1
|
Park S, Kim J, Lee J, Jung S, Pack SP, Lee JH, Yoon K, Woo SJ, Han JY, Seo M. RNA sequencing analysis of sexual dimorphism in Japanese quail. Front Vet Sci 2024; 11:1441021. [PMID: 39104546 PMCID: PMC11299063 DOI: 10.3389/fvets.2024.1441021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 06/28/2024] [Indexed: 08/07/2024] Open
Abstract
Introduction Japanese quail are of significant economic value, providing protein nutrition to humans through their reproductive activity; however, sexual dimorphism in this species remains relatively unexplored compared with other model species. Method A total of 114 RNA sequencing datasets (18 and 96 samples for quail and chicken, respectively) were collected from existing studies to gain a comprehensive understanding of sexual dimorphism in quail. Cross-species integrated analyses were performed with transcriptome data from evolutionarily close chickens to identify sex-biased genes in the embryonic, adult brain, and gonadal tissues. Results Our findings indicate that the expression patterns of genes involved in sex-determination mechanisms during embryonic development, as well as those of most sex-biased genes in the adult brain and gonads, are identical between quails and chickens. Similar to most birds with a ZW sex determination system, quails lacked global dosage compensation for the Z chromosome, resulting in directional outcomes that supported the hypothesis that sex is determined by the individual dosage of Z-chromosomal genes, including long non-coding RNAs located in the male hypermethylated region. Furthermore, genes, such as WNT4 and VIP, reversed their sex-biased patterns at different points in embryonic development and/or in different adult tissues, suggesting a potential hurdle in breeding and transgenic experiments involving avian sex-related traits. Discussion The findings of this study are expected to enhance our understanding of sexual dimorphism in birds and subsequently facilitate insights into the field of breeding and transgenesis of sex-related traits that economically benefit humans.
Collapse
Affiliation(s)
- Sinwoo Park
- Department of Computer and Information Science, Korea University, Sejong-si, Republic of Korea
| | - Jaeryeong Kim
- Department of Computer and Information Science, Korea University, Sejong-si, Republic of Korea
| | - Jinbaek Lee
- Department of Computer and Information Science, Korea University, Sejong-si, Republic of Korea
| | - Sungyoon Jung
- Department of Computer and Information Science, Korea University, Sejong-si, Republic of Korea
| | - Seung Pil Pack
- Department of Biotechnology and Bioinformatics, Korea University, Sejong-si, Republic of Korea
| | - Jin Hyup Lee
- Department of Food and Biotechnology, Korea University, Sejong-si, Republic of Korea
| | - Kyungheon Yoon
- Division of Genome Science, Department of Precision Medicine, National Institue of Health, Cheongju-si, Republic of Korea
| | - Seung Je Woo
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Jae Yong Han
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Minseok Seo
- Department of Computer and Information Science, Korea University, Sejong-si, Republic of Korea
| |
Collapse
|
2
|
Jeon YS, Sangiovanni J, Boulanger E, Crump D, Liu P, Ewald J, Basu N, Xia J, Hecker M, Head J. Hepatic Transcriptomic Responses to Ethinylestradiol in Embryonic Japanese Quail and Double-Crested Cormorant. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2023. [PMID: 38116984 DOI: 10.1002/etc.5811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/15/2023] [Accepted: 12/13/2023] [Indexed: 12/21/2023]
Abstract
Understanding species differences in sensitivity to toxicants is a critical issue in ecotoxicology. We recently established that double-crested cormorant (DCCO) embryos are more sensitive than Japanese quail (JQ) to the developmental effects of ethinylestradiol (EE2). We explored how this difference in sensitivity between species is reflected at a transcriptomic level. The EE2 was dissolved in dimethyl sulfoxide and injected into the air cell of eggs prior to incubation at nominal concentrations of 0, 3.33, and 33.3 µg/g egg weight. At midincubation (JQ 9 days; DCCO 16 days), livers were collected from five embryos/treatment group for RNA sequencing. Data were processed and analyzed using EcoOmicsAnalyst and ExpressAnalyst. The EE2 exposure dysregulated 238 and 1,987 genes in JQ and DCCO, respectively, with 78 genes in common between the two species. These included classic biomarkers of estrogen exposure such as vitellogenin and apovitellenin. We also report DCCO-specific dysregulation of Phase I/II enzyme-coding genes and species-specific transcriptional ontogeny of vitellogenin-2. Twelve Kyoto Encyclopedia of Genes and Genomes pathways and two EcoToxModules were dysregulated in common in both species including the peroxisome proliferator-activated receptor (PPAR) signaling pathway and fatty acid metabolism. Similar to previously reported differences at the organismal level, DCCO were more responsive to EE2 exposure than JQ at the gene expression level. Our description of differences in transcriptional responses to EE2 in early life stage birds may contribute to a better understanding of the molecular basis for species differences. Environ Toxicol Chem 2024;00:1-12. © 2023 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Yeon-Seon Jeon
- Department of Natural Resource Sciences, Faculty of Agricultural and Environmental Sciences, McGill University, Montreal, Quebec, Canada
| | - Jonathan Sangiovanni
- Department of Natural Resource Sciences, Faculty of Agricultural and Environmental Sciences, McGill University, Montreal, Quebec, Canada
| | - Emily Boulanger
- Department of Natural Resource Sciences, Faculty of Agricultural and Environmental Sciences, McGill University, Montreal, Quebec, Canada
| | - Doug Crump
- Ecotoxicology and Wildlife Health Division, National Wildlife Research Centre, Environment and Climate Change Canada, Ottawa, Ontario, Canada
| | - Peng Liu
- Department of Natural Resource Sciences, Faculty of Agricultural and Environmental Sciences, McGill University, Montreal, Quebec, Canada
| | - Jessica Ewald
- Department of Natural Resource Sciences, Faculty of Agricultural and Environmental Sciences, McGill University, Montreal, Quebec, Canada
| | - Niladri Basu
- Department of Natural Resource Sciences, Faculty of Agricultural and Environmental Sciences, McGill University, Montreal, Quebec, Canada
| | - Jianguo Xia
- Department of Natural Resource Sciences, Faculty of Agricultural and Environmental Sciences, McGill University, Montreal, Quebec, Canada
| | - Markus Hecker
- School of the Environment and Sustainability and Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Jessica Head
- Department of Natural Resource Sciences, Faculty of Agricultural and Environmental Sciences, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
3
|
Jeon YS, Crump D, Boulanger E, Soufan O, Park B, Basu N, Hecker M, Xia J, Head JA. Hepatic Transcriptomic Responses to Ethinylestradiol in Two Life Stages of Japanese Quail. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2022; 41:2769-2781. [PMID: 35975422 DOI: 10.1002/etc.5464] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/29/2022] [Accepted: 08/11/2022] [Indexed: 06/15/2023]
Abstract
Chemical risk assessment for avian species typically depends on information from toxicity tests performed in adult birds. Early-life stage (ELS) toxicity tests have been proposed as an alternative, but incorporation of these data into existing frameworks will require knowledge about the similarities/differences between ELS and adult responses. The present study uses transcriptomics to assess hepatic gene expression in ELS and adult Japanese quail following exposure to ethinylestradiol (EE2). Prior to incubation, ELS quail were dosed with measured EE2 concentrations of 0.54, 6.3, and 54.2 µg/g egg weight via air cell injection. Adult quail were fed a single dose of EE2 at nominal concentrations of 0, 0.5, and 5 mg/kg body weight by gavage. Liver tissue was collected from five to six individuals per dose group at mid-incubation for ELS quail and 4 days after dosing for adults. A total of 283 and 111 differentially expressed genes (DEGs) were detected in ELS and adult quail, respectively, 16 of which were shared across life stages. Shared DEGs included estrogenic biomarkers such as vitellogenin genes and apovitellenin-1. For the dose groups that resulted in the highest number of DEGs (ELS, 6.3 µg/g; adult, 5 mg/kg), 21 and 35 Kyoto Encyclopedia of Genes and Genomes pathways were enriched, respectively. Ten of these pathways were shared between life stages, including pathways involved with signaling molecules and interaction and the endocrine system. Taken together, our results suggest conserved mechanisms of action following estrogenic exposure across two life stages, with evidence from differential expression of key biomarker genes and enriched pathways. The present study contributes to the development and evaluation of ELS tests and toxicogenomic approaches and highlights their combined potential for screening estrogenic chemicals. Environ Toxicol Chem 2022;41:2769-2781. © 2022 SETAC.
Collapse
Affiliation(s)
- Yeon-Seon Jeon
- Faculty of Agricultural and Environmental Sciences, McGill University, Montreal, Quebec, Canada
| | - Doug Crump
- Ecotoxicology and Wildlife Health Division, National Wildlife Research Centre, Environment and Climate Change Canada, Ottawa, Ontario, Canada
| | - Emily Boulanger
- Faculty of Agricultural and Environmental Sciences, McGill University, Montreal, Quebec, Canada
| | - Othman Soufan
- Faculty of Agricultural and Environmental Sciences, McGill University, Montreal, Quebec, Canada
- Computer Science Department, St. Francis Xavier University, Antigonish, Nova Scotia, Canada
| | - Bradley Park
- School of the Environment and Sustainability and Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Niladri Basu
- Faculty of Agricultural and Environmental Sciences, McGill University, Montreal, Quebec, Canada
| | - Markus Hecker
- School of the Environment and Sustainability and Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Jianguo Xia
- Faculty of Agricultural and Environmental Sciences, McGill University, Montreal, Quebec, Canada
| | - Jessica A Head
- Faculty of Agricultural and Environmental Sciences, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
4
|
Bornelöv S, Seroussi E, Yosefi S, Benjamini S, Miyara S, Ruzal M, Grabherr M, Rafati N, Molin AM, Pendavis K, Burgess SC, Andersson L, Friedman-Einat M. Comparative omics and feeding manipulations in chicken indicate a shift of the endocrine role of visceral fat towards reproduction. BMC Genomics 2018; 19:295. [PMID: 29695257 PMCID: PMC5922311 DOI: 10.1186/s12864-018-4675-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Accepted: 04/15/2018] [Indexed: 02/18/2023] Open
Abstract
Background The mammalian adipose tissue plays a central role in energy-balance control, whereas the avian visceral fat hardly expresses leptin, the key adipokine in mammals. Therefore, to assess the endocrine role of adipose tissue in birds, we compared the transcriptome and proteome between two metabolically different types of chickens, broilers and layers, bred towards efficient meat and egg production, respectively. Results Broilers and layer hens, grown up to sexual maturation under free-feeding conditions, differed 4.0-fold in weight and 1.6-fold in ovarian-follicle counts, yet the relative accumulation of visceral fat was comparable. RNA-seq and mass-spectrometry (MS) analyses of visceral fat revealed differentially expressed genes between broilers and layers, 1106 at the mRNA level (FDR ≤ 0.05), and 203 at the protein level (P ≤ 0.05). In broilers, Ingenuity Pathway Analysis revealed activation of the PTEN-pathway, and in layers increased response to external signals. The expression pattern of genes encoding fat-secreted proteins in broilers and layers was characterized in the RNA-seq and MS data, as well as by qPCR on visceral fat under free feeding and 24 h-feed deprivation. This characterization was expanded using available RNA-seq data of tissues from red junglefowl, and of visceral fat from broilers of different types. These comparisons revealed expression of new adipokines and secreted proteins (LCAT, LECT2, SERPINE2, SFTP1, ZP1, ZP3, APOV1, VTG1 and VTG2) at the mRNA and/or protein levels, with dynamic gene expression patterns in the selected chicken lines (except for ZP1; FDR/P ≤ 0.05) and feed deprivation (NAMPT, SFTPA1 and ZP3) (P ≤ 0.05). In contrast, some of the most prominent adipokines in mammals, leptin, TNF, IFNG, and IL6 were expressed at a low level (FPKM/RPKM< 1) and did not show differential mRNA expression neither between broiler and layer lines nor between fed vs. feed-deprived chickens. Conclusions Our study revealed that RNA and protein expression in visceral fat changes with selective breeding, suggesting endocrine roles of visceral fat in the selected phenotypes. In comparison to gene expression in visceral fat of mammals, our findings points to a more direct cross talk of the chicken visceral fat with the reproductive system and lower involvement in the regulation of appetite, inflammation and insulin resistance. Electronic supplementary material The online version of this article (10.1186/s12864-018-4675-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Susanne Bornelöv
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, SE-751 23, Uppsala, Sweden.,Present Address: Wellcome Trust Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, CB2 1QR, UK
| | - Eyal Seroussi
- Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
| | - Sara Yosefi
- Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
| | - Sharon Benjamini
- Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel.,Robert H. Smith Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, 76100, Rehovot, Israel
| | - Shoval Miyara
- Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
| | - Mark Ruzal
- Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
| | - Manfred Grabherr
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, SE-751 23, Uppsala, Sweden.,Bioinformatics Infrastructure for Life Sciences, Uppsala University, Uppsala, Sweden
| | - Nima Rafati
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, SE-751 23, Uppsala, Sweden
| | - Anna-Maja Molin
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, SE-751 23, Uppsala, Sweden
| | - Ken Pendavis
- College of Agriculture and Life Sciences, University of Arizona, Tucson, USA
| | - Shane C Burgess
- College of Agriculture and Life Sciences, University of Arizona, Tucson, USA
| | - Leif Andersson
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, SE-751 23, Uppsala, Sweden.,Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, SE-750 07, Uppsala, Sweden.,Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, 77843-4458, USA
| | | |
Collapse
|
5
|
Abstract
An ovulated egg of vertebrates is surrounded by unique extracellular matrix, the egg coat or zona pellucida, playing important roles in fertilization and early development. The vertebrate egg coat is composed of two to six zona pellucida (ZP) glycoproteins that are characterized by the evolutionarily conserved ZP-domain module and classified into six subfamilies based on phylogenetic analyses. Interestingly, investigations of biochemical and functional features of the ZP glycoproteins show that the roles of each ZP-glycoprotein family member in the egg-coat formation and the egg-sperm interactions seemingly vary across vertebrates. This might be one reason why comprehensive understandings of the molecular basis of either architecture or physiological functions of egg coat still remain elusive despite more than 3 decades of intensive investigations. In this chapter, an overview of avian egg focusing on the oogenesis are provided in the first section, and unique features of avian egg coat, i.e., perivitelline layer, including the morphology, biogenesis pathway, and physiological functions are discussed mainly on chicken and quail in terms of the characteristics of ZP glycoproteins in the following sections. In addition, these features of avian egg coat are compared to mammalian zona pellucida, from the viewpoint that the structural and functional varieties of ZP glycoproteins might be associated with the evolutionary adaptation to their reproductive strategies. By comparing the egg coat of birds and mammals whose reproductive strategies are largely different, new insights into the molecular mechanisms of vertebrate egg-sperm interactions might be provided.
Collapse
Affiliation(s)
- Hiroki Okumura
- Department of Applied Biological Chemistry, Faculty of Agriculture, Meijo University, Nagoya, Japan.
| |
Collapse
|
6
|
Nishio S, Okumura H, Matsuda T. Egg-Coat and Zona Pellucida Proteins of Chicken as a Typical Species of Aves. Curr Top Dev Biol 2018; 130:307-329. [PMID: 29853181 DOI: 10.1016/bs.ctdb.2018.02.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Birds are oviparous vertebrates in terrestrial animals. Birds' eggs accumulate mass of egg yolk during the egg development and are accordingly much larger than the eggs of viviparous vertebrates. Despite such difference in size and contents, the birds' eggs are surrounded with the egg-coat morphologically and compositionally resembling the mammalian egg-coat, zona pellucida. On the other hand, there are some differences in part between the two egg-coats, though relationships of such structural differences to any biological roles specific for the extracellular matrix of birds' eggs are not fully understood. In birds, unlike mammals, ZP proteins constituting the egg-coat are highly conserved and therefore those of chicken are described as a representative of birds. The egg-coat ZP proteins, ZP1, ZP3, and ZPD as the majors, accumulate and form the matrix by self-assembly around the egg rapidly growing in the ovarian follicle, in which ZP1 is from liver and both ZP3 and ZPD are from follicular granulosa cells. Although details of the egg-coat-sperm interaction on fertilization remain to be investigated, the lytic degradation process of egg-coat matrix for the sperm penetration has become to be clarified gradually. ZP1 is the primary target of sperm acrosin, and the limited cleavage in the specific region leading to the loss of intermolecular cross-linkages is crucial for the lysis of egg-coat matrix. Possible roles of the ZP1 with the additional sequence characteristic to birds are discussed from a viewpoint of giving both robustness and elastomeric nature to the egg-coat matrix for the birds' eggs.
Collapse
Affiliation(s)
- Shunsuke Nishio
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | | | - Tsukasa Matsuda
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan.
| |
Collapse
|
7
|
Panzica GC, Viglietti-Panzica C, Mura E, Quinn MJ, Lavoie E, Palanza P, Ottinger MA. Effects of xenoestrogens on the differentiation of behaviorally-relevant neural circuits. Front Neuroendocrinol 2007; 28:179-200. [PMID: 17868795 DOI: 10.1016/j.yfrne.2007.07.001] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2006] [Revised: 06/11/2007] [Accepted: 07/12/2007] [Indexed: 11/18/2022]
Abstract
It has become increasingly clear that environmental chemicals have the capability of impacting endocrine function. Moreover, these endocrine disrupting chemicals (EDCs) have long term consequences on adult reproductive function, especially if exposure occurs during embryonic development thereby affecting sexual differentiation. Of the EDCs, most of the research has been conducted on the effects of estrogen active compounds. Although androgen active compounds are also present in the environment, much less information is available about their action. However, in the case of xenoestrogens, there is mounting evidence for long-term consequences of early exposure at a range of doses. In this review, we present data relative to two widely used animal models: the mouse and the Japanese quail. These two species long have been used to understand neural, neuroendocrine, and behavioral components of reproduction and are therefore optimal models to understand how these components are altered by precocious exposure to EDCs. In particular we discuss effects of bisphenol A and methoxychlor on the dopaminergic and noradrenergic systems in rodents and the impact of these alterations. In addition, the effects of embryonic exposure to diethylstilbestrol, genistein or ethylene,1,1-dichloro-2,2-bis(p-chlorophenyl) is reviewed relative to behavioral impairment and associated alterations in the sexually dimorphic parvocellular vasotocin system in quail. We point out how sexually dimorphic behaviors are particularly useful to verify adverse developmental consequences produced by chemicals with endocrine disrupting properties, by examining either reproductive or non-reproductive behaviors.
Collapse
|