential phosphorylation of HK between the two states was responsible for the altered kinetic properties. HK was analyzed by SDS-PAGE; phosphoprotein staining revealed a 33% decrease in phosphate content of HK from frozen frogs but immunoblotting showed no change in total HK protein content. Muscle extracts from control and frozen frogs were incubated with ions and second messengers to stimulate the actions of protein kinases and protein phosphatases, with results indicating that HK can be phosphorylated by protein kinases A and C, and AMP-activated protein kinase, and can be dephosphorylated by protein phosphatases 1, 2A and 2C. The data indicate that in control frogs, HK is in a higher phosphate form and displays a high substrate affinity and high activity, whereas in frozen frogs HK is less phosphorylated, with lower substrate affinity and lower activity. Studies also showed that HK affinity for ATP decreases further in response to low temperature, but that high cryoprotective glucose concentrations can prevent these changes in affinity. Finally, the activity and structure of HK from frozen frogs is more sensitive to non-compatible osmolytes than the enzyme in control frogs.
Collapse
Affiliation(s)
- Christopher A Dieni
- Institute of Biochemistry and Department of Chemistry, Carleton University, Ottawa, Ontario, Canada.
| | | |
Collapse
|
35
|
Dawson NJ, Storey KB. Regulation of tail muscle arginine kinase by reversible phosphorylation in an anoxia-tolerant crayfish. J Comp Physiol B 2011; 181:851-9. [PMID: 21519878 DOI: 10.1007/s00360-011-0578-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2011] [Revised: 03/30/2011] [Accepted: 04/02/2011] [Indexed: 10/18/2022]
Abstract
Freshwater crayfish, Orconectes virilis, can experience periodic exposures to hypoxia or anoxia due to low water flow (in summer) or ice cover (in winter) in their natural habitat. Hypoxia/anoxia disrupts energy metabolism and triggers mechanisms that to support ATP levels while often also suppressing ATP use. Arginine kinase (AK) (E.C. 2.7.3.3) is a crucial enzyme involved in energy metabolism in muscle, gating the use of phosphagen stores to buffer ATP levels. The present study investigated AK from tail muscle of O. virilis identifying changes to kinetic properties, phosphorylation state and structural stability between the enzyme from aerobic control and 20 h anoxic crayfish. Muscle AK from anoxia-exposed crayfish showed a significantly higher (by 59%) K (m) for L: -arginine and a lower I(50) value for urea than the aerobic form. Several lines of evidence indicated that AK was converted to a high phosphate form under anoxia: (a) aerobic and anoxic forms of AK showed well-separated elution peaks on DEAE ion exchange chromatography, (b) ProQ Diamond phosphoprotein staining showed a 64% higher bound phosphate content on anoxic AK compared with the aerobic form, and (c) treatment of anoxic AK with alkaline phosphatase reduced K (m) L: -arginine to aerobic levels whereas incubation of aerobic AK with protein kinase A catalytic subunit raised the K (m) to anoxic levels. The physiological consequence of anoxia-induced AK phosphorylation may be to suppress AK activity in the phosphagen-synthesizing direction and, together with reduced cellular pH and ATP levels, promote the phosphagen-catabolizing direction under anoxic conditions. This is first time that AK has been shown to be regulated by reversible phosphorylation.
Collapse
Affiliation(s)
- Neal J Dawson
- Institute of Biochemistry and Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada
| | | |
Collapse
|
36
|
Abstract
The ubiquitin proteasome system plays a role in regulating protein activity and is integral to the turnover of damaged and worn proteins. In this review, we discuss the recently described relationship between the ubiquitin proteasome system and the cardiac creatine kinase/phosphocreatine shuttle, an essential component of adenosine triphosphate generation and energy shuttling within the heart. The ubiquitin ligase muscle ring finger-1 (MuRF1) binds creatine kinase, leading to its ubiquitination and possible degradation. Muscle ring finger-1 may also be integral in the regulation of creatine kinase activity in vivo. Because there is a close relationship between the cardiac creatine kinase/phosphocreatine shuttle activity and heart failure, these findings suggest that MuRF1's role in protein quality control of creatine kinase may be vital to the regulation and maintenance of cardiac energetics to protect against heart failure.
Collapse
|
37
|
Dieni CA, Storey KB. Regulation of glucose-6-phosphate dehydrogenase by reversible phosphorylation in liver of a freeze tolerant frog. J Comp Physiol B 2010; 180:1133-42. [DOI: 10.1007/s00360-010-0487-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2010] [Revised: 05/17/2010] [Accepted: 05/22/2010] [Indexed: 11/29/2022]
|