1
|
Huang M, Ma Y, Fan Q, Che S, Zhang J, Ding S, Zhu S, Li X. Effects of nanopolystyrene and/or phoxim exposure on digestive function of Eriocheir sinensis. Comp Biochem Physiol C Toxicol Pharmacol 2025; 289:110102. [PMID: 39653099 DOI: 10.1016/j.cbpc.2024.110102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 12/04/2024] [Accepted: 12/05/2024] [Indexed: 12/12/2024]
Abstract
Nanopolystyrene (NP) and phoxim (PHO) are pervasive environmental contaminants that pose a significant threat to the health of aquatic organisms, prompting widespread concern among researchers and the public alike. The hepatopancreas play important roles in the Chinese mitten crab (Eriocheir sinensis), such as digestion, absorption and detoxification. This study assessed the hepatopancreatic toxicity caused by the exposure of Eriocheir sinensis to environmentally relevant concentrations of NP and/or PHO. After a 21-day exposure period, NP (1.0 × 1010 particles/L) and PHO (24 μg/L) exposure resulted in reduced number of blister-like, resorptive, and fibrillar cells and an elevation in lipid droplets within the hepatopancreas compared to the control group. Furthermore, trypsin and lipase activity decreased, amylase activity increased, and a significantly decrease in the expression of digestion-related genes, including CHT, CarL, and CarB, suggested impairment in both digestive and metabolic functions. The marked upregulation of key genes, including PPARγ, GYK, PEPCK, and SCD, as well as key metabolites such as 4-methylzymosterol-carboxylate, zymosterone, lathosterol, 7-dehydro-desmosterol, vitamin D2, 24-methylene-cycloartanol, 5-dehydroepisterol, and sitosterol in the lipid metabolic pathway, showed that the peroxisome proliferator-activated receptor (PPAR) and steroid biosynthesis signaling pathways were highly affected by exposure to NP and/or PHO. These findings indicated that exposure to NP and/or PHO might adversely affect the hepatopancreatic physiological homeostasis in E. sinensis by causing tissue damage and interfering with digestive and metabolic functions. Our results provide ecotoxicological insights into the effects of nanopolystyrene and/or phoxim exposure on the digestive function of Eriocheir sinensis.
Collapse
Affiliation(s)
- Mengting Huang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Yuan Ma
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Qianru Fan
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Shunli Che
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Jun Zhang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; Engineering Technology Research Center of Healthy Aquaculture, Anhui Agricultural University, Hefei 230036, China
| | - Shuquan Ding
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; Engineering Technology Research Center of Healthy Aquaculture, Anhui Agricultural University, Hefei 230036, China
| | - Shuren Zhu
- Shandong Freshwater Fisheries Research Institute, Jinan 250013, China.
| | - Xilei Li
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; Engineering Technology Research Center of Healthy Aquaculture, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
2
|
Lyu K, Fan Y, Zhou X, Hou Y, Yang Z. p38 MAPK determines the sensitivity of the aquatic keystone species Moina macrocopa to toxic Microcystis: Insights into potential biomarker applications. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 366:125458. [PMID: 39638226 DOI: 10.1016/j.envpol.2024.125458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/20/2024] [Accepted: 12/02/2024] [Indexed: 12/07/2024]
Abstract
Harmful cyanobacterial blooms, particularly those caused by Microcystis species, pose significant ecological threats to freshwater environments by negatively impacting zooplankton populations, essential components of aquatic food webs. Understanding the molecular mechanisms underlying zooplankton responses to these toxic blooms is crucial for assessing and mitigating these impacts. The mitogen-activated protein kinase (MAPK) pathway, known for its critical role in stress response signaling, offers a promising area of study to elucidate these mechanisms. However, the specific involvement of MAPK in zooplankton responses to cyanobacterial stress remains unclear. In this study, we identify and characterize the p38 MAPK gene (MmMAPK) from the zooplankton Moina macrocopa. The gene contains conserved structural elements typical of MAPKs, including a Thr-Gly-Tyr (TGY) motif and a substrate-binding site, Ala-Thr-Arg-Trp (ATRW), indicating its potential functional relevance in stress signaling pathways. Expression analysis reveals a significant upregulation of MmMAPK in M. macrocopa upon exposure to toxic Microcystis, suggesting its role in mediating the organism's stress response. Furthermore, RNA interference (RNAi) experiments demonstrate that knockdown of MmMAPK results in reduced survival and decreased body size, particularly under cyanobacterial stress, underscoring its importance in maintaining stress sensitivity. These findings provide new insights into the molecular mechanisms by which M. macrocopa responds to harmful algal blooms and highlight the potential of MmMAPK as a biomarker for ecological risk assessment and management of cyanobacterial pollution in freshwater ecosystems.
Collapse
Affiliation(s)
- Kai Lyu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China.
| | - Yuchen Fan
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Xinyu Zhou
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Yuzhou Hou
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Zhou Yang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China.
| |
Collapse
|
3
|
Lyu K, Wu Y, Li J, Yang Z. MicroRNA miR-210 Modulates the Water Flea Daphnia magna Response to Cyanobacterial Toxicity. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:18520-18530. [PMID: 39382696 DOI: 10.1021/acs.est.4c04190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
As a key form of post-transcriptional regulation, microRNAs (miRNAs) regulate gene expression by binding to target mRNAs, leading to mRNA decay or translational repression. Recently, the role of miRNAs in the response of aquatic organisms to environmental stressors has emerged. Daphnia, widely distributed cladocerans, play a crucial role in aquatic ecosystems. Cyanobacterial blooms often cause Daphnia populations to decrease, thereby disrupting ecosystem functionality and water quality. However, the post-transcriptional mechanisms behind Daphnia's response to toxic cyanobacteria are insufficiently understood. This study investigated the role of miR-210, a multifunctional miRNA involved in stress response and toxicity pathways, and its target genes (MLH3, CDHR5, and HYOU1) in two Daphnia magna clones exposed to toxic Microcystis aeruginosa. Results showed that M. aeruginosa inhibited somatic growth rates, led to microcystin accumulation, caused abnormal ultrastructural alterations in the digestive tract, and induced DNA damage in both clones. Notably, exposure significantly increased miR-210 expression and decreased the expression of its target genes compared with the controls. We identified miR-210s regulation on clonal-tolerance variations in D. magna to M. aeruginosa, emphasizing miRNAs' contribution to adaptive responses. Our work uncovered a novel post-transcriptional mechanism of cyanobacterial impact on zooplankton and provided essential insights for assessing cyanobacterial toxicity risks.
Collapse
Affiliation(s)
- Kai Lyu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| | - Yuting Wu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| | - Jiameng Li
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| | - Zhou Yang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| |
Collapse
|
4
|
Maruoka N, Makino T, Urabe J. RNA-seq analysis to identify genes related to resting egg production of panarctic Daphnia pulex. BMC Genomics 2023; 24:262. [PMID: 37198540 PMCID: PMC10190107 DOI: 10.1186/s12864-023-09369-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 05/08/2023] [Indexed: 05/19/2023] Open
Abstract
BACKGROUND The genus Daphnia switches its reproductive mode from subitaneous egg production to resting egg production in response to environmental stimuli. Although this life history trait is essential for surviving unsuitable environments, the molecular mechanism of resting egg production is little understood. In this study, we examined genes related to induction of resting egg production using two genotypes of panarctic Daphnia pulex, the JPN1 and JPN2 lineages, which differ genetically in the frequency of resting egg production. We reared these genotypes under high and low food levels. At the high food level, individuals of both genotypes continually produced subitaneous eggs, whereas at the low food level, only the JPN2 genotype produced resting eggs. Then, we performed RNA-seq analysis on specimens of three instars, including before and after egg production. RESULTS These results showed that expressed genes differed significantly between individuals grown under high and low food levels and among individuals of different instars and genotypes. Among these differentially expressed genes (DEGs), we found 16 that changed expression level before resting egg production. Some of these genes showed high-level expression only before resting egg production and one gene was an ortholog of bubblegum (bgm), which is reportedly up-regulated before diapause in bumblebees. According to gene ontology (GO) enrichment analysis, one GO term annotated as long-chain fatty acid biosynthetic process was enriched among these 16 genes. In addition, GO terms related to glycometabolism were enriched among down-regulated genes of individuals holding resting eggs, compared to those before resting egg production. CONCLUSIONS We found candidate genes highly expressed only before resting egg production. Although functions of candidate genes found in this study have not been reported previously in Daphnia, catabolism of long-chain fatty acids and metabolism of glycerates are related to diapause in other organisms. Thus, it is highly probable that candidate genes identified in this study are related to the molecular mechanism regulating resting egg production in Daphnia.
Collapse
Affiliation(s)
- Natsumi Maruoka
- Graduate School of Life sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai, 980-8578, 022-795-6686, Miyagi, Japan.
- Center for Bioscience Research and Education, Utsunomiya University, 350 Mine-machi, Utsunomiya, 321-8505, 028-649-5129, Tochigi, Japan.
| | - Takashi Makino
- Graduate School of Life sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai, 980-8578, 022-795-6686, Miyagi, Japan
| | - Jotaro Urabe
- Graduate School of Life sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai, 980-8578, 022-795-6686, Miyagi, Japan
| |
Collapse
|
5
|
Reilly K, Ellis LJA, Davoudi HH, Supian S, Maia MT, Silva GH, Guo Z, Martinez DST, Lynch I. Daphnia as a model organism to probe biological responses to nanomaterials-from individual to population effects via adverse outcome pathways. FRONTIERS IN TOXICOLOGY 2023; 5:1178482. [PMID: 37124970 PMCID: PMC10140508 DOI: 10.3389/ftox.2023.1178482] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 04/06/2023] [Indexed: 05/02/2023] Open
Abstract
The importance of the cladoceran Daphnia as a model organism for ecotoxicity testing has been well-established since the 1980s. Daphnia have been increasingly used in standardised testing of chemicals as they are well characterised and show sensitivity to pollutants, making them an essential indicator species for environmental stress. The mapping of the genomes of D. pulex in 2012 and D. magna in 2017 further consolidated their utility for ecotoxicity testing, including demonstrating the responsiveness of the Daphnia genome to environmental stressors. The short lifecycle and parthenogenetic reproduction make Daphnia useful for assessment of developmental toxicity and adaption to stress. The emergence of nanomaterials (NMs) and their safety assessment has introduced some challenges to the use of standard toxicity tests which were developed for soluble chemicals. NMs have enormous reactive surface areas resulting in dynamic interactions with dissolved organic carbon, proteins and other biomolecules in their surroundings leading to a myriad of physical, chemical, biological, and macromolecular transformations of the NMs and thus changes in their bioavailability to, and impacts on, daphnids. However, NM safety assessments are also driving innovations in our approaches to toxicity testing, for both chemicals and other emerging contaminants such as microplastics (MPs). These advances include establishing more realistic environmental exposures via medium composition tuning including pre-conditioning by the organisms to provide relevant biomolecules as background, development of microfluidics approaches to mimic environmental flow conditions typical in streams, utilisation of field daphnids cultured in the lab to assess adaption and impacts of pre-exposure to pollution gradients, and of course development of mechanistic insights to connect the first encounter with NMs or MPs to an adverse outcome, via the key events in an adverse outcome pathway. Insights into these developments are presented below to inspire further advances and utilisation of these important organisms as part of an overall environmental risk assessment of NMs and MPs impacts, including in mixture exposure scenarios.
Collapse
Affiliation(s)
- Katie Reilly
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Laura-Jayne A. Ellis
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Hossein Hayat Davoudi
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Suffeiya Supian
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Marcella T. Maia
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | - Gabriela H. Silva
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | - Zhiling Guo
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Diego Stéfani T. Martinez
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | - Iseult Lynch
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
6
|
High capacity for a dietary specialist consumer population to cope with increasing cyanobacterial blooms. Sci Rep 2022; 12:22169. [PMID: 36550191 PMCID: PMC9780316 DOI: 10.1038/s41598-022-26611-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
We present a common-garden experiment to examine the amphipod Monoporeia affinis, a key deposit-feeder in the Baltic Sea, a low diversity system offering a good model for studying local adaptations. In the northern part of this system, the seasonal development of phytoplankton is characterized by a single diatom bloom (high nutritional quality), whereas in the south, the diatom bloom is followed by a cyanobacteria bloom (low nutritional quality) during summer. Therefore, the nutrient input to the benthic system differs between the sea basins. Accordingly, the amphipod populations were expected to be dietary specialists in the north and generalists in the south. We tested this hypothesis using a combination of stable isotope tracers, trophic niche analyses, and various endpoints of growth and health status. We found that when mixed with diatomes, the toxin-producing cyanobacteria, were efficiently incorporated and used for growth by both populations. However, contrary to expectations, the feeding plasticity was more pronounced in the northern population, indicating genetically-based divergence and suggesting that these animals can develop ecological adaptations to the climate-induced northward cyanobacteria expansion in this system. These findings improve our understanding regarding possible adaptations of the deposit-feeders to increasing cyanobacteria under global warming world in both limnic and marine ecosystems. It is possible that the observed effects apply to other consumers facing altered food quality due to environmental changes.
Collapse
|
7
|
Schwarzenberger A. Negative Effects of Cyanotoxins and Adaptative Responses of Daphnia. Toxins (Basel) 2022; 14:770. [PMID: 36356020 PMCID: PMC9694520 DOI: 10.3390/toxins14110770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/02/2022] [Accepted: 11/05/2022] [Indexed: 11/10/2022] Open
Abstract
The plethora of cyanobacterial toxins are an enormous threat to whole ecosystems and humans. Due to eutrophication and increases in lake temperatures from global warming, changes in the distribution of cyanobacterial toxins and selection of few highly toxic species/ strains are likely. Globally, one of the most important grazers that controls cyanobacterial blooms is Daphnia, a freshwater model organism in ecology and (eco)toxicology. Daphnia-cyanobacteria interactions have been studied extensively, often focusing on the interference of filamentous cyanobacteria with Daphnia's filtering apparatus, or on different nutritional constraints (the lack of essential amino acids or lipids) and grazer toxicity. For a long time, this toxicity only referred to microcystins. Currently, the focus shifts toward other deleterious cyanotoxins. Still, less than 10% of the total scientific output deals with cyanotoxins that are not microcystins; although these other cyanotoxins can occur just as frequently and at similar concentrations as microcystins in surface water. This review discusses the effects of different cyanobacterial toxins (hepatotoxins, digestive inhibitors, neurotoxins, and cytotoxins) on Daphnia and provides an elaborate and up-to-date overview of specific responses and adaptations of Daphnia. Furthermore, scenarios of what we can expect for the future of Daphnia-cyanobacteria interactions are described by comprising anthropogenic threats that might further increase toxin stress in Daphnia.
Collapse
Affiliation(s)
- Anke Schwarzenberger
- Limnological Institute, University Konstanz, Mainaustr. 252, 78464 Konstanz, Germany
| |
Collapse
|
8
|
He X, Han M, Zhan W, Liu F, Guo D, Zhang Y, Liang X, Wang Y, Lou B. Mixture effects of imidacloprid and difenconazole on enzymatic activity and gene expression in small yellow croakers (Larimichthys polyactis). CHEMOSPHERE 2022; 306:135551. [PMID: 35787886 DOI: 10.1016/j.chemosphere.2022.135551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 05/28/2022] [Accepted: 06/27/2022] [Indexed: 06/15/2023]
Abstract
Agrochemicals usually exist as mixtures in aqueous ecosystems and have harmful impacts on the natural environment. Nonetheless, the combined effects and underlying mechanisms of agrochemicals on aqueous organisms remain poorly understood. In the present study, the interactive effects of imidacloprid (IMI) and difenconazole (DIF) on the embryos of small yellow croakers (Larimichthys polyactis) were assessed using various toxicological assays, including acute toxicity, enzymatic activity, and gene expression changes. The results showed that DIF (72-h LC50 value of 0.20 mg L-1) had higher toxicity than IMI (72-h LC50 value of 12.5 mgL-1). Simultaneously, combinations of IMI and DIF exerted synergistic acute effects on the embryos of L. polyactis. In addition, the SOD, CAT, GST, and CarE activities were noticeably altered in most single and mixed exposures, relative to the untreated control. The expression of four genes (cyp19a1b, ngln2, klf2a, and socs3a) related to the immune system, endocrine system, and neurodevelopment was also surprisingly altered when the embryos of L. polyactis were subjected to individual and combined exposures relative to the untreated control. Changes in enzymatic activity and gene expression might provide early warning indices for the identification of agrochemical co-exposure. The results of this study provide valuable insights into the comprehensive toxicity of agrochemical mixtures to L. polyactis. Further studies on the long-term effects of agrochemical mixtures on marine fish should be conducted to formulate definitive conclusions concerning hazards.
Collapse
Affiliation(s)
- Xue He
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Hydrobiology / Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China
| | - Mingming Han
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Hydrobiology / Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China
| | - Wei Zhan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Hydrobiology / Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China
| | - Feng Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Hydrobiology / Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China
| | - Dandan Guo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Hydrobiology / Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China
| | - Yu Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Hydrobiology / Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China
| | - Xiao Liang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Hydrobiology / Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China
| | - Yanhua Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Hydrobiology / Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China.
| | - Bao Lou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Hydrobiology / Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China.
| |
Collapse
|
9
|
Ma Y, Xu D, Li C, Wei S, Guo R, Li Y, Chen J, Liu Y. Combined toxicity and toxicity persistence of antidepressants citalopram and mirtazapine to zooplankton Daphnia magna. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:66100-66108. [PMID: 35501432 DOI: 10.1007/s11356-022-20203-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 04/08/2022] [Indexed: 06/14/2023]
Abstract
Citalopram (CTP) and mirtazapine (MTP) are two typical psychoactive drugs used for the depression treatment. As emerging pollutants, CTP and MTP have raised concern because of their harmful effect on aquatic organisms. Therefore, the ecotoxicological risk of these two pollutants to aquatic organisms should be given more attention. In this study, the effects of CTP and MTP on the feeding rate, heartbeat, nutritional enzymes, and their related gene expression of D. magna were investigated under single and binary mixture pollutant exposure. Subsequently, the recovery of exposed D. magna was studied to assess the toxic persistence of those pollutants. After 24-h exposure, the ingestion rate decreased by 34.2% and 21.5%, in the group of 1.45 mg/L CTP (C-H) and binary mixture with high concentration (Mix-H), respectively. After 24-h recovery, the feeding rate of D. magna was stimulated by a compensatory response. Over the exposure period, the heartbeat rate of D. magna increased significantly in the groups of CTP, MTP, and their binary mixture with low concentration (Mix-L), and then, their heartbeat rate was recovered during the recovery period. The activity of α-amylase (AMS) and trypsin were significantly changed in most of the exposed daphnia, both during the exposure and recovery period. CTP/MTP exposure stimulated the expression of the AMS gene. MTP and Mix-H exposure inhibited the expression of the trypsin gene and the other groups stimulated its expression. After 24-h recovery, the stimulating or inhibitory effects were alleviated. There were different responses between gene expression and enzyme activity. In conclusion, our results highlighted the toxic effects at high concentrations of single and mixed pollution of CTP and MTP on the feeding rate, heartbeat, AMS and trypsin enzyme activity, and expression of related genes of D. magna to assess the environment risk of them.
Collapse
Affiliation(s)
- Yunfeng Ma
- School of Engineering, China Pharmaceutical University, Nanjing, 211198, China
| | - Dong Xu
- School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Chenyang Li
- School of Engineering, China Pharmaceutical University, Nanjing, 211198, China
| | - Shu Wei
- School of Engineering, China Pharmaceutical University, Nanjing, 211198, China
| | - Ruixin Guo
- School of Engineering, China Pharmaceutical University, Nanjing, 211198, China
| | - Yang Li
- Blood Transfusion Department, Wuhan University Zhongnan Hospital, Wuhan, 430071, China
| | - Jianqiu Chen
- School of Engineering, China Pharmaceutical University, Nanjing, 211198, China.
| | - Yanhua Liu
- School of Engineering, China Pharmaceutical University, Nanjing, 211198, China
| |
Collapse
|
10
|
He S, Jiang B, Chakraborty A, Yu G. The Evolution of Glycoside Hydrolase Family 1 in Insects Related to Their Adaptation to Plant Utilization. INSECTS 2022; 13:786. [PMID: 36135486 PMCID: PMC9500737 DOI: 10.3390/insects13090786] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/20/2022] [Accepted: 08/25/2022] [Indexed: 06/16/2023]
Abstract
Insects closely interact with plants with multiple genes involved in their interactions. β-glucosidase, constituted mainly by glycoside hydrolase family 1 (GH1), is a crucial enzyme in insects to digest plant cell walls and defend against natural enemies with sequestered plant metabolites. To gain more insights into the role of this enzyme in plant-insect interactions, we analyzed the evolutionary history of the GH1 gene family with publicly available insect genomes. We found that GH1 is widely present in insects, while the gene numbers are significantly higher in insect herbivores directly feeding on plant cell walls than in other insects. After reconciling the insect GH1 gene tree with a species tree, we found that the patterns of duplication and loss of GH1 genes differ among insect orders, which may be associated with the evolution of their ecology. Furthermore, the majority of insects' GH1 genes were tandem-duplicated and subsequently went through neofunctionalization. This study shows the evolutionary history of an important gene family GH1 in insects and facilitates our understanding of the evolution of insect-plant interactions.
Collapse
Affiliation(s)
- Shulin He
- College of Life Science, Chongqing Normal University, Chongqing 401331, China
| | - Bin Jiang
- College of Life Science, Anhui Normal University, Beijing Rd. 1, Wuhu 241000, China
| | - Amrita Chakraborty
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 16500 Prague, Czech Republic
| | - Guozhi Yu
- College of Life Science, Sichuan Agricultural University, Xinkang Rd. 46, Ya’an 625014, China
| |
Collapse
|
11
|
Schwarzer M, Brehm J, Vollmer M, Jasinski J, Xu C, Zainuddin S, Fröhlich T, Schott M, Greiner A, Scheibel T, Laforsch C. Shape, size, and polymer dependent effects of microplastics on Daphnia magna. JOURNAL OF HAZARDOUS MATERIALS 2022; 426:128136. [PMID: 34974383 DOI: 10.1016/j.jhazmat.2021.128136] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 12/16/2021] [Accepted: 12/21/2021] [Indexed: 06/14/2023]
Abstract
The effects of microplastic (MP) pollution on organisms are gaining increasing attention. To date, a variety of polymers of different shapes and sizes are used in ecotoxicology. Although polystyrene (PS) is the predominant polymer type used in effect studies, it is still unclear whether the observed effects derive from the polymer itself or from a certain particle shape and size. To elucidate whether the effects are polymer specific, we conducted a systematic study on Daphnia magna by comparing various PS-MPs to nonplastic control particles with similar properties. In chronic exposure experiments, we used PS beads (6 µm; 20 µm), fibers (Ø 3 µm, length: 75.5 µm), and fragments (5.7 µm; 17.7 µm) in two different size classes and two different concentrations (500 and 5000 particles ml-1) and in-house-produced control particles of comparable size, shape, concentration and, if possible, density. Although most PS properties did not elicit effects on the tested endpoints, we observed sublethal effects on D. magna life history and morphology for small PS beads and fragments. Interestingly, no adverse effects were detected for any of the control particles. Hence, the observed effects are polymer-specific, related to the size and shape of the polymer, and do not result from particle exposure per se.
Collapse
Affiliation(s)
| | - Julian Brehm
- Animal Ecology 1, University of Bayreuth, Bayreuth, Germany
| | | | - Julia Jasinski
- Process Biotechnology, University of Bayreuth, Bayreuth, Germany
| | - Chengzhang Xu
- Macromolecular Chemistry II, University of Bayreuth, Bayreuth, Germany
| | - Shakir Zainuddin
- Process Biotechnology, University of Bayreuth, Bayreuth, Germany
| | - Thomas Fröhlich
- Gene Center Munich, Laboratory for Functional Genome Analysis (LAFUGA), LMU München, Munich, Germany
| | | | - Andreas Greiner
- Macromolecular Chemistry II, University of Bayreuth, Bayreuth, Germany
| | - Thomas Scheibel
- Process Biotechnology, University of Bayreuth, Bayreuth, Germany
| | | |
Collapse
|
12
|
Akbar S, Gu L, Sun Y, Zhang L, Lyu K, Huang Y, Yang Z. Understanding host-microbiome-environment interactions: Insights from Daphnia as a model organism. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 808:152093. [PMID: 34863741 DOI: 10.1016/j.scitotenv.2021.152093] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/21/2021] [Accepted: 11/27/2021] [Indexed: 06/13/2023]
Abstract
Microbes perform a variety of vital functions that are essential for healthy ecosystems, ranging from nutrient recycling, antibiotic production and waste decomposition. In many animals, microbes become an integral part by establishing diverse communities collectively termed as "microbiome/s". Microbiomes defend their hosts against pathogens and provide essential nutrients necessary for their growth and reproduction. The microbiome is a polygenic trait that is dependent on host genotype and environmental variables. However, the alteration of microbiomes by stressful condition and their recovery is still poorly understood. Despite rapid growth in host-associated microbiome studies, very little is known about how they can shape ecological processes. Here, we review current knowledge on the microbiome of Daphnia, its role in fitness, alteration by different stressors, and the ecological and evolutionary aspects of host microbiome interactions. We further discuss how variation in Daphnia physiology, life history traits, and microbiome interactive responses to biotic and abiotic factors could impact patterns of microbial diversity in the total environment, which drives ecosystem function in many freshwater environments. Our literature review provides evidence that microbiome is essential for Daphnia growth, reproduction and tolerance against stressors. Though the core and flexible microbiome of Daphnia is still debatable, it is clear that the Daphnia microbiome is highly dependent on interactions among host genotype, diet and the environment. Different environmental factors alter the microbiome composition and diversity of Daphnia and reduce their fitness. These interactions could have important implications in shaping microbial patterns and their recycling as Daphnia are keystone species in freshwater ecosystem. This review provides a framework for studying these complex relationships to gain a better understanding of the ecological and evolutionary roles of the microbiome.
Collapse
Affiliation(s)
- Siddiq Akbar
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| | - Lei Gu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| | - Yunfei Sun
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| | - Lu Zhang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| | - Kai Lyu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| | - Yuan Huang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| | - Zhou Yang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China.
| |
Collapse
|
13
|
Cremer R, Wacker A, Schwarzenberger A. More Light Please: Daphnia Benefit From Light Pollution by Increased Tolerance Toward Cyanobacterial Chymotrypsin Inhibitors. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.834422] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Cryptochromes are evolutionary ancient blue-light photoreceptors that are part of the circadian clock in the nervous system of many organisms. Cryptochromes transfer information of the predominant light regime to the clock which results in the fast adjustment to photoperiod. Therefore, the clock is sensitive to light changes and can be affected by anthropogenic Artificial Light At Night (ALAN). This in turn has consequences for clock associated behavioral processes, e.g., diel vertical migration (DVM) of zooplankton. In freshwater ecosystems, the zooplankton genus Daphnia performs DVM in order to escape optically hunting predators and to avoid UV light. Concomitantly, Daphnia experience circadian changes in food-supply during DVM. Daphnia play the keystone role in the carbon-transfer to the next trophic level. Therefore, the whole ecosystem is affected during the occurrence of cyanobacteria blooms as cyanobacteria reduce food quality due to their production of digestive inhibitors (e.g., protease inhibitors). In other organisms, digestion is linked to the circadian clock. If this is also the case for Daphnia, the expression of protease genes should show a rhythmic expression following circadian expression of clock genes (e.g., cryptochrome 2). We tested this hypothesis and demonstrated that gene expression of the clock and of proteases was affected by ALAN. Contrary to our expectations, the activity of one type of proteases (chymotrypsins) was increased by ALAN. This indicates that higher protease activity might improve the diet utilization. Therefore, we treated D. magna with a chymotrypsin-inhibitor producing cyanobacterium and found that ALAN actually led to an increase in Daphnia’s growth rate in comparison to growth on the same cyanobacterium in control light conditions. We conclude that this increased tolerance to protease inhibitors putatively enables Daphnia populations to better control cyanobacterial blooms that produce chymotrypsin inhibitors in the Anthropocene, which is defined by light pollution and by an increase of cyanobacterial blooms due to eutrophication.
Collapse
|
14
|
Sharma S, Dar OI, Singh K, Kaur A, Faggio C. Triclosan elicited biochemical and transcriptomic alterations in Labeo rohita larvae. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2021; 88:103748. [PMID: 34534692 DOI: 10.1016/j.etap.2021.103748] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 09/10/2021] [Accepted: 09/13/2021] [Indexed: 06/13/2023]
Abstract
In the current study, Triclosan (TCS, a commonly used antimicrobial agent) induced alterations in biochemical parameters and gene expression were recorded in the larvae of Labeo rohita after 96 h exposure and 10 days recovery period to find out health status biomarkers. 96 h exposure to 0.06, 0.067 and 0.097 mg/L TCS significantly declined the levels of glucose, triglycerides, urea and uric acid and activity of alkaline phosphatase (ALP), glutamic oxaloacetic transaminase (GOT) and glutamic pyruvic transaminase (GPT). There was a non-significant decline in the levels of cholesterol and total protein but albumin and total bilirubin showed no change. After 10 days of recovery period, trend was opposite for glucose, urea and ALP only. Decline in the expression of trypsin and pancreatic amylase and elevation in creatine kinase during exposure to TCS showed a reverse trend after recovery period. However, concentration dependent elevation of chymotrypsin persisted till the end of recovery period. Principal Component Analysis (PCA) showed association of total protein, ALP, GOT, creatine kinase and pancreatic amylase with PC1 after exposure as well as recovery period. Therefore, these can be considered as important biomolecules for identification of health status of TCS stressed fish.
Collapse
Affiliation(s)
- Sunil Sharma
- Aquatic Toxicology Lab, Department of Zoology, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Owias Iqbal Dar
- Aquatic Toxicology Lab, Department of Zoology, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Kirpal Singh
- Aquatic Toxicology Lab, Department of Zoology, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Arvinder Kaur
- Aquatic Toxicology Lab, Department of Zoology, Guru Nanak Dev University, Amritsar, Punjab, 143005, India.
| | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Italy
| |
Collapse
|
15
|
Campos B, Piña B, Barata C. Daphnia magna Gut-Specific Transcriptomic Responses to Feeding Inhibiting Chemicals and Food Limitation. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2021; 40:2510-2520. [PMID: 34081794 DOI: 10.1002/etc.5134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/31/2021] [Accepted: 06/01/2021] [Indexed: 06/12/2023]
Abstract
Transcriptomic responses combined with apical adverse ecologically relevant outcomes have proven to be useful to unravel and anchor molecular mechanisms of action to adverse outcomes. This is the case for feeding inhibition responses in the model ecotoxicological species Daphnia magna. The aim of the present study was to assess the transcriptomic responses in guts dissected from D. magna individuals exposed to concentrations of selected compounds that inhibit feeding and compare them with the responses associated to 2 levels of food restriction (low food and starvation). Chemical treatments included cadmium, copper, fluoranthene, λ-cyhalothrin, and the cyanotoxin anatoxin-a. Although the initial hypothesis was that exposure to chemical feeding inhibitors should elicit similar molecular responses as food limitation, the corresponding gut transcriptomic responses differed significantly. In moderate food limitation conditions, D. magna individuals increased protein and carbohydrate catabolism, likely to be used as energetic sources, whereas under severe starving conditions most metabolism-related pathways appeared down-regulated. Treatment with chemical feeding inhibitors promoted cell turnover-related signaling pathways in the gut, probably to renew tissue damage caused by the reported oxidative stress effects of these compounds, and inhibited the transcription of gut digestive gene enzymes and energetic metabolic pathways. We conclude that chemical feeding inhibitors, rather than mimicking the physiological response to low- or no-food conditions, cause specific toxic effects, preventing Daphnia both from feeding and from adjusting its metabolism to the resulting low energy intake. Environ Toxicol Chem 2021;40:2510-2520. © 2021 SETAC.
Collapse
Affiliation(s)
- Bruno Campos
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research, Barcelona, Spain
| | - Benjamín Piña
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research, Barcelona, Spain
| | - Carlos Barata
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research, Barcelona, Spain
| |
Collapse
|
16
|
Zhang X, Ohtsuki H, Makino W, Kato Y, Watanabe H, Urabe J. Variations in effects of ectosymbiotic microbes on the growth rates among different species and genotypes of
Daphnia
fed different algal diets. Ecol Res 2020. [DOI: 10.1111/1440-1703.12194] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Xuan Zhang
- Aquatic Ecology Lab, Graduate School of Life Sciences Tohoku University Aoba‐ku Sendai Japan
| | - Hajime Ohtsuki
- Aquatic Ecology Lab, Graduate School of Life Sciences Tohoku University Aoba‐ku Sendai Japan
| | - Wataru Makino
- Aquatic Ecology Lab, Graduate School of Life Sciences Tohoku University Aoba‐ku Sendai Japan
| | - Yasuhiko Kato
- Department of Biotechnology, Graduate School of Engineering Osaka University Suita Osaka Japan
| | - Hajime Watanabe
- Department of Biotechnology, Graduate School of Engineering Osaka University Suita Osaka Japan
| | - Jotaro Urabe
- Aquatic Ecology Lab, Graduate School of Life Sciences Tohoku University Aoba‐ku Sendai Japan
| |
Collapse
|
17
|
Ding W, Jin W, Zhou X, Li SF, Tu R, Han SF, Chen C, Feng X, Huang Y. Enhanced lipid extraction from the biodiesel-producing microalga Chlorella pyrenoidosa cultivated in municipal wastewater via Daphnia ingestion and digestion. BIORESOURCE TECHNOLOGY 2020; 306:123162. [PMID: 32197194 DOI: 10.1016/j.biortech.2020.123162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 03/05/2020] [Accepted: 03/06/2020] [Indexed: 06/10/2023]
Abstract
Herein, a novel innovative lipid co-extraction strategy using the biodiesel-producing microalga Chlorella pyrenoidosa and planktonic cladoceran Daphnia was proposed. Co-extraction occurred as Daphnia ingested and digested microalgal cells in a pre-treatment process; thereafter, lipids from these organisms were extracted. Composition of fatty acids from C. pyrenoidosa and Daphnia were appropriate as potential biodiesel feedstocks. Daphnia had different absorption and conversion capacities of various fatty acids from C. pyrenoidosa, which showed potential for improving biodiesel characteristics. Linoleic acid (LA, C18:2n-6) and alpha-linolenic acid (ALA, C18:3n-3) were absorbed significantly into the body of Daphnia. The optimal lipid extraction and fatty acid methyl esters (FAMEs) recovery rates were up to 41.08% and 12.35%, respectively, which were greater than that of the traditional lipid extraction method due to the rich oil content of Daphnia. Overall, this lipid co-extraction process serves a potential Daphnia utilization as an economical, green, low-energy way for microalgae biodiesel production.
Collapse
Affiliation(s)
- Wanqing Ding
- Shenzhen Engineering Laboratory of Microalgal Bioenergy, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Wenbiao Jin
- Shenzhen Engineering Laboratory of Microalgal Bioenergy, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Xu Zhou
- Shenzhen Engineering Laboratory of Microalgal Bioenergy, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China.
| | - Shao-Feng Li
- Department of Building and Environmental Engineering, Shenzhen Polytechnic, Shenzhen 518055, China
| | - Renjie Tu
- Shenzhen Engineering Laboratory of Microalgal Bioenergy, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Song-Fang Han
- Shenzhen Engineering Laboratory of Microalgal Bioenergy, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Chuan Chen
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Xiaochi Feng
- Shenzhen Engineering Laboratory of Microalgal Bioenergy, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Yan Huang
- Shenzhen Engineering Laboratory of Microalgal Bioenergy, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| |
Collapse
|
18
|
Windisch HS, Fink P. Transcriptome sequencing of a keystone aquatic herbivore yields insights on the temperature-dependent metabolism of essential lipids. BMC Genomics 2019; 20:894. [PMID: 31752680 PMCID: PMC6873670 DOI: 10.1186/s12864-019-6268-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 11/06/2019] [Indexed: 11/10/2022] Open
Abstract
Background Nutritional quality of phytoplankton is a major determinant of the trophic transfer efficiency at the plant-herbivore interface in freshwater food webs. In particular, the phytoplankton’s content of the essential polyunsaturated omega-3 fatty acid eicosapentaenoic acid (EPA) has been repeatedly shown to limit secondary production in the major zooplankton herbivore genus Daphnia. Despite extensive research efforts on the biological model organism Daphnia, and the availability of several Daphnia genomes, little is known regarding the molecular mechanisms underlying the limitations in Daphnia related to dietary EPA availability. Results We used RNA-seq to analyse the transcriptomic response of Daphnia magna which were fed with two different diets — each with or without supplementation of EPA — at two different temperature levels (15 and 20 °C). The transcripts were mapped to the D. magna genome assembly version 2.4, containing 26,646 translations. When D. magna fed on green alga, changing the temperature provoked a differential expression of 2001 transcripts, and in cyanobacteria-fed daphnia, 3385 transcripts were affected. The supplementation of EPA affected 1635 (on the green algal diet), or 175 transcripts (on the cyanobacterial diet), respectively. Combined effects for diet and temperature were also observed (669 for the green algal and 128 transcripts for the cyanobacterial diet). Searching for orthologous genes (COG-analysis) yielded a functional overview of the altered transcriptomes. Cross-matched transcript sets from both feed types were compiled to illuminate core responses to the factors temperature and EPA-supplementation. Conclusions Our highly controlled eco-physiological experiments revealed an orchestrated response of genes involved in the transformation and signalling of essential fatty acids, including eicosanoid-signalling pathways with potential immune functions. We provide an overview of downstream-regulated genes, which contribute to enhance growth and reproductive output. We also identified numerous EPA-responsive candidate genes of yet unknown function, which constitute new targets for future studies on the molecular basis of EPA-dependent effects at the freshwater plant-herbivore interface.
Collapse
Affiliation(s)
- Heidrun S Windisch
- Heinrich-Heine-University, Institute for Cell Biology and Zoology, Universitätsstrasse 1, 40225, Düsseldorf, Germany. .,Fraunhofer IME, Institute for Molecular Ecology, Am Aberg 1, 57392, Schmallenberg, Germany.
| | - Patrick Fink
- Institute for Zoology, University of Cologne, Zülpicher Strasse 47b, 50674, Köln, Germany.,Department River Ecology, Helmholtz Centre for Environmental Science, Brückstrasse 3a, 39114, Magdeburg, Germany.,Department Aquatic Ecosystem Analysis and Management, Helmholtz Centre for Environmental Science, Brückstrasse 3a, 39114, Magdeburg, Germany
| |
Collapse
|
19
|
Zhao Y, Wang Z, Li D, Feng W, Bian X, Xu J. Two PBDEs exposure inducing feeding depression and disorder of digestive and antioxidative system of Daphnia magna. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 176:279-287. [PMID: 30947031 DOI: 10.1016/j.ecoenv.2019.03.116] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 03/26/2019] [Accepted: 03/27/2019] [Indexed: 06/09/2023]
Abstract
2,2',4,4'-tetrabrominated diphenyl ether (BDE-47) and 2,2',4,4',5-pentabromodiphenyl ether (BDE-99) are two typical polybrominated diphenyl ethers (PBDEs), and studies have proven that these PBDs can disrupt the behaviors and physical function of aquatic organisms. However, little is known about the compositional impacts of BDE-47/BDE-99 compound pollution on the feeding behavior of Daphnia magna. In this study, a response surface methodology (RSM) was introduced into the combined toxicity assessment of BDE-47 and BDE-99 on the feeding depression of D. magna. Low concentrations of BDE-47 (9.2 μg/L) and BDE-99 (5.4 μg/L) had no effect on the feeding behavior of D. magna; nevertheless, the feeding depression was strengthened, and a concentration-dependent effect was observed with increasing concentrations of BDE-47 and BDE-99. The results of RSM indicated that the mixture of BDE-47 and BDE-99 can enhance their toxicity on the feeding behavior of D. magna. Moreover, real-time PCR (qPCR) analysis showed that the down-regulation of α-amylase (AMS) appeared in most of the exposed D. magna. However, there were significant different in the gene expression of trypsin, superoxide dismutase (SOD) and catalase (CAT) between the exposure and control groups. The change in the enzyme activity of AMS, trypsin, SOD and CAT implied that BDE-47 and BDE-99 cause damage to the digestive and antioxidative systems of D. magna. Correlation analysis indicated that a significant positive correlation existed between the gene expression and enzyme activity of SOD and CAT. Our results contribute to the understanding of toxicity caused by BDE-47/BDE-99 compound pollution in D. magna and help to improve traditional toxicity assessment methods for aquatic environments.
Collapse
Affiliation(s)
- Yucheng Zhao
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Zhenglong Wang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, China
| | - Detian Li
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Wenpei Feng
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Xiaohong Bian
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, China.
| | - Jiyang Xu
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
20
|
Tian X, Ohtsuki H, Urabe J. Evolution of asexual Daphnia pulex in Japan: variations and covariations of the digestive, morphological and life history traits. BMC Evol Biol 2019; 19:122. [PMID: 31195967 PMCID: PMC6567566 DOI: 10.1186/s12862-019-1453-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Accepted: 06/06/2019] [Indexed: 02/02/2023] Open
Abstract
Background Several genetic lineages of obligate parthenogenetic Daphnia pulex, a common zooplankton species, have invaded Japan from North America. Among these, a lineage named JPN1 is thought to have started colonization as a single genotype several hundred to thousand years ago and subsequently produced many genotypes in Japan. To examine the phenotypic variations due to ecological drivers diverging the genotypes in new habitats, we measured heritability and variation in 17 traits, including life history, morphology and digestive traits, and the genetic distance among the D. pulex JPN1 genotypes in Japan. Results We found that most of the traits measured varied significantly among the genotypes and that heritability was highest in the morphological traits, followed by the digestive and life history traits. In addition, 93% of the variation in these traits was explained by the first three components in the principal component analysis, implying that variation of these heritable traits is not random but rather converged into a few directions. These relations among traits revealed the potential importance of predation pressures and food conditions as factors for diverging and selecting different genotypes. However, the magnitude of the difference in any single trait group did not correlate with the genetic distance. Conclusions Our findings show that the divergent traits evolved within D. pulex JPN1 lineage without genetic recombination, since their ancestral clone invaded Japan. Large variations and covariations of the phenotypic traits, irrespective of the genetic distance among the genotypes, support the view that the invasive success of D. pulex JPN1 was promoted by a genetic architecture that allowed for large phenotypic variations with a limited number of functionally important mutations without recombination. Electronic supplementary material The online version of this article (10.1186/s12862-019-1453-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xiaofei Tian
- Graduate School of Life Sciences, Tohoku University, 6-3 Aramaki aza Aoba, Sendai, 980-8578, Japan.
| | - Hajime Ohtsuki
- Graduate School of Life Sciences, Tohoku University, 6-3 Aramaki aza Aoba, Sendai, 980-8578, Japan
| | - Jotaro Urabe
- Graduate School of Life Sciences, Tohoku University, 6-3 Aramaki aza Aoba, Sendai, 980-8578, Japan
| |
Collapse
|
21
|
Fuertes I, Jordão R, Piña B, Barata C. Time-dependent transcriptomic responses of Daphnia magna exposed to metabolic disruptors that enhanced storage lipid accumulation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 249:99-108. [PMID: 30884398 DOI: 10.1016/j.envpol.2019.02.102] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 01/31/2019] [Accepted: 02/28/2019] [Indexed: 05/03/2023]
Abstract
The analysis of lipid disruption in invertebrates is limited by our poor knowledge of their lipidomes and of the associated metabolic pathways. For example, the mechanism by which exposure of the crustacean Daphnia magna to tributyltin, juvenoids, or bisphenol A increase the accumulation of storage lipids into lipid droplets is largely unknown/presently unclear. Here we analyze transcriptome changes subsequent to this lipid accumulation effect induced by either the pesticide pyriproxyfen (a juvenoid agonist), the plasticizer bisphenol A, or the antifouling agent tributyltin. Changes in the whole transcriptome were assessed after 8 and 24 h of exposure, the period showing the greatest variation in storage lipid accumulation. The three compounds affected similarly to a total of 1388 genes (965 overexpressed and 423 underexpressed transcripts), but only after 24 h of exposure. In addition, 225 transcripts became up-regulated in samples exposed to tributyltin for both 8 h and 24 h. Using D. melanogaster functional annotation, we determined that upregulated genes were enriched in members of KEGG modules implicated in fatty acid, glycerophospholipid, and glycerolipid metabolic pathways, as well as in genes related to membrane constituents and to chitin and cuticle metabolic pathways. Conversely, down-regulated genes appeared mainly related to visual perception and to oocyte development signaling pathways. Many tributyltin specifically upregulated genes were related to neuro-active ligand receptor interaction signaling pathways. These changes were consistent with the phetotypic effects reported in this and in previous studies that exposure of D. magna to the tested compounds increased lipid accumulation and reduced egg quantity and quality.
Collapse
Affiliation(s)
- Inmaculada Fuertes
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA), Spanish Research Council (IDAEA, CSIC), Jordi Girona 18, 08034, Barcelona, Spain
| | - Rita Jordão
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA), Spanish Research Council (IDAEA, CSIC), Jordi Girona 18, 08034, Barcelona, Spain
| | - Benjamín Piña
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA), Spanish Research Council (IDAEA, CSIC), Jordi Girona 18, 08034, Barcelona, Spain
| | - Carlos Barata
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA), Spanish Research Council (IDAEA, CSIC), Jordi Girona 18, 08034, Barcelona, Spain.
| |
Collapse
|
22
|
Radersma R, Hegg A, Noble DWA, Uller T. Timing of maternal exposure to toxic cyanobacteria and offspring fitness in Daphnia magna: Implications for the evolution of anticipatory maternal effects. Ecol Evol 2018; 8:12727-12736. [PMID: 30619577 PMCID: PMC6309005 DOI: 10.1002/ece3.4700] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 10/11/2018] [Indexed: 01/22/2023] Open
Abstract
Organisms that regularly encounter stressful environments are expected to use cues to develop an appropriate phenotype. Water fleas (Daphnia spp.) are exposed to toxic cyanobacteria during seasonal algal blooms, which reduce growth and reproductive investment. Because generation time is typically shorter than the exposure to cyanobacteria, maternal effects provide information about the local conditions subsequent generations will experience. Here, we evaluate if maternal effects in response to microcystin, a toxin produced by cyanobacteria, represent an inheritance system evolved to transmit information in Daphnia magna. We exposed mothers as juveniles and/or as adults, and tested the offspring's fitness in toxic and non-toxic environments. Maternal exposure until reproduction reduced offspring fitness, both in the presence and in the absence of toxic cyanobacteria. However, this effect was accompanied by a small positive fitness effect, relative to offspring from unexposed mothers, in the presence of toxic cyanobacteria. This effect was mainly elicited in response to maternal exposure to toxic cyanobacteria early in life and less so during reproduction. None of these effects were explained by changes in egg size. A meta-analysis using our and others' experiments suggests that the adaptive value of maternal effects to cyanobacteria exposure is weak at best. We suggest that the beneficial maternal effect in our study is an example of phenotypic accommodation spanning generations, rather than a mechanism evolved to transmit information about cyanobacteria presence between generations.
Collapse
Affiliation(s)
| | | | - Daniel W. A. Noble
- Ecology and Evolution Research Centre, School of Biological, Earth and Environmental SciencesThe University of New South WalesSydneyNew South WalesAustralia
| | | |
Collapse
|