1
|
Cazenave J, Rossi AS, Ale A, Montalto L, Gutierrez MF, Rojas Molina F. Does temperature influence on biomarker responses to copper exposure? The invasive bivalve Limnoperna fortunei (Dunker 1857) as a model. Comp Biochem Physiol C Toxicol Pharmacol 2024; 287:110059. [PMID: 39437870 DOI: 10.1016/j.cbpc.2024.110059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 09/25/2024] [Accepted: 10/17/2024] [Indexed: 10/25/2024]
Abstract
Biomarkers are useful tools for assessing the early warning effects of pollutants. However, their responses can be influenced by confounding factors. In this study, we investigated the influence of temperature on multiple biomarkers in the invasive freshwater bivalve Limnoperna fortunei exposed to copper (Cu). The mussels were exposed to low and high environmental Cu concentrations at two temperatures (15 °C and 25 °C). After 96 h, the oxidative stress, neurotoxicity, and metabolic parameters were assessed. Our results showed that temperature is a key factor influencing biomarker responses in mussels, with higher glutathione S-transferase activity and lower energy reserves at cold temperature. In addition, the effects of Cu were greater at the highest concentration at 15 °C (increased lipid peroxidation and cholinesterase activity). Overall, these findings suggest that cold stress increases the susceptibility of L. fortunei to metal effects and highlight the importance of including temperature in toxicity testing and biomonitoring. In addition, using the invasive bivalve L. fortunei as a model could prove valuable in its role as a sentinel species for other organisms.
Collapse
Affiliation(s)
- Jimena Cazenave
- Instituto Nacional de Limnología (INALI, CONICET-UNL), Ciudad Universitaria, 3000 Santa Fe, Argentina; Facultad de Humanidades y Ciencias (FHUC-UNL), Ciudad Universitaria, 3000 Santa Fe, Argentina
| | - Andrea S Rossi
- Instituto Nacional de Limnología (INALI, CONICET-UNL), Ciudad Universitaria, 3000 Santa Fe, Argentina; Facultad de Humanidades y Ciencias (FHUC-UNL), Ciudad Universitaria, 3000 Santa Fe, Argentina
| | - Analía Ale
- Cátedra de Toxicología, Farmacología y Bioquímica Legal (FBCB-UNL), CONICET, Ciudad Universitaria, 3000 Santa Fe, Argentina
| | - Luciana Montalto
- Instituto Nacional de Limnología (INALI, CONICET-UNL), Ciudad Universitaria, 3000 Santa Fe, Argentina; Facultad de Humanidades y Ciencias (FHUC-UNL), Ciudad Universitaria, 3000 Santa Fe, Argentina
| | - María F Gutierrez
- Instituto Nacional de Limnología (INALI, CONICET-UNL), Ciudad Universitaria, 3000 Santa Fe, Argentina; Escuela Superior de Sanidad "Dr. Ramón Carrillo" (FBCB-UNL), Ciudad Universitaria, 3000 Santa Fe, Argentina
| | - Florencia Rojas Molina
- Instituto Nacional de Limnología (INALI, CONICET-UNL), Ciudad Universitaria, 3000 Santa Fe, Argentina; Facultad de Humanidades y Ciencias (FHUC-UNL), Ciudad Universitaria, 3000 Santa Fe, Argentina.
| |
Collapse
|
2
|
Iummato MM, Sabatini SE, Rocchetta I, Yusseppone MS, Del Carmen Ríos de Molina M, Juárez ÁB. Oxidative stress in the bivalve Diplodon chilensis under direct and dietary glyphosate-based formulation exposure. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:23610-23622. [PMID: 38418793 DOI: 10.1007/s11356-024-32639-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 02/21/2024] [Indexed: 03/02/2024]
Abstract
The aim of this study was to evaluate and compare the effects on biochemical parameters and organosomatic indices in the freshwater bivalve Diplodon chilensis exposed to a glyphosate-based formulation under direct and dietary exposures (4 mg a.p./L). After 1, 7, and 14 days of exposure, reduced glutathione (GSH) and thiobarbituric acid reactive substances (TBARS) levels and the activities of glutathione-S- transferase (GST), superoxide dismutase (SOD), and catalase (CAT) were evaluated in the gills and digestive gland. The hepatosomatic (HSI) and branchiosomatic (BSI) indices were also analyzed. Direct and dietary glyphosate-based formulation exposure altered the redox homeostasis in the gills and digestive gland throughout the experimental time, inducing the detoxification response (GST), the antioxidant defenses (SOD, CAT, GSH), and causing lipid peroxidation. After 14 days of exposure, the HSI and BSI increased significantly (43% and 157%, respectively) only in the bivalves under direct exposure. Greater changes in the biochemical parameters were induced by the dietary exposure than by the direct exposure. Furthermore, the gills presented an earlier response compared to the digestive gland. These results suggested that direct and dietary exposure to a glyphosate-based formulation induced oxidative stress in the gills and digestive glands of D. chilensis. Thus, the presence of glyphosate-based formulations in aquatic ecosystems could represent a risk for filter-feeding organisms like bivalves.
Collapse
Affiliation(s)
- María Mercedes Iummato
- Faculty of Exact and Natural Sciences, Department of Biological Chemistry, University of Buenos Aires, Buenos Aires, Argentina
- Aquatic Ecotoxicology Laboratory, Research Institute in the Environment and Biodiversity (INIBIOMA), CONICET-National University of Comahue, Neuquén, Argentina
| | - Sebastián Eduardo Sabatini
- Institute of Biological Chemistry of the Faculty of Exact and Natural Sciences (IQUIBICEN), CONICET, University of Buenos Aires, Buenos Aires, Argentina
- Faculty of Exact and Natural Sciences, Department of Biodiversity and Experimental Biology, University of Buenos Aires, Buenos Aires, Argentina
| | - Iara Rocchetta
- Faculty of Exact and Natural Sciences, Department of Biological Chemistry, University of Buenos Aires, Buenos Aires, Argentina
- Aquatic Ecotoxicology Laboratory, Research Institute in the Environment and Biodiversity (INIBIOMA), CONICET-National University of Comahue, Neuquén, Argentina
| | - María Soledad Yusseppone
- Faculty of Exact and Natural Sciences, Department of Biological Chemistry, University of Buenos Aires, Buenos Aires, Argentina
- Ecology Laboratory, Institute of Marine and Coastal Research (IIMYC), CONICET-National University of Mar del Plata, Mar del Plata, Argentina
| | - María Del Carmen Ríos de Molina
- Faculty of Exact and Natural Sciences, Department of Biological Chemistry, University of Buenos Aires, Buenos Aires, Argentina
- Institute of Biological Chemistry of the Faculty of Exact and Natural Sciences (IQUIBICEN), CONICET, University of Buenos Aires, Buenos Aires, Argentina
| | - Ángela Beatriz Juárez
- Faculty of Exact and Natural Sciences, Department of Biological Chemistry, University of Buenos Aires, Buenos Aires, Argentina.
- Faculty of Exact and Natural Sciences, Department of Biodiversity and Experimental Biology, University of Buenos Aires, Buenos Aires, Argentina.
- Institute of Biodiversity and Applied and Experimental Biology (IBBEA UBA), CONICET, University of Buenos Aires, Intendente Güiraldes 2160, C1428EGA, Buenos Aires, Argentina.
| |
Collapse
|
3
|
Castro JM, Bianchi VA, Felici E, De Anna JS, Venturino A, Luquet CM. Effects of Dietary Copper and Escherichia coli Challenge on the Immune Response and Gill Oxidative Balance in the Freshwater Mussel Diplodon chilensis. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2023; 42:154-165. [PMID: 36282013 DOI: 10.1002/etc.5507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/13/2022] [Accepted: 10/23/2022] [Indexed: 06/16/2023]
Abstract
Copper is a water and sediment pollutant that can be biomagnified by phytoplankton, and it often co-occurs with fecal bacteria. We addressed the combined effects of copper and Escherichia coli on the immune response and gill oxidative balance of the freshwater mussel Diplodon chilensis. Bivalves were sorted into four groups fed with 1) control algae, 2) bacteria (E. coli), 3) copper-enriched algae (Cu2+ ) algae, and 4) copper-enriched algae followed by bacteria (Cu2+ + E. coli). Cellular and humoral immune and cytotoxic variables were analyzed in hemolymph, and detoxifying/antioxidant enzyme activities (glutathione S-transferase [GST] and catalase [CAT]) and lipid peroxidation (thiobarbituric acid reactive substances [TBARS]) were studied in gill tissue. The total hemocyte number increased after Cu2+ exposure, independently of the E. coli challenge. The proportion of hyalinocytes significantly diminished in the E. coli and Cu2+ groups but not in Cu2+ + E. coli groups; granulocytes significantly increased with E. coli but not with Cu2+ + E. coli treatments. Phagocytic activity was higher in all treatments than in control mussels. Acid phosphatase activity was increased by E. coli and inhibited by Cu2+ and Cu2+ + E. coli. Both E. coli and Cu2+ but not Cu2+ + E. coli augmented alkaline phosphatase activity. The Cu2+ and Cu2+ + E. coli treatments reduced the lysosomal membrane stability and cell viability. Humoral bacteriolytic and phenol oxidase activities were not affected by any treatment. The Cu2+ treatment induced gill CAT and GST activities and increased TBARS levels. The Cu2+ + E. coli treatment reversed this CAT and GST stimulation and increased the Cu2+ effect on TBARS. Dietary Cu2+ affects bivalves' immunological and oxidative status and impairs defensive responses against bacteria. In turn, E. coli potentiates the gill oxidative effects of Cu2+ . Environ Toxicol Chem 2023;42:154-165. © 2022 SETAC.
Collapse
Affiliation(s)
- Juan M Castro
- Laboratorio de Ecotoxicología Acuática, Subsede Instituto de Investigaciones en Biodiversidad y Medioambiente-Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad Nacional del Comahue, Junín de los Andes, Neuquén, Argentina
| | - Virginia A Bianchi
- Laboratorio de Ecotoxicología Acuática, Subsede Instituto de Investigaciones en Biodiversidad y Medioambiente-Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad Nacional del Comahue, Junín de los Andes, Neuquén, Argentina
| | - Emiliano Felici
- Instituto de Química de San Luis, Departamento de Farmacia, Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, San Luis, Argentina
| | - Julieta S De Anna
- Laboratorio de Ecotoxicología Acuática, Subsede Instituto de Investigaciones en Biodiversidad y Medioambiente-Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad Nacional del Comahue, Junín de los Andes, Neuquén, Argentina
| | - Andrés Venturino
- Centro de Investigaciones en Toxicología Ambiental y Agrobiotecnología del Comahue (CITAAC), Consejo Nacional de Investigaciones Científicas y Técnica-Universidad Nacional del Comahue, Neuquén, Argentina
| | - Carlos M Luquet
- Laboratorio de Ecotoxicología Acuática, Subsede Instituto de Investigaciones en Biodiversidad y Medioambiente-Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad Nacional del Comahue, Junín de los Andes, Neuquén, Argentina
| |
Collapse
|
4
|
Coppola F, Jiang W, Soares AMVM, Marques PAAP, Polese G, Pereira ME, Jiang Z, Freitas R. How efficient is graphene-based nanocomposite to adsorb Hg from seawater. A laboratory assay to assess the toxicological impacts induced by remediated water towards marine bivalves. CHEMOSPHERE 2021; 277:130160. [PMID: 33794434 DOI: 10.1016/j.chemosphere.2021.130160] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 02/15/2021] [Accepted: 02/27/2021] [Indexed: 06/12/2023]
Abstract
Advanced investigations on the use of graphene based nanomaterials have highlighted the capacity of these materials for wastewater treatment. Research on this topic revealed the efficiency of the nanocomposite synthetized by graphene oxide functionalized with polyethyleneimine (GO-PEI) to adsorb mercury (Hg) from contaminated seawater. However, information on the environmental risks associated with these approaches are still lacking. The focus of this study was to evaluate the effects of Hg in contaminated seawater and seawater remediated by GO-PEI, using the species Ruditapes philippinarum, maintained at two different warming scenarios: control (17 °C) and increased (22 °C) temperatures. The results obtained showed that organisms exposed to non-contaminated and remediated seawaters at control temperature presented similar biological patterns, with no considerable differences expressed in terms of biochemical and histopathological alterations. Moreover, the present findings revealed increased toxicological effects in clams under remediated seawater at 22 °C in comparison to those subjected to the equivalent treatment at 17 °C. These results confirm the capability of GO-PEI to adsorb Hg from water with no noticeable toxic effects, although temperature could alter the responses of mussels to remediated seawater. These materials seem to be a promise eco-friendly approach to remediate wastewater, with low toxicity evidenced by remediated seawater and high regenerative capacity of this nanomaterial, keeping its high removal performance after successive sorption-desorption cycles.
Collapse
Affiliation(s)
- Francesca Coppola
- CESAM & Department of Biology, University of Aveiro, 3810-193, Portugal
| | - Weiwei Jiang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, China
| | | | - Paula A A P Marques
- TEMA & Department of Mechanical Engineering, University of Aveiro, 3810-193, Portugal
| | - Gianluca Polese
- Department of Biology, University of Naples Federico II, 80126, Italy
| | | | - Zengjie Jiang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, China.
| | - Rosa Freitas
- CESAM & Department of Biology, University of Aveiro, 3810-193, Portugal.
| |
Collapse
|
5
|
Gunderson MP, Boyd HM, Kelly CI, Lete IR, McLaughlin QR. Modulation of endogenous antioxidants by zinc and copper in signal crayfish (Pacifastacus leniusculus). CHEMOSPHERE 2021; 275:129982. [PMID: 33662728 PMCID: PMC8119340 DOI: 10.1016/j.chemosphere.2021.129982] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 02/03/2021] [Accepted: 02/08/2021] [Indexed: 05/04/2023]
Abstract
Metal pollution is a long-standing concern and bioindicators are commonly used in ecotoxicological studies to monitor impacted wildlife populations for evidence of sublethal effects. Significant variation in the response of common biomarkers to metals is reported across taxa, thus necessitating careful characterization in model organisms. In this study, we describe the regulation of glutathione S-transferase (GST), glutathione (GSH), and metallothionein (MT) by zinc chloride (0.6, 0.9, 1.2, 2.4, 4.8, 9.6 μg g-1) and copper chloride (0.6, 0.9, 1.2 μg g-1) in signal crayfish (Pacifastacus leniusculus). Zinc chloride did not alter GST activity relative to controls in the hepatopancreas. Crayfish exposed to copper chloride exhibited decreased GST activity at the lowest dose tested (0.6 μg g-1) with no change observed at the higher doses. GSH did not change in response to either metal when sexes were grouped together. MT concentrations increased in response to zinc (2.4, 4.6, and 9.6 μg g-1 doses) and copper (0.6, 0.9, and 1.2 μg g-1 doses) in gill tissue. In tail tissue, MT increased at the 2.4 and 4.8 μg g-1 zinc chloride doses and all the concentrations of copper tested. Sex-specific differences in endogenous antioxidant expression were also analyzed with no clear patterns emerging. We concluded that these endpoints are sensitive to zinc and copper in signal crayfish, although careful interpretation is needed when applying them in field studies given the variation in responses, non-monotonic dose responses, and differences in biotic and abiotic factors that inevitably exist in different aquatic ecosystems.
Collapse
Affiliation(s)
- Mark P Gunderson
- The College of Idaho, Department of Biology, 2112 Cleveland Blvd., Caldwell, ID, 83605, USA.
| | - Hailey M Boyd
- The College of Idaho, Department of Biology, 2112 Cleveland Blvd., Caldwell, ID, 83605, USA
| | - Courtney I Kelly
- The College of Idaho, Department of Biology, 2112 Cleveland Blvd., Caldwell, ID, 83605, USA
| | - Isabela R Lete
- The College of Idaho, Department of Biology, 2112 Cleveland Blvd., Caldwell, ID, 83605, USA
| | - Quinlan R McLaughlin
- The College of Idaho, Department of Biology, 2112 Cleveland Blvd., Caldwell, ID, 83605, USA
| |
Collapse
|
6
|
Davico CE, Loteste A, Parma MJ, Poletta G, Simoniello MF. Stress oxidative and genotoxicity in Prochilodus lineatus (Valenciennes, 1836) exposed to commercial formulation of insecticide cypermethrin. Drug Chem Toxicol 2018; 43:79-84. [PMID: 30192683 DOI: 10.1080/01480545.2018.1497643] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The use of toxic pesticides has become a world problem because they can contaminate streams and rivers, producing an adverse impact on non-target aquatic biota, including fishes. Cypermethrin is one of the most important insecticides to control ectoparasites in wide-scale. The aim of this study was to evaluate the effect of commercial formulations of cypermethrin, SHERPA O (0.0, 0.075, 0.15, and 0.3 µg/L of cypermethrin) in fish Prochilodus lineatus for 96 h in semi-static condition, using biomarkers of genotoxicity: micronucleus frequency (MNF) in erythrocytes and biomarkers of oxidative damage: lipid peroxidation (TBARS) and antioxidant defenses, catalase (CAT) and glutathione (GSH) in liver tissue. Our results showed a significant decrease (p < 0.05) of CAT at pesticide concentrations of 0.150 and 0.300 μg/L, but no significant difference was observed in TBARS or GSH in any exposed group (p > 0.05) in comparison to the control. A significant increase was observed in the MNF in the group exposed to 0.3 μg/L of cypermethrin compared to negative control (p < 0.05). Finally, P. lineatus proved to be a sensitive species to the commercial formulations of cypermethrin and that CAT and MNF are effective indicators of these toxic effects.
Collapse
Affiliation(s)
- C E Davico
- Cátedra de Toxicología, Farmacología y Bioquímica Legal, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Ciudad Universitaria, Santa Fe, Argentina
| | - A Loteste
- Cátedra de Toxicología, Farmacología y Bioquímica Legal, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Ciudad Universitaria, Santa Fe, Argentina.,Instituto Nacional de Limnología, CONICET-UNL, Ciudad Universitaria, Santa Fe, Argentina
| | - M J Parma
- Instituto Nacional de Limnología, CONICET-UNL, Ciudad Universitaria, Santa Fe, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), CABA, Argentina
| | - G Poletta
- Cátedra de Toxicología, Farmacología y Bioquímica Legal, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Ciudad Universitaria, Santa Fe, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), CABA, Argentina
| | - M F Simoniello
- Cátedra de Toxicología, Farmacología y Bioquímica Legal, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Ciudad Universitaria, Santa Fe, Argentina
| |
Collapse
|
7
|
Prego-Faraldo MV, Vieira LR, Eirin-Lopez JM, Méndez J, Guilhermino L. Transcriptional and biochemical analysis of antioxidant enzymes in the mussel Mytilus galloprovincialis during experimental exposures to the toxic dinoflagellate Prorocentrum lima. MARINE ENVIRONMENTAL RESEARCH 2017; 129:304-315. [PMID: 28673426 DOI: 10.1016/j.marenvres.2017.06.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Revised: 06/09/2017] [Accepted: 06/14/2017] [Indexed: 06/07/2023]
Abstract
The genotoxic and cytotoxic effects of Diarrhetic Shellfish Poisoning (DSP) toxins have been widely investigated in bivalve molluscs, representing the main vectors of these compounds in the Atlantic coast of Europe. DSP toxins are produced by Harmful Algal Blooms (HABs) of Dinophysis and Prorocentrum dinoflagellates, being subsequently accumulated by marine organisms and biomagnified throughout trophic webs. Yet, bivalves display increased resistance to the harmful effects of these toxins during HAB episodes. While previous reports have suggested that such resilience might be the result of an increased activity in the bivalve antioxidant system, very little is still known about the specific mechanism underlying the protective effect observed in these organisms. The present work aims to fill this gap by studying transcriptional expression levels and biochemical activities of antioxidant enzymes in different tissues the mussel Mytilus galloprovincialis during experimental exposures to DSP toxins produced by the dinoflagellate Prorocentrum lima. Results are consistent with the presence of a compensatory mechanism involving a down-regulation in the expression of specific genes encoding antioxidant enzymes [i.e., SuperOxide Dismutase (SOD) and CATalase (CAT)] which is counterbalanced by the up-regulation of other antioxidant genes such as Glutathione S-Transferase pi-1 (GST-pi) and Selenium-dependent Glutathione PeroXidase (Se-GPx), respectively. Enzymatic activity analyses mirror gene expression results, revealing high antioxidant activity levels (consistent with a protective role for the antioxidant system) along with reduced lipid peroxidation (increasing the defense against oxidative stress).
Collapse
Affiliation(s)
- M V Prego-Faraldo
- CIIMAR/CIMAR - Interdisciplinary Centre of Marine and Environmental Research, Research Group of Ecotoxicology, Stress Ecology and Environmental Health, University of Porto, Porto, Portugal; XENOMAR Group, Department of Cellular and Molecular Biology, University of A Coruña, A Coruña, Spain; Environmental Epigenetics Group, Department of Biological Sciences, Florida International University, Miami, FL, USA.
| | - L R Vieira
- ICBAS - Institute of Biomedical Sciences of Abel Salazar, Department of Populations Study, Laboratory of Ecotoxicology, University of Porto, Porto, Portugal; CIIMAR/CIMAR - Interdisciplinary Centre of Marine and Environmental Research, Research Group of Ecotoxicology, Stress Ecology and Environmental Health, University of Porto, Porto, Portugal
| | - J M Eirin-Lopez
- Environmental Epigenetics Group, Department of Biological Sciences, Florida International University, Miami, FL, USA
| | - J Méndez
- XENOMAR Group, Department of Cellular and Molecular Biology, University of A Coruña, A Coruña, Spain
| | - L Guilhermino
- ICBAS - Institute of Biomedical Sciences of Abel Salazar, Department of Populations Study, Laboratory of Ecotoxicology, University of Porto, Porto, Portugal; CIIMAR/CIMAR - Interdisciplinary Centre of Marine and Environmental Research, Research Group of Ecotoxicology, Stress Ecology and Environmental Health, University of Porto, Porto, Portugal
| |
Collapse
|
8
|
Effect of Nano-Al₂O₃ on the Toxicity and Oxidative Stress of Copper towards Scenedesmus obliquus. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2016; 13:ijerph13060575. [PMID: 27294942 PMCID: PMC4924032 DOI: 10.3390/ijerph13060575] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 05/25/2016] [Accepted: 05/26/2016] [Indexed: 01/31/2023]
Abstract
Nano-Al2O3 has been widely used in various industries; unfortunately, it can be released into the aquatic environment. Although nano-Al2O3 is believed to be of low toxicity, it can interact with other pollutants in water, such as heavy metals. However, the interactions between nano-Al2O3 and heavy metals as well as the effect of nano-Al2O3 on the toxicity of the metals have been rarely investigated. The current study investigated copper toxicity in the presence of nano-Al2O3 towards Scenedesmus obliquus. Superoxide dismutase activity and concentration of glutathione and malondialdehyde in cells were determined in order to quantify oxidative stress in this study. Results showed that the presence of nano-Al2O3 reduced the toxicity of Cu towards S. obliquus. The existence of nano-Al2O3 decreased the growth inhibition of S. obliquus. The accumulation of copper and the level of oxidative stress in algae were reduced in the presence of nano-Al2O3. Furthermore, lower copper accumulation was the main factor that mitigated copper toxicity with the addition of nano-Al2O3. The decreased copper uptake could be attributed to the adsorption of copper onto nanoparticles and the subsequent decrease of available copper in water.
Collapse
|
9
|
Vale G, Franco C, Diniz MS, dos Santos MMC, Domingos RF. Bioavailability of cadmium and biochemical responses on the freshwater bivalve Corbicula fluminea--the role of TiO₂ nanoparticles. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2014; 109:161-168. [PMID: 25194564 DOI: 10.1016/j.ecoenv.2014.07.035] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 07/25/2014] [Accepted: 07/27/2014] [Indexed: 06/03/2023]
Abstract
The increasing and widespread applications of TiO2 engineered nanoparticles (nTiO2) led to the release of these materials into aquatic environments and consequently a change on the assessment of the environmental risk of trace metals. In this work, the role of two commercial nTiO2 with distinct crystalline phases and sizes (nTiO2-P25: 80% anatase+20% rutile, d=20nm; nTiO2-NA: 100% anatase, d=5 nm; 0.1 and 1.0 mg L(-1)) on Cd (112 μg L(-1)) speciation, biouptake and toxicity for the freshwater bivalve Corbicula fluminea was evaluated. The electroanalytical technique 'absence of gradients and Nernstian equilibrium stripping (AGNES)' was used to quantify the free Cd concentrations in the exposure medium in presence of both particles. Despite ca. 30-40% decrease of free Cd in the medium in presence of nTiO2, Cd uptake by C. fluminea was similar in the absence and presence of either of the particles. Superoxide dismutase and glutathione-S-transferase activities remained unchanged for Cd in absence and presence of nTiO2, whereas a significant increase of the catalase activity was obtained at the third day for Cd in presence of both nTiO2. Despite lipid peroxidation data shows that the presence of both nTiO2 seems to exert cells damage, a more quantitative description is not possible with the obtained data. The lack of clear-cut responses by the studied biomarkers, even when only in presence of Cd, do not allow insights into the effect of the presence of nTiO2 on the Cd toxicity to the bivalves. Notwithstanding, morphological changes in the digestive gland were clearly obtained in the presence of Cd, nTiO2 and Cd+nTiO2 indicating an inflammatory response.
Collapse
Affiliation(s)
- Gonçalo Vale
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal.
| | - Cristiana Franco
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal.
| | - Mário S Diniz
- REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologias da Universidade Nova de Lisboa, 2829-516 Monte da Caparica, Portugal.
| | - Margarida M C dos Santos
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal.
| | - Rute F Domingos
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal.
| |
Collapse
|
10
|
Bianchi VA, Rocchetta I, Luquet CM. Biomarker responses to sewage pollution in freshwater mussels (Diplodon chilensis) transplanted to a Patagonian river. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2014; 49:1276-1285. [PMID: 24967561 DOI: 10.1080/10934529.2014.910065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Field and laboratory experiments were combined to evaluate biomarker responses of Diplodon chilensis to sewage pollution. Mussels from an unpolluted area in Lacar lake (S0) were caged at a reference site (S1) and at two sites with increasing sewage pollution (S2, S3) in Pocahullo river (all in Argentina). After 1 month, gill (g) glutathione S-transferase (GST) and catalase (CAT) activities, and lipid peroxidation (TBARS) were found to be significantly elevated in S3, gGST being positively correlated with fecal bacteria (FC) concentration. Digestive gland (dg) enzyme activities were depressed and dgTBARS were increased in all transplanted mussels. After 3 mo, most variables returned to control levels in S1 mussels except for dgCAT and dgTBARS. After seven months, GST and CAT activities of S0 and S3 mussels were evaluated in the laboratory, before and after acute exposure (8 h) to high fecal bacteria concentration ([FC] in S3x 2). gGST increased in both groups, while dgGST responded only in S3 mussels. gCAT and dgCAT activities were similarly increased by acute exposure in both groups. Our results suggest that gGST and gCAT are suitable biomarkers for high FC pollution regardless of previous exposure history. In addition, we show that dgCAT is sensitive to the acute increase in FC load, both in naive and long-term exposed individuals, while dgGST becomes responsive after long-term acclimatization.
Collapse
Affiliation(s)
- Virginia A Bianchi
- a Laboratorio de Ecotoxicología Acuática, INIBIOMA (CONICET-UNCo) - CEAN , Neuquén , Argentina
| | | | | |
Collapse
|