1
|
Li L, Tan L, Yang W, Xu X, Shen Y, Li J. Conjoint applications of meta-analysis and bioinformatic data toward understanding the effect of nitrate on fish. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 794:148645. [PMID: 34198083 DOI: 10.1016/j.scitotenv.2021.148645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/13/2021] [Accepted: 06/20/2021] [Indexed: 06/13/2023]
Abstract
The extensively accumulation of nitrate in different water resources is currently regarded as one of the most predominant threats facing aquatic organisms on worldwide scale. In recent years, a growing body of evidences have been attempting to uncover the influences of nitrate on fish growth and health, thereby evaluating its environment security. However, the systematic assessment and intrinsic mechanism of such influences are apparently devoid. Hence, this investigation employed systematic analysis, meta-analysis and bioinformatic analysis to evaluate the nitrate biotoxicity. We first speculated two levels of nitrate concentration according to forty-four published bibliographies. Systematic analysis indicated that the broad variations of fish sensitivity to chronic and acute nitrate exposures were found in juvenile and larval stage, respectively, comparing to egg. Meta-analysis further revealed that survival rate, CF and SGR were significantly improved in low nitrate concentration during chronic exposure. Such improvements were reflected by Total mean differences (TMD) and 95% CIs (Confidence Intervals): Survival rate (-4.06 [-7.67, -0.45]), Fulton's condition factor (CF) (-0.03 [-0.03, -0.02]) and Specific growth rate (SGR) (-0.10 [-0.16, -0.04]). To trace the impact, the alternations of molecular expression and histology in brain, gill, liver, intestine, and blood suggested that the chronic and acute nitrate exposures could result in abnormal tissue structures and molecular dynamics. Moreover, omics analysis via integrating intestinal microbiome (microbial composition; %) and liver transcriptome (Gene Ontology: biological processes) revealed that the low concentration exposure induced a weakly immune response in fish liver and it matched to the intestinal immune response. Overall, current study has filled the gaps in the field of nitrate toxicity. It could also provide a novel insight for the evaluation of pollutant toxicity on aquatic species.
Collapse
Affiliation(s)
- Lisen Li
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China
| | - Ling Tan
- Key Laboratory of Jiangsu Province for Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Weining Yang
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China
| | - Xiaoyan Xu
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China
| | - Yubang Shen
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China.
| | - Jiale Li
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|
2
|
Dang Z, Arena M, Kienzler A. Fish toxicity testing for identification of thyroid disrupting chemicals. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 284:117374. [PMID: 34051580 DOI: 10.1016/j.envpol.2021.117374] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/05/2021] [Accepted: 05/12/2021] [Indexed: 05/03/2023]
Abstract
Identification of thyroid disrupting chemicals (TDCs), one of the most studied types of endocrine disruptors (EDs), is required according to EU regulations on industrial chemicals, pesticides, and biocides. Following that requirement, the use of fish as a unique non-mammalian model species for identification of EDs may be warranted. This study summarized and evaluated effects of TDCs on fish thyroid sensitive endpoints including thyroid hormones, thyroid related gene expression, immunostaining for thyroid follicles, eye size and pigmentation, swim bladder inflation as well as effects of TDCs on secondary sex characteristics, sex ratio, growth and reproduction. Changes in thyroid sensitive endpoints may reflect the balanced outcome of different processes of the thyroid cascade. Thyroid sensitive endpoints may also be altered by non-thyroid molecular or endocrine pathways as well as non-specific factors such as general toxicity, development, stress, nutrient, and the environmental factors like temperature and pH. Defining chemical specific effects on thyroid sensitive endpoints is important for identification of TDCs. Application of the AOP (adverse outcome pathway) concept could be helpful for defining critical events needed for testing and identification of TDCs in fish.
Collapse
Affiliation(s)
- ZhiChao Dang
- National Institute for Public Health and the Environment A. van Leeuwenhoeklaan, 93720, BA, Bilthoven, the Netherlands.
| | - Maria Arena
- European Food Safety Authority Via Carlo Magno 1/A, 43126, Parma, Italy
| | - Aude Kienzler
- European Food Safety Authority Via Carlo Magno 1/A, 43126, Parma, Italy
| |
Collapse
|
3
|
Cofone R, Carraturo F, Capriello T, Libralato G, Siciliano A, Del Giudice C, Maio N, Guida M, Ferrandino I. Eobania vermiculata as a potential indicator of nitrate contamination in soil. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 204:111082. [PMID: 32795702 DOI: 10.1016/j.ecoenv.2020.111082] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/23/2020] [Accepted: 07/27/2020] [Indexed: 06/11/2023]
Abstract
The effects of nitrates were analysed on the land snail Eobania vermiculata, a good bioindicator to assess the effects of certain pollutants in soil. It is known that the molluscs are very sensitive to contamination substances and can be used as sentinel organism for environmental pollution assessment. The nitrates are present in fertilizers and in food additives and their excess can not only be harmful to the environment but also dangerous for the humans. Indeed, in the mammals the nitrates are converted into nitrites and can cause a series of complications as the formation of methaemoglobin and cancers. In this study, adult organisms of E. vermiculata were exposed to soil containing 2000 mg/L of nitrates for 30 days to evaluate the stool microbiome and the histological changes at the level of the foot. Eggs of these snails were similarly treated to observe their hatching, survival and development. Histological changes were observed at level of the foot of adult snails exposed to nitrate and in their stools was evident an increase of bacteria, especially those that have a high ability to exploit nitrates and nitrogen as nutrients. Instead, the treated eggs showed changes in hatching, hypopigmentation of newborn snails and a decrease of their survival in time. The overall information obtained from these endpoints can provide important information regarding the quality of the environment. In addition, they also showed that the invertebrate organism E. vermiculata despite being a simple organism is very useful and efficient for ecotoxicological studies.
Collapse
Affiliation(s)
- Rita Cofone
- Department of Biology, University of Naples Federico II, Via Cinthia 21, 80126, Naples, Italy
| | - Federica Carraturo
- Department of Biology, University of Naples Federico II, Via Cinthia 21, 80126, Naples, Italy
| | - Teresa Capriello
- Department of Biology, University of Naples Federico II, Via Cinthia 21, 80126, Naples, Italy
| | - Giovanni Libralato
- Department of Biology, University of Naples Federico II, Via Cinthia 21, 80126, Naples, Italy
| | - Antonietta Siciliano
- Department of Biology, University of Naples Federico II, Via Cinthia 21, 80126, Naples, Italy
| | - Carmela Del Giudice
- Department of Biology, University of Naples Federico II, Via Cinthia 21, 80126, Naples, Italy
| | - Nicola Maio
- Department of Biology, University of Naples Federico II, Via Cinthia 21, 80126, Naples, Italy
| | - Marco Guida
- Department of Biology, University of Naples Federico II, Via Cinthia 21, 80126, Naples, Italy
| | - Ida Ferrandino
- Department of Biology, University of Naples Federico II, Via Cinthia 21, 80126, Naples, Italy.
| |
Collapse
|
4
|
Iwanowicz LR, Smalling KL, Blazer VS, Braham RP, Sanders LR, Boetsma A, Procopio NA, Goodrow S, Buchanan GA, Millemann DR, Ruppel B, Vile J, Henning B, Abatemarco J. Reconnaissance of Surface Water Estrogenicity and the Prevalence of Intersex in Smallmouth Bass ( Micropterus Dolomieu) Inhabiting New Jersey. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17062024. [PMID: 32204384 PMCID: PMC7142597 DOI: 10.3390/ijerph17062024] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 03/12/2020] [Accepted: 03/16/2020] [Indexed: 01/01/2023]
Abstract
The observation of testicular oocytes in male fishes has been utilized as a biomarker of estrogenic endocrine disruption. A reconnaissance project led in the Northeastern United States (US) during the period of 2008–2010 identified a high prevalence of intersex smallmouth bass on or near US Fish & Wildlife Service National Wildlife Refuges that included the observation of 100% prevalence in smallmouth bass males collected from the Wallkill River, NJ, USA. To better assess the prevalence of intersex smallmouth bass across the state of New Jersey, a tiered reconnaissance approach was initiated during the fall of 2016. Surface water samples were collected from 101 (85 river, 16 lake/reservoir) sites across the state at base-flow conditions for estrogenicity bioassay screening. Detectable estrogenicity was observed at 90% of the sites and 64% were above the US Environmental Protection Agency trigger level of 1 ng/L. Median surface water estrogenicity was 1.8 ng/L and a maximum of 6.9 ng/L E2EqBLYES was observed. Adult smallmouth bass were collected from nine sites, pre-spawn during the spring of 2017. Intersex was identified in fish at all sites, and the composite intersex prevalence was 93.8%. Prevalence across sites ranged from 70.6% to 100%. In addition to intersex, there was detectable plasma vitellogenin in males at all sites. Total estrogenicity in surface water was determined at these fish collection sites, and notable change over time was observed. Correlation analysis indicated significant positive correlations between land use (altered land; urban + agriculture) and surface water estrogenicity. There were no clear associations between land use and organismal metrics of estrogenic endocrine disruption (intersex or vitellogenin). This work establishes a baseline prevalence of intersex in male smallmouth bass in the state of New Jersey at a limited number of locations and identifies a number of waterbodies with estrogenic activity above an effects-based threshold.
Collapse
Affiliation(s)
- Luke R. Iwanowicz
- US Geological Survey, Leetown Science Center, Kearneysville, WV 25430, USA; (V.S.B.); (R.P.B.); (L.R.S.)
- Correspondence: ; Tel.: 304-724-4550
| | - Kelly L. Smalling
- US Geological Survey, New Jersey Water Science Center, Lawrence, NJ 08648, USA; (K.L.S.); (A.B.)
| | - Vicki S. Blazer
- US Geological Survey, Leetown Science Center, Kearneysville, WV 25430, USA; (V.S.B.); (R.P.B.); (L.R.S.)
| | - Ryan P. Braham
- US Geological Survey, Leetown Science Center, Kearneysville, WV 25430, USA; (V.S.B.); (R.P.B.); (L.R.S.)
| | - Lakyn R. Sanders
- US Geological Survey, Leetown Science Center, Kearneysville, WV 25430, USA; (V.S.B.); (R.P.B.); (L.R.S.)
| | - Anna Boetsma
- US Geological Survey, New Jersey Water Science Center, Lawrence, NJ 08648, USA; (K.L.S.); (A.B.)
| | - Nicholas A. Procopio
- New Jersey Department of Environmental Protection, Division of Science and Research, Trenton, NJ 08625, USA; (N.A.P.); (S.G.); (G.A.B.); (D.R.M.); (B.R.)
| | - Sandra Goodrow
- New Jersey Department of Environmental Protection, Division of Science and Research, Trenton, NJ 08625, USA; (N.A.P.); (S.G.); (G.A.B.); (D.R.M.); (B.R.)
| | - Gary A. Buchanan
- New Jersey Department of Environmental Protection, Division of Science and Research, Trenton, NJ 08625, USA; (N.A.P.); (S.G.); (G.A.B.); (D.R.M.); (B.R.)
| | - Daniel R. Millemann
- New Jersey Department of Environmental Protection, Division of Science and Research, Trenton, NJ 08625, USA; (N.A.P.); (S.G.); (G.A.B.); (D.R.M.); (B.R.)
| | - Bruce Ruppel
- New Jersey Department of Environmental Protection, Division of Science and Research, Trenton, NJ 08625, USA; (N.A.P.); (S.G.); (G.A.B.); (D.R.M.); (B.R.)
| | - John Vile
- New Jersey Department of Environmental Protection, Division of Water Monitoring and Standards, Trenton, NJ 08625, USA; (J.V.); (B.H.); (J.A.)
| | - Brian Henning
- New Jersey Department of Environmental Protection, Division of Water Monitoring and Standards, Trenton, NJ 08625, USA; (J.V.); (B.H.); (J.A.)
| | - John Abatemarco
- New Jersey Department of Environmental Protection, Division of Water Monitoring and Standards, Trenton, NJ 08625, USA; (J.V.); (B.H.); (J.A.)
| |
Collapse
|
5
|
Soler P, Solé M, Bañón R, García-Galea E, Durfort M, Matamoros V, Bayona JM, Vinyoles D. Effects of industrial pollution on the reproductive biology of Squalius laietanus (Actinopterygii, Cyprinidae) in a Mediterranean stream (NE Iberian Peninsula). FISH PHYSIOLOGY AND BIOCHEMISTRY 2020; 46:247-264. [PMID: 31624992 DOI: 10.1007/s10695-019-00713-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 09/29/2019] [Indexed: 06/10/2023]
Abstract
Mediterranean rivers are severely affected by pollutants from industry, agriculture and urban activities. In this study, we examined how industrial pollutants, many of them known to act as endocrine disruptors (EDCs), could disturb the reproduction of the Catalan chub (Squalius laietanus). The survey was conducted throughout the reproductive period of S. laietanus (from March to July 2014) downstream an industrial WWTP located in the River Ripoll (NE Iberian Peninsula). Eighty fish (28 females and 52 males) were caught by electrofishing upstream and 77 fish (33 females and 44 males) downstream a WWTP. For both sexes, the gonadosomatic index (GSI) and gonadal histology were examined and related to water chemical analysis and fish biomarkers. Female fecundity was assessed using the gravimetric method. Fish from the polluted site showed enhanced biomarker responses involved in detoxification. Also, in the polluted site, lower GSI values were attained in both sexes and females displayed lower numbers of vitellogenic oocytes. Gonadal histology showed that all maturation stages of testicles and ovaries were present at the two study sites but fish males from the polluted site had smaller diameter seminiferous tubules. Water chemical analysis confirmed greater presence of EDCs in the river downstream the industrial WWTP. The chemicals benzotriazole and benzothiazole could be partially responsible for the observed alterations in the reproductive biology of S. laietanus.
Collapse
Affiliation(s)
- Patricia Soler
- Department of Evolutionary Biology, Ecology and Environmental Sciences, University of Barcelona, Avda. Diagonal 643, 08028, Barcelona, Spain
| | - Montserrat Solé
- Department of Renewable Marine Resources, Institute of Marine Sciences (ICM-CSIC), Passeig Marítim de la Barceloneta 37-49, 08003, Barcelona, Spain
| | - Raquel Bañón
- Department of Evolutionary Biology, Ecology and Environmental Sciences, University of Barcelona, Avda. Diagonal 643, 08028, Barcelona, Spain
| | - Eduardo García-Galea
- Department of Evolutionary Biology, Ecology and Environmental Sciences, University of Barcelona, Avda. Diagonal 643, 08028, Barcelona, Spain
| | - Mercè Durfort
- Department of Cell Biology, Physiology and Immunology, University of Barcelona, Avda. Diagonal 643, 08028, Barcelona, Spain
| | - Víctor Matamoros
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona 18-26, 08034, Barcelona, Spain
| | - Josep Maria Bayona
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona 18-26, 08034, Barcelona, Spain
| | - Dolors Vinyoles
- Department of Evolutionary Biology, Ecology and Environmental Sciences, University of Barcelona, Avda. Diagonal 643, 08028, Barcelona, Spain.
| |
Collapse
|
6
|
Dang Z, Kienzler A. Changes in fish sex ratio as a basis for regulating endocrine disruptors. ENVIRONMENT INTERNATIONAL 2019; 130:104928. [PMID: 31277008 DOI: 10.1016/j.envint.2019.104928] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 06/06/2019] [Accepted: 06/12/2019] [Indexed: 06/09/2023]
Abstract
Fish sex ratio (SR) is an endpoint potentially indicating both endocrine activity and adversity, essential elements for identifying Endocrine Disrupting Chemicals (EDCs) as required by the EU regulations. Due to different protocols and methods in the literature studies, SR data vary greatly. This study analyses literature SR data and discusses important considerations for using SR data in the regulatory context for the hazard identification, classification, PBT (persistent, bioaccumulative and toxic) assessment, testing, and risk assessment. A total number of 106 studies were compiled for SR of zebrafish, medaka and fathead minnow exposed to 84 chemicals or mixtures. About 53% of literature studies determined SR by methods different from the standard histology method, leading to uncertainty of quantifying SR and differential sensitivity. SR was determined after depuration in 40 papers, which may lead to chemical-induced SR changes reversible to the control. SR was responsive to chemicals with EAS (estrogen, androgen, steoroidogenesis) activity and also to those with thyroid and progesterone activity. Besides, SR was influenced by non-chemical factors, e.g., inbreeding and temperature, leading to difficulty in data interpretation. The ECHA/EFSA/JRC Guidance suggests that SR and gonad histology data can be used for identifying EDCs. Due to reversibility, influence of confounding factors, and responsiveness to chemicals with endocrine activity other than EAS, this study suggests that SR/gonad histology should be combined with certain mode of action evidence for identifying EDCs. Important considerations for using SR data in the identification, classification, PBT assessment, testing, and risk assessment are discussed.
Collapse
Affiliation(s)
- ZhiChao Dang
- National Institute for Public Health and the Environment (RIVM), A. van Leeuwenhoeklaan 9, Bilthoven, the Netherlands.
| | - Aude Kienzler
- European Commission, Joint Research Centre (JRC), Via Enrico Fermi, 2749, 21027 Ispra, Italy
| |
Collapse
|