1
|
de Faria NPVM, Araújo BC, Kida BMS, Abdalla RP, Brito DDS, Moreira RG, Honji RM. Can Aluminum Affect Social Behavior and Cortisol Plasma Profile in the Neotropical Freshwater Teleost Astyanax lacustris (Teleostei: Characidae)? Life (Basel) 2024; 14:1697. [PMID: 39768403 PMCID: PMC11678517 DOI: 10.3390/life14121697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/06/2024] [Accepted: 12/20/2024] [Indexed: 01/11/2025] Open
Abstract
Aluminum (Al) can cause endocrine disruption in aquatic animals, but assessments of animal social behavior in neotropical teleost fish species with importance for Brazilian aquaculture have still not been addressed so far, which can further complete this ecotoxicological knowledge. In order to evaluate the social behavior and plasma cortisol concentration of fish exposed to Al, we performed a 1 h acute exposure with Astyanax lacustris couples in three different experimental groups: control in neutral pH (CTL/n group), acid pH (pH/ac group), and aluminum in acid pH (Al/ac group; 2.0 mg L-1). An ethogram of social interactions between males and females and swimming activities were performed. Furthermore, the cortisol plasma concentration was measured by enzyme-linked immunosorbent, and the gonadal maturation stage of the animals was evaluated by histology. Adult and mature females in the CTL/n and pH/ac groups were more aggressive and active than mature males, including several attacks on the male. Moreover, males did not present attack behavior in these groups at any time, but did show submission behavior and constant avoidance of female attacks. In the Al/ac, females did not attack males, couple decreased swimming activity, a repetitive movement toward the aquarium surface, and high mucus production were observed, making the water cloudy. Regarding cortisol plasma concentration, males had higher cortisol plasma concentrations than females in the CTL/n and pH/ac groups, which was not observed in the Al/ac group. Therefore, Al in addition to being described in the literature as an endocrine disruptor, it can be considered as behavioral disrupter in A. lacustris in this important freshwater species cultivated in South America.
Collapse
Affiliation(s)
- Natália Pires Vieira Morais de Faria
- Laboratório de Metabolismo e Reprodução de Organismos Aquáticos (LAMEROA), Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo (IB/USP), Rua do Matão, trav. 14, No. 321, Cidade Universitária, São Paulo 05508-090, SP, Brazil
| | - Bruno Cavalheiro Araújo
- Laboratório de Fisiologia e Nutrição de Organismos Aquáticos (LAFINUTRI), Núcleo Integrado de Biotecnologia, Universidade de Mogi das Cruzes, Avenida Dr. Cândido Xavier de Almeida e Souza, No. 200, Mogi das Cruzes 08701-970, SP, Brazil
| | - Bianca Mayumi Silva Kida
- Laboratório de Metabolismo e Reprodução de Organismos Aquáticos (LAMEROA), Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo (IB/USP), Rua do Matão, trav. 14, No. 321, Cidade Universitária, São Paulo 05508-090, SP, Brazil
| | - Raisa Pereira Abdalla
- Laboratório de Metabolismo e Reprodução de Organismos Aquáticos (LAMEROA), Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo (IB/USP), Rua do Matão, trav. 14, No. 321, Cidade Universitária, São Paulo 05508-090, SP, Brazil
| | - Diego dos Santos Brito
- Laboratório de Metabolismo e Reprodução de Organismos Aquáticos (LAMEROA), Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo (IB/USP), Rua do Matão, trav. 14, No. 321, Cidade Universitária, São Paulo 05508-090, SP, Brazil
| | - Renata Guimarães Moreira
- Laboratório de Metabolismo e Reprodução de Organismos Aquáticos (LAMEROA), Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo (IB/USP), Rua do Matão, trav. 14, No. 321, Cidade Universitária, São Paulo 05508-090, SP, Brazil
| | - Renato Massaaki Honji
- Laboratório de Aquicultura e Ecofisiologia Marinha (LAQUEFIM), Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo (IB/USP), Rua do Matão, trav. 14, No. 321, Cidade Universitária, São Paulo 05508-090, SP, Brazil
| |
Collapse
|
2
|
Helczman M, Tomka M, Arvay J, Tvrda E, Andreji J, Fik M, Snirc M, Jambor T, Massanyi P, Kovacik A. Selected micro- and macro-element associations with oxidative status markers in common carp ( Cyprinus carpio) blood serum and ejaculate: a correlation study. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2024; 87:999-1014. [PMID: 39344187 DOI: 10.1080/15287394.2024.2406429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
The aim of this study was to (1) determine complex interactions between macro- and micro-elements present in blood serum and ejaculate of common carp (Cyprinus carpio), and (2) examine the association between alterations in these macro- and micro-elements with markers of oxidative stress. Blood and ejaculate from 10 male carp were collected in the summer period on the experimental pond in Kolíňany (West Slovak Lowland). Reactive oxygen species (ROS), total antioxidant capacity (TAC), protein carbonyls (PC), and malondialdehyde (MDA) levels were measured in blood serum and ejaculate using spectrophotometric methods. The amounts of elements (Ag, Al, Ba, Co, Li, Mo, Ca, K, Na, and Mg) in all samples were quantified using inductively coupled plasma optical emission spectrophotometry. Data demonstrated significant differences in elemental concentrations between blood and ejaculate, specifically significantly higher ejaculate levels were detected for Ag, Al, Ba, Co, Li, Mo, K, and Mg. Potassium was the most abundant macro-element in the ejaculate, while sodium was the most abundant in blood serum. Among the micro-elements, Al was predominant in both types of samples. It is noteworthy that oxidative status markers including ROS, TAC, and MDA were significantly higher in ejaculate indicating the presence of oxidative stress in C. carpio reproductive tissue. The positive correlations between Mg and Ca in blood serum and ejaculate suggest these elements play a functional role in metabolic and physiological processes. In contrast, the positive correlations of Ba and Al with markers of oxidative stress indicated the association of these metals with induction of oxidative stress. Our findings provide insights into the association of metals with biomarkers of physiological function as well as adverse effects in C. carpio.
Collapse
Affiliation(s)
- Marek Helczman
- Institute of Applied Biology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Nitra, Slovak Republic
| | - Marian Tomka
- Institute of Biotechnology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Nitra, Slovak Republic
| | - Julius Arvay
- Institute of Food Sciences, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Nitra, Slovak Republic
| | - Eva Tvrda
- Institute of Biotechnology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Nitra, Slovak Republic
| | - Jaroslav Andreji
- Institute of Animal Husbandry, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture in Nitra, Nitra, Slovak Republic
| | - Martin Fik
- Institute of Animal Husbandry, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture in Nitra, Nitra, Slovak Republic
| | - Marek Snirc
- Institute of Food Sciences, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Nitra, Slovak Republic
| | - Tomas Jambor
- Institute of Applied Biology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Nitra, Slovak Republic
| | - Peter Massanyi
- Institute of Applied Biology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Nitra, Slovak Republic
- Institute of Biology, Faculty of Exact and Natural Sciences, University of the National Education Commission, Krakow, Poland
| | - Anton Kovacik
- Institute of Applied Biology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Nitra, Slovak Republic
| |
Collapse
|
3
|
Wang Z, Liang C, Shi LL, Zhu CS, Wang S, Nakayama SF, Kido T, Sun XL, Shan J. Associations Between Heavy Metal Exposure from Milk and Steroid Hormones in Mothers. Biol Trace Elem Res 2024:10.1007/s12011-024-04466-0. [PMID: 39633227 DOI: 10.1007/s12011-024-04466-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 11/24/2024] [Indexed: 12/07/2024]
Abstract
Environmental exposure to heavy metals is ubiquitous. However, its relationship with steroid hormone levels is not well understood, particularly in pregnant women. This study investigated the association between prenatal heavy metal exposure and steroid hormone levels in an e-waste disposal area in China. We analyzed the Cd, Cr, Mn, Pb, Cu, and As concentrations in 102 human milk samples collected 4 weeks after delivery. Multiple regression analysis was used to assess the associations and interactions between heavy metals and steroidal hormones. We found positive associations between Mn and estrone and estriol (estrone: β = 0.713, 95%CI = 0.046, 1.381 and estriol: β = 1.290, 95%CI = 0.494, 2.085) and between Cd and progesterone (β = 0.280; 95%CI = 0.053, 0.506). We observed negative associations between Cr and estrone and estriol (estrone: β = - 0.757, 95%CI = - 1.473, - 0.041 and estriol: β = - 1.354, 95%CI = - 2.209, - 0.499). At last, we found that Pb was negatively associated with estrone (estrone: β = - 0.537, 95%CI = - 1.053, - 0.020). Our results suggest that exposure to heavy metals may affect steroid hormone levels in mothers living in an e-waste recycling area in China.
Collapse
Affiliation(s)
- Zheng Wang
- School of Medicine, Jiaxing University, Jiaxing, China
- School of Medicine, and The First Affiliated Hospital, Huzhou University, Huzhou, China
| | - Caixia Liang
- Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Taizhou, China
| | - Li Li Shi
- School of Medicine, Jiaxing University, Jiaxing, China
| | - Cheng-Sheng Zhu
- Jiaxing Hospital of Traditional Chinese Medicine, Jiaxing, China
| | - Shenghang Wang
- School of Public Health, Shandong University, Jinan, China
| | - Shoji F Nakayama
- Japan Environment and Children's Study Programme Office, National Institute for Environmental Studies, Tsukuba, Japan
| | - Teruhiko Kido
- Faculty of Health Sciences, Institute of Medical, Pharmaceutical, and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Xian Liang Sun
- School of Medicine, and The First Affiliated Hospital, Huzhou University, Huzhou, China.
- Faculty of Health Sciences, Institute of Medical, Pharmaceutical, and Health Sciences, Kanazawa University, Kanazawa, Japan.
| | - Jiancong Shan
- Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Taizhou, China.
| |
Collapse
|
4
|
Ferreira CS, Ribeiro YM, Moreira DP, Paschoalini AL, Bazzoli N, Rizzo E. Reproductive toxicity induced by lead exposure: Effects on gametogenesis and sex steroid signaling in teleost fish. CHEMOSPHERE 2023; 340:139896. [PMID: 37604338 DOI: 10.1016/j.chemosphere.2023.139896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 08/09/2023] [Accepted: 08/18/2023] [Indexed: 08/23/2023]
Abstract
Lead (Pb) is an emerging contaminant widely distributed in aquatic environments, which has serious effects on human and animal health. In this study, we determined whether Pb exposure affects gametogenesis, sex steroids, estrogen (ERα and ERβ), and androgen (AR) receptors. Adult specimens of Astyanax bimaculatus were exposed in duplicate to 15, 50, and 100 μg/L of lead acetate, whereas the control group was not exposed. After 28 days of exposure, fish were euthanized and samples of the gonads, liver, and blood were collected for analysis. The results indicated a reduction in the gonadosomatic index as well as the diameters of the vitellogenic follicles and seminiferous tubules in the exposed groups. Morphometry of gametogenesis revealed inhibition of the secondary oocyte growth and a reduction in the number of spermatozoa in the 50 and 100 μg/L Pb-treated groups. In females, plasma 17β-estradiol (E2) increased following 15 and 50 μg/L Pb treatment, whereas males exhibited an increase in E2 and 11-ketotestosterone following treatment with 15 and 100 μg/L Pb, respectively. Vitellogenin was significantly reduced in females exposed to 100 μg/L Pb, but metallothionein levels were unchanged. ERα, ERβ, and AR were immunolocalized in the somatic and germ cells, with increased ovarian expression of ERα and Erβ in the 100 μg/L Pb-treated group, but no significant difference in AR among the groups. In males, only ERα increased in the 100 μg/L Pb-treated group. These results indicate that Pb exposure impairs gametogenesis, disrupts estrogen receptor signaling, and affects the expression of major reproductive biomarkers in A. bimaculatus.
Collapse
Affiliation(s)
- Camila Stephanie Ferreira
- Laboratório de Ictiohistologia, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, UFMG, Belo Horizonte, C.P.486, 30161-970, Minas Gerais, Brazil
| | - Yves Moreira Ribeiro
- Laboratório de Ictiohistologia, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, UFMG, Belo Horizonte, C.P.486, 30161-970, Minas Gerais, Brazil
| | - Davidson Peruci Moreira
- Laboratório de Ictiohistologia, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, UFMG, Belo Horizonte, C.P.486, 30161-970, Minas Gerais, Brazil
| | - Alessandro Loureiro Paschoalini
- Programa de Pós-graduação em Biologia de Vertebrados, Pontifícia Universidade Católica de Minas Gerais, PUC Minas, Belo Horizonte, Minas Gerais, Brazil
| | - Nilo Bazzoli
- Programa de Pós-graduação em Biologia de Vertebrados, Pontifícia Universidade Católica de Minas Gerais, PUC Minas, Belo Horizonte, Minas Gerais, Brazil
| | - Elizete Rizzo
- Laboratório de Ictiohistologia, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, UFMG, Belo Horizonte, C.P.486, 30161-970, Minas Gerais, Brazil.
| |
Collapse
|
5
|
Liu D, Shi Q, Liu C, Sun Q, Zeng X. Effects of Endocrine-Disrupting Heavy Metals on Human Health. TOXICS 2023; 11:toxics11040322. [PMID: 37112549 PMCID: PMC10147072 DOI: 10.3390/toxics11040322] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/25/2023] [Accepted: 03/26/2023] [Indexed: 06/12/2023]
Abstract
Heavy metals play an important endocrine-disrupting role in the health consequences. However, the endocrine-disrupting mechanism of heavy metals is unclear. There are long-term and low-level metal/element exposure scenes for the human body in real life. Therefore, animal models exposed to high doses of heavy metals may not provide key information to elucidate the underlying pathogeny of human diseases. This review collects current knowledge regarding the endocrine-disrupting roles of heavy metals such as lead (Pb), cadmium (Cd), arsenic (As), mercury (Hg), nickel (Ni), copper (Cu), zinc (Zn), and manganese (Mn), summarizes the possible molecular mechanisms of these endocrine-disrupting chemicals (EDCs), and briefly evaluates their endocrine toxicity on animals and humans.
Collapse
Affiliation(s)
- Dongling Liu
- School of Basic Medical Science, Zhejiang Chinese Medical University, 548 Binwen Road, Hangzhou 310053, China;
| | - Qianhan Shi
- School of Public Health, Zhejiang Chinese Medical University, 548 Binwen Road, Hangzhou 310053, China; (Q.S.); (C.L.); (Q.S.)
| | - Cuiqing Liu
- School of Public Health, Zhejiang Chinese Medical University, 548 Binwen Road, Hangzhou 310053, China; (Q.S.); (C.L.); (Q.S.)
| | - Qinghua Sun
- School of Public Health, Zhejiang Chinese Medical University, 548 Binwen Road, Hangzhou 310053, China; (Q.S.); (C.L.); (Q.S.)
| | - Xiang Zeng
- School of Public Health, Zhejiang Chinese Medical University, 548 Binwen Road, Hangzhou 310053, China; (Q.S.); (C.L.); (Q.S.)
| |
Collapse
|
6
|
Passos LS, Coppo GC, Pereira TM, Teixeira BC, Bona AM, Merçon J, Lopes TOM, Chippari-Gomes AR. Do Manganese and Iron in Association Cause Biochemical and Genotoxic Changes in Oreochromis Niloticus (Teleostei: Cichlidae)? BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2022; 108:708-715. [PMID: 34626211 DOI: 10.1007/s00128-021-03382-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 09/21/2021] [Indexed: 06/13/2023]
Abstract
The present study aimed to evaluate the toxicity of the association between Fe and Mn in Oreochromis niloticus through genotoxic (micronucleus test and comet assay) and biochemical (CAT and GST enzymes) assays. The tested treatments were T1 = control group (without metal addition), T2 = 2.60 mg L-1 of Fe + 0.2 mg L-1 of Mn, and T3 = 4.40 mg L-1 of Fe + 3.49 mg L-1 of Mn, during 96-h bioassays. All animals exposed to the metals showed a significant increase in erythrocyte micronucleus frequency and DNA damage. The hepatic GST activity increased two times in animals exposed to T3 compared to the control group. The results indicate that Fe + Mn caused genotoxic and biochemical changes in exposed fish. Therefore, excess metals in ecosystems, even those essential for organisms, can be dangerous for the local biota due to the risk associated with high concentrations of these metals.
Collapse
Affiliation(s)
- Larissa Souza Passos
- Laboratory of Applied Ichthyology, Complex of Biopractices, Vila Velha University, Rua José Dantas de Melo, 21, Boa Vista, Vila Velha, ES, CEP 29102-770, Brazil.
- Laboratory of Toxins and Natural Algae Products, Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 580, Bl. 17, CEP 05508-000, São Paulo, SP, Brazil.
| | - Gabriel Carvalho Coppo
- Laboratory of Applied Ichthyology, Complex of Biopractices, Vila Velha University, Rua José Dantas de Melo, 21, Boa Vista, Vila Velha, ES, CEP 29102-770, Brazil
- Benthic Ecology Group, Department of Oceanography, Federal University of Espírito Santo, Av. Fernando Ferrari, 514, Goiabeiras, Vitória, ES, CEP 29055-460, Brazil
| | - Tatiana Miura Pereira
- Laboratory of Applied Ichthyology, Complex of Biopractices, Vila Velha University, Rua José Dantas de Melo, 21, Boa Vista, Vila Velha, ES, CEP 29102-770, Brazil
| | - Barbara Chisté Teixeira
- Laboratory of Applied Ichthyology, Complex of Biopractices, Vila Velha University, Rua José Dantas de Melo, 21, Boa Vista, Vila Velha, ES, CEP 29102-770, Brazil
| | - Alliny Magalhães Bona
- Laboratory of Applied Ichthyology, Complex of Biopractices, Vila Velha University, Rua José Dantas de Melo, 21, Boa Vista, Vila Velha, ES, CEP 29102-770, Brazil
| | - Julia Merçon
- Laboratory of Applied Ichthyology, Complex of Biopractices, Vila Velha University, Rua José Dantas de Melo, 21, Boa Vista, Vila Velha, ES, CEP 29102-770, Brazil
| | - Taciana Onesorge Miranda Lopes
- Laboratory of Applied Ichthyology, Complex of Biopractices, Vila Velha University, Rua José Dantas de Melo, 21, Boa Vista, Vila Velha, ES, CEP 29102-770, Brazil
| | - Adriana Regina Chippari-Gomes
- Laboratory of Applied Ichthyology, Complex of Biopractices, Vila Velha University, Rua José Dantas de Melo, 21, Boa Vista, Vila Velha, ES, CEP 29102-770, Brazil
| |
Collapse
|