1
|
Ding H, Shi X, Wen Z, Zhu X, Chen P, Hu Y, Xiao K, Yang J, Tian T, Zhang D, Wang S, Li Y. Molecular Identification and Functional Characterization of LC-PUFA Biosynthesis Elongase ( elovl2) Gene in Chinese Sturgeon ( Acipenser sinensis). Animals (Basel) 2024; 14:2343. [PMID: 39199889 PMCID: PMC11350804 DOI: 10.3390/ani14162343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/16/2024] [Accepted: 08/01/2024] [Indexed: 09/01/2024] Open
Abstract
Elongases of very-long-chain fatty acids (Elovls) are critical rate-limiting enzymes that are involved in LC-PUFA biosynthesis through catalyzing the two-carbon elongation of a pre-existing fatty acyl chain. Thus far, several Elovls have been extensively studied in teleost. However, the functional and physiological roles of Elovls in chondrichthyans have rarely been reported. In this study, we identified and characterized elovl2 from the endangered Chinese sturgeon (Acipenser sinensis) by whole genome scanning. The results show that the coding sequence of elovl2 was 894 bp in length, for a putative protein of 297 amnio acids. Comparative genomic analyses indicated that Chinese sturgeon elovl2 was evolutionarily conserved. Functional characterization in yeast demonstrated that the Chinese sturgeon Elovl2 could efficiently elongate C20 (ARA and EPA) and C22 (22:4n-6 and 22:5n-3) substrates, confirming its critical roles in LC-PUFA biosynthesis. Spatial and temporal expression analyses showed high elovl2 mRNA levels were detected in the liver and brain and showed an increase trend both in embryonic and post-hatching stages. Interestingly, diets with vegetable oils as lipid sources could significantly induce the high expression of elovl2 in Chinese sturgeon, implying that the endogenous LC-PUFA biosynthesis pathway was stimulated by lack of LC-PUFA in their diets. Our findings will enhance our understanding about the evolutionary and functional roles of elovl2 and provide novel insights into the LC-PUFA biosynthesis mechanism in vertebrates.
Collapse
Affiliation(s)
- Haoze Ding
- Hubei Key Laboratory of Three Gorges Project for Conservation of Fishes, Yichang 443100, China; (H.D.); (X.S.); (X.Z.); (P.C.); (Y.H.); (K.X.); (J.Y.); (T.T.); (D.Z.)
- Chinese Sturgeon Research Institute, China Three Gorges Corporation, Yichang 443100, China
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, Shantou 515063, China
| | - Xuetao Shi
- Hubei Key Laboratory of Three Gorges Project for Conservation of Fishes, Yichang 443100, China; (H.D.); (X.S.); (X.Z.); (P.C.); (Y.H.); (K.X.); (J.Y.); (T.T.); (D.Z.)
- Chinese Sturgeon Research Institute, China Three Gorges Corporation, Yichang 443100, China
| | - Zhengyong Wen
- Key Laboratory of Sichuan Province for Fishes Conservation and Utilization in the Upper Reaches of the Yangtze River, Neijiang Normal University, Neijiang 641100, China;
| | - Xin Zhu
- Hubei Key Laboratory of Three Gorges Project for Conservation of Fishes, Yichang 443100, China; (H.D.); (X.S.); (X.Z.); (P.C.); (Y.H.); (K.X.); (J.Y.); (T.T.); (D.Z.)
- Chinese Sturgeon Research Institute, China Three Gorges Corporation, Yichang 443100, China
| | - Pei Chen
- Hubei Key Laboratory of Three Gorges Project for Conservation of Fishes, Yichang 443100, China; (H.D.); (X.S.); (X.Z.); (P.C.); (Y.H.); (K.X.); (J.Y.); (T.T.); (D.Z.)
- Chinese Sturgeon Research Institute, China Three Gorges Corporation, Yichang 443100, China
| | - Yacheng Hu
- Hubei Key Laboratory of Three Gorges Project for Conservation of Fishes, Yichang 443100, China; (H.D.); (X.S.); (X.Z.); (P.C.); (Y.H.); (K.X.); (J.Y.); (T.T.); (D.Z.)
- Chinese Sturgeon Research Institute, China Three Gorges Corporation, Yichang 443100, China
| | - Kan Xiao
- Hubei Key Laboratory of Three Gorges Project for Conservation of Fishes, Yichang 443100, China; (H.D.); (X.S.); (X.Z.); (P.C.); (Y.H.); (K.X.); (J.Y.); (T.T.); (D.Z.)
- Chinese Sturgeon Research Institute, China Three Gorges Corporation, Yichang 443100, China
| | - Jing Yang
- Hubei Key Laboratory of Three Gorges Project for Conservation of Fishes, Yichang 443100, China; (H.D.); (X.S.); (X.Z.); (P.C.); (Y.H.); (K.X.); (J.Y.); (T.T.); (D.Z.)
- Chinese Sturgeon Research Institute, China Three Gorges Corporation, Yichang 443100, China
| | - Tian Tian
- Hubei Key Laboratory of Three Gorges Project for Conservation of Fishes, Yichang 443100, China; (H.D.); (X.S.); (X.Z.); (P.C.); (Y.H.); (K.X.); (J.Y.); (T.T.); (D.Z.)
- Chinese Sturgeon Research Institute, China Three Gorges Corporation, Yichang 443100, China
| | - Dezhi Zhang
- Hubei Key Laboratory of Three Gorges Project for Conservation of Fishes, Yichang 443100, China; (H.D.); (X.S.); (X.Z.); (P.C.); (Y.H.); (K.X.); (J.Y.); (T.T.); (D.Z.)
- Chinese Sturgeon Research Institute, China Three Gorges Corporation, Yichang 443100, China
| | - Shuqi Wang
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, Shantou 515063, China
| | - Yang Li
- Hubei Key Laboratory of Three Gorges Project for Conservation of Fishes, Yichang 443100, China; (H.D.); (X.S.); (X.Z.); (P.C.); (Y.H.); (K.X.); (J.Y.); (T.T.); (D.Z.)
- Chinese Sturgeon Research Institute, China Three Gorges Corporation, Yichang 443100, China
| |
Collapse
|
2
|
Zhao B, Peng Y, Itakura Y, Lizanda M, Haga Y, Satoh S, Navarro JC, Monroig Ó, Kabeya N. A complete biosynthetic pathway of the long-chain polyunsaturated fatty acids in an amphidromous fish, ayu sweetfish Plecoglossus altivelis (Stomiati; Osmeriformes). Biochim Biophys Acta Mol Cell Biol Lipids 2024; 1869:159498. [PMID: 38703945 DOI: 10.1016/j.bbalip.2024.159498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/15/2024] [Accepted: 04/26/2024] [Indexed: 05/06/2024]
Abstract
The biosynthetic capability of the long-chain polyunsaturated fatty acids (LC-PUFA) in teleosts are highly diversified due to evolutionary events such as gene loss and subsequent neo- and/or sub-functionalisation of enzymes encoded by existing genes. In the present study, we have comprehensively characterised genes potentially involved in LC-PUFA biosynthesis, namely one front-end desaturase (fads2) and eight fatty acid elongases (elovl1a, elovl1b, elovl4a, elovl4b, elovl5, elovl7, elovl8a and elovl8b) from an amphidromous teleost, Ayu sweetfish, Plecoglossus altivelis. Functional analysis confirmed Fads2 with Δ6, Δ5 and Δ8 desaturase activities towards multiple PUFA substrates and several Elovl enzymes exhibited elongation capacities towards C18-20 or C18-22 PUFA substrates. Consequently, P. altivelis possesses a complete enzymatic capability to synthesise physiologically important LC-PUFA including arachidonic acid (ARA, 20:4n-6), eicosapentaenoic acid (EPA, 20:5n-3) and docosahexaenoic acid (DHA, 22:6n-3) from their C18 precursors. Interestingly, the loss of elovl2 gene in P. altivelis was corroborated by genomic and phylogenetic analyses. However, this constraint would possibly be overcome by the function of alternative Elovl enzymes, such as Elovl1b, which has not hitherto been functionally characterised in teleosts. The present study contributes novel insights into LC-PUFA biosynthesis in the relatively understudied teleost group, Osmeriformes (Stomiati), thereby enhancing our understanding of the complement of LC-PUFA biosynthetic genes within teleosts.
Collapse
Affiliation(s)
- Bo Zhao
- College of Fisheries, Zhejiang Ocean University, No. 1 Haida South Road, Dinghai District, Zhoushan 316022, Zhejiang Province, China
| | - Yingying Peng
- Graduate School of Marine Science and Technology, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato-ku, Tokyo 108-8477, Japan
| | - Yuki Itakura
- Department of Marine Biosciences, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato, Tokyo 108-8477, Japan
| | - Myriam Lizanda
- Instituto de Acuicultura Torre de la Sal (IATS), CSIC, Ribera de Cabanes 12595, Castellón, Spain
| | - Yutaka Haga
- Department of Marine Biosciences, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato, Tokyo 108-8477, Japan
| | - Shuichi Satoh
- Department of Advanced Aquaculture Science, Fukui Prefectural University, Katsumi, 49-8-2 Obama, Fukui 917-0116, Japan
| | - Juan C Navarro
- Instituto de Acuicultura Torre de la Sal (IATS), CSIC, Ribera de Cabanes 12595, Castellón, Spain
| | - Óscar Monroig
- Instituto de Acuicultura Torre de la Sal (IATS), CSIC, Ribera de Cabanes 12595, Castellón, Spain
| | - Naoki Kabeya
- Department of Marine Biosciences, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato, Tokyo 108-8477, Japan.
| |
Collapse
|
3
|
Nwagbo U, Parvez S, Maschek JA, Bernstein PS. Elovl4b knockout zebrafish as a model for ocular very-long-chain PUFA deficiency. J Lipid Res 2024; 65:100518. [PMID: 38342437 PMCID: PMC10940177 DOI: 10.1016/j.jlr.2024.100518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 02/03/2024] [Accepted: 02/06/2024] [Indexed: 02/13/2024] Open
Abstract
Very-long-chain PUFAs (VLC-PUFAs) are a group of lipids with chain lengths >24 carbons, and the ELOVL4 (elongation of very-long-chain FA-4) enzyme is responsible for vertebrate VLC-PUFA biosynthesis. Studies on the role of VLC-PUFAs in vision have been hindered because of the need for adequate animal models to capture the global loss of VLC-PUFAs. Since homozygous Elovl4 ablation is lethal in neonatal mice because of catastrophic drying from the loss of their protective skin barrier, we established a zebrafish (Danio rerio) model of Elovl4 ablation. We generated Elovl4b KO zebrafish by creating a 56-bp deletion mutation in exon 2 of the Elovl4b gene using CRISPR-Cas9. We used GC-MS and LC-MS/MS to analyze the VLC-PUFA and lipid profiles from wild-type and Elovl4b KO fish eyes. We also performed histology and visual-behavioral tests. We found that heterozygous and homozygous Elovl4b KO zebrafish eyes had altered lipid profiles and a significantly lower C30 to C36 VLC-PUFA abundance than wild-type fish. Moreover, Elovl4b+/- and Elovl4b-/- KO larvae had significantly lower motor activity in response to light-dark cycles than their age-matched controls. Elovl4b-/- adult fish showed no obvious differences in gross retinal morphology and lamination compared with wild type, except for the presence of lipid droplets within the retinal pigment epithelial cell layer of Elovl4b-/- fish. Our data indicate that the loss of Elovl4b in zebrafish changes ocular lipid profiles and leads to visual abnormalities and subtle retinal changes. These findings highlight the use of zebrafish as a model for VLC-PUFA depletion and ELOVL4-related dysfunction.
Collapse
Affiliation(s)
- Uzoamaka Nwagbo
- Department of Ophthalmology and Visual Sciences, John A. Moran Eye Center, University of Utah, Salt Lake City, UT, USA; Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, UT, USA
| | - Saba Parvez
- Department of Ophthalmology and Visual Sciences, John A. Moran Eye Center, University of Utah, Salt Lake City, UT, USA
| | - J Alan Maschek
- Metabolomics Core, University of Utah Health Sciences Center, Salt Lake City, UT, USA
| | - Paul S Bernstein
- Department of Ophthalmology and Visual Sciences, John A. Moran Eye Center, University of Utah, Salt Lake City, UT, USA; Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
4
|
You C, Miao S, Xie Z, Lin S, Wang S, Chen C, Lin L, Huang Y, Zhou M, Dong Y, Li Y, Zhuang P. Cloning, tissue specificity and regulation of expression of genes of four key enzymes related to long-chain polyunsaturated fatty acids (LC-PUFA) biosynthesis by ambient salinity during embryogenesis in the marine teleost Siganus guttatus. Comp Biochem Physiol B Biochem Mol Biol 2024; 269:110903. [PMID: 37717849 DOI: 10.1016/j.cbpb.2023.110903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 09/10/2023] [Accepted: 09/11/2023] [Indexed: 09/19/2023]
Abstract
The rabbitfish Siganus canaliculatus was the first marine teleost reported to possess long-chain polyunsaturated fatty acid (LC-PUFA) biosynthetic ability, and the related molecular mechanisms have been well clarified. Here, we investigated the LC-PUFA biosynthesis capability of the congeneric rabbitfish S. guttatus. First, cDNAs of genes for four key enzymes related to LC-PUFA biosynthesis, namely Δ6Δ5 fatty acyl desaturase (fads2) (1335 bp; 445 aa), Δ4 fads2 (1335 bp; 445 aa), and elongation of very long chain fatty acid proteins (elovl5) (873 bp; 291 aa) and elovl4 (906 bp; 302 aa) were cloned from the liver of S. guttatus. The Δ6Δ5 fads2, Δ4 fads2 and elovl5 genes showed high expression in brain, liver, spleen, gallbladder, and intestine but relatively low expression in eye, whereas the elovl4 gene showed specific and high expression in eye. During embryogenesis, mRNA expression of Δ4 fads2 and elovl4 was detected from 8 h post-fertilization (hpf) and then maintained a high level to 24 hpf, while mRNA expression of Δ6Δ5 fads2 and elovl5 reached a peak at 14 hpf but then declined. In addition, ambient salinity (32 ppt and 20 ppt) exerted some regulatory influence on the expression of the four genes during embryogenesis. The levels of C18 PUFA precursors and, especially, PUFA and DHA of the embryos, decreased from 17 hpf to 24 hpf. These results suggested that S. guttatus, similar to the congeneric S. canaliculatus, would have capability for LC-PUFA biosynthesis, which is still not activated at the fertilized egg stage.
Collapse
Affiliation(s)
- Cuihong You
- Innovative Institute of Animal Healthy Breeding, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510222, Guangdong, China; Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, Guangdong, China
| | - Shuangshuang Miao
- Innovative Institute of Animal Healthy Breeding, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510222, Guangdong, China; Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, Guangdong, China
| | - Zhiyong Xie
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, Guangdong, China
| | - Siyuan Lin
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, Guangdong, China
| | - Shuqi Wang
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, Guangdong, China
| | - Cuiying Chen
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, Guangdong, China
| | - Li Lin
- Innovative Institute of Animal Healthy Breeding, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510222, Guangdong, China
| | - Yanhua Huang
- Innovative Institute of Animal Healthy Breeding, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510222, Guangdong, China
| | - Meng Zhou
- Innovative Institute of Animal Healthy Breeding, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510222, Guangdong, China
| | - Yewei Dong
- Innovative Institute of Animal Healthy Breeding, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510222, Guangdong, China.
| | - Yuanyou Li
- College of Marine Sciences & University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on MBCE, South China Agricultural University, Guangzhou 510642, China.
| | - Ping Zhuang
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China
| |
Collapse
|
5
|
Zhou W, Wang Y, Wang J, Peng C, Wang Z, Qin H, Li G, Li D. Geosmin disrupts energy metabolism and locomotor behavior of zebrafish in early life stages. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 859:160222. [PMID: 36400299 DOI: 10.1016/j.scitotenv.2022.160222] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 11/11/2022] [Accepted: 11/12/2022] [Indexed: 06/16/2023]
Abstract
Geosmin has been commonly detected both in various aquatic environments and biota, but its exact toxicological mechanisms to organisms need further experimentation. In the present study, zebrafish embryos were exposed to geosmin at nominal concentrations of 50, 500 and 5000 ng/L for 120 h post-fertilization (hpf), followed by locomotor activity and biochemical parameter examination, and multi-omics investigation of the transcriptome and metabolome. The results showed that geosmin exposure significantly reduced the mitochondrial electron transport chain (ETC) complexes I-V, ATP content and mitochondrial respiration and suppressed the locomotor behavior of zebrafish larvae. Transcriptomics analysis revealed that the transcripts of genes involved in oxidative phosphorylation, glycolysis, and lipid metabolism were significantly affected, indicating that geosmin disrupts energy metabolism. Furthermore, metabolomics results showed that 3 classes of lipids, namely glycerophospholipids (GPs), sphingolipids (SLs) and fatty acyls (FAs) were significantly decreased after geosmin exposure. This study provides novel insight into the underlying mechanisms of geosmin-induced energy metabolism and highlights the need for concern about geosmin exposure.
Collapse
Affiliation(s)
- Weicheng Zhou
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China; Hunan Provincial Key Laboratory of Xiangnan Rare-Precious Metals Compounds and Applications, School of Chemistry and Environmental Science, Xiangnan University, Chenzhou 423000, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yuming Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Jinglong Wang
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Chengrong Peng
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China
| | - Zhicong Wang
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China
| | - Hongjie Qin
- Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Key Lab of Comprehensive Innovative Utilization of Ornamental Plant Germplasm, Guangzhou 510640, PR China
| | - Genbao Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China
| | - Dunhai Li
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China.
| |
Collapse
|
6
|
Datsomor AK, Gillard G, Jin Y, Olsen RE, Sandve SR. Molecular Regulation of Biosynthesis of Long Chain Polyunsaturated Fatty Acids in Atlantic Salmon. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2022; 24:661-670. [PMID: 35907166 PMCID: PMC9385821 DOI: 10.1007/s10126-022-10144-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 07/11/2022] [Indexed: 06/15/2023]
Abstract
Salmon is a rich source of health-promoting omega-3 long chain polyunsaturated fatty acids (n-3 LC-PUFA), such as eicosapentaenoic acid (EPA, 20:5n-3) and docosahexaenoic acid (DHA, 22:6n-3). The LC-PUFA biosynthetic pathway in Atlantic salmon is one of the most studied compared to other teleosts. This has largely been due to the massive replacement of LC-PUFA-rich ingredients in aquafeeds with terrestrial plant oils devoid of these essential fatty acids (EFA) which ultimately pushed dietary content towards the minimal requirement of EFA. The practice would also reduce tissue content of n-3 LC-PUFA compromising the nutritional value of salmon to the human consumer. These necessitated detailed studies of endogenous biosynthetic capability as a contributor to these EFA. This review seeks to provide a comprehensive and concise overview of the current knowledge about the molecular genetics of PUFA biosynthesis in Atlantic salmon, highlighting the enzymology and nutritional regulation as well as transcriptional control networks. Furthermore, we discuss the impact of genome duplication on the complexity of salmon LC-PUFA pathway and highlight probable implications on endogenous biosynthetic capabilities. Finally, we have also compiled and made available a large RNAseq dataset from 316 salmon liver samples together with an R-script visualization resource to aid in explorative and hypothesis-driven research into salmon lipid metabolism.
Collapse
Affiliation(s)
- Alex K. Datsomor
- Center for Integrative Genetics (CIGENE), Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
| | - Gareth Gillard
- Center for Integrative Genetics (CIGENE), Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
| | - Yang Jin
- Center for Integrative Genetics (CIGENE), Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
| | - Rolf E. Olsen
- Institute of Biology, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Simen R. Sandve
- Center for Integrative Genetics (CIGENE), Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
| |
Collapse
|
7
|
The repertoire of the elongation of very long-chain fatty acids (Elovl) protein family is conserved in tambaqui (Colossoma macropomum): Gene expression profiles offer insights into the sexual differentiation process. Comp Biochem Physiol B Biochem Mol Biol 2022; 261:110749. [PMID: 35470007 DOI: 10.1016/j.cbpb.2022.110749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 04/18/2022] [Accepted: 04/19/2022] [Indexed: 11/24/2022]
Abstract
Elongation of very long-chain fatty acids (Elovl) proteins are critical players in the regulation of the length of a fatty acid. At present, eight members of the Elovl family (Elovl1-8), displaying a characteristic fatty acid substrate specificity, have been identified in vertebrates, including teleost fish. In general, Elovl1, Elovl3, Elovl6 and Elovl7 exhibit a substrate preference for saturated and monounsaturated fatty acids, while Elovl2, Elovl4, Elovl5 and Elovl8 use polyunsaturated fatty acids (PUFA) as substrates. PUFA elongases have received considerable attention in aquatic animals due to their involvement in the conversion of C18 PUFAs to long-chain polyunsaturated fatty acids (LC-PUFA). Here, we identified the full repertoire of elovl genes in the tambaqui Colossoma macropomum genome. A detailed phylogenetic and synteny analysis suggests a conservation of these genes among teleosts. Furthermore, based on RNAseq gene expression data, we discovered a gender bias expression of elovl genes during sex differentiation of tambaqui, toward future males. Our findings suggest a role of Elovl enzymes and fatty acid metabolism in tambaqui sexual differentiation.
Collapse
|
8
|
A chromosome-level genome assembly of the jade perch (Scortum barcoo). Sci Data 2022; 9:408. [PMID: 35840598 PMCID: PMC9287455 DOI: 10.1038/s41597-022-01523-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/28/2022] [Indexed: 11/13/2022] Open
Abstract
Endemic to Australia, jade perch (Scortum barcoo) is a highly profitable freshwater bass species. It has extraordinarily high levels of omega-3 polyunsaturated fatty acids (PUFAs), which detailed genes involved in are largely unclear. Meanwhile, there were four chromosome-level bass species have been previous sequenced, while the bass ancestor genome karyotypes have not been estimated. Therefore, we sequenced, assembled and annotated a genome of jade perch to characterize the detailed genes for biosynthesis of omega-3 PUFAs and to deduce the bass ancestor genome karyotypes. We constructed a chromosome-level genome assembly with 24 pairs of chromosomes, 657.7 Mb in total length, and the contig and the scaffold N50 of 4.8 Mb and 28.6 Mb respectively. We also identified repetitive elements (accounting for 19.7% of the genome assembly) and predicted 26,905 protein-coding genes. Meanwhile, we performed genome-wide localization and characterization of several important genes encoding some key enzymes in the biosynthesis pathway of PUFAs. These genes may contribute to the high concentration of omega-3 in jade perch. Moreover, we conducted a series of comparative genomic analyses among four representative bass species at a chromosome level, resulting in a series of sequences of a deductive bass ancestor genome. Measurement(s) | whole genome sequencing | Technology Type(s) | Illumina Sequencing • Oxford Nanopore Sequencing |
Collapse
|
9
|
Kyselová L, Vítová M, Řezanka T. Very long chain fatty acids. Prog Lipid Res 2022; 87:101180. [PMID: 35810824 DOI: 10.1016/j.plipres.2022.101180] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/21/2022] [Accepted: 07/04/2022] [Indexed: 11/26/2022]
Abstract
Very long chain fatty acids (VLCFAs) are important components of various lipid classes in most organisms, from bacteria to higher plants and mammals, including humans. VLCFAs, or very long chain polyunsaturated fatty acids (VLCPUFAs), can be defined as fatty acids with 23 or more carbon atoms in the molecule. The main emphasis in this review is on the analysis of these acids, including obtaining standards from natural sources or their synthesis. Furthermore, the occurrence and analysis of these compounds in both lower (bacteria, invertebrates) and higher organisms (flowering plants or mammals) are discussed in detail. Attention is paid to their biosynthesis, especially the elongation of very long chain fatty acids protein (ELOVL4). This review deals with papers describing these very interesting compounds, whose chemical, biochemical and biological properties have not been fully explored.
Collapse
Affiliation(s)
- Lucie Kyselová
- Research Institute of Brewing and Malting, Lípová 511, 120 44 Prague, Czech Republic.
| | - Milada Vítová
- Institute of Botany, Czech Academy of Sciences, Centre for Phycology, Dukelská 135, 379 01 Třeboň, Czech Republic.
| | - Tomáš Řezanka
- Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic.
| |
Collapse
|
10
|
Serrano R, Navarro JC, Sales C, Portolés T, Monroig Ó, Beltran J, Hernández F. Determination of very long-chain polyunsaturated fatty acids from 24 to 44 carbons in eye, brain and gonads of wild and cultured gilthead sea bream (Sparus aurata). Sci Rep 2022; 12:10112. [PMID: 35710933 PMCID: PMC9203556 DOI: 10.1038/s41598-022-14361-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 06/06/2022] [Indexed: 11/30/2022] Open
Abstract
Very long-chain (> C24) polyunsaturated fatty acids (VLC-PUFA) play an important role in the development of nervous system, retinal function and reproductive processes in vertebrates. Their presence in very small amounts in specific lipid classes, the lack of reference standards and their late elution in chromatographic analyses render their identification and, most important, their quantification, still a challenge. Consequently, a sensitive and feasible analytical methodology is needed. In this work, we have studied the effect of chain length, as well as the number and position of unsaturations (or double bonds) on the response of GC-APCI-(Q)TOF MS, to establish an analytical method for VLC-PUFA quantification. The developed methodology allows the quantification of these compounds down to 2.5 × 10–3 pmol/mg lipid. The reduction of VLC-PUFA levels in lipid fractions of the organs from the herein sampled farmed fish suggesting a yet undetected effect on these compounds of high vegetable oil aquafeed formulations, that currently dominate the market.
Collapse
Affiliation(s)
- Roque Serrano
- Research Institute for Pesticides and Water (IUPA), University Jaume I, Av. Sos Baynat S/N, 12071, Castellón, Spain. .,Research Unit of Marine Ecotoxicology, UJI, Associated Unit to CSIC by IATS, Av. Sos Baynat S/N, 12071, Castellón, Spain.
| | - Juan C Navarro
- Research Unit of Marine Ecotoxicology, UJI, Associated Unit to CSIC by IATS, Av. Sos Baynat S/N, 12071, Castellón, Spain.,Institute of Aquaculture Torre de la Sal (IATS), CSIC, 12595, Ribera de Cabanes, S/NCastellón, Cabanes, Spain
| | - Carlos Sales
- Research Institute for Pesticides and Water (IUPA), University Jaume I, Av. Sos Baynat S/N, 12071, Castellón, Spain
| | - Tania Portolés
- Research Institute for Pesticides and Water (IUPA), University Jaume I, Av. Sos Baynat S/N, 12071, Castellón, Spain
| | - Óscar Monroig
- Research Unit of Marine Ecotoxicology, UJI, Associated Unit to CSIC by IATS, Av. Sos Baynat S/N, 12071, Castellón, Spain.,Institute of Aquaculture Torre de la Sal (IATS), CSIC, 12595, Ribera de Cabanes, S/NCastellón, Cabanes, Spain
| | - Joaquin Beltran
- Research Institute for Pesticides and Water (IUPA), University Jaume I, Av. Sos Baynat S/N, 12071, Castellón, Spain
| | - Félix Hernández
- Research Institute for Pesticides and Water (IUPA), University Jaume I, Av. Sos Baynat S/N, 12071, Castellón, Spain.,Research Unit of Marine Ecotoxicology, UJI, Associated Unit to CSIC by IATS, Av. Sos Baynat S/N, 12071, Castellón, Spain
| |
Collapse
|
11
|
Monroig Ó, Shu-Chien A, Kabeya N, Tocher D, Castro L. Desaturases and elongases involved in long-chain polyunsaturated fatty acid biosynthesis in aquatic animals: From genes to functions. Prog Lipid Res 2022; 86:101157. [DOI: 10.1016/j.plipres.2022.101157] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/17/2021] [Accepted: 01/22/2022] [Indexed: 01/01/2023]
|
12
|
Nyunoya H, Noda T, Kawamoto Y, Hayashi Y, Ishibashi Y, Ito M, Okino N. Lack of ∆5 Desaturase Activity Impairs EPA and DHA Synthesis in Fish Cells from Red Sea Bream and Japanese Flounder. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2021; 23:472-481. [PMID: 34176006 DOI: 10.1007/s10126-021-10040-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 05/28/2021] [Indexed: 06/13/2023]
Abstract
Long-chain (≥ C20) polyunsaturated fatty acids (LC-PUFA), such as eicosapentaenoic acid (20:5n-3, EPA) and docosahexaenoic acid (22:6n-3, DHA), are necessary for human health and are obtained from marine fish-derived oils. Marine fish are LC-PUFA-rich animals; however, many of them require LC-PUFA for growth. Therefore, it is suggested that they do not have sufficient ability to biosynthesize LC-PUFA. To evaluate in vivo LC-PUFA synthetic activity in fish cells, fish-derived cell lines from red sea bream (Pagrus major, PMS and PMF), Japanese flounder (Paralichthys olivaceus, HINAE), and zebrafish (Danio rerio, BRF41) were incubated with n-3 fatty acids labeled by radioisotopes or stable isotopes, and then, n-3 PUFA were analyzed by thin-layer chromatography or liquid chromatography-mass spectrometry. Labeled EPA and DHA were biosynthesized from labeled α-linolenic acid (18:3n-3) in BRF41, whereas they were not detected in PMS, PMF, or HINAE cells. We next cloned the fatty acid desaturase 2 (Fads2) cDNAs from PMF cells and zebrafish, expressed in budding yeasts, and then analyzed the substrate specificities of enzymes. As a result, we found that Fads2 from PMF cells was a ∆6/∆8 desaturase. Collectively, our study indicates that cell lines from red sea bream and Japanese flounder were not able to synthesize EPA or DHA by themselves, possibly due to the lack of ∆5 desaturase activity. Furthermore, this study provides a sensitive and reproducible non-radioactive method for evaluating LC-PUFA synthesis in fish cells using a stable isotope and liquid chromatography-mass spectrometry.
Collapse
Affiliation(s)
- Hayato Nyunoya
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Tatsuki Noda
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - You Kawamoto
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Yasuhiro Hayashi
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka, 819-0395, Japan
- Faculty of Pharma-Science, Teikyo University, Kaga 2-11-1, Itabashi-ku, Tokyo, 173-8605, Japan
| | - Yohei Ishibashi
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Makoto Ito
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Nozomu Okino
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka, 819-0395, Japan.
| |
Collapse
|
13
|
Xie D, Chen C, Dong Y, You C, Wang S, Monroig Ó, Tocher DR, Li Y. Regulation of long-chain polyunsaturated fatty acid biosynthesis in teleost fish. Prog Lipid Res 2021; 82:101095. [PMID: 33741387 DOI: 10.1016/j.plipres.2021.101095] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 02/24/2021] [Accepted: 03/12/2021] [Indexed: 12/26/2022]
Abstract
Omega-3 (n-3) long-chain polyunsaturated fatty acids (LC-PUFA, C20-24), including eicosapentaenoic acid (EPA, 20:5n-3) and docosahexaenoic acid (DHA, 22:6n-3), are involved in numerous biological processes and have a range of health benefits. Fish have long been considered as the main source of n-3 LC-PUFA in human diets. However, the capacity for endogenous biosynthesis of LC-PUFA from C18 PUFA varies in fish species based on the presence, expression and activity of key enzymes including fatty acyl desaturases (Fads) and elongation of very long-chain fatty acids (Elovl) proteins. In this article, we review progress on the identified Fads and Elovl, as well as the regulatory mechanisms of LC-PUFA biosynthesis both at transcriptional and post-transcriptional levels in teleosts. The most comprehensive advances have been obtained in rabbitfish Siganus canaliculatus, a marine teleost demonstrated to have the entire pathway for LC-PUFA biosynthesis, including the roles of transcription factors hepatocyte nuclear factor 4α (Hnf4α), liver X receptor alpha (Lxrα), sterol regulatory element-binding protein 1 (Srebp-1), peroxisome proliferator-activated receptor gamma (Pparγ) and stimulatory protein 1 (Sp1), as well as post-transcriptional regulation by individual microRNA (miRNA) or clusters. This research has, for the first time, demonstrated the involvement of Hnf4α, Pparγ and miRNA in the regulation of LC-PUFA biosynthesis in vertebrates. The present review provides readers with a relatively comprehensive overview of the progress made into understanding LC-PUFA biosynthetic systems in teleosts, and some insights into improving endogenous LC-PUFA biosynthesis capacity aimed at reducing the dependence of aquafeeds on fish oil while maintaining or increasing flesh LC-PUFA content and the nutritional quality of farmed fish.
Collapse
Affiliation(s)
- Dizhi Xie
- College of Marine Sciences of South China Agricultural University & Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Cuiying Chen
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China
| | - Yewei Dong
- Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510642, China
| | - Cuihong You
- Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510642, China
| | - Shuqi Wang
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China.
| | - Óscar Monroig
- Instituto de Acuicultura Torre de la Sal, Consejo Superior de Investigaciones Científicas (IATS-CSIC), 12595 Castellón, Spain.
| | - Douglas R Tocher
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China; Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling FK94LA, Scotland, United Kingdom
| | - Yuanyou Li
- College of Marine Sciences of South China Agricultural University & Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China.
| |
Collapse
|
14
|
Yeboah GK, Lobanova ES, Brush RS, Agbaga MP. Very long chain fatty acid-containing lipids: a decade of novel insights from the study of ELOVL4. J Lipid Res 2021; 62:100030. [PMID: 33556440 PMCID: PMC8042400 DOI: 10.1016/j.jlr.2021.100030] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 01/12/2021] [Accepted: 01/27/2021] [Indexed: 11/18/2022] Open
Abstract
Lipids play essential roles in maintaining cell structure and function by modulating membrane fluidity and cell signaling. The fatty acid elongase-4 (ELOVL4) protein, expressed in retina, brain, Meibomian glands, skin, testes and sperm, is an essential enzyme that mediates tissue-specific biosynthesis of both VLC-PUFA and VLC-saturated fatty acids (VLC-SFA). These fatty acids play critical roles in maintaining retina and brain function, neuroprotection, skin permeability barrier maintenance, and sperm function, among other important cellular processes. Mutations in ELOVL4 that affect biosynthesis of these fatty acids cause several distinct tissue-specific human disorders that include blindness, age-related cerebellar atrophy and ataxia, skin disorders, early-childhood seizures, mental retardation, and mortality, which underscores the essential roles of ELOVL4 products for life. However, the mechanisms by which one tissue makes VLC-PUFA and another makes VLC-SFA, and how these fatty acids exert their important functional roles in each tissue, remain unknown. This review summarizes research over that last decade that has contributed to our current understanding of the role of ELOVL4 and its products in cellular function. In the retina, VLC-PUFA and their bioactive "Elovanoids" are essential for retinal function. In the brain, VLC-SFA are enriched in synaptic vesicles and mediate neuronal signaling by determining the rate of neurotransmitter release essential for normal neuronal function. These findings point to ELOVL4 and its products as being essential for life. Therefore, mutations and/or age-related epigenetic modifications of fatty acid biosynthetic gene activity that affect VLC-SFA and VLC-PUFA biosynthesis contribute to age-related dysfunction of ELOVL4-expressing tissues.
Collapse
Affiliation(s)
- Gyening Kofi Yeboah
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Ekaterina S Lobanova
- Department of Ophthalmology Research, University of Florida, Gainesville, FL, USA
| | - Richard S Brush
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Dean A. McGee Eye Institute, Oklahoma City, OK, USA
| | - Martin-Paul Agbaga
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Dean A. McGee Eye Institute, Oklahoma City, OK, USA.
| |
Collapse
|
15
|
Luo J, Monroig Ó, Liao K, Ribes-Navarro A, Navarro JC, Zhu T, Li J, Xue L, Zhou Q, Jin M. Biosynthesis of LC-PUFAs and VLC-PUFAs in Pampus argenteus: Characterization of Elovl4 Elongases and Regulation under Acute Salinity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:932-944. [PMID: 33430591 DOI: 10.1021/acs.jafc.0c06277] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Salinity has been demonstrated to influence the biosynthesis of long-chain (C20-24) polyunsaturated fatty acids (LC-PUFAs) in teleost fish. Since LC-PUFAs are essential nutrients for vertebrates, it is central to understand how fish cope with an acute change in salinity associated with natural events. We herein report on the cloning and functional characterization of two elongation of very-long-chain fatty acid (Elovl)4 proteins, namely, Elovl4a and Elovl4b, and study the roles that these enzymes play in the biosynthesis of LC-PUFAs and very-long-chain (>C24) polyunsaturated fatty acids (VLC-PUFAs) in marine teleost Pampus argenteus. The P. argenteus Elovl4 displayed all of the typical features of Elovl-like enzymes and have eyes and brain as major sites through which they exert their functions. Moreover, functional studies showed that the P. argenteus Elovl4 can effectively elongate C18-22 substrates to C36 VLC-PUFA. Because both P. argenteus Elovl4 are able to produce 24:5n - 3 from shorter precursors, we tested whether the previously reported Δ6 Fads2 from P. argenteus was able to desaturate 24:5n - 3 to 24:6n - 3, a key step for docosahexaenoic acid (DHA) synthesis. Our results showed that P. argenteus can indeed bioconvert 24:5n - 3 into 24:6n - 3, suggesting that P. argenteus has the enzymatic capacity required for DHA biosynthesis through the coordinated action of both Elovl4 and Fads2. Furthermore, an acute salinity test indicated that low-salinity stress (12 ppt) upregulated genes involved in LC-PUFA biosynthesis, with 12 ppt salinity treatment showing the highest hepatic LC-PUFA content. Overall, our results unveiled that the newly characterized Elovl4 enzymes have indispensable functions in LC- and VLC-PUFA biosynthesis. Moreover, acute salinity change influenced the biosynthesis of LC-PUFA in P. argenteus. This study provided new insight into the biosynthesis of LC- and VLC-PUFAs in vertebrates and the physiological responses that teleosts have under acute salinity stress.
Collapse
Affiliation(s)
- Jiaxiang Luo
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Óscar Monroig
- Instituto de Acuicultura Torre de la Sal (IATS-CSIC), Ribera de Cabanes 12595, Castellón, Spain
| | - Kai Liao
- School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Alberto Ribes-Navarro
- Instituto de Acuicultura Torre de la Sal (IATS-CSIC), Ribera de Cabanes 12595, Castellón, Spain
| | - Juan Carlos Navarro
- Instituto de Acuicultura Torre de la Sal (IATS-CSIC), Ribera de Cabanes 12595, Castellón, Spain
| | - Tingting Zhu
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Juan Li
- School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Liangli Xue
- School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Qicun Zhou
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Min Jin
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| |
Collapse
|
16
|
Katan T, Xue X, Caballero-Solares A, Taylor RG, Rise ML, Parrish CC. Influence of Dietary Long-Chain Polyunsaturated Fatty Acids and ω6 to ω3 Ratios on Head Kidney Lipid Composition and Expression of Fatty Acid and Eicosanoid Metabolism Genes in Atlantic Salmon ( Salmo salar). Front Mol Biosci 2020; 7:602587. [PMID: 33381522 PMCID: PMC7767880 DOI: 10.3389/fmolb.2020.602587] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 11/17/2020] [Indexed: 01/01/2023] Open
Abstract
The interaction of dietary eicosapentaenoic acid and docosahexaenoic acid (EPA+DHA) levels with omega-6 to omega-3 ratios (ω6:ω3), and their impact on head kidney lipid metabolism in farmed fish, are not fully elucidated. We investigated the influence of five plant-based diets (12-week exposure) with varying EPA+DHA levels (0.3, 1.0, or 1.4%) and ω6:ω3 (high ω6, high ω3, or balanced) on tissue lipid composition, and transcript expression of genes involved in fatty acid and eicosanoid metabolism in Atlantic salmon head kidney. Tissue fatty acid composition was reflective of the diet with respect to C18 PUFA and MUFA levels (% of total FA), and ω6:ω3 (0.5–1.5). Fish fed 0.3% EPA+DHA with high ω6 (0.3% EPA+DHA↑ω6) had the highest increase in proportions (1.7–2.3-fold) and in concentrations (1.4-1.8-fold) of arachidonic acid (ARA). EPA showed the greatest decrease in proportion and in concentration (by ~½) in the 0.3% EPA+DHA↑ω6 fed fish compared to the other treatments. However, no differences were observed in EPA proportions among salmon fed the high ω3 (0.3 and 1.0% EPA+DHA) and balanced (1.4% EPA+DHA) diets, and DHA proportions were similar among all treatments. Further, the transcript expression of elovl5a was lowest in the 0.3% EPA+DHA↑ω6 fed fish, and correlated positively with 20:3ω3, 20:4ω3 and EPA:ARA in the head kidney. This indicates that high dietary 18:3ω3 promoted the synthesis of ω3 LC-PUFA. Dietary EPA+DHA levels had a positive impact on elovl5a, fadsd5 and srebp1 expression, and these transcripts positively correlated with tissue ΣMUFA. This supported the hypothesis that LC-PUFA synthesis is positively influenced by tissue MUFA levels in Atlantic salmon. The expression of pparaa was higher in the 0.3% EPA+DHA↑ω6 compared to the 0.3% EPA+DHA↑ω3 fed fish. Finally, significant correlations between head kidney fatty acid composition and the expression of eicosanoid synthesis-related transcripts (i.e., 5loxa, 5loxb, cox1, cox2, ptges2, ptges3, and pgds) illustrated the constitutive relationships among fatty acids and eicosanoid metabolism in salmon.
Collapse
Affiliation(s)
- Tomer Katan
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Xi Xue
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada
| | | | | | - Matthew L Rise
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Christopher C Parrish
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada
| |
Collapse
|
17
|
Jin Y, Datsomor AK, Olsen RE, Vik JO, Torgersen JS, Edvardsen RB, Wargelius A, Winge P, Grammes F. Targeted mutagenesis of ∆5 and ∆6 fatty acyl desaturases induce dysregulation of lipid metabolism in Atlantic salmon (Salmo salar). BMC Genomics 2020; 21:805. [PMID: 33213387 PMCID: PMC7678299 DOI: 10.1186/s12864-020-07218-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 11/09/2020] [Indexed: 02/06/2023] Open
Abstract
Background With declining wild fish populations, farmed salmon has gained popularity as a source for healthy long-chain highly unsaturated fatty acids (LC-HUFA). However, the introduction of plant oil in farmed salmon feeds has reduced the content of these beneficial LC-HUFA. The synthetic capability for LC-HUFAs depends upon the dietary precursor fatty acids and the genetic potential, thus there is a need for in-depth understanding of LC-HUFA synthetic genes and their interactions with other genes involved in lipid metabolism. Several key genes of LC-HUFA synthesis in salmon belong to the fatty acid desaturases 2 (fads2) family. The present study applied whole transcriptome analysis on two CRISPR-mutated salmon strains (crispants), 1) Δ6abc/5Mt with mutations in Δ5fads2, Δ6fads2-a, Δ6fads2-b and Δ6fads2-c genes, and 2) Δ6bcMt with mutations in Δ6fads2-b and Δ6fads2-c genes. Our purpose is to evaluate the genetic effect fads2 mutations have on other lipid metabolism pathways in fish, as well as to investigate mosaicism in a commercial species with a very long embryonal period. Results Both Δ6abc/5Mt and Δ6bcMt crispants demonstrated high percentage of indels within all intended target genes, though different indel types and percentage were observed between individuals. The Δ6abc/5Mt fish displayed several disruptive indels which resulted in over 100 differentially expressed genes (DEGs) enriched in lipid metabolism pathways in liver. This includes up-regulation of srebp1 genes which are known key transcription regulators of lipid metabolism as well as a number of down-stream genes involved in fatty acid de-novo synthesis, fatty acid β-oxidation and lipogenesis. Both elovl5 and elovl2 genes were not changed, suggesting that the genes were not targeted by Srebp1. The mutation of Δ6bcMt surprisingly resulted in over 3000 DEGs which were enriched in factors encoding genes involved in mRNA regulation and stability. Conclusions CRISPR-Cas9 can efficiently mutate multiple fads2 genes simultaneously in salmon. The results of the present study have provided new information on the transcriptional regulations of lipid metabolism genes after reduction of LC-HUFA synthesis pathways in salmon. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-020-07218-1.
Collapse
Affiliation(s)
- Yang Jin
- Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, N-1432, Aas, Norway
| | - Alex K Datsomor
- Department of Biology, Norwegian University of Science and Technology, N-7491, Trondheim, Norway
| | - Rolf E Olsen
- Department of Biology, Norwegian University of Science and Technology, N-7491, Trondheim, Norway
| | - Jon Olav Vik
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, N-1432, Aas, Norway
| | | | | | | | - Per Winge
- Department of Biology, Norwegian University of Science and Technology, N-7491, Trondheim, Norway
| | - Fabian Grammes
- Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, N-1432, Aas, Norway. .,AquaGen AS, Post box 1240, Torgard, N-7462, Trondheim, Norway.
| |
Collapse
|
18
|
Serrano R, Navarro JC, Portolés T, Sales C, Beltrán J, Monroig Ó, Hernández F. Identification of new, very long-chain polyunsaturated fatty acids in fish by gas chromatography coupled to quadrupole/time-of-flight mass spectrometry with atmospheric pressure chemical ionization. Anal Bioanal Chem 2020; 413:1039-1046. [PMID: 33210175 DOI: 10.1007/s00216-020-03062-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 11/02/2020] [Accepted: 11/11/2020] [Indexed: 10/23/2022]
Abstract
The characterization of very long-chain (>C24) polyunsaturated fatty acids (VLC-PUFAs), which are essential in the vision, neural function, and reproduction of vertebrates, is challenging because of the lack of reference standards and their very low concentrations in certain lipid classes. In this research, we have developed a new methodology for VLC-PUFA identification based on gas chromatography coupled to quadrupole/time-of-flight mass spectrometry with an atmospheric pressure chemical ionization source (GC-APCI-QTOF MS). The mass accuracy attainable with the innovative QTOF instrument, together with the soft ionization of the APCI source, provides valuable information on the intact molecule, traditionally lost with electron ionization sources due to the extensive fragmentation suffered. We have identified, for the first time, VLC-PUFAs with chains up to 44 carbons in eyes, brain, and gonads of gilthead sea bream, a commercially important fish in the Mediterranean. The added value of ion mobility-mass spectrometry (IMS), recently developed in combination with GC-QTOF MS, and the contribution of the collisional cross section (CCS) parameter in the characterization of novel VLC-PUFAs (for which reference standards are not available) have been also evaluated. The methodology developed has allowed assessing qualitative differences between farmed and wild fish, and opens new perspectives in a still scarcely known field of research.
Collapse
Affiliation(s)
- Roque Serrano
- Research Institute for Pesticides and Water (IUPA), University Jaume I, Av. Sos Baynat S/N, 12071, Castellón, Spain. .,Research Unit of Marine Ecotoxicology (IATS-IUPA), Ribera de Cabanes, S/N, 12595, Cabanes, Castellón, Spain.
| | - Juan Carlos Navarro
- Research Unit of Marine Ecotoxicology (IATS-IUPA), Ribera de Cabanes, S/N, 12595, Cabanes, Castellón, Spain.,Instituto de Acuicultura de Torre de la Sal (IATS-CSIC), Ribera de Cabanes, S/N, 12595, Cabanes, Castellón, Spain
| | - Tania Portolés
- Research Institute for Pesticides and Water (IUPA), University Jaume I, Av. Sos Baynat S/N, 12071, Castellón, Spain
| | - Carlos Sales
- Research Institute for Pesticides and Water (IUPA), University Jaume I, Av. Sos Baynat S/N, 12071, Castellón, Spain
| | - Joaquín Beltrán
- Research Institute for Pesticides and Water (IUPA), University Jaume I, Av. Sos Baynat S/N, 12071, Castellón, Spain
| | - Óscar Monroig
- Research Unit of Marine Ecotoxicology (IATS-IUPA), Ribera de Cabanes, S/N, 12595, Cabanes, Castellón, Spain.,Instituto de Acuicultura de Torre de la Sal (IATS-CSIC), Ribera de Cabanes, S/N, 12595, Cabanes, Castellón, Spain
| | - Félix Hernández
- Research Institute for Pesticides and Water (IUPA), University Jaume I, Av. Sos Baynat S/N, 12071, Castellón, Spain.,Research Unit of Marine Ecotoxicology (IATS-IUPA), Ribera de Cabanes, S/N, 12595, Cabanes, Castellón, Spain
| |
Collapse
|
19
|
Zhu KC, Song L, Liu BS, Guo HY, Zhang N, Guo L, Jiang SG, Zhang DC. Functional characterization, tissue distribution and nutritional regulation of the Elovl4 gene in golden pompano, Trachinotus ovatus (Linnaeus, 1758). Gene 2020; 766:145144. [PMID: 32916248 DOI: 10.1016/j.gene.2020.145144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 08/28/2020] [Accepted: 09/03/2020] [Indexed: 11/19/2022]
Abstract
The elongases of very long-chain fatty acids (Elovls) are involved in the rate-limiting of the carbon chain elongation reaction in fatty acid (FA) biosynthesis in vertebrates. One member of the Elovls family, Elovl4, has been regarded as a critical enzyme involved in the biosynthesis pathway of polyunsaturated fatty acids (PUFAs). To explore the role of Elovl4 in PUFA synthesis in Trachinotus ovatus, the cDNA of the Elovl4b gene is cloned from T. ovatus (ToElovl4b). The ORF of ToElovl4b was 918 bp and encoded 305 amino acid (aa) protein sequences. Sequence alignment showed that the deduced amino acids contained significant structural features of the Elovl4 family, such as a histidine box motif (HXXHH), multiple transmembrane domains and an endoplasmic reticulum (ER) retention signal. Moreover, phylogenetic analysis revealed that ToElovl4b was highly conserved with that of Rachycentron canadum Elovl4b. Moreover, heterologous expression in yeast demonstrated that ToElovl4b could efficiently elongate 18:2n-6, 18:3n-6 and 20:5n-3 FAs up to 20:2n-6, 20:3n-6 and 22:5n-3, respectively. Furthermore, the tissue expression profile indicated that mRNA expression of ToElovl4b was higher in the gonads and brain than in other tissues. Additionally, nutritional regulation suggested the highest mRNA levels of ToElovl4b in liver and brain were under feeding with 1:1 FO-SO (fish oil, FO; soybean oil, SO) and 1:1 FO-CO (corn oil, CO)), respectively. These new insights were useful for understanding the molecular basis and regulation of LC-PUFA biosynthesis in fish.
Collapse
Affiliation(s)
- Ke-Cheng Zhu
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300 Guangzhou, Guangdong Province, PR China; Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, 510300 Guangzhou, Guangdong Province, PR China
| | - Ling Song
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300 Guangzhou, Guangdong Province, PR China
| | - Bao-Suo Liu
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300 Guangzhou, Guangdong Province, PR China; Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, 510300 Guangzhou, Guangdong Province, PR China
| | - Hua-Yang Guo
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300 Guangzhou, Guangdong Province, PR China; Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, 510300 Guangzhou, Guangdong Province, PR China
| | - Nan Zhang
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300 Guangzhou, Guangdong Province, PR China; Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, 510300 Guangzhou, Guangdong Province, PR China
| | - Liang Guo
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300 Guangzhou, Guangdong Province, PR China; Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, 510300 Guangzhou, Guangdong Province, PR China
| | - Shi-Gui Jiang
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300 Guangzhou, Guangdong Province, PR China; Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, 510300 Guangzhou, Guangdong Province, PR China; Sanya Tropical Fisheries Research Institute, Sanya, Hainan Province 572018, PR China
| | - Dian-Chang Zhang
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300 Guangzhou, Guangdong Province, PR China; Tropical Aquaculture Research and Development Center, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Sanya 572018, PR China; Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, 510300 Guangzhou, Guangdong Province, PR China; Sanya Tropical Fisheries Research Institute, Sanya, Hainan Province 572018, PR China.
| |
Collapse
|
20
|
Morais S, Torres M, Hontoria F, Monroig Ó, Varó I, Agulleiro MJ, Navarro JC. Molecular and Functional Characterization of Elovl4 Genes in Sparus aurata and Solea senegalensis Pointing to a Critical Role in Very Long-Chain (>C 24) Fatty Acid Synthesis during Early Neural Development of Fish. Int J Mol Sci 2020; 21:ijms21103514. [PMID: 32429178 PMCID: PMC7278935 DOI: 10.3390/ijms21103514] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 05/11/2020] [Accepted: 05/12/2020] [Indexed: 01/02/2023] Open
Abstract
Very long-chain fatty acids (VLC-FA) play critical roles in neural tissues during the early development of vertebrates. However, studies on VLC-FA in fish are scarce. The biosynthesis of VLC-FA is mediated by elongation of very long-chain fatty acid 4 (Elovl4) proteins and, consequently, the complement and activity of these enzymes determines the capacity that a given species has for satisfying its physiological demands, in particular for the correct development of neurophysiological functions. The present study aimed to characterize and localize the expression of elovl4 genes from Sparus aurata and Solea senegalensis, as well as to determine the function of their encoded proteins. The results confirmed that both fish possess two distinct elovl4 genes, named elovl4a and elovl4b. Functional assays demonstrated that both Elovl4 isoforms had the capability to elongate long-chain (C20–24), both saturated (SFA) and polyunsaturated (PUFA), fatty acid precursors to VLC-FA. In spite of their overlapping activity, Elovl4a was more active in VLC-SFA elongation, while Elovl4b had a preponderant elongation activity towards n-3 PUFA substrates, particularly in S. aurata, being additionally the only isoform that is capable of elongating docosahexaenoic acid (DHA). A preferential expression of elovl4 genes was measured in neural tissues, being elovl4a and elovl4b mRNAs mostly found in brain and eyes, respectively.
Collapse
Affiliation(s)
- Sofia Morais
- Instituto de Investigación y Tecnología Agroalimentaria (IRTA), Ctra. Poble Nou km 5.5, 43540 Sant Carles de la Rápita, Tarragona, Spain; (S.M.); (M.J.A.)
| | - Miguel Torres
- Instituto de Acuicultura de Torre de la Sal (IATS-CSIC), 12595 Ribera de Cabanes, Castellón, Spain; (M.T.); (Ó.M.); (I.V.); (J.C.N.)
| | - Francisco Hontoria
- Instituto de Acuicultura de Torre de la Sal (IATS-CSIC), 12595 Ribera de Cabanes, Castellón, Spain; (M.T.); (Ó.M.); (I.V.); (J.C.N.)
- Correspondence: ; Tel.: +34-964319500 (ext. 229)
| | - Óscar Monroig
- Instituto de Acuicultura de Torre de la Sal (IATS-CSIC), 12595 Ribera de Cabanes, Castellón, Spain; (M.T.); (Ó.M.); (I.V.); (J.C.N.)
| | - Inma Varó
- Instituto de Acuicultura de Torre de la Sal (IATS-CSIC), 12595 Ribera de Cabanes, Castellón, Spain; (M.T.); (Ó.M.); (I.V.); (J.C.N.)
| | - María José Agulleiro
- Instituto de Investigación y Tecnología Agroalimentaria (IRTA), Ctra. Poble Nou km 5.5, 43540 Sant Carles de la Rápita, Tarragona, Spain; (S.M.); (M.J.A.)
| | - Juan Carlos Navarro
- Instituto de Acuicultura de Torre de la Sal (IATS-CSIC), 12595 Ribera de Cabanes, Castellón, Spain; (M.T.); (Ó.M.); (I.V.); (J.C.N.)
| |
Collapse
|
21
|
Ferraz RB, Machado AM, Navarro JC, Cunha I, Ozório R, Salaro AL, Castro LFC, Monroig Ó. The fatty acid elongation genes elovl4a and elovl4b are present and functional in the genome of tambaqui (Colossoma macropomum). Comp Biochem Physiol B Biochem Mol Biol 2020; 245:110447. [PMID: 32325254 DOI: 10.1016/j.cbpb.2020.110447] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/15/2020] [Accepted: 04/17/2020] [Indexed: 10/24/2022]
Abstract
Long-chain (C20-24) polyunsaturated fatty acids (LC-PUFA) are physiologically important nutrients for vertebrates including fish. Previous studies have addressed the metabolism of LC-PUFA in the Amazonian teleost tambaqui (Colossoma macropomum), an emerging species in Brazilian aquaculture, showing that all the desaturase and elongase activities required to convert C18 polyunsaturated fatty acids (PUFA) into LC-PUFA are present in tambaqui. Yet, elongation of very long-chain fatty acid 4 (Elovl4) proteins, which participate in the biosynthesis of very long-chain (>C24) saturated fatty acids (VLC-SFA) and very long-chain polyunsaturated fatty acids (VLC-PUFA), had not been characterized in this species. Here, we investigate the repertoire and function of two Elovl4 in tambaqui. Furthermore, we present the first draft genome assembly from tambaqui, and demonstrated the usefulness of this resource in nutritional physiology studies by isolating one of the tambaqui elovl4 genes. Our results showed that, similarly to other teleost species, two elovl4 gene paralogs termed as elovl4a and elovl4b, are present in tambaqui. Tambaqui elovl4a and elovl4b have open reading frames (ORF) of 948 and 912 base pairs, encoding putative proteins of 315 and 303 amino acids, respectively. Functional characterization in yeast showed that both Elovl4 enzymes have activity toward all the PUFA substrates assayed (18:3n-3, 18:2n-6, 18:4n-3, 18:3n-6, 20:5n-3, 20:4n-6, 22:5n-3, 22:4n-6 and 22:6n-3), producing elongated products of up to C36. Moreover, both Elovl4 were able to elongate 22:5n-3 to 24:5n-3, a key elongation step required for the synthesis of docosahexaenoic acid via the Sprecher pathway.
Collapse
Affiliation(s)
- Renato B Ferraz
- CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Av. General Norton De Matos S/N, 4450-208 Matosinhos, Portugal; ICBAS - Institute of Biomedical Sciences Abel Salazar, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - André M Machado
- CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Av. General Norton De Matos S/N, 4450-208 Matosinhos, Portugal
| | - Juan C Navarro
- Instituto de Acuicultura Torre de la Sal, Consejo Superior de Investigaciones Científicas (IATS-CSIC), 12595 Ribera de Cabanes, Castellón, Spain
| | - Isabel Cunha
- CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Av. General Norton De Matos S/N, 4450-208 Matosinhos, Portugal
| | - Rodrigo Ozório
- CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Av. General Norton De Matos S/N, 4450-208 Matosinhos, Portugal
| | - Ana L Salaro
- Department of Animal Biology, Federal University of Viçosa, Avenida Peter Henry Rolfs, s/n - Campus Universitário, Viçosa, MG 36570-900, Brazil
| | - L Filipe C Castro
- CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Av. General Norton De Matos S/N, 4450-208 Matosinhos, Portugal; Department of Biology, Faculty of Sciences, University of Porto, Rua Campo Alegre s/n, 4169-007, Portugal.
| | - Óscar Monroig
- Instituto de Acuicultura Torre de la Sal, Consejo Superior de Investigaciones Científicas (IATS-CSIC), 12595 Ribera de Cabanes, Castellón, Spain.
| |
Collapse
|
22
|
Ting SY, Janaranjani M, Merosha P, Sam KK, Wong SC, Goh PT, Mah MQ, Kuah MK, Chong Shu-Chien A. Two Elongases, Elovl4 and Elovl6, Fulfill the Elongation Routes of the LC-PUFA Biosynthesis Pathway in the Orange Mud Crab ( Scylla olivacea). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:4116-4130. [PMID: 32186869 DOI: 10.1021/acs.jafc.9b06692] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
While the capacity for long-chain polyunsaturated fatty acid (LC-PUFA) biosynthesis has been elucidated in vertebrates and several invertebrate phyla, the comparative knowledge in crustaceans remains vague. A key obstacle in mapping the full spectrum of LC-PUFA biosynthesis in crustacean is the limited evidence of the functional activities of enzymes involved in desaturation or elongation of polyunsaturated fatty acid substrates. In this present study, we report on the cloning and functional characterization of two Elovl elongases from the orange mud crab, Scylla olivacea. Sequence and phylogenetic analysis suggest these two Elovl as putative Elovl4 and Elovl6, respectively. Using the recombinant expression system in Saccharomyces cerevisiae, we demonstrate the elongation capacity for C18-C22 PUFA substrates in the S. olivacea Elovl4. The S. olivacea Elovl6 elongated saturated fatty acids, monounsaturated fatty acids, and interestingly, C18-C20 PUFA. Taken together, both Elovl fulfill the elongation steps required for conversion of C18 PUFA to their respective LC-PUFA products. Elovl4 is expressed mainly in the hepatopancreas and gill tissues, while Elovl6 is predominant in digestive tissues. The mRNA expression of both enzymes was higher in mud crabs fed with vegetable oil-based diets. Tissue fatty acid composition also showed the existence of LC-PUFA biosynthesis intermediate products in tissues expressing these two elongases. In summary, we report here two novel Elovl with PUFA elongating activities in a marine brachyuran. This will contribute significantly to the understanding of the LC-PUFA biosynthesis pathway in crustaceans and advance the development of aquafeed for intensive farming of the mud crab.
Collapse
Affiliation(s)
- Seng Yeat Ting
- Center for Chemical Biology, Universiti Sains Malaysia, Sains@USM, Blok B No. 10, Persiaran Bukit Jambul, 11900 Bayan Lepas, Penang, Malaysia
| | - M Janaranjani
- Center for Chemical Biology, Universiti Sains Malaysia, Sains@USM, Blok B No. 10, Persiaran Bukit Jambul, 11900 Bayan Lepas, Penang, Malaysia
| | - P Merosha
- School of Biological Sciences, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia
| | - Ka-Kei Sam
- Center for Chemical Biology, Universiti Sains Malaysia, Sains@USM, Blok B No. 10, Persiaran Bukit Jambul, 11900 Bayan Lepas, Penang, Malaysia
| | - Swe Cheng Wong
- Centre for Marine and Coastal Studies, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia
| | - Pei-Tian Goh
- School of Biological Sciences, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia
| | - Min-Qian Mah
- School of Biological Sciences, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia
| | - Meng-Kiat Kuah
- Center for Chemical Biology, Universiti Sains Malaysia, Sains@USM, Blok B No. 10, Persiaran Bukit Jambul, 11900 Bayan Lepas, Penang, Malaysia
| | - Alexander Chong Shu-Chien
- Center for Chemical Biology, Universiti Sains Malaysia, Sains@USM, Blok B No. 10, Persiaran Bukit Jambul, 11900 Bayan Lepas, Penang, Malaysia
- School of Biological Sciences, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia
| |
Collapse
|
23
|
The catadromous teleost Anguilla japonica has a complete enzymatic repertoire for the biosynthesis of docosahexaenoic acid from α-linolenic acid: Cloning and functional characterization of an Elovl2 elongase. Comp Biochem Physiol B Biochem Mol Biol 2020; 240:110373. [DOI: 10.1016/j.cbpb.2019.110373] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 10/11/2019] [Accepted: 10/14/2019] [Indexed: 01/21/2023]
|
24
|
Betancor MB, Oboh A, Ortega A, Mourente G, Navarro JC, de la Gándara F, Tocher DR, Monroig Ó. Molecular and functional characterisation of a putative elovl4 gene and its expression in response to dietary fatty acid profile in Atlantic bluefin tuna (Thunnus thynnus). Comp Biochem Physiol B Biochem Mol Biol 2020; 240:110372. [DOI: 10.1016/j.cbpb.2019.110372] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 10/04/2019] [Accepted: 10/14/2019] [Indexed: 12/13/2022]
|
25
|
Bláhová Z, Harvey TN, Pšenička M, Mráz J. Assessment of Fatty Acid Desaturase (Fads2) Structure-Function Properties in Fish in the Context of Environmental Adaptations and as a Target for Genetic Engineering. Biomolecules 2020; 10:E206. [PMID: 32023831 PMCID: PMC7072455 DOI: 10.3390/biom10020206] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 01/26/2020] [Accepted: 01/28/2020] [Indexed: 12/16/2022] Open
Abstract
Fatty acid desaturase 2 (Fads2) is the key enzyme of long-chain polyunsaturated fatty acid (LC-PUFA) biosynthesis. Endogenous production of these biomolecules in vertebrates, if present, is insufficient to meet demand. Hence, LC-PUFA are considered as conditionally essential. At present, however, LC-PUFA are globally limited nutrients due to anthropogenic factors. Research attention has therefore been paid to finding ways to maximize endogenous LC-PUFA production, especially in production species, whereby deeper knowledge on molecular mechanisms of enzymatic steps involved is being generated. This review first briefly informs about the milestones in the history of LC-PUFA essentiality exploration before it focuses on the main aim-to highlight the fascinating Fads2 potential to play roles fundamental to adaptation to novel environmental conditions. Investigations are summarized to elucidate on the evolutionary history of fish Fads2, providing an explanation for the remarkable plasticity of this enzyme in fish. Furthermore, structural implications of Fads2 substrate specificity are discussed and some relevant studies performed on organisms other than fish are mentioned in cases when such studies have to date not been conducted on fish models. The importance of Fads2 in the context of growing aquaculture demand and dwindling LC-PUFA supply is depicted and a few remedies in the form of genetic engineering to improve endogenous production of these biomolecules are outlined.
Collapse
Affiliation(s)
- Zuzana Bláhová
- South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, University of South Bohemia in České Budějovice, Zátiší 728/II, 389 25 Vodňany, Czech Republic
| | - Thomas Nelson Harvey
- Centre for Integrative Genetics (CIGENE), Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, 1430 Ås, Norway
| | - Martin Pšenička
- South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, University of South Bohemia in České Budějovice, Zátiší 728/II, 389 25 Vodňany, Czech Republic
| | - Jan Mráz
- South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, University of South Bohemia in České Budějovice, Zátiší 728/II, 389 25 Vodňany, Czech Republic
| |
Collapse
|
26
|
Sun P, Zhou Q, Monroig Ó, Navarro JC, Jin M, Yuan Y, Wang X, Jiao L. Cloning and functional characterization of an elovl4-like gene involved in the biosynthesis of long-chain polyunsaturated fatty acids in the swimming crab Portunus trituberculatus. Comp Biochem Physiol B Biochem Mol Biol 2020; 242:110408. [PMID: 31958500 DOI: 10.1016/j.cbpb.2020.110408] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 11/27/2019] [Accepted: 01/15/2020] [Indexed: 11/25/2022]
Abstract
Elongation of very long-chain fatty acid 4 (Elovl4) proteins participate in the biosynthesis of long-chain and very long-chain polyunsaturated fatty acids (LC-PUFA and VLC-PUFA). In the present study, an elovl4 cDNA was cloned from the swimming crab Portunus trituberculatus by PCR techniques and functionally characterized using recombinant expression in yeast Saccharomyces cerevisiae. The elovl4 cDNA sequence contained an open reading frame of 1038 base pairs, encoding a protein of 346 amino acids. The elovl4 has typical Elovl structures, with transmembrane domains (6) and a histidine box. The elovl4 was expressed in various tissues analyzed, with the highest expression found in intestine and hepatopancreas, followed by stomach and eyestalk. The functional characterization of Elovl4 yeast showed that the P. trituberculatus Elovl4 can elongate C18-22 polyunsaturated fatty acids (PUFA), reaching in some cases products of C24 and C26. Along its ability to elongate PUFA, the P. trituberculatus Elovl4 was also efficient in the elongation of saturated fatty acids, with 28:0 and 30:0 being prominent elongation products. These results provide insight into the LC-PUFA biosynthetic capability of commercially important species of crustaceans.
Collapse
Affiliation(s)
- Peng Sun
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo 315211, China; Collaborative Innovation Center for Zhejiang Marine High Efficiency and Healthy Aquaculture, Ningbo University, Ningbo, China
| | - Qicun Zhou
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo 315211, China; Collaborative Innovation Center for Zhejiang Marine High Efficiency and Healthy Aquaculture, Ningbo University, Ningbo, China.
| | - Óscar Monroig
- Instituto de Acuicultura Torre de la Sal, Consejo Superior de Investigaciones Científicas (IATS-CSIC), 12595 Ribera de Cabanes, Castellón, Spain.
| | - Juan Carlos Navarro
- Instituto de Acuicultura Torre de la Sal, Consejo Superior de Investigaciones Científicas (IATS-CSIC), 12595 Ribera de Cabanes, Castellón, Spain
| | - Min Jin
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Ye Yuan
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Xuexi Wang
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Lefei Jiao
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| |
Collapse
|
27
|
CRISPR/Cas9-mediated editing of Δ5 and Δ6 desaturases impairs Δ8-desaturation and docosahexaenoic acid synthesis in Atlantic salmon (Salmo salar L.). Sci Rep 2019; 9:16888. [PMID: 31729437 PMCID: PMC6858459 DOI: 10.1038/s41598-019-53316-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 10/26/2019] [Indexed: 01/11/2023] Open
Abstract
The in vivo functions of Atlantic salmon fatty acyl desaturases (fads2), Δ6fads2-a, Δ6fads2-b, Δ6fads2-c and Δ5fads2 in long chain polyunsaturated fatty acid (LC-PUFA) synthesis in salmon and fish in general remains to be elucidated. Here, we investigate in vivo functions and in vivo functional redundancy of salmon fads2 using two CRISPR-mediated partial knockout salmon, Δ6abc/5Mt with mutations in Δ6fads2-a, Δ6fads2-b, Δ6fads2-c and Δ5fads2, and Δ6bcMt with mutations in Δ6fads2-b and Δ6fads2-c. F0 fish displaying high degree of gene editing (50–100%) were fed low LC-PUFA and high LC-PUFA diets, the former containing reduced levels of eicosapentaenoic (20:5n-3) and docosahexaenoic (22:6n-3) acids but higher content of linoleic (18:2n-6) and alpha-linolenic (18:3n-3) acids, and the latter containing high levels of 20:5n-3 and 22:6n-3 but reduced compositions of 18:2n-6 and 18:3n-3. The Δ6abc/5Mt showed reduced 22:6n-3 levels and accumulated Δ6-desaturation substrates (18:2n-6, 18:3n-3) and Δ5-desaturation substrate (20:4n-3), demonstrating impaired 22:6n-3 synthesis compared to wildtypes (WT). Δ6bcMt showed no effect on Δ6-desaturation compared to WT, suggesting Δ6 Fads2-a as having the predominant Δ6-desaturation activity in salmon, at least in the tissues analyzed. Both Δ6abc/5Mt and Δ6bcMt demonstrated significant accumulation of Δ8-desaturation substrates (20:2n-6, 20:3n-3) when fed low LC-PUFA diet. Additionally, Δ6abc/5Mt demonstrated significant upregulation of the lipogenic transcription regulator, sterol regulatory element binding protein-1 (srebp-1) in liver and pyloric caeca under reduced dietary LC-PUFA. Our data suggest a combined effect of endogenous LC-PUFA synthesis and dietary LC-PUFA levels on srebp-1 expression which ultimately affects LC-PUFA synthesis in salmon. Our data also suggest Δ8-desaturation activities for salmon Δ6 Fads2 enzymes.
Collapse
|
28
|
Irvine NA, Ruyter B, Østbye TK, Sonesson AK, Lillycrop KA, Berge G, Burdge GC. Dietary Fish Oil Alters DNA Methylation of Genes Involved in Polyunsaturated Fatty Acid Biosynthesis in Muscle and Liver of Atlantic Salmon (Salmo salar). Lipids 2019; 54:725-739. [PMID: 31658496 DOI: 10.1002/lipd.12198] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 07/16/2019] [Accepted: 09/19/2019] [Indexed: 01/13/2023]
Abstract
Adequate dietary supply of eicosapentaenoic acid (20:5n-3) and docosahexaenoic acid (22:6n-3) is required to maintain health and growth of Atlantic salmon (Salmo salar). However, salmon can also convert α-linolenic acid (18:3n-3) into eicosapentaenoic acid (20:5n-3) and docosahexaenoic acid (22:6n-3) by sequential desaturation and elongation reactions, which can be modified by 20:5n-3 and 22:6n-3 intake. In mammals, dietary 20:5n-3 + 22:6n-3 intake can modify Fads2 expression (Δ6 desaturase) via altered DNA methylation of its promoter. Decreasing dietary fish oil (FO) has been shown to increase Δ5fad expression in salmon liver. However, it is not known whether this is associated with changes in the DNA methylation of genes involved in polyunsaturated fatty acid synthesis. To address this, we investigated whether changing the proportions of dietary FO and vegetable oil altered the DNA methylation of Δ6fad_b, Δ5fad, Elovl2, and Elovl5_b promoters in liver and muscle from Atlantic salmon and whether any changes were associated with mRNA expression. Higher dietary FO content increased the proportions of 20:5n-3 and 22:6n-3 and decreased Δ6fad_b mRNA expression in liver, but there was no effect on Δ5fad, Elovl2, and Elovl5_b expression. There were significant differences between liver and skeletal muscle in the methylation of individual CpG loci in all four genes studied. Methylation of individual Δ6fad_b CpG loci was negatively related to its expression and to proportions of 20:5n-3 and 22:6n-3 in the liver. These findings suggest variations in dietary FO can induce gene-, CpG locus-, and tissue-related changes in DNA methylation in salmon.
Collapse
Affiliation(s)
- Nicola A Irvine
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Bente Ruyter
- Nofima (Norwegian Institute of Food, Fisheries and Aquaculture Research), PO Box 210 1432, Ås, Norway
| | - Tone-Kari Østbye
- Nofima (Norwegian Institute of Food, Fisheries and Aquaculture Research), PO Box 210 1432, Ås, Norway
| | - Anna K Sonesson
- Nofima (Norwegian Institute of Food, Fisheries and Aquaculture Research), PO Box 210 1432, Ås, Norway
| | - Karen A Lillycrop
- Centre for Biological Sciences, Faculty of Natural and Environmental Sciences, University of Southampton, Southampton, UK
| | - Gerd Berge
- Nofima (Norwegian Institute of Food, Fisheries and Aquaculture Research), Sjølsengveien 22, 6600 Sunndalsøra, Norway
| | - Graham C Burdge
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
| |
Collapse
|
29
|
Deák F, Anderson RE, Fessler JL, Sherry DM. Novel Cellular Functions of Very Long Chain-Fatty Acids: Insight From ELOVL4 Mutations. Front Cell Neurosci 2019; 13:428. [PMID: 31616255 PMCID: PMC6763723 DOI: 10.3389/fncel.2019.00428] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 09/06/2019] [Indexed: 12/22/2022] Open
Abstract
Elongation of Very Long chain fatty acids-4 (ELOVL4) protein is a member of the ELOVL family of fatty acid elongases that is collectively responsible for catalyzing formation of long chain fatty acids. ELOVL4 is the only family member that catalyzes production of Very Long Chain Saturated Fatty Acids (VLC-SFA) and Very Long Chain Polyunsaturated Fatty Acids (VLC-PUFA) with chain lengths ≥28 carbons. ELOVL4 and its VLC-SFA and VLC-PUFA products are emerging as important regulators of synaptic signaling and neuronal survival in the central nervous system (CNS). Distinct sets of mutations in ELOVL4 cause three different neurological diseases in humans. Heterozygous inheritance of one set of autosomal dominant ELOVL4 mutations that leads to truncation of the ELOVL4 protein causes Stargardt-like macular dystrophy (STGD3), an aggressive juvenile-onset retinal degeneration. Heterozygous inheritance of a different set of autosomal dominant ELOVL4 mutations that leads to a full-length protein with single amino acid substitutions causes spinocerebellar ataxia 34 (SCA34), a late-onset neurodegenerative disease characterized by gait ataxia and cerebellar atrophy. Homozygous inheritance of a different set of ELOVL4 mutations causes a more severe disease with infantile onset characterized by seizures, spasticity, intellectual disability, ichthyosis, and premature death. ELOVL4 is expressed widely in the CNS and is found primarily in neurons. ELOVL4 is expressed in cell-specific patterns within different regions of the CNS that are likely to be related to disease symptoms. In the retina, ELOVL4 is expressed exclusively in photoreceptors and produces VLC-PUFA that are incorporated into phosphatidylcholine and enriched in the light sensitive membrane disks of the photoreceptor outer segments. VLC-PUFA are enzymatically converted into "elovanoid" compounds that appear to provide paracrine signals that promote photoreceptor and neuronal survival. In the brain, the main ELOVL4 products are VLC-SFA that are incorporated into sphingolipids and enriched in synaptic vesicles, where they regulate kinetics of presynaptic neurotransmitter release. Understanding the function of ELOVL4 and its VLC-SFA and VLC-PUFA products will advance our understanding of basic mechanisms in neural signaling and has potential for developing novel therapies for seizure and neurodegenerative diseases.
Collapse
Affiliation(s)
- Ferenc Deák
- Department of Geriatric Medicine, Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States.,Oklahoma Center for Neurosciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States.,Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Robert E Anderson
- Department of Geriatric Medicine, Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States.,Oklahoma Center for Neurosciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States.,Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States.,Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States.,Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Jennifer L Fessler
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - David M Sherry
- Oklahoma Center for Neurosciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States.,Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States.,Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| |
Collapse
|
30
|
Endogenous production of n-3 long-chain PUFA from first feeding and the influence of dietary linoleic acid and the α-linolenic:linoleic ratio in Atlantic salmon ( Salmo salar). Br J Nutr 2019; 122:1091-1102. [PMID: 31409428 DOI: 10.1017/s0007114519001946] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Atlantic salmon (Salmo salar) possess enzymes required for the endogenous biosynthesis of n-3 long-chain PUFA (LC-PUFA), EPA and DHA, from α-linolenic acid (ALA). Linoleic acid (LA) competes with ALA for LC-PUFA biosynthesis enzymes leading to the production of n-6 LC-PUFA, including arachidonic acid (ARA). We aimed to quantify the endogenous production of EPA and DHA from ALA in salmon fed from first feeding on diets that contain no EPA and DHA and to determine the influence of dietary LA and ALA:LA ratio on LC-PUFA production. Salmon were fed from first feeding for 22 weeks with three diets formulated with linseed and sunflower oils to provide ALA:LA ratios of approximately 3:1, 1:1 and 1:3. Endogenous production of n-3 LC-PUFA was 5·9, 4·4 and 2·8 mg per g fish and that of n-6 LC-PUFA was 0·2, 0·5 and 1·4 mg per g fish in salmon fed diets with ALA:LA ratios of 3:1, 1:1 and 1:3, respectively. The ratio of n-3:n-6 LC-PUFA production decreased from 27·4 to 2·0, and DHA:EPA ratio increased and EPA:ARA and DHA:ARA ratios decreased, as dietary ALA:LA ratio decreased. In conclusion, with a dietary ALA:LA ratio of 1, salmon fry/parr produced about 28 μg n-3 LC-PUFA per g fish per d, with a DHA:EPA ratio of 3·4. Production of n-3 LC-PUFA exceeded that of n-6 LC-PUFA by almost 9-fold. Reducing the dietary ALA:LA ratio reduced n-3 LC-PUFA production and EPA:ARA and DHA:ARA ratios but increased n-6 LC-PUFA production and DHA:EPA ratio.
Collapse
|
31
|
Tinti E, Geay F, Lopes Rodrigues M, Kestemont P, Perpète EA, Michaux C. Molecular cloning and 3D model of a fatty-acid elongase in a carnivorous freshwater teleost, the European perch ( Perca fluviatilis). 3 Biotech 2019; 9:242. [PMID: 31168435 PMCID: PMC6542919 DOI: 10.1007/s13205-019-1773-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 05/20/2019] [Indexed: 01/30/2023] Open
Abstract
The European perch (Perca fluviatilis) is a carnivorous freshwater fish able to metabolise polyunsaturated fatty acids (PUFA) into highly unsaturated fatty acids (HUFA). This makes it a potential candidate for sustainable aquaculture development. In this study, special attention is given to the fatty-acid elongase (ELOVL) family, one of the two enzymatic systems implied in the HUFA biosynthesis. Structural information on European perch enzyme converting PUFA into HUFA is obtained by both molecular cloning and in silico characterization of an ELOVL5-like elongase from P. fluviatilis (pfELOVL). The full-length cDNA sequence consists of a 885-base pair Open Reading Frame coding for a 294-amino acid protein. Phylogenetic analysis and sequence alignment with fish elongases predict the pfELOVL clusters within the ELOVL5 sub-group. The amino-acid sequence displays the typical ELOVL features: several transmembrane α helices (TMH), an endoplasmic reticulum (ER) retention signal, and four "conserved boxes" involved in the catalytic site. In addition, the topology analysis predicts a 7-TMH structure addressed in the ER membrane. A 3D model of the protein embedded in an ER-like membrane environment is also provided using de novo modelling and molecular dynamics. From docking studies, two putative enzyme-substrate-binding modes, including H bonds and CH-π interactions, emphasize the role of specific residues in the "conserved boxes".
Collapse
Affiliation(s)
- Emmanuel Tinti
- Laboratoire de Chimie Physique des Biomolécules, UCPTS, University of Namur, 61 rue de Bruxelles, 5000 Namur, Belgium
- Institute of Life-Earth-Environment, University of Namur, Namur, Belgium
| | | | - Maximilien Lopes Rodrigues
- Laboratoire de Chimie Physique des Biomolécules, UCPTS, University of Namur, 61 rue de Bruxelles, 5000 Namur, Belgium
- Namur Institute of Structures Matter, University of Namur, Namur, Belgium
| | - Patrick Kestemont
- Institute of Life-Earth-Environment, University of Namur, Namur, Belgium
- Research Unit in Environmental and Evolutionary Biology, University of Namur, 61 rue de Bruxelles, 5000 Namur, Belgium
| | - Eric A. Perpète
- Laboratoire de Chimie Physique des Biomolécules, UCPTS, University of Namur, 61 rue de Bruxelles, 5000 Namur, Belgium
- Institute of Life-Earth-Environment, University of Namur, Namur, Belgium
- Namur Institute of Structures Matter, University of Namur, Namur, Belgium
| | - Catherine Michaux
- Laboratoire de Chimie Physique des Biomolécules, UCPTS, University of Namur, 61 rue de Bruxelles, 5000 Namur, Belgium
- Namur Institute of Structures Matter, University of Namur, Namur, Belgium
- Namur Research Institute for Life Sciences, University of Namur, Namur, Belgium
| |
Collapse
|
32
|
CRISPR/Cas9-mediated ablation of elovl2 in Atlantic salmon (Salmo salar L.) inhibits elongation of polyunsaturated fatty acids and induces Srebp-1 and target genes. Sci Rep 2019; 9:7533. [PMID: 31101849 PMCID: PMC6525179 DOI: 10.1038/s41598-019-43862-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 05/02/2019] [Indexed: 01/01/2023] Open
Abstract
Atlantic salmon can synthesize polyunsaturated fatty acids (PUFAs), such as eicosapentaenoic acid (20:5n-3), arachidonic acid (20:4n-6) and docosahexaenoic acid (22:6n-3) via activities of very long chain fatty acyl elongases (Elovls) and fatty acyl desaturases (Fads), albeit to a limited degree. Understanding molecular mechanisms of PUFA biosynthesis and regulation is a pre-requisite for sustainable use of vegetable oils in aquafeeds as current sources of fish oils are unable to meet increasing demands for omega-3 PUFAs. By generating CRISPR-mediated elovl2 partial knockout (KO), we have shown that elovl2 is crucial for multi-tissue synthesis of 22:6n-3 in vivo and that endogenously synthesized PUFAs are important for transcriptional regulation of lipogenic genes in Atlantic salmon. The elovl2-KOs showed reduced levels of 22:6n-3 and accumulation of 20:5n-3 and docosapentaenoic acid (22:5n-3) in the liver, brain and white muscle, suggesting inhibition of elongation. Additionally, elovl2-KO salmon showed accumulation of 20:4n-6 in brain and white muscle. The impaired synthesis of 22:6n-3 induced hepatic expression of sterol regulatory element binding protein-1 (srebp-1), fatty acid synthase-b, Δ6fad-a, Δ5fad and elovl5. Our study demonstrates key roles of elovl2 at two penultimate steps of PUFA synthesis in vivo and suggests Srebp-1 as a main regulator of endogenous PUFA synthesis in Atlantic salmon.
Collapse
|
33
|
Molecular cloning and functional characterization of elongase (elovl5) and fatty acyl desaturase (fads2) in sciaenid, Nibea diacanthus (Lacepède, 1802). Gene 2019; 695:1-11. [DOI: 10.1016/j.gene.2019.01.033] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 01/16/2019] [Accepted: 01/23/2019] [Indexed: 01/23/2023]
|
34
|
Elovl4a participates in LC-PUFA biosynthesis and is regulated by PPARαβ in golden pompano Trachinotus ovatus (Linnaeus 1758). Sci Rep 2019; 9:4684. [PMID: 30886313 PMCID: PMC6423087 DOI: 10.1038/s41598-019-41288-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 03/01/2019] [Indexed: 12/23/2022] Open
Abstract
The elongases of very long-chain fatty acids (Elovls) are responsible for the rate-limiting elongation process in long-chain polyunsaturated fatty acid (LC-PUFA) biosynthesis. The transcription factor, PPARα, regulates lipid metabolism in mammals; however, the detailed mechanism whereby PPARαb regulates Elovls remains largely unknown in fish. In the present study, we report the full length cDNA sequence of Trachinotus ovatus Elovl4a (ToElovl4a), which encodes a 320 amino acid polypeptide that possesses five putative membrane-spanning domains, a conserved HXXHH histidine motif and an ER retrieval signal. Phylogenetic analysis revealed that the deduced protein of ToElovl4a is highly conserved with the Oreochromis niloticus corresponding homologue. Moreover, functional characterization by heterologous expression in yeast indicated that ToElovl4a can elongate C18 up to C20 polyunsaturated fatty acids. A nutritional study showed that the protein expressions of ToElovl4a in the brain and liver were not significantly affected among the different treatments. The region from PGL3-basic-Elovl4a-5 (−148 bp to +258 bp) is defined as the core promoter via a progressive deletion mutation of ToElovl4a. The results from promoter activity assays suggest that ToElovl4a transcription is positively regulated by PPARαb. Mutation analyses indicated that the M2 binding site of PPARαb is functionally important for protein binding, and transcriptional activity of the ToElovl4a promoter significantly decreased after targeted mutation. Furthermore, PPARαb RNA interference reduced ToPPARαb and ToElovl4a expression at the protein levels in a time-dependent manner. In summary, PPARαb may promote the biosynthesis of LC-PUFA by regulating ToElovl4a expression in fish.
Collapse
|
35
|
Identification of very long-chain (>C24) fatty acid methyl esters using gas chromatography coupled to quadrupole/time-of-flight mass spectrometry with atmospheric pressure chemical ionization source. Anal Chim Acta 2019; 1051:103-109. [DOI: 10.1016/j.aca.2018.11.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 10/30/2018] [Accepted: 11/01/2018] [Indexed: 12/20/2022]
|
36
|
Lin Z, Huang Y, Zou W, Rong H, Hao M, Wen X. Cloning, tissue distribution, functional characterization and nutritional regulation of a fatty acyl Elovl5 elongase in chu's croaker Nibea coibor. Gene 2018; 659:11-21. [DOI: 10.1016/j.gene.2018.03.046] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 03/08/2018] [Accepted: 03/15/2018] [Indexed: 02/07/2023]
|
37
|
Surm JM, Toledo TM, Prentis PJ, Pavasovic A. Insights into the phylogenetic and molecular evolutionary histories of Fad and Elovl gene families in Actiniaria. Ecol Evol 2018; 8:5323-5335. [PMID: 29938056 PMCID: PMC6010785 DOI: 10.1002/ece3.4044] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 02/15/2018] [Accepted: 03/02/2018] [Indexed: 12/13/2022] Open
Abstract
The biosynthesis of long-chain polyunsaturated fatty acids (LC-PUFAs, ≥ C20) is reliant on the action of desaturase and elongase enzymes, which are encoded by the fatty acyl desaturase (Fad) and elongation of very long-chain fatty acid (Elovl) gene families, respectively. In Metazoa, research investigating the distribution and evolution of these gene families has been restricted largely to Bilateria. Here, we provide insights into the phylogenetic and molecular evolutionary histories of the Fad and Elovl gene families in Cnidaria, the sister phylum to Bilateria. Four model cnidarian genomes and six actiniarian transcriptomes were interrogated. Analysis of the fatty acid composition of a candidate cnidarian species, Actinia tenebrosa, was performed to determine the baseline profile of this species. Phylogenetic analysis revealed lineage-specific gene duplication in actiniarians for both the Fad and Elovl gene families. Two distinct cnidarian Fad clades clustered with functionally characterized Δ5 and Δ6 proteins from fungal and plant species, respectively. Alternatively, only a single cnidarian Elovl clade clustered with functionally characterized Elovl proteins (Elovl4), while two additional clades were identified, one actiniarian-specific (Novel ElovlA) and the another cnidarian-specific (Novel ElovlB). In actiniarians, selection analyses revealed pervasive purifying selection acting on both gene families. However, codons in the Elovl gene family show patterns of nucleotide variation consistent with the action of episodic diversifying selection following gene duplication events. Significantly, these codons may encode amino acid residues that are functionally important for Elovl proteins to target and elongate different precursor fatty acids. In A. tenebrosa, the fatty acid analysis revealed an absence of LC-PUFAs > C20 molecules and implies that the Elovl enzymes are not actively contributing to the elongation of these LC-PUFAs. Overall, this study has revealed that actiniarians possess Fad and Elovl genes required for the biosynthesis of some LC-PUFAs, and that these genes appear to be distinct from bilaterians.
Collapse
Affiliation(s)
- Joachim M. Surm
- School of Biomedical SciencesFaculty of HealthQueensland University of TechnologyBrisbaneAustralia
- Institute of Health and Biomedical InnovationQueensland University of TechnologyKelvin GroveAustralia
| | - Tarik M. Toledo
- School of Biomedical SciencesFaculty of HealthQueensland University of TechnologyBrisbaneAustralia
- Institute of Health and Biomedical InnovationQueensland University of TechnologyKelvin GroveAustralia
| | - Peter J. Prentis
- School of Earth, Environmental and Biological SciencesScience and Engineering FacultyQueensland University of TechnologyBrisbaneAustralia
- Institute for Future EnvironmentsQueensland University of TechnologyBrisbaneAustralia
| | - Ana Pavasovic
- School of Biomedical SciencesFaculty of HealthQueensland University of TechnologyBrisbaneAustralia
| |
Collapse
|
38
|
Fadhlaoui M, Pierron F, Couture P. Temperature and metal exposure affect membrane fatty acid composition and transcription of desaturases and elongases in fathead minnow muscle and brain. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 148:632-643. [PMID: 29132009 DOI: 10.1016/j.ecoenv.2017.10.040] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 09/25/2017] [Accepted: 10/19/2017] [Indexed: 06/07/2023]
Abstract
In this study, we tested the hypothesis that metal exposure affected the normal thermal response of cell membrane FA composition and of elongase and desaturase gene transcription levels. To this end, muscle and brain membrane FA composition and FA desaturase (fads2, degs2 and scd2) and elongase (elovl2, elovl5 and elovl6) gene transcription levels were analyzed in fathead minnows (Pimephales promelas) acclimated for eight weeks to 15, 25 or 30°C exposed or not to cadmium (Cd, 6μg/l) or nickel (Ni, 450 6μg/l). The response of membrane FA composition to temperature variations or metal exposure differed between muscle and brain. In muscle, an increase of temperature induced a decrease of polyunsaturated FA (PUFA) and an increase of saturated FA (SFA) in agreement with the current paradigm. Although a similar response was observed in brain between 15 and 25°C, at 30°C, brain membrane unsaturation was higher than predicted. In both tissues, metal exposure affected the normal thermal response of membrane FA composition. The transcription of desaturases and elongases was higher in the brain and varied with acclimation temperature and metal exposure but these variations did not generally reflect changes in membrane FA composition. The mismatch between gene transcription and membrane composition highlights that several levels of control other than gene transcription are involved in adjusting membrane FA composition, including post-transcriptional regulation of elongases and desaturases and de novo phospholipid biosynthesis. Our study also reveals that metal exposure affects the mechanisms involved in adjusting cell membrane FA composition in ectotherms.
Collapse
Affiliation(s)
- Mariem Fadhlaoui
- Institut National de la Recherche Scientifique, Centre Eau Terre Environnement, 490, rue de la Couronne, Québec QC Canada G1K 9A9
| | | | - Patrice Couture
- Institut National de la Recherche Scientifique, Centre Eau Terre Environnement, 490, rue de la Couronne, Québec QC Canada G1K 9A9.
| |
Collapse
|
39
|
Yan J, Liang X, Cui Y, Cao X, Gao J. Elovl4 can effectively elongate C18 polyunsaturated fatty acids in loach Misgurnus anguillicaudatus. Biochem Biophys Res Commun 2018; 495:2637-2642. [DOI: 10.1016/j.bbrc.2017.12.123] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Accepted: 12/21/2017] [Indexed: 12/26/2022]
|
40
|
Cloning, tissue distribution and nutritional regulation of a fatty acyl Elovl4-like elongase in mud crab, Scylla paramamosain (Estampador, 1949). Comp Biochem Physiol B Biochem Mol Biol 2017; 217:70-78. [PMID: 29277642 DOI: 10.1016/j.cbpb.2017.12.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 12/01/2017] [Accepted: 12/07/2017] [Indexed: 12/25/2022]
Abstract
In this report, the full-length cDNA of fatty acyl Elovl4-like elongase was cloned from the hepatopancreas of Scylla paramamosain by rapid-amplification of cDNA ends (RACE). To the best of our knowledge, this is the first report of Elovl4-like elongase in crustaceans. The full-length cDNA of Elovl4-like was 1119bp, which included a 5'-terminal untranslated region (UTR) of 58bp, a 3'-terminal UTR of 44bp and an open reading frame (ORF) of 1017bp encoding a polypeptide of 338 amino acids. Tissue distribution analysis revealed that Elovl4-like transcripts are widely distributed in various organs, with high mRNA levels in the hepatopancreas and cranial ganglia. Further, Elovl4-like transcriptional levels in hepatopancreas were up-regulated in proportion to the replacement of dietary fish oil (FO) with soybean oil (SO). The result showed that Elovl4-like transcripts increased about 0.83 and 1.12-fold respectively when SO constituted 80% and 100% of total oil (P<0.05). These results may contribute to better understanding of the long-chain polyunsaturated fatty acids (LC-PUFA) biosynthetic pathway and regulation mechanism in this species.
Collapse
|
41
|
Cloning and functional characterization of fads2 desaturase and elovl5 elongase from Japanese flounder Paralichthys olivaceus. Comp Biochem Physiol B Biochem Mol Biol 2017; 214:36-46. [DOI: 10.1016/j.cbpb.2017.09.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 09/13/2017] [Accepted: 09/15/2017] [Indexed: 11/23/2022]
|
42
|
Jin M, Monroig Ó, Navarro JC, Tocher DR, Zhou QC. Molecular and functional characterisation of two elovl4 elongases involved in the biosynthesis of very long-chain (> C 24 ) polyunsaturated fatty acids in black seabream Acanthopagrus schlegelii. Comp Biochem Physiol B Biochem Mol Biol 2017; 212:41-50. [DOI: 10.1016/j.cbpb.2017.06.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 06/21/2017] [Accepted: 06/22/2017] [Indexed: 01/08/2023]
|
43
|
Elongation of very Long-Chain (>C 24) Fatty Acids in Clarias gariepinus: Cloning, Functional Characterization and Tissue Expression of elovl4 Elongases. Lipids 2017; 52:837-848. [PMID: 28856549 PMCID: PMC5613102 DOI: 10.1007/s11745-017-4289-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 08/15/2017] [Indexed: 12/16/2022]
Abstract
Elongation of very long-chain fatty acid 4 (Elovl4) proteins participate in the biosynthesis of very long-chain (>C24) saturated and polyunsaturated fatty acids (FA). Previous studies have shown that fish possess two different forms of Elovl4, termed Elovl4a and Elovl4b. The present study aimed to characterize both molecularly and functionally two elovl4 cDNA from the African catfish Clarias gariepinus. The results confirmed that C. gariepinus possessed two elovl4-like elongases with high homology to two previously characterized Elovl4 from Danio rerio, and thus they were termed accordingly as Elovl4a and Elovl4b. The C. gariepinus Elovl4a and Elovl4b have open reading frames (ORF) of 945 and 915 base pairs, respectively, encoding putative proteins of 314 and 304 amino acids, respectively. Functional characterization in yeast showed both Elovl4 enzymes have activity towards all the PUFA substrates assayed (18:4n-3, 18:3n-6, 20:5n-3, 20:4n-6, 22:5n-3, 22:4n-6 and 22:6n-3), producing elongated products of up to C36. Moreover, the C. gariepinus Elovl4a and Elovl4b were able to elongate very long-chain saturated FA (VLC-SFA) as denoted by increased levels of 28:0 and longer FA in yeast transformed with elovl4 ORF compared to control yeast. These results confirmed that C. gariepinus Elovl4 play important roles in the biosynthesis of very long-chain FA. Tissue distribution analysis of elovl4 mRNAs showed both genes were widely expressed in all tissues analyzed, with high expression of elovl4a in pituitary and brain, whereas female gonad and pituitary had the highest expression levels for elovl4b.
Collapse
|
44
|
Abstract
Docosahexaenoic acid (DHA) plays important physiological roles in vertebrates. Studies in rats and rainbow trout confirmed that DHA biosynthesis proceeds through the so-called “Sprecher pathway”, a biosynthetic process requiring a Δ6 desaturation of 24:5n−3 to 24:6n−3. Alternatively, some teleosts possess fatty acyl desaturases 2 (Fads2) that enable them to biosynthesis DHA through a more direct route termed the “Δ4 pathway”. In order to elucidate the prevalence of both pathways among teleosts, we investigated the Δ6 ability towards C24 substrates of Fads2 from fish with different evolutionary and ecological backgrounds. Subsequently, we retrieved public databases to identify Fads2 containing the YXXN domain responsible for the Δ4 desaturase function, and consequently enabling these species to operate the Δ4 pathway. We demonstrated that, with the exception of Δ4 desaturases, fish Fads2 have the ability to operate as Δ6 desaturases towards C24 PUFA enabling them to synthesise DHA through the Sprecher pathway. Nevertheless, the Δ4 pathway represents an alternative route in some teleosts and we identified the presence of putative Δ4 Fads2 in a further 11 species and confirmed the function as Δ4 desaturases of Fads2 from medaka and Nile tilapia. Our results demonstrated that two alternative pathways for DHA biosynthesis exist in teleosts.
Collapse
|
45
|
Li S, Monroig Ó, Wang T, Yuan Y, Carlos Navarro J, Hontoria F, Liao K, Tocher DR, Mai K, Xu W, Ai Q. Functional characterization and differential nutritional regulation of putative Elovl5 and Elovl4 elongases in large yellow croaker (Larimichthys crocea). Sci Rep 2017; 7:2303. [PMID: 28536436 PMCID: PMC5442133 DOI: 10.1038/s41598-017-02646-8] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 04/13/2017] [Indexed: 01/19/2023] Open
Abstract
In the present study, two elongases, Elovl4 and Elovl5, were functionally characterized and their transcriptional regulation in response to n-3 LC-PUFA administration were investigated in vivo and in vitro. We previously described the molecular characterization of croaker elovl5. Here, we report the full-length cDNA sequence of croaker elovl4, which contained 1794 bp (excluding the polyA tail), including 909 bp of coding region that encoded a polypeptide of 302 amino acids possessing all the characteristic features of Elovl proteins. Functional studies showed that croaker Elovl5, displayed high elongation activity towards C18 and C20 PUFA, with only low activity towards C22 PUFA. In contrast, croaker Elovl4 could effectively convert both C20 and C22 PUFA to longer polyenoic products up to C34. n-3 LC-PUFA suppressed transcription of the two elongase genes, as well as srebp-1 and lxrα, major regulators of hepatic lipid metabolism. The results of dual-luciferase reporter assays and in vitro studies both indicated that the transcriptions of elovl5 and elovl4 elongases could be regulated by Lxrα. Moreover, Lxrα could mediate the transcription of elovl4 directly or indirectly through regulating the transcription of srebp-1. The above findings contribute further insight and understanding of the mechanisms regulating LC-PUFA biosynthesis in marine fish species.
Collapse
Affiliation(s)
- Songlin Li
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, 266003, People's Republic of China
| | - Óscar Monroig
- Institute of Aquaculture, School of Natural Sciences, University of Stirling, Stirling, FK9 4LA, Scotland, UK
| | - Tianjiao Wang
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, 266003, People's Republic of China
| | - Yuhui Yuan
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, 266003, People's Republic of China
| | - Juan Carlos Navarro
- Instituto de Acuicultura Torre de la Sal (IATS-CSIC), Ribera de Cabanes, 12595, Castellón, Spain
| | - Francisco Hontoria
- Instituto de Acuicultura Torre de la Sal (IATS-CSIC), Ribera de Cabanes, 12595, Castellón, Spain
| | - Kai Liao
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, 266003, People's Republic of China
| | - Douglas R Tocher
- Institute of Aquaculture, School of Natural Sciences, University of Stirling, Stirling, FK9 4LA, Scotland, UK
| | - Kangsen Mai
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, 266003, People's Republic of China
| | - Wei Xu
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, 266003, People's Republic of China
| | - Qinghui Ai
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, 266003, People's Republic of China. .,Laboratory for Marine Fisheries and Aquaculture, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266003, People's Republic of China.
| |
Collapse
|
46
|
Monroig Ó, de Llanos R, Varó I, Hontoria F, Tocher DR, Puig S, Navarro JC. Biosynthesis of Polyunsaturated Fatty Acids in Octopus vulgaris: Molecular Cloning and Functional Characterisation of a Stearoyl-CoA Desaturase and an Elongation of Very Long-Chain Fatty Acid 4 Protein. Mar Drugs 2017; 15:md15030082. [PMID: 28335553 PMCID: PMC5367039 DOI: 10.3390/md15030082] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 03/05/2017] [Accepted: 03/16/2017] [Indexed: 12/21/2022] Open
Abstract
Polyunsaturated fatty acids (PUFAs) have been acknowledged as essential nutrients for cephalopods but the specific PUFAs that satisfy the physiological requirements are unknown. To expand our previous investigations on characterisation of desaturases and elongases involved in the biosynthesis of PUFAs and hence determine the dietary PUFA requirements in cephalopods, this study aimed to investigate the roles that a stearoyl-CoA desaturase (Scd) and an elongation of very long-chain fatty acid 4 (Elovl4) protein play in the biosynthesis of essential fatty acids (FAs). Our results confirmed the Octopus vulgaris Scd is a ∆9 desaturase with relatively high affinity towards saturated FAs with ≥ C18 chain lengths. Scd was unable to desaturate 20:1n-15 (∆520:1) suggesting that its role in the biosynthesis of non-methylene interrupted FAs (NMI FAs) is limited to the introduction of the first unsaturation at ∆9 position. Interestingly, the previously characterised ∆5 fatty acyl desaturase was indeed able to convert 20:1n-9 (∆1120:1) to ∆5,1120:2, an NMI FA previously detected in octopus nephridium. Additionally, Elovl4 was able to mediate the production of 24:5n-3 and thus can contribute to docosahexaenoic acid (DHA) biosynthesis through the Sprecher pathway. Moreover, the octopus Elovl4 was confirmed to play a key role in the biosynthesis of very long-chain (>C24) PUFAs.
Collapse
Affiliation(s)
- Óscar Monroig
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling FK9 4LA, Scotland, UK.
| | - Rosa de Llanos
- School of Applied Sciences, Edinburgh Napier University, Edinburgh EH11 4BN, Scotland, UK.
- Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC), Paterna, Valencia 46980, Spain.
| | - Inmaculada Varó
- Instituto de Acuicultura Torre de la Sal (IATS-CSIC), Ribera de Cabanes, Castellón 12595, Spain.
| | - Francisco Hontoria
- Instituto de Acuicultura Torre de la Sal (IATS-CSIC), Ribera de Cabanes, Castellón 12595, Spain.
| | - Douglas R Tocher
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling FK9 4LA, Scotland, UK.
| | - Sergi Puig
- Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC), Paterna, Valencia 46980, Spain.
| | - Juan C Navarro
- Instituto de Acuicultura Torre de la Sal (IATS-CSIC), Ribera de Cabanes, Castellón 12595, Spain.
| |
Collapse
|
47
|
Bou M, Østbye TK, Berge GM, Ruyter B. EPA, DHA, and Lipoic Acid Differentially Modulate the n-3 Fatty Acid Biosynthetic Pathway in Atlantic Salmon Hepatocytes. Lipids 2017; 52:265-283. [PMID: 28132119 DOI: 10.1007/s11745-017-4234-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Accepted: 01/16/2017] [Indexed: 12/17/2022]
Abstract
The aim of the present study was to investigate how EPA, DHA, and lipoic acid (LA) influence the different metabolic steps in the n-3 fatty acid (FA) biosynthetic pathway in hepatocytes from Atlantic salmon fed four dietary levels (0, 0.5, 1.0 and 2.0%) of EPA, DHA or a 1:1 mixture of these FA. The hepatocytes were incubated with [1-14C] 18:3n-3 in the presence or absence of LA (0.2 mM). Increased endogenous levels of EPA and/or DHA and LA exposure both led to similar responses in cells with reduced desaturation and elongation of [1-14C] 18:3n-3 to 18:4n-3, 20:4n-3, and EPA, in agreement with reduced expression of the Δ6 desaturase gene involved in the first step of conversion. DHA production, on the other hand, was maintained even in groups with high endogenous levels of DHA, possibly due to a more complex regulation of this last step in the n-3 metabolic pathway. Inhibition of the Δ6 desaturase pathway led to increased direct elongation to 20:3n-3 by both DHA and LA. Possibly the route by 20:3n-3 and then Δ8 desaturation to 20:4n-3, bypassing the first Δ6 desaturase step, can partly explain the maintained or even increased levels of DHA production. LA increased DHA production in the phospholipid fraction of hepatocytes isolated from fish fed 0 and 0.5% EPA and/or DHA, indicating that LA has the potential to further increase the production of this health-beneficial FA in fish fed diets with low levels of EPA and/or DHA.
Collapse
Affiliation(s)
- Marta Bou
- Nofima (Norwegian Institute of Food, Fisheries and Aquaculture Research), P.O. Box 210, 1431, Ås, Norway. .,Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, Ås, Norway.
| | - Tone-Kari Østbye
- Nofima (Norwegian Institute of Food, Fisheries and Aquaculture Research), P.O. Box 210, 1431, Ås, Norway
| | | | - Bente Ruyter
- Nofima (Norwegian Institute of Food, Fisheries and Aquaculture Research), P.O. Box 210, 1431, Ås, Norway.,Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, Ås, Norway
| |
Collapse
|
48
|
Xie D, Chen F, Lin S, You C, Wang S, Zhang Q, Monroig Ó, Tocher DR, Li Y. Long-chain polyunsaturated fatty acid biosynthesis in the euryhaline herbivorous teleost Scatophagus argus: Functional characterization, tissue expression and nutritional regulation of two fatty acyl elongases. Comp Biochem Physiol B Biochem Mol Biol 2016; 198:37-45. [DOI: 10.1016/j.cbpb.2016.03.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Revised: 03/30/2016] [Accepted: 03/31/2016] [Indexed: 01/01/2023]
|
49
|
Long-chain polyunsaturated fatty acid biosynthesis in chordates: Insights into the evolution of Fads and Elovl gene repertoire. Prog Lipid Res 2016; 62:25-40. [DOI: 10.1016/j.plipres.2016.01.001] [Citation(s) in RCA: 242] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 12/28/2015] [Accepted: 01/01/2016] [Indexed: 01/01/2023]
|
50
|
Abdul Hamid NK, Carmona-Antoñanzas G, Monroig Ó, Tocher DR, Turchini GM, Donald JA. Isolation and Functional Characterisation of a fads2 in Rainbow Trout (Oncorhynchus mykiss) with Δ5 Desaturase Activity. PLoS One 2016; 11:e0150770. [PMID: 26943160 PMCID: PMC4778901 DOI: 10.1371/journal.pone.0150770] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 02/17/2016] [Indexed: 11/18/2022] Open
Abstract
Rainbow trout, Oncorhynchus mykiss, are intensively cultured globally. Understanding their requirement for long-chain polyunsaturated fatty acids (LC-PUFA) and the biochemistry of the enzymes and biosynthetic pathways required for fatty acid synthesis is important and highly relevant in current aquaculture. Most gnathostome vertebrates have two fatty acid desaturase (fads) genes with known functions in LC-PUFA biosynthesis and termed fads1 and fads2. However, teleost fish have exclusively fads2 genes. In rainbow trout, a fads2 cDNA had been previously cloned and found to encode an enzyme with Δ6 desaturase activity. In the present study, a second fads2 cDNA was cloned from the liver of rainbow trout and termed fads2b. The full-length mRNA contained 1578 nucleotides with an open reading frame of 1365 nucleotides that encoded a 454 amino acid protein with a predicted molecular weight of 52.48 kDa. The predicted Fads2b protein had the characteristic traits of the microsomal Fads family, including an N-terminal cytochrome b5 domain containing the heme-binding motif (HPPG), histidine boxes (HDXGH, HFQHH and QIEHH) and three transmembrane regions. The fads2b was expressed predominantly in the brain, liver, intestine and pyloric caeca. Expression of the fasd2b in yeast generated a protein that was found to specifically convert eicosatetraenoic acid (20:4n-3) to eicosapentaenoic acid (20:5n-3), and therefore functioned as a Δ5 desaturase. Therefore, rainbow trout have two fads2 genes that encode proteins with Δ5 and Δ6 desaturase activities, respectively, which enable this species to perform all the desaturation steps required for the biosynthesis of LC-PUFA from C18 precursors.
Collapse
Affiliation(s)
- Noor Khalidah Abdul Hamid
- Deakin University, School of Life and Environmental Sciences, Waurn Ponds, Geelong, Victoria, Australia
- Universiti Sains Malaysia, School of Biological Sciences, Penang, Malaysia
- * E-mail:
| | - Greta Carmona-Antoñanzas
- University of Stirling, Institute of Aquaculture, School of Natural Sciences, Stirling, Scotland, United Kingdom
| | - Óscar Monroig
- University of Stirling, Institute of Aquaculture, School of Natural Sciences, Stirling, Scotland, United Kingdom
| | - Douglas R. Tocher
- University of Stirling, Institute of Aquaculture, School of Natural Sciences, Stirling, Scotland, United Kingdom
| | - Giovanni M. Turchini
- Deakin University, School of Life and Environmental Sciences, Waurn Ponds, Geelong, Victoria, Australia
| | - John A. Donald
- Deakin University, School of Life and Environmental Sciences, Waurn Ponds, Geelong, Victoria, Australia
| |
Collapse
|