1
|
Cheng H, Peng Z, Zhao C, Jin H, Bao Y, Liu M. The transcriptomic and biochemical responses of blood clams (Tegillarca granosa) to prolonged intermittent hypoxia. Comp Biochem Physiol B Biochem Mol Biol 2024; 270:110923. [PMID: 37952637 DOI: 10.1016/j.cbpb.2023.110923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/07/2023] [Accepted: 11/09/2023] [Indexed: 11/14/2023]
Abstract
The blood clam (Tegillarca granosa), a marine bivalve of ecological and economic significance, often encounters intermittent hypoxia in mudflats and aquatic environments. To study the response of blood clam foot to prolonged intermittent hypoxia, the clams were exposed to intermittent hypoxia conditions (0.5 mg/L dissolved oxygen, with a 12-h interval) for 31 days. Initially, transcriptomic analysis was performed, uncovering a total of 698 differentially expressed genes (DEGs), with 236 upregulated and 462 downregulated. These genes show enrichments in signaling pathways related to glucose metabolism, sugar synthesis and responses to oxidative stress. Furthermore, the activity of the enzyme glutathione peroxidase (GPx) and the levels of gpx1 mRNA showed gradual increases, reaching their peak on the 13th day of intermittent hypoxia exposure. This observation suggests an indirect protective role of GPx against oxidative stress. The results of this study make a significantly contribute to our broader comprehensive of the physiological, biochemical responses, and molecular reactions governing the organization of foot muscle tissue in marine bivalves exposed to prolonged intermittent hypoxic conditions.
Collapse
Affiliation(s)
- Haoxiang Cheng
- Key Laboratory of Aquatic Germplasm Resource of Zhejiang, College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, Zhejiang 315100, China
| | - Zhilan Peng
- Key Laboratory of Aquatic Germplasm Resource of Zhejiang, College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, Zhejiang 315100, China; Ninghai Institute of Mariculture Breeding and Seed Industry, Zhejiang Wanli University, Ninghai 315604, China
| | - Chenxi Zhao
- Ninghai Institute of Mariculture Breeding and Seed Industry, Zhejiang Wanli University, Ninghai 315604, China
| | - Hongyu Jin
- Key Laboratory of Aquatic Germplasm Resource of Zhejiang, College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, Zhejiang 315100, China
| | - Yongbo Bao
- Key Laboratory of Aquatic Germplasm Resource of Zhejiang, College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, Zhejiang 315100, China; Ninghai Institute of Mariculture Breeding and Seed Industry, Zhejiang Wanli University, Ninghai 315604, China.
| | - Minhai Liu
- Key Laboratory of Aquatic Germplasm Resource of Zhejiang, College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, Zhejiang 315100, China; Ninghai Institute of Mariculture Breeding and Seed Industry, Zhejiang Wanli University, Ninghai 315604, China.
| |
Collapse
|
2
|
Trevisan R, Mello DF. Redox control of antioxidants, metabolism, immunity, and development at the core of stress adaptation of the oyster Crassostrea gigas to the dynamic intertidal environment. Free Radic Biol Med 2024; 210:85-106. [PMID: 37952585 DOI: 10.1016/j.freeradbiomed.2023.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 10/30/2023] [Accepted: 11/07/2023] [Indexed: 11/14/2023]
Abstract
This review uses the marine bivalve Crassostrea gigas to highlight redox reactions and control systems in species living in dynamic intertidal environments. Intertidal species face daily and seasonal environmental variability, including temperature, oxygen, salinity, and nutritional changes. Increasing anthropogenic pressure can bring pollutants and pathogens as additional stressors. Surprisingly, C. gigas demonstrates impressive adaptability to most of these challenges. We explore how ROS production, antioxidant protection, redox signaling, and metabolic adjustments can shed light on how redox biology supports oyster survival in harsh conditions. The review provides (i) a brief summary of shared redox sensing processes in metazoan; (ii) an overview of unique characteristics of the C. gigas intertidal habitat and the suitability of this species as a model organism; (iii) insights into the redox biology of C. gigas, including ROS sources, signaling pathways, ROS-scavenging systems, and thiol-containing proteins; and examples of (iv) hot topics that are underdeveloped in bivalve research linking redox biology with immunometabolism, physioxia, and development. Given its plasticity to environmental changes, C. gigas is a valuable model for studying the role of redox biology in the adaptation to harsh habitats, potentially providing novel insights for basic and applied studies in marine and comparative biochemistry and physiology.
Collapse
Affiliation(s)
- Rafael Trevisan
- Univ Brest, Ifremer, CNRS, IRD, UMR 6539, LEMAR, Plouzané, 29280, France
| | - Danielle F Mello
- Univ Brest, Ifremer, CNRS, IRD, UMR 6539, LEMAR, Plouzané, 29280, France.
| |
Collapse
|
3
|
Ogunsuyi OB, Aro OP, Oboh G, Olagoke OC. Curcumin improves the ability of donepezil to ameliorate memory impairment in Drosophila melanogaster: involvement of cholinergic and cnc/Nrf2-redox systems. Drug Chem Toxicol 2023; 46:1035-1043. [PMID: 36069210 DOI: 10.1080/01480545.2022.2119995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 06/03/2022] [Accepted: 06/04/2022] [Indexed: 11/03/2022]
Abstract
One of the well-established models for examining neurodegeneration and neurotoxicity is the Drosophila melanogaster model of aluminum-induced toxicity. Anti-cholinesterase drugs have been combined with other neuroprotective agents to improve Alzheimer's disease management, but there is not much information on the combination of anti-cholinesterases with dietary polyphenols to combat memory impairment. Here, we assess how curcumin influences some of the critical therapeutic effects of donepezil (a cholinesterase inhibitor) in AlCl3-treated Drosophila melanogaster. Harwich strain flies were exposed to 40 mM AlCl3 - alone or in combination with curcumin (1 mg/g) and/or donepezil (12.5 µg/g and 25 µg/g) - for seven days. The flies' behavioral evaluations (memory index and locomotor performance) were analyzed. Thereafter, the flies were processed into homogenates for the quantification of acetylcholinesterase (AChE), catalase, total thiol, and rate of lipid peroxidation, as well as the mRNA levels of acetylcholinesterase (ACE1) and cnc/NRF2. Results showed that AlCl3-treated flies presented impaired memory and increased activities of acetylcholinesterase and lipid peroxidation, while there were decrease in total thiol levels and catalase activity when compared to the control. Also, the expression of ACE1 was significantly increased while that of cnc/NRF2 was significantly decreased. However, combinations of curcumin and donepezil, especially at lower dose of donepezil, significantly improved the memory index and biochemical parameters compared to donepezil alone. Thus, curcumin plus donepezil offers unique therapeutic effects during memory impairment in the D. melanogaster model of neurotoxicity.
Collapse
Affiliation(s)
- Opeyemi Babatunde Ogunsuyi
- Department of Biomedical Technology, Federal University of Technology, Akure, Nigeria
- Drosophila Research Lab, Functional Foods and Nutraceuticals Unit, Biochemistry Department, Federal University of Technology, Akure, Nigeria
| | - Olayemi Philemon Aro
- Drosophila Research Lab, Functional Foods and Nutraceuticals Unit, Biochemistry Department, Federal University of Technology, Akure, Nigeria
| | - Ganiyu Oboh
- Drosophila Research Lab, Functional Foods and Nutraceuticals Unit, Biochemistry Department, Federal University of Technology, Akure, Nigeria
| | - Olawande Chinedu Olagoke
- Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
4
|
Toxic Responses of Different Shellfish Species after Exposure to Prorocentrum lima, a DSP Toxins Producing Dinoflagellate. Toxins (Basel) 2022; 14:toxins14070461. [PMID: 35878199 PMCID: PMC9317551 DOI: 10.3390/toxins14070461] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 06/30/2022] [Accepted: 07/01/2022] [Indexed: 11/16/2022] Open
Abstract
Prorocentrum lima is a global benthic dinoflagellate that produces diarrhetic shellfish poisoning (DSP) toxins, which can be ingested by filter-feeding bivalves, and eventually pose a great threat to human health through food chain. After being exposed to P. lima, different bivalves may accumulate various levels of DSP toxins and display different toxic responses. However, the underlying mechanism remains unclear. Here, we found that the content of okadaic acid-equivalents (OA-eq) varied in the digestive glands of the three bivalves including Crassostrea gigas, Mytilus coruscus and Tegillarca granosa after P. lima exposure. The degree of esterification of OA-eq in the three bivalves were opposite to the accumulation of OA-eq. The digestive gland tissues of the three bivalve species were damaged to different degrees. The transcriptional induction of Nrf2 targeted genes such as ABCB1 and GPx indicates the functionality of Nrf2 pathway against DSP toxins in bivalves. The oyster could protect against DSP toxins mainly through ABC transporters and esterification, while the mussel and clam reduce the damage induced by DSP toxins mainly by regulating the expression of antioxidant genes. Our findings may provide some explanations for the difference in toxic response to DSP toxins in different shellfish.
Collapse
|
5
|
Wang Y, Wang C, Xie M, Tang T, Wang Z, Nie X. Atorvastatin causes oxidative stress and alteration of lipid metabolism in estuarine goby Mugilogobius abei. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 289:117879. [PMID: 34391042 DOI: 10.1016/j.envpol.2021.117879] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 07/15/2021] [Accepted: 07/29/2021] [Indexed: 06/13/2023]
Abstract
The potential effects of the environmental residues of Atorvastatin (ATV) as a widely used antilipemic agent on aquatic organisms deserve more investigations because of its high detection frequency in environment. The responses of Nrf2/Keap1 signaling pathway (including the transcriptional expression of Nrf2, Keap1, GCLC, GPx, GST, SOD, CAT, Trx2, TrxR, HMG-CoAR and PGC-1α) in Mugilogobius abei were investigated under acute and sub-chronic exposure of ATV in the simulated laboratory conditions. The changes of related enzymatic activity (GST, GPx, SOD, CAT and TrxR) and the content of GSH and MDA combining with the observation of histology sections of liver in M. abei were also addressed. The results show Nrf2 and its downstream antioxidant genes were induced to different degrees under ATV exposure. The activities of antioxidant enzymes were inhibited at 24 h and 72 h but induced/recovered at 168 h. Correspondingly, negatively correlated to GSH, MDA increased first but reduced then. Notably, with the increase of exposure concentration/time, the volume of lipid cells in liver decreased, suggesting more lipid decomposition. Therefore, lipid metabolism was suppressed (down-regulation of PGC-1α) and cholesterol biosynthesis was induced (up-regulation of HMG-COAR) at 168 h. In short, ATV brings oxidative stress to M. abei in the initial phase. However, with the increase of exposure time, ATV activates Nrf2/Keap1 signaling pathway and improves the antioxidant capacity of M. abei to reverse this adverse effect. ATV also affects lipid metabolism of M. abei by reducing cholesterol content and accelerating lipid decomposition.
Collapse
Affiliation(s)
- Yimeng Wang
- Department of Ecology, Jinan University, Guangzhou, 510632, China
| | - Chao Wang
- Department of Ecology, Jinan University, Guangzhou, 510632, China
| | - Meinan Xie
- Department of Ecology, Jinan University, Guangzhou, 510632, China
| | - Tianli Tang
- Department of Ecology, Jinan University, Guangzhou, 510632, China
| | - Zhaohui Wang
- Department of Ecology, Jinan University, Guangzhou, 510632, China.
| | - Xiangping Nie
- Department of Ecology, Jinan University, Guangzhou, 510632, China; Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
6
|
Yuan KK, Duan GF, Liu QY, Li HY, Yang WD. Inhibition of Diarrheal Shellfish Toxins Accumulation in the Mussel Perna viridis by Curcumin and Underlying Mechanisms. Toxins (Basel) 2021; 13:toxins13080578. [PMID: 34437449 PMCID: PMC8402306 DOI: 10.3390/toxins13080578] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 08/14/2021] [Accepted: 08/17/2021] [Indexed: 01/04/2023] Open
Abstract
Diarrheal shellfish toxins (DSTs) are among the most widely distributed phytotoxins, and are associated with diarrheal shellfish poisoning (DSP) events in human beings all over the world. Therefore, it is urgent and necessary to identify an effective method for toxin removal in bivalves. In this paper, we found that curcumin (CUR), a phytopolylphenol pigment, can inhibit the accumulation of DSTs (okadaic acid-eq) in the digestive gland of Perna viridis after Prorocentrum lima exposure. qPCR results demonstrated that CUR inhibited the induction of DSTs on the aryl hydrocarbon receptor (AhR), hormone receptor 96 (HR96) and CYP3A4 mRNA, indicating that the CUR-induced reduction in DSTs may be correlated with the inhibition of transcriptional induction of AhR, HR96 and CYP3A4. The histological examination showed that P. lima cells caused severe damage to the digestive gland of P. viridis, and the addition of curcumin effectively alleviated the damage induced by P. lima. In conclusion, our findings provide a potential method for the effective removal of toxins from DST-contaminated shellfish.
Collapse
|
7
|
Chromolaena odorata flavonoids attenuate experimental nephropathy: Involvement of pro-inflammatory genes downregulation. Toxicol Rep 2020; 7:1421-1427. [PMID: 33102146 PMCID: PMC7578532 DOI: 10.1016/j.toxrep.2020.10.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 09/30/2020] [Accepted: 10/05/2020] [Indexed: 12/28/2022] Open
Abstract
Nephropathy is a serious complication comorbid with a number of life-threatening diseases such as diabetes. Flavonoids are well known cytoprotective phytochemicals. Here, nephropathy associated with streptozotocin (STZ) treatment in experimental animals was challenged by flavonoids (CoF) isolated from Chromolaena odorata. Experimental animals were divided into control (n = 5), STZ (40 mg/kg b.w. i.p. n = 5) and STZ-CoF (CoF = 30 mg/kg b.w. oral, 60 days, n = 7) groups. Blood urea nitrogen (BUN) and serum creatinine (SC) levels were quantified using ELISA. Kidney function, inflammatory marker, and antioxidant gene expression levels were also evaluated using reverse-transcription and polymerase chain reaction protocols. Histological assessment was also performed using Haematoxylin and Eosin (H&E) staining protocols. CoF improved kidney function by restoring BUN/SC levels to pre-STZ treatment states. KIM-1, TNF-α, and MCP-1 but not TNF-R and IL-10 genes were significantly downregulated in STZ-CoF treated group in comparison with STZ-treated group (p < 0.05). Anti-oxidant genes (GPx-1, CAT) significantly (p < 0.05 vs. control) upregulated in STZ-treatment did not respond to CoF treatment. STZ treatment associated Bowman's space enlargement, thickened basement membrane, and glomerulosclerosis were completely reversed in STZ-CoF group. Finally, CoF has demonstrable anti-nephropathic via downregulation of proinflammatory genes and may represent new management option in clinical nephropathy.
Collapse
Key Words
- AKI, Acute kidney injury
- ARE, Antioxidant response element
- Anti-oxidant
- CAT, Catalase
- CRD, Committee of Centre for Research and Development
- Chromolaena odorata flavonoids (CoF)
- CoF, Chromolaena odorata is rich in flavonoids
- FLVs, Flavonoids
- GPx-1, Glutathioneperoxidase
- KIM-1, KidneyInjury Molecule-1
- MCP-1, Monocyte chemoattractant protein 1
- MKK-3, mitogen-activated protein kinase kinase 3
- Nephropathy
- Nrf2, Nuclear factor-erythroid 2-related factor 2
- OCC, Occludin
- Pro-inflammation
- QoL, Quality of life
- ROS, Reactive oxygen species
- SOD, Superoxide dismutase
- STZ, Streptozotocin
- TNF-α-R, Tumour necrosis alpha receptor
- Tight junction
Collapse
|
8
|
Qi P, Tang Z. The Nrf2 molecule trigger antioxidant defense against acute benzo(a)pyrene exposure in the thick shell mussel Mytilus coruscus. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2020; 226:105554. [PMID: 32653664 DOI: 10.1016/j.aquatox.2020.105554] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 06/20/2020] [Accepted: 06/22/2020] [Indexed: 06/11/2023]
Abstract
The NF-E2-related factor 2 (Nrf2), an ubiquitous, evolutionarily conserved transcription factor, acts as a major sensor of oxidative stress in cells. In the present study, a Nrf2 homolog was newly identified in the thick shell mussel Mytilus coruscus. Accordingly, its functional role in antioxidant defense in response to acute benzo(a)pyrene (Bap) exposure was assessed. The newly identified McNrf2 affiliated to traditional Nrf2 family through Blast, multiple alignment and phylogenetic analysis. After acute exposure to Bap, antioxidants including superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) and glutathine reductase (GR) were significantly induced in gills and digestive glands at both mRNA and enzymatic levels, and the expression of McNrf2 mRNA was also up-regulated. The analysis of correlating the expression of McNrf2 and the mRNA levels of these antioxidant genes showed positive ties, indicating that Nrf2 was needed for protracted induction of such genes. Further, the recombinant McNrf2 was produced through pET-32a prokaryotic system. After 50 μg/L Bap exposure, ROS generation and LPO level in gills of Nrf2 over-expressed mussels significantly decreased compared to Nrf2 wild-type mussels, as well as reduced ROS production in digestive glands. Collectively, these results show that Nrf2 pathway can provide protection from oxidative stress triggered by Bap in the thick shell mussel.
Collapse
Affiliation(s)
- Pengzhi Qi
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, 316004, China; School of Life Science, Nantong Universtiy, Nantong, 226019, China.
| | - Zurong Tang
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, 316004, China; Reference Laboratory for the Test of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
9
|
Wu JL, Liu WX, Wen CG, Qian GM, Hu BQ, Jian SQ, Yang G, Dong J. Effect of microcystin on the expression of Nrf2 and its downstream antioxidant genes from Cristaria plicata. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2020; 225:105526. [PMID: 32569999 DOI: 10.1016/j.aquatox.2020.105526] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 05/27/2020] [Accepted: 05/29/2020] [Indexed: 06/11/2023]
Abstract
Microcystin (MC) is a cyclic heptapeptide toxin. Nuclear factor erythocyte 2-related factor 2 (Nrf2) can enhance cellular survival by mediating phase 2 detoxification and antioxidant genes. In this study, CpNrf2 cDNA sequences were cloned from freshwater bivalve Cristaria plicata. The full-length CpNrf2 cDNA sequence was 4259 bp, and its homology was the highest with Mizuhopecten yessoensis, reaching 46%. CpNrf2 transcription levels were examined in all tested tissues, and the highest level was in hepatopancreas from C. plicata. The recombinant protein pET32-CpNrf2 was purified with the content of 1.375 mg/mL. The expression levels of CpNrf2 mRNA were raised in hepatopancreas after MC stimulation. After CpNrf2 knockdown, CpNrf2 mRNA levels were significantly down-regulated after 24 h. Compared with control group, the expression levels of ARE-driven enzymes (CpMnSOD, CpCuZnSOD, CpTRX, CpPrx, CpSe-GPx and Cpsigma-GST) were significantly increased, and those enzyme activities were also significantly up-regulated in MC-stimulated group. However, in CpNrf2-iRNA group, they were significantly down-regulated. The results revealed that Nrf2/ARE pathway is very crucial to protect molluscs from MC.
Collapse
Affiliation(s)
- Jie-Lian Wu
- College of Life Science, Education Ministry Key Laboratory of Poyang Lake Environment and Resource Utilization, Nanchang University, Nanchang 330031, China; Science & Technology, Normal University of Jiangxi, Nanchang 330013, China
| | - Wen-Xiu Liu
- College of Life Science, Education Ministry Key Laboratory of Poyang Lake Environment and Resource Utilization, Nanchang University, Nanchang 330031, China
| | - Chun-Gen Wen
- College of Life Science, Education Ministry Key Laboratory of Poyang Lake Environment and Resource Utilization, Nanchang University, Nanchang 330031, China
| | - Guo-Ming Qian
- Rice Seed Stock of Dengjiabu Jiangxi, Yintan 335200, China
| | - Bao-Qing Hu
- College of Life Science, Education Ministry Key Laboratory of Poyang Lake Environment and Resource Utilization, Nanchang University, Nanchang 330031, China
| | - Shao-Qing Jian
- College of Life Science, Education Ministry Key Laboratory of Poyang Lake Environment and Resource Utilization, Nanchang University, Nanchang 330031, China
| | - Gang Yang
- College of Life Science, Education Ministry Key Laboratory of Poyang Lake Environment and Resource Utilization, Nanchang University, Nanchang 330031, China
| | - Jie Dong
- Science & Technology, Normal University of Jiangxi, Nanchang 330013, China
| |
Collapse
|
10
|
Wang Y, Wang C, Bao S, Nie X. Responses of the Nrf2/Keap1 signaling pathway in Mugilogobius abei (M. abei) exposed to environmentally relevant concentration aspirin. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:15663-15673. [PMID: 32080815 DOI: 10.1007/s11356-020-07912-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 01/28/2020] [Indexed: 06/10/2023]
Abstract
Aspirin (ASA) is a widely used non-steroidal anti-inflammatory drug. Its high detection frequency in various waterborne and environmental residues has drawn wide attention. Limited information were provided for the effects of aspirin exposure on oxidative stress signaling pathway in fish, which is closely related to pathological and immunological process of fish. In this study, a small fish - Mugilogobius abei (M. abei) distributing widely in aquatic ecosystems in southern China, was employed as testing organism and the key genes of the detoxification metabolism were cloned for the first time. The responses of Nrf2/Keap1 signaling pathway were investigated under the environmentally relevant concentration aspirin exposure (0.5 μg L-1, 5 μg L-1, and 50 μg L-1) for 24 h, 72 h, and 168 h then. The transcriptional expression of the key genes (Nrf2, Keap1, GCLC, GPx, GST, SOD, CAT, Trx2, and TrxR) as well as the changes of the related enzymatic activities (GPx, GST, SOD, and CAT) and GSH and MDA content were also determined. Results showed that Nrf2 and Keap1 gene expression displayed a negative correlation to some extent under ASA exposure, the transcriptional expressions of the downstream related genes (GCLC, GST, SOD, CAT, Trx2, and TrxR) in Nrf2/Keap1 signaling pathway showed inhibition at 24 h but induction at 72 h and 168 h. At the protein level, ASA exposure can improve the antioxidant capacity by increasing GSH synthesis and enzymatic activity of GPx, GST, SOD, and CAT to reduce the degree of lipid peroxidation. We proposed that ASA exposure may interfere with the redox balance in M. abei at an early stage but sub-chronic ASA exposure can activate the Nrf2 signaling pathway to improve the antioxidant capacity of M. abei.
Collapse
Affiliation(s)
- Yimeng Wang
- Department of Ecology, Jinan University, Guangzhou, 510632, China
| | - Chao Wang
- Department of Ecology, Jinan University, Guangzhou, 510632, China
| | - Shuang Bao
- Department of Ecology, Jinan University, Guangzhou, 510632, China
| | - Xiangping Nie
- Department of Ecology, Jinan University, Guangzhou, 510632, China.
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
11
|
Wang H, Pan L, Xu R, Si L, Zhang X. The molecular mechanism of Nrf2-Keap1 signaling pathway in the antioxidant defense response induced by BaP in the scallop Chlamys farreri. FISH & SHELLFISH IMMUNOLOGY 2019; 92:489-499. [PMID: 31220575 DOI: 10.1016/j.fsi.2019.06.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 05/15/2019] [Accepted: 06/05/2019] [Indexed: 06/09/2023]
Abstract
In this study, we cloned the full-length cDNA of the Kelch-like ECH-associated protein 1 (Keap1) from the scallops Chlamys farreri (C. farreri). Sequences alignment and phylogenetic analysis showed that CfKeap1 was highly specific in the scallops, and the amino acid sequence identity value is closer to that in zebrafish Keap1b and Nothobranchius furzeri Keap1b than Keap1a. The highest transcription level of CfKeap1 expression was detected in the digestive glands. The gene expressions of CfKeap1, NF-E2-related nuclear factor 2 (Nrf2), Superoxide Dismutase (SOD), Catalase (CAT) and Glutathione Peroxidase (GPx) in digestive glands were evaluated by quantitative real-time PCR (qRT-PCR) after being exposed to benzo(a)pyrene (BaP) (0.25, 1and 4 μg/L) for 15 days, which indicated that the activation of Nrf2 and Keap1 expression can be significantly induced under BaP exposure. RNA interference (RNAi) experiments were conducted to examine the expression profiles of CfKeap1, Nrf2, antioxidant genes (Cu/Zn-SOD, CAT and GPx), mitogen-activated protein kinase (MAPKs) and protein kinase C (PKC) signaling pathways key genes in digestive glands and gills when exposed to BaP. Results showed that the mRNA level of CfKeap1 was significantly decreased by 60.69% and59.485%. The changes of CfKeap1 and Nrf2 suggested that the enhancement of Keap1 expression stimulating Nrf2 degradation. Furthermore, the expression of antioxidant genes were consistent with the Nrf2 gene, which suggesting that Nrf2-Keap1 signaling pathway is required for the induction of antioxidant genes. Besides, the changes of PKC, c-Jun N-terminal kinase (JNK) and p38 genes expression suggested that PKC and MAPKs signaling pathways played a synergistic role with Nrf2-Keap1 signaling pathway in the anti-oxidative defense system of bivalve molluscs. In conclusion, these data demonstrated that Keap1 can sense nucleophilic or oxidative stress factors to regulate the Nrf2 signaling pathway together with Cul3-based E3 Ubiquitin Ligase (E3), and the Nrf2-Keap1 signaling pathway played an important role in modulating gene expression of antioxidant enzymes in bivalve mollusks.
Collapse
Affiliation(s)
- Hongdan Wang
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Luqing Pan
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China.
| | - Ruiyi Xu
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Lingjun Si
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Xin Zhang
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| |
Collapse
|
12
|
MitoQ ameliorates testis injury from oxidative attack by repairing mitochondria and promoting the Keap1-Nrf2 pathway. Toxicol Appl Pharmacol 2019; 370:78-92. [DOI: 10.1016/j.taap.2019.03.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 02/21/2019] [Accepted: 03/01/2019] [Indexed: 11/21/2022]
|
13
|
Cong P, Liu Y, Liu N, Zhang Y, Tong C, Shi L, Liu X, Shi X, Liu Y, Tong Z, Hou M. Cold exposure induced oxidative stress and apoptosis in the myocardium by inhibiting the Nrf2-Keap1 signaling pathway. BMC Cardiovasc Disord 2018; 18:36. [PMID: 29448942 PMCID: PMC5815212 DOI: 10.1186/s12872-018-0748-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 01/17/2018] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Exposure to cold weather is associated with infaust cardiovascular responses, including myocardial infarction and arrhythmias. However, the exact mechanisms of these adverse changes in the myocardium under cold stress are unknown. This study was designed to investigate the mechanisms of cardiac injury induced by cold stress in mice. METHODS The mice were randomly divided into three groups, normal control (no handling), 1-week cold stress and 2-week cold stress. We observed physiological changes of the mice and morphological changes of myocardium tissues, and we measured the changes of 3'-nitrotyrosine and 4-hydroxynonenal, the expression levels of superoxide dismutase-1, superoxide dismutase-2, Bax, Bad, Bcl-2, Nuclear factor erythroid-derived 2-like 2 (Nrf2) and Kelch like-ECH-associated protein 1 (Keap1) in myocardium by western blot. Besides, we detected mRNA of superoxide dismutase-1, superoxide dismutase-2, Bax, Bad, Bcl-2, Nrf2 and Keap1 by real-time PCR. One-way analysis of variance, followed by LSD-t test, was used to compare each variable for differences among the groups. RESULTS Echocardiography analyses demonstrated left ventricle dysfunction in the groups receiving cold stress. Histological analyses witnessed inflammation, vacuolar and eosinophilic degeneration occurred in left ventricle tissues. Western blotting results showed increased 3'-nitrotyrosine and 4-hydroxynonenal and decreased antioxidant enzymes (superoxide dismutase-1 and superoxide dismutase-2) in the myocardium. Expression of Nrf2 and Keap1 followed a downward trend under cold exposure, as indicated by western blotting and real-time PCR. Expression of anti-apoptotic protein Bcl-2 also showed the same trend. In contrast, expression of pro-apoptotic proteins Bax and Bad followed an upward trend under cold exposure. The results of real-time PCR were consistent with those of western blotting. CONCLUSIONS These findings were very significant, showing that cold exposure induced cardiac injury by inhibiting the Nrf2-Keap1 signaling pathway.
Collapse
Affiliation(s)
- Peifang Cong
- Emergency Medicine Department of General Hospital of Shenyang Military Command, Laboratory of Rescue Center of Severe Wound and Trauma PLA, No. 83 Road, Shenhe District, Shenyang, l10016, China
| | - Yunen Liu
- Emergency Medicine Department of General Hospital of Shenyang Military Command, Laboratory of Rescue Center of Severe Wound and Trauma PLA, No. 83 Road, Shenhe District, Shenyang, l10016, China
| | - Nannan Liu
- Emergency Medicine Department of General Hospital of Shenyang Military Command, Laboratory of Rescue Center of Severe Wound and Trauma PLA, No. 83 Road, Shenhe District, Shenyang, l10016, China
| | - Yubiao Zhang
- Emergency Medicine Department of General Hospital of Shenyang Military Command, Laboratory of Rescue Center of Severe Wound and Trauma PLA, No. 83 Road, Shenhe District, Shenyang, l10016, China
| | - Changci Tong
- Emergency Medicine Department of General Hospital of Shenyang Military Command, Laboratory of Rescue Center of Severe Wound and Trauma PLA, No. 83 Road, Shenhe District, Shenyang, l10016, China
| | - Lin Shi
- Emergency Medicine Department of General Hospital of Shenyang Military Command, Laboratory of Rescue Center of Severe Wound and Trauma PLA, No. 83 Road, Shenhe District, Shenyang, l10016, China
| | - Xuelei Liu
- Emergency Medicine Department of General Hospital of Shenyang Military Command, Laboratory of Rescue Center of Severe Wound and Trauma PLA, No. 83 Road, Shenhe District, Shenyang, l10016, China
| | - Xiuyun Shi
- Emergency Medicine Department of General Hospital of Shenyang Military Command, Laboratory of Rescue Center of Severe Wound and Trauma PLA, No. 83 Road, Shenhe District, Shenyang, l10016, China
| | - Ying Liu
- Emergency Medicine Department of General Hospital of Shenyang Military Command, Laboratory of Rescue Center of Severe Wound and Trauma PLA, No. 83 Road, Shenhe District, Shenyang, l10016, China
| | - Zhou Tong
- Emergency Medicine Department of General Hospital of Shenyang Military Command, Laboratory of Rescue Center of Severe Wound and Trauma PLA, No. 83 Road, Shenhe District, Shenyang, l10016, China
| | - Mingxiao Hou
- Emergency Medicine Department of General Hospital of Shenyang Military Command, Laboratory of Rescue Center of Severe Wound and Trauma PLA, No. 83 Road, Shenhe District, Shenyang, l10016, China.
| |
Collapse
|
14
|
Sun J, Wang B, Hao Y, Yang X. Effects of calcium dobesilate on Nrf2, Keap1 and HO-1 in the lenses of D-galactose-induced cataracts in rats. Exp Ther Med 2017; 15:719-722. [PMID: 29399076 PMCID: PMC5772489 DOI: 10.3892/etm.2017.5435] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 09/04/2017] [Indexed: 01/13/2023] Open
Abstract
This study investigated the effects of calcium dobesilate on Nrf2, Keap1 and HO-1 in the lenses of D-galactose-induced cataracts in rats. Thirty Sprague-Dawley rats were randomly divided into three groups: a blank control group, a model control group and a model administration group. A normal diet was given to the rats in the blank control group and the rats with D-galactose-induced cataracts of the model control group. Calcium dobesilate was also given to the rats with D-galactose-induced cataracts of the model administration group. A slit lamp microscope was used to check the degree of lens opacity. RT-PCR and western blot analysis were used to detect the mRNA and protein expression of Nrf2, Keap1 and HO-1 in the lenses of the three groups. There was a significant difference in the degree of lens opacity among the three groups (P<0.05). The model control group was the most turbid of the three groups, followed by the model administration group. Moreover, the mRNA and protein expression of Nrf2, Keap1 and HO-1 in the lenses of the three groups were also significantly different (P<0.05). The mRNA levels of Nrf2 and HO-1 were the highest in the model control group, followed by the model administration group, and were the lowest in the blank control group. However, the mRNA expression level of Keap1 among the three groups had an opposite trend. In conclusion, calcium dobesilate can effectively increase the levels of Nrf2 and HO-1 in the lenses of diabetic cataract rats and inhibit the level of Keap1. Therefore, the therapeutic effect of calcium dobesilate against cataracts is related to the improvement of the Nrf2-Keap1 signaling pathway.
Collapse
Affiliation(s)
- Jinfeng Sun
- School of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China.,Qingdao Eye Hospital, Shandong Eye Institute, Shandong Academy of Medical Sciences, Qingdao, Shandong 266071, P.R. China.,Department of Ophthalmology, Yantaishan Hospital, Yantai, Shandong 264001, P.R. China
| | - Bin Wang
- School of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China.,Qingdao Eye Hospital, Shandong Eye Institute, Shandong Academy of Medical Sciences, Qingdao, Shandong 266071, P.R. China.,Department of Ophthalmology, The First Afflicated Hospital of Baotou Medical College, Baotou, Inner Mongolia 014010, P.R. China
| | - Youjuan Hao
- Department of Ophthalmology, Yantaishan Hospital, Yantai, Shandong 264001, P.R. China
| | - Xueli Yang
- Department of Ophthalmology, Yantaishan Hospital, Yantai, Shandong 264001, P.R. China
| |
Collapse
|