1
|
Wu W, Du R, Chen Z, Li W, Huang X, Pan Z. Unlocking the combined impact of microplastics and emerging contaminants on fish: A review and meta-analysis. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2025; 278:107176. [PMID: 39603050 DOI: 10.1016/j.aquatox.2024.107176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 11/18/2024] [Accepted: 11/24/2024] [Indexed: 11/29/2024]
Abstract
Microplastics (MPs) possess unique adsorptive properties that render their surfaces prone to absorbing other contaminants. When interacting with these emerging contaminants, MPs may have unpredictable negative impacts on fish. Prior studies have primarily concentrated on the impact of single contaminants, while investigations into combined pollution have not received adequate attention. Therefore, research on combined pollution holds greater practical significance. The physiological indicators of fish affected by emerging contaminants and the mechanisms behind these effects are not yet fully clear. To address this issue, a meta-analysis was performed to evaluate the impact of combined pollution of MPs-containing emerging contaminants on various aspects of fish health, encompassing behavior, consumption, development, and reproduction, along with the assessment of oxidative stress and neurotoxicity of fish. The results of the meta-analysis indicated that combined pollution adversely impacted fish reproduction, development, oxidative stress, and neurotoxicity. Importantly, significant differences were observed between fish species regarding their susceptibility to function and oxidative stress. Further investigation into the mechanisms of the impact of combined pollution on fish revealed that the magnitude of this impact is closely associated with the characteristics of the MPs themselves. MPs with higher adsorption capacities tend to lead to more severe consequences, while the impact of MPs with lower adsorption capacities relies more on their toxicity. Nevertheless, a close correlation between the duration of exposure to combined pollution and the level of oxidative stress in fish was not identified. Through a systematic analysis of existing studies, this review not only explored the cumulative effects of combined pollution on fish but also highlighted the intricate nature of such pollution within aquatic ecosystems. It contributes to the growing body of knowledge on the subject and emphasizes the need for further research to unravel the complexities associated with the combined impact of MPs-containing emerging contaminants on aquatic life.
Collapse
Affiliation(s)
- Weiming Wu
- College of Science, Shantou University, Shantou 515063, China; Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Rupeng Du
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China; College of Environment and Ecology, Xiamen University, Xiamen 361105, China
| | - Zhuoyun Chen
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Weiwen Li
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Xiaomei Huang
- School of Marine Biology, Xiamen Ocean Vocational College, Xiamen 361100, China.
| | - Zhong Pan
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China; School of Marine Biology, Xiamen Ocean Vocational College, Xiamen 361100, China.
| |
Collapse
|
2
|
Pan Y, Zhao W, Fang JKH, Shi J, Aboraya MH, Li D, Hu M, Wang Y. Polyamide microplastics can mitigate the effects of pathogenic bacterium on the health of marine mussels. JOURNAL OF HAZARDOUS MATERIALS 2024; 479:135646. [PMID: 39217938 DOI: 10.1016/j.jhazmat.2024.135646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 08/21/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
Vibrio parahaemolyticus and microplastics are prevalent in the ocean. Bacteria attach onto plastic particles, forming harmful biofilms that collectively threaten bivalve health. This study investigates the interaction between polyamide microplastics (PA: particle size 38 ± 12 µm) and V. parahaemolyticus, as well as their combined impact on thick-shelled mussels (Mytilus coruscus). We introduced 1011 CFU/L of V. parahaemolyticus into varying PA concentrations (0, 5, 50, and 500 particles/L) to observe growth over 14 h and biofilm formation after 48 h. Our findings indicate that microplastics suppress biofilm formation and virulence gene expression. Four treatments were established to monitor mussel responses: a control group without PA or V. parahaemolyticus; a group with 50 particles/L PA; a group with 1011 CFU/L V. parahaemolyticus; and a co-exposure group with both 50 particles/L PA and 1011 CFU/L V. parahaemolyticus, over a 14-day experiment. However, combined stress from microplastics and Vibrio led to immune dysregulation in mussels, resulting in intestinal damage and microbiome disruption. Notably, V. parahaemolyticus had a more severe impact on mussels than microplastics alone, yet their coexistence reduced some harmful effects. This study is the first to explore the interaction between microplastics and V. parahaemolyticus, providing important insights for ecological risk assessments.
Collapse
Affiliation(s)
- Yiting Pan
- International Research Center for Marine Biosciences, Shanghai Ocean University, Ministry of Science and Technology, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Shanghai 201306, China
| | - Wenxin Zhao
- International Research Center for Marine Biosciences, Shanghai Ocean University, Ministry of Science and Technology, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Shanghai 201306, China
| | - James Kar-Hei Fang
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Hong Kong Special Administrative Region of China
| | - Jianhang Shi
- International Research Center for Marine Biosciences, Shanghai Ocean University, Ministry of Science and Technology, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Shanghai 201306, China
| | - Mohamed H Aboraya
- International Research Center for Marine Biosciences, Shanghai Ocean University, Ministry of Science and Technology, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Shanghai 201306, China; Department of Aquaculture, Faculty of Aquatic and Fisheries Sciences, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Daoji Li
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200062, China
| | - Menghong Hu
- International Research Center for Marine Biosciences, Shanghai Ocean University, Ministry of Science and Technology, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Shanghai 201306, China; Lingang Special Area Marine Biomedical Innovation Platform, Shanghai 201306, China.
| | - Youji Wang
- International Research Center for Marine Biosciences, Shanghai Ocean University, Ministry of Science and Technology, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|
3
|
Fabrello J, Tarussio E, Romanello A, Schiavon A, Damoli VR, Luisi F, Roverso M, Bogialli S, Matozzo V. A multibiomarker approach to assess the effects of a BPA analogue-contaminated diet in the crab Carcinus aestuarii. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 276:107084. [PMID: 39276604 DOI: 10.1016/j.aquatox.2024.107084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/04/2024] [Accepted: 09/04/2024] [Indexed: 09/17/2024]
Abstract
Bisphenol A analogues are largely used plasticisers that are going to replace bisphenol A in many sectors. Due to this replacement, their discharge and presence in the marine coastal areas are increasing, with unknown consequences for organisms and the trophic chain. This study assessed the effects of three different bisphenols (BPAF, BPF and BPS) - alone or as a mixture - provided via food (exposed clams) to the crab Carcinus aestuarii. First, clams were exposed for two weeks to 300 ng/L of each of the three bisphenols and their mixture (100 ng/L of each) to allow the bioaccumulation of the contaminants in bivalves. Then, crabs were fed for two weeks with BPA analogue-exposed clams, while unexposed clams were used to feed control crabs. After 7 and 14 days, haemolymph, gills and hepatopancreas were collected from crabs to measure a battery of biomarkers indicative of cytotoxicity, oxidative stress and damage, neurotoxicity, physiological performance (respiration and excretion rate) and electron transport system activity. Lastly, bioaccumulation of BPA analogues was assessed by UHPLC-HRMS in crabs. Our findings revealed that BPA analogue-exposed clams were able to alter total haemocyte count, haemocyte size and their proliferation. The activity of immune enzymes, such as phosphatases and phenoloxidase was altered. Moreover, we observed an impairment of antioxidant and detoxifying enzymes like SOD, CAT, GST and GPX activities. Alterations of metabolism-involved enzymes and physiological parameters and increased oxidative damage to macromolecules like proteins, lipids, and DNA were also observed in crabs. Among BPA analogues, only bioaccumulation of BPAF, which has the highest Logkow value among the tested bisphenols, was evidenced in crabs. Overall, the obtained results indicated that crabs, under the tested experimental conditions at least, underwent alterations in cellular, biochemical and physiological responses following a diet of bisphenol-exposed clams, suggesting a potential ecotoxicological risk in the marine food chain.
Collapse
Affiliation(s)
- Jacopo Fabrello
- Department of Biology, University of Padova, Via Bassi 58/B, Padova 35131, Italy.
| | - Elisabetta Tarussio
- Department of Biology, University of Padova, Via Bassi 58/B, Padova 35131, Italy
| | - Alessia Romanello
- Department of Biology, University of Padova, Via Bassi 58/B, Padova 35131, Italy
| | - Anna Schiavon
- Department of Biology, University of Padova, Via Bassi 58/B, Padova 35131, Italy
| | | | - Francesco Luisi
- Department of Biology, University of Padova, Via Bassi 58/B, Padova 35131, Italy
| | - Marco Roverso
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, Padova 35131, Italy
| | - Sara Bogialli
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, Padova 35131, Italy
| | - Valerio Matozzo
- Department of Biology, University of Padova, Via Bassi 58/B, Padova 35131, Italy
| |
Collapse
|
4
|
Zhao W, Zheng X, Liu J, Sui Y, Wang Y, Luo P, Zhu X, Wu W, Gu W, Liu X. Ceratophyllum demersum alleviates microplastics uptake and physiological stress responses in aquatic organisms, an overlooked ability. JOURNAL OF HAZARDOUS MATERIALS 2024; 474:134573. [PMID: 38824779 DOI: 10.1016/j.jhazmat.2024.134573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/02/2024] [Accepted: 05/08/2024] [Indexed: 06/04/2024]
Abstract
It has been demonstrated that microplastics (MPs) may be inadvertently ingested by aquatic animals, causing harm to their physiological functions and potentially entering the food chain, thereby posing risks to human food safety. To achieve an environmentally friendly and efficient reduction of MPs in freshwater environments, this experiment investigates the depuration effect of C. demersum on MPs using three common aquatic animals: Macrobrachium nipponense, Corbicula fluminea, and Bellamya aeruginosa as research subjects. The amounts of MPs, digestive enzyme activity, oxidative stress index, and energy metabolism enzyme activity in the digestive and non-digestive systems of three aquatic animals were measured on exposure days 1, 3, and 7 and on depuration days 1 and 3. The results indicated that the depuration effect of C. demersum and the species interaction were significant for the whole individual. Concerning digestive tissue, C. demersum was the most effective in purifying B. aeruginosa. When subjected to short-term exposure to MPs, C. demersum displayed a superior depuration effect. Among non-digestive tissues, C. demersum exhibited the earliest purifying effect on C. fluminea. Additionally, C. demersum alleviated physiological responses caused by MPs. In conclusion, this study underscores C. demersum as a promising new method for removing MPs from aquatic organisms.
Collapse
Affiliation(s)
- Weihong Zhao
- College of Marine and Biological Engineering, Yancheng Institute of Technology, Yancheng 224000, China
| | - Xirui Zheng
- College of Marine and Biological Engineering, Yancheng Institute of Technology, Yancheng 224000, China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Jintao Liu
- College of Marine and Biological Engineering, Yancheng Institute of Technology, Yancheng 224000, China
| | - Yanming Sui
- College of Marine and Biological Engineering, Yancheng Institute of Technology, Yancheng 224000, China.
| | - Yuning Wang
- College of Marine and Biological Engineering, Yancheng Institute of Technology, Yancheng 224000, China; Anhui Agricultural University, Hefei 230000, China
| | - Pan Luo
- College of Marine and Biological Engineering, Yancheng Institute of Technology, Yancheng 224000, China; Dalian Ocean University, Dalian 116000, China
| | - Xi Zhu
- College of Marine and Biological Engineering, Yancheng Institute of Technology, Yancheng 224000, China
| | - Wenjing Wu
- College of Marine and Biological Engineering, Yancheng Institute of Technology, Yancheng 224000, China
| | - Wen Gu
- College of Marine and Biological Engineering, Yancheng Institute of Technology, Yancheng 224000, China
| | - Xingyu Liu
- College of Marine and Biological Engineering, Yancheng Institute of Technology, Yancheng 224000, China
| |
Collapse
|
5
|
Albarano L, Maggio C, La Marca A, Iovine R, Lofrano G, Guida M, Vaiano V, Carotenuto M, Pedatella S, Spica VR, Libralato G. Risk assessment of natural and synthetic fibers in aquatic environment: A critical review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 934:173398. [PMID: 38777048 DOI: 10.1016/j.scitotenv.2024.173398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/15/2024] [Accepted: 05/19/2024] [Indexed: 05/25/2024]
Abstract
Marine microplastics, categorized as primary and secondary, including synthetic microfibers like polyethylene terephthalate (PET), polypropylene (PP) and acrylic (PC), represent a potential environmental concern. The complex classification of these fibers, originating from diverse sources such as textiles and many others commercial goods, prompts a need for understanding their impact on aquatic organisms. This study assesses the ecological risks associated with both natural and synthetic fibers in aquatic ecosystems, focusing on toxicity data and their effects on taxonomic groups like Mollusca, Arthropoda, Echinodermata, Cnidaria, and Chordata. To carry out species sensitivity distribution (SSD) curves, a comprehensive analysis of scientific literature was conducted, collecting toxicity data related to various fibers. The resulting SSDs provide insights into the relative sensitivity of different taxonomic groups. The potential ecological risks were evaluated by comparing measured concentrations in diverse aquatic environments with Predicted No-Effect Concentration (PNEC) values. The calculation of Risk Quotient (RQ) allowed to indicate areas where fibers abundance poses a potential threat to aquatic organisms. The study reveals that nylon fibers can pose the highest toxicity risk, especially in Atlantic and Pacific Ocean, Arabian Gulf and VietNam river. Mollusca emerged as particularly sensitive to different fiber types, likely due to their body structure facilitating the accumulation of microfibers. The research emphasizes the urgent need for further studies to get data to human health risk analysis and to address comprehensive environmental management strategies to address the global issue of microfiber pollution.
Collapse
Affiliation(s)
- Luisa Albarano
- Department of Biology, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, Via Cinthia 21, 80126 Naples, Italy.
| | - Chiara Maggio
- Department of Biology, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, Via Cinthia 21, 80126 Naples, Italy
| | - Annamaria La Marca
- Department of Biology, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, Via Cinthia 21, 80126 Naples, Italy
| | - Rosalba Iovine
- Department of Biology, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, Via Cinthia 21, 80126 Naples, Italy
| | - Giusy Lofrano
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Italy
| | - Marco Guida
- Department of Biology, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, Via Cinthia 21, 80126 Naples, Italy; Centro Servizi Metrologici e Tecnologici Avanzati (CeSMA), Complesso Universitario di Monte Sant'Angelo, Via Cinthia 21, 80126 Naples, Italy; NBFC, National Biodiversity Future Center, Palermo 90133, Italy
| | - Vincenzo Vaiano
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, SA, Italy
| | - Maurizio Carotenuto
- Department of Chemistry and Biology, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, SA, Italy
| | - Silvana Pedatella
- Centro Servizi Metrologici e Tecnologici Avanzati (CeSMA), Complesso Universitario di Monte Sant'Angelo, Via Cinthia 21, 80126 Naples, Italy
| | - Vincenzo Romano Spica
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Italy
| | - Giovanni Libralato
- Department of Biology, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, Via Cinthia 21, 80126 Naples, Italy
| |
Collapse
|
6
|
Habumugisha T, Zhang Z, Uwizewe C, Yan C, Ndayishimiye JC, Rehman A, Zhang X. Toxicological review of micro- and nano-plastics in aquatic environments: Risks to ecosystems, food web dynamics and human health. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 278:116426. [PMID: 38718727 DOI: 10.1016/j.ecoenv.2024.116426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/11/2024] [Accepted: 05/01/2024] [Indexed: 05/26/2024]
Abstract
The increase of micro- and nano-plastics (MNPs) in aquatic environments has become a significant concern due to their potential toxicological effects on ecosystems, food web dynamics, and human health. These plastic particles emerge from a range of sources, such as the breakdown of larger plastic waste, consumer products, and industrial outputs. This review provides a detailed report of the transmission and dangers of MNPs in aquatic ecosystems, environmental behavior, and interactions within aquatic food webs, emphasizing their toxic impact on marine life. It explores the relationship between particle size and toxicity, their distribution in different tissues, and the process of trophic transfer through the food web. MNPs, once consumed, can be found in various organs, including the digestive system, gills, and liver. Their consumption by lower trophic level organisms facilitates their progression up the food chain, potentially leading to bioaccumulation and biomagnification, thereby posing substantial risks to the health, reproduction, and behavior of aquatic species. This work also explores how MNPs, through their persistence and bioaccumulation, pose risks to aquatic biodiversity and disrupt trophic relationships. The review also addresses the implications of MNPs for human health, particularly through the consumption of contaminated seafood, highlighting the direct and indirect pathways through which humans are exposed to these pollutants. Furthermore, the review highlights the recommendations for future research directions, emphasizing the integration of ecological, toxicological, and human health studies to inform risk assessments and develop mitigation strategies to address the global challenge of plastic pollution in aquatic environments.
Collapse
Affiliation(s)
- Théogène Habumugisha
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China
| | - Zixing Zhang
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China
| | - Constance Uwizewe
- Key Laboratory of Physical Oceanography, Ocean University of China, Qingdao 266100, PR China
| | - Changzhou Yan
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China
| | | | - Abdul Rehman
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Xian Zhang
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China.
| |
Collapse
|
7
|
Martyniuk V, Matskiv T, Yunko K, Khoma V, Gnatyshyna L, Faggio C, Stoliar O. Reductive stress and cytotoxicity in the swollen river mussel (Unio tumidus) exposed to microplastics and salinomycin. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 350:123724. [PMID: 38462197 DOI: 10.1016/j.envpol.2024.123724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 03/03/2024] [Accepted: 03/04/2024] [Indexed: 03/12/2024]
Abstract
Multistress effects lead to unpredicted consequences in aquatic ecotoxicology and are extremely concerning. The goal of this study was to trace how specific effects of the antibiotic salinomycin (Sal) and microplastics (MP) on the bivalve molluscs are manifested in the combined environmentally relevant exposures. Unio tumidus specimens were treated with Sal (0.6 μg L-1), MP (1 mg L-1, 2 μm size), and both at 18 °C (Mix) and 25 °C (MixT) for 14 days. The redox stress and apoptotic enzyme responses and the balance of Zn/Cu in the digestive gland were analyzed. The shared signs of stress included a decrease in NAD+/NADH and Zn/Cu ratios and lysosomal integrity and an increase in Zn-metallothioneins and cholinesterase levels. MP caused a decrease in the glutathione (GSH) concentration and redox state, total antioxidant capacity, and Zn levels. MP and Mix induced coordinated apoptotic/autophagy activities, increasing caspase-3 and cathepsin D (CtD) total and extralysosomal levels. Sal activated caspase-3 only and increased by five times Cu level in the tissue. Due to the discriminant analysis, the cumulative effect was evident in the combined exposure at 18 °C. However, under heating, the levels of NAD+, NADH, GSH, GSH/GSSG and metallothionein-related thiols were decreased, and coordination of the cytosolic and lysosomal death stimuli was distorted, confirming that heating and pollution could exert unexpected synergistic effects on aquatic life.
Collapse
Affiliation(s)
- Viktoria Martyniuk
- Department of Chemistry and Methods of Its Teaching, Ternopil Volodymyr Hnatiuk National Pedagogical University, Kryvonosa Str 2, Ternopil, 46027, Ukraine.
| | - Tetiana Matskiv
- Department of Chemistry and Methods of Its Teaching, Ternopil Volodymyr Hnatiuk National Pedagogical University, Kryvonosa Str 2, Ternopil, 46027, Ukraine; Department of General Chemistry, I. Horbachevsky Ternopil National Medical University, Maidan Voli, 1, Ternopil, 46001, Ukraine.
| | - Kateryna Yunko
- Department of Chemistry and Methods of Its Teaching, Ternopil Volodymyr Hnatiuk National Pedagogical University, Kryvonosa Str 2, Ternopil, 46027, Ukraine.
| | - Vira Khoma
- Department of Research of Materials, Substances and Products, Ternopil Scientific Research Forensic Center of the Ministry of Internal Affairs of Ukraine, St. Budny, 48, Ternopil, 46020, Ukraine.
| | - Lesya Gnatyshyna
- Department of General Chemistry, I. Horbachevsky Ternopil National Medical University, Maidan Voli, 1, Ternopil, 46001, Ukraine.
| | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres, S. Agata, Messina, 31-98166, Italy; Department of Eco-sustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Naples, Italy.
| | - Oksana Stoliar
- Department of Chemistry and Methods of Its Teaching, Ternopil Volodymyr Hnatiuk National Pedagogical University, Kryvonosa Str 2, Ternopil, 46027, Ukraine; Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres, S. Agata, Messina, 31-98166, Italy.
| |
Collapse
|
8
|
Gholamhosseini A, Banaee M, Zeidi A, Multisanti CR, Faggio C. Individual and combined impact of microplastics and lead acetate on the freshwater shrimp (Caridina fossarum): Biochemical effects and physiological responses. JOURNAL OF CONTAMINANT HYDROLOGY 2024; 262:104325. [PMID: 38428349 DOI: 10.1016/j.jconhyd.2024.104325] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/22/2024] [Accepted: 02/25/2024] [Indexed: 03/03/2024]
Abstract
Microplastics and heavy metals pollution is recognised as a major problem affecting aquatic ecosystems. For this reason, this study aims to assess the toxicity of different concentrations of polyethylene microplastics (PE-MPs) (0.0, 500, and 1000 μg L-1) with a mean size of 15-25 μm and lead acetate Pb(C2H3O2)2 (0.0, 2.5, and 5 mg L-1), both individually and in combination, through the exposure of the freshwater grass shrimp, Caridinia fossarum for 15 days, focusing on microplastic interaction with co-occurring contaminants. After being exposed to both contaminants, either individually or in combination, significant alterations in numerous biochemical markers were observed. Specifically, exposure to lead acetate alone resulted in significant changes across ALP, AST, ALT, LDH, GGT, and BChE enzyme activity levels indicating hepatotoxicity and neurotoxicity. Also, Pb exposure led to alterations in total antioxidant capacity, MDA, total lipids, and glycogen contents, signalling the onset of oxidative stress. Exposure to PE-MPs alone led to changes in ALP, LDH, GGT, and BChE enzyme levels, and in MDA, total lipids, and glycogen samples' contents. Remarkably, the study observed increased bioaccumulation of lead acetate in samples treated with the combination, emphasizing the synergistic impact of PE-MPs on the toxicity of lead acetate. This synergy was also evident in AST and ALT enzyme activity levels and MDA contents. This underscores the necessity for measures to address both microplastic pollution and heavy metal contamination, taking into account the synergistic behaviour of MPs in the presence of concurrent contaminants.
Collapse
Affiliation(s)
- Amin Gholamhosseini
- Department of Clinical Sciences, School of Veterinary Medicine, Shiraz University, Shiraz, Iran.
| | - Mahdi Banaee
- Aquaculture of Department, Faculty of Natural Resources and the Environment, Behbahan Khatam Alanbia University of Technology, Behbahan, Iran.
| | - Amir Zeidi
- Aquaculture of Department, Faculty of Natural Resources and the Environment, Behbahan Khatam Alanbia University of Technology, Behbahan, Iran
| | | | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy; Department of Eco-sustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Naples, Italy.
| |
Collapse
|
9
|
Zaman M, Khan FU, Younas W, Noorullah M, Ullah I, Li L, Zuberi A, Wang Y. Physiological and histopathological effects of polystyrene nanoparticles on the filter-feeding fish Hypophthalmichthys molitrix. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169376. [PMID: 38104827 DOI: 10.1016/j.scitotenv.2023.169376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/08/2023] [Accepted: 12/12/2023] [Indexed: 12/19/2023]
Abstract
Excessive use of plastics in daily life is causing plastic pollution in aquatic environment and threatening the aquatic life. Therefore, research on the plastic pollution in aquatic environment is crucial to understand its impact and develop effective solution for safeguarding aquatic life and ecosystem. The current study investigated the effects of water borne polystyrene nanoparticles (PS-NPs) on hemato-immunological indices, serum metabolic enzymes, gills, and liver antioxidant parameters, plasma cortisol level and histopathological changes in liver and gill tissues of the widely distributed fish Hypophthalmichthys molitrix. The fingerlings of H. molitrix were exposed to different concentrations (T1-0.5, T2-1.0, and T3-2.0 mg/L) of PS-NPs respectively for 15 days consecutively. Our results indicated the dose dependent negative effects of PS-NPs on the physiology and histopathology of H. molitrix. Immuno-hematological indices showed significant increase in WBCs count, phagocytic activity, and lysozyme activity, while decreased RBC count, Hct%, Hb level, total proteins, IgM, and respiratory burst activity were observed. The levels of antioxidant enzymes like SOD, CAT and POD showed the decreasing trends while metabolic enzymes (AST, ALT, ALP and LDH), LPO, ROS activities and relative expressions of SOD1, CAT, HIF1-α and HSP-70 genes increased with increased concentrations of PS-NPs. Moreover, blood glucose and cortisol levels also showed significant increasing trends with dose dependent manner. Histopathological examination indicated moderate to severe changes in the gills and liver tissues of the group treated with 2.0 mg/L of PS-NPs. Overall, the results showed the deleterious effects of PS-NPs on physiology, immunity, metabolism, and gene expressions of H. molitrix. It is concluded that particulate plastic pollution has deleterious effects on filter feeding fish, which might affect human health through food chain and particulate chemical toxicity.
Collapse
Affiliation(s)
- Muhib Zaman
- Fisheries & Aquaculture Lab, Department of Zoology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Fahim Ullah Khan
- Fisheries & Aquaculture Lab, Department of Zoology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Waqar Younas
- Fisheries & Aquaculture Lab, Department of Zoology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Muhammad Noorullah
- Fisheries & Aquaculture Lab, Department of Zoology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Imdad Ullah
- Fisheries & Aquaculture Lab, Department of Zoology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Li'ang Li
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Amina Zuberi
- Fisheries & Aquaculture Lab, Department of Zoology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan.
| | - Youji Wang
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China.
| |
Collapse
|
10
|
Zeidi A, Sayadi MH, Rezaei MR, Banaee M, Gholamhosseini A, Pastorino P, Multisanti CR, Faggio C. Single and combined effects of CuSO 4 and polyethylene microplastics on biochemical endpoints and physiological impacts on the narrow-clawed crayfish Pontastacusleptodactylus. CHEMOSPHERE 2023; 345:140478. [PMID: 37865200 DOI: 10.1016/j.chemosphere.2023.140478] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 10/11/2023] [Accepted: 10/16/2023] [Indexed: 10/23/2023]
Abstract
This study investigated the toxicity of polyethylene microplastics (MPs; <0.02 mm) and CuSO4, alone and in combination, on the freshwater crayfish Pontastacus leptodactylus. In this study, the crayfish were exposed to PE-MPs (0.0, 0.5, and 1 mg L-1) and CuSO4·5H2O (0.0, 0.5, and 1 mg L-1) for a period of 28 days. Next, multi-biomarkers, including biochemical, immunological, and oxidative stress indicators were analyzed. Results showed that co-exposure to PE-MPs and CuSO4 resulted in increased aspartate aminotransferase (AST), alanine aminotransferase (ALT), lactate dehydrogenase (LDH), and decreased alkaline phosphatase (ALP), butyrylcholinesterase (BChE), and gamma-glutamyl-transferase (GGT). Triglycerides, cholesterol, glucose, and albumin content also increased. Although no significant change was observed in lysozyme and phenoloxidase activities in crayfish co-exposed to 0.5 mg L-1 MPs and 0.5 mg L-1 CuSO4, their activities were significantly decreased in other experimental groups. Oxidative stress parameters in hepatopancreas indicated increased superoxide dismutase (SOD), glutathione peroxidase (GPx), and in malondialdehyde (MDA) levels, but decreased catalase (CAT), glucose 6-phosphate dehydrogenase (G6PDH), and cellular total antioxidant (TAC). Results showed that the sub-chronic toxicity of CuSO4 was confirmed. The study confirmed the toxicity of CuSO4 and found that higher concentrations led to more severe effects. Co-exposure to PE-MPs and CuSO4 primarily compromised the endpoints, showing increased toxicity when both pollutants were present in higher concentrations. The activities of POX, LYZ, ALP, GGT, LDH, and CAT were suppressed by both CuSO4 and MPs. However, a synergistic increase was observed in other measured biomarkers in crayfish co-exposed to CuSO4 and MPs.
Collapse
Affiliation(s)
- Amir Zeidi
- Aquaculture Department, Faculty of Natural Resources and Environment, Behbahan Khatam Alanbia University of Technology, Behbahan, Iran.
| | - Mohammad Hossein Sayadi
- Department of Agriculture, Faculty of Natural Resources and Environment, Shahid Bahonar University of Kerman, Kerman, Iran.
| | - Mohammad Reza Rezaei
- Department of Environmental Engineering, Faculty of Natural Resources and Environment, University of Birjand, Birjand, Iran.
| | - Mahdi Banaee
- Aquaculture Department, Faculty of Natural Resources and Environment, Behbahan Khatam Alanbia University of Technology, Behbahan, Iran.
| | - Amin Gholamhosseini
- Division of Aquatic Animal Health & Diseases, Department of Clinical Sciences, School of Veterinary Medicine, Shiraz University, Shiraz, Iran.
| | - Paolo Pastorino
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Via Bologna 148, 10154, Torino, Italy.
| | - Cristiana Roberta Multisanti
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy.
| | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy.
| |
Collapse
|
11
|
Hamed M, Martyniuk CJ, Said REM, Soliman HAM, Badrey AEA, Hassan EA, Abdelhamid HN, Osman AGM, Sayed AEDH. Exposure to pyrogallol impacts the hemato-biochemical endpoints in catfish (Clarias gariepinus). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 333:122074. [PMID: 37331582 DOI: 10.1016/j.envpol.2023.122074] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 06/13/2023] [Accepted: 06/16/2023] [Indexed: 06/20/2023]
Abstract
Pyrogallol is widely used in several industrial applications and can subsequently contaminate aquatic ecosystems. Here, we report for the first time the presence of pyrogallol in wastewater in Egypt. Currently, there is a complete lack of toxicity and carcinogenicity data for pyrogallol exposure in fish. To address this gap, both acute and sub-acute toxicity experiments were conducted to determine the toxicity of pyrogallol in catfish (Clarias gariepinus). Behavioral and morphological endpoints were evaluated, in addition to blood hematological endpoints, biochemical indices, electrolyte balance, and the erythron profile (poikilocytosis and nuclear abnormalities). In the acute toxicity assay, it was determined that the 96 h median-lethal concentration (96 h-LC50) of pyrogallol for catfish was 40 mg/L. In sub-acute toxicity experiment, fish divided into four groups; Group 1 was the control group. Group 2 was exposed to 1 mg/L of pyrogallol, Group 3 was exposed to 5 mg/L of pyrogallol, and Group 4 was exposed to 10 mg/L of pyrogallol. Fish showed morphological changes such as erosion of the dorsal and caudal fins, skin ulcers, and discoloration following exposure to pyrogallol for 96 h. Exposure to 1, 5, or 10 mg/L pyrogallol caused a significant decrease in hematological indices, including red blood cells (RBCs), hemoglobin, hematocrit, white blood cells (WBC), thrombocytes, and large and small lymphocytes in a dose-dependent manner. Several biochemical parameters (creatinine, uric acid, liver enzymes, lactate dehydrogenase, and glucose) were altered in a concentration dependent manner with short term exposures to pyrogallol. Pyrogallol exposure also caused a significant concentration-dependent rise in the percentage of poikilocytosis and nuclear abnormalities of RBCs in catfish. In conclusion, our data suggest that pyrogallol should be considered further in environmental risk assessments of aquatic species.
Collapse
Affiliation(s)
- Mohamed Hamed
- Department of Zoology, Faculty of Science, Al-Azhar University (Assiut Branch), Assiut, 71524, Egypt
| | - Christopher J Martyniuk
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32611, USA
| | - Rashad E M Said
- Department of Zoology, Faculty of Science, Al-Azhar University (Assiut Branch), Assiut, 71524, Egypt
| | - Hamdy A M Soliman
- Department of Zoology, Faculty of Science, Sohag University, Sohag, 8562, Egypt
| | - Ahmed E A Badrey
- Department of Zoology, Faculty of Science, Al-Azhar University (Assiut Branch), Assiut, 71524, Egypt
| | - Elhagag A Hassan
- Department of Botany and Microbiology, Faculty of Science, Assiut University, Assiut, 71516, Egypt
| | - Hani N Abdelhamid
- Advanced Multifunctional Materials Laboratory, Department of Chemistry, Assuit University, Assuit, 71515, Egypt; Nanotechnology Research Centre (NTRC), The British University in Egypt, El-Shorouk City, Suez Desert Road, P.O. Box 43, Cairo 11837, Egypt
| | - Alaa G M Osman
- Department of Zoology, Faculty of Science, Al-Azhar University (Assiut Branch), Assiut, 71524, Egypt
| | - Alaa El-Din H Sayed
- Department of Zoology, Faculty of Science, Assiut University, Assiut, 71516, Egypt; Molecular Biology Research & Studies Institute, Assiut University, 71516 Assiut, Egypt.
| |
Collapse
|
12
|
Banaee M, Impellitteri F, Multisanti CR, Sureda A, Arfuso F, Piccione G, Faggio C. Evaluating Silymarin Extract as a Potent Antioxidant Supplement in Diazinon-Exposed Rainbow Trout: Oxidative Stress and Biochemical Parameter Analysis. TOXICS 2023; 11:737. [PMID: 37755747 PMCID: PMC10535037 DOI: 10.3390/toxics11090737] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/23/2023] [Accepted: 08/26/2023] [Indexed: 09/28/2023]
Abstract
This study aimed to investigate the effects of diazinon on fish, focusing on hepatotoxic biomarkers and the potential protective effects of silymarin supplementation. One hundred eighty rainbow trout were randomly assigned to four groups: control, diazinon exposed (0.1 mg L-1), silymarin supplemented (400 mg kg-1), and diazinon + silymarin. Blood samples and liver tissue were collected after 7, 14, and 21 days of exposure to analyze biochemical parameters and oxidative biomarkers. Diazinon exposure in fish resulted in liver damage, as indicated by increased antioxidant enzyme activities in the hepatocytes. Silymarin showed the potential to mitigate this damage by reducing oxidative stress and restoring enzyme activities. Nevertheless, diazinon increased creatine phosphokinase activity, which may not be normalized by silymarin. Exposure to diazinon increased glucose, triglyceride, and cholesterol levels, whereas total protein, albumin, and globulin levels were significantly decreased in fish. However, silymarin controlled and maintained these levels within the normal range. Diazinon increased creatinine, urea, uric acid, and ammonia contents. Silymarin could regulate creatinine, urea, and uric acid levels while having limited effectiveness on ammonia excretion. Furthermore, diazinon increased malondialdehyde in hepatocytes, whereas administration of silymarin could restore normal malondialdehyde levels. Overall, silymarin showed potential as a therapeutic treatment for mitigating oxidative damage induced by diazinon in fish, but its effectiveness on creatine phosphokinase, glutathione reductase, and ammonia may be limited.
Collapse
Affiliation(s)
- Mahdi Banaee
- Aquaculture Department, Faculty of Natural Resources and the Environment, Behbahan Khatam Alanbia University of Technology, Behbahan 6361663973, Iran
| | - Federica Impellitteri
- Department of Veterinary Sciences, University of Messina, Viale Giovanni Palatucci snc, 98168 Messina, Italy (F.A.)
| | - Cristiana Roberta Multisanti
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98168 Messina, Italy;
| | - Antoni Sureda
- Research Group on Community Nutrition and Oxidative Stress, Health Research Institute of the Balearic Islands (IdISBa), and CIBEROBN Fisiopatología de la Obesidad la Nutrición, University of Balearic Islands, 07122 Palma de Mallorca, Spain
| | - Francesca Arfuso
- Department of Veterinary Sciences, University of Messina, Viale Giovanni Palatucci snc, 98168 Messina, Italy (F.A.)
| | - Giuseppe Piccione
- Department of Veterinary Sciences, University of Messina, Viale Giovanni Palatucci snc, 98168 Messina, Italy (F.A.)
| | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98168 Messina, Italy;
| |
Collapse
|
13
|
Banaee M, Faraji J, Amini M, Multisanti CR, Faggio C. Rainbow trout (Oncorhynchus mykiss) physiological response to microplastics and enrofloxacin: Novel pathways to investigate microplastic synergistic effects on pharmaceuticals. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 261:106627. [PMID: 37393734 DOI: 10.1016/j.aquatox.2023.106627] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/12/2023] [Accepted: 06/28/2023] [Indexed: 07/04/2023]
Abstract
Enrofloxacin (ENR) is a broad-spectrum antibiotic widely used due to its efficacy against pathogens. Microplastics (MPs) may bind to ENR and reduce its efficiency, whereas there would be an increase in its toxicity, bioavailability, and bio-accumulation rates. Therefore, the hypothesis is that the interaction between MPs and ENR can alter their toxicity and bioavailability. The subjective of this study is to examine the toxicity of various concentrations of ENR (0, 1.35, and 2.7 ml Kg-1 diet) and MPs (0, 1000, and 2000 mg Kg-1 diet) alone and in combination for 21 days. The rainbow trout (Oncorhynchus mykiss) is an economic aquaculture species used as an experimental model in ecotoxicology studies. Blood biochemical analytes indicated that ENR and MPs combination led to increasing enzymatic activity of each biomarker, except for gamma-glutamyl-transferase (GGT). Alterations related to triglycerides, cholesterol, glucose, urea, creatinine, total protein, and albumin blood contents were observed. An elevation in the levels of superoxide dismutase (SOD), malondialdehyde (MDA), and glucose 6-phosphate dehydrogenase (G6PDH) was found in the liver. In contrast, catalase (CAT) and glutathione peroxidase (GPx) levels decreased. Furthermore, a decline was observed in the cellular total antioxidant (ANT) levels. These findings suggested that ENR and MPs could affect fish health both independently and together. Consequently, the study determined that when both ENR and MPs were present in high concentrations, the toxicity of ENR was amplified, providing further evidence of the synergistic impact of MPs on ENR toxicity.
Collapse
Affiliation(s)
- Mahdi Banaee
- Aquaculture Department, Faculty of Natural Resources and the Environment, Behbahan Khatam Alanbia University of Technology, Behbahan, Iran
| | - Javad Faraji
- Aquaculture Department, Faculty of Natural Resources and the Environment, Behbahan Khatam Alanbia University of Technology, Behbahan, Iran
| | - Mohammad Amini
- Aquaculture Department, Faculty of Natural Resources and the Environment, Behbahan Khatam Alanbia University of Technology, Behbahan, Iran
| | - Cristiana Roberta Multisanti
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy.
| |
Collapse
|
14
|
Wang Q, Zuo Z, Zhang C, Ye B, Zou J. An effect assessment of microplastics and nanoplastics interacting with androstenedione on mosquitofish (Gambusia affinis). MARINE ENVIRONMENTAL RESEARCH 2023; 189:106062. [PMID: 37390515 DOI: 10.1016/j.marenvres.2023.106062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 06/06/2023] [Accepted: 06/14/2023] [Indexed: 07/02/2023]
Abstract
An increasing number of microplastics have been detected in aquatic environments, causing various damage to organisms. The size of microplastics affects the toxicity once they enter the organisms. Meanwhile, there is an increasing variety of Endocrine-disrupting chemicals (EDCs) present in aquatic environments. Androstenedione (AED) is a typical EDC. In this study, we used polystyrene microspheres of 80 nm (NPs) and 8 μm (MPs) as materials to simulate environmental contaminants in the aquatic environment with AED. We used female mosquitofish (Gambusia affinis) as the research object to investigate the effects of microplastics on fish in waters containing AED. We compared different sizes of particles accumulation in some tissues of fish and variation of enzyme activities (SOD, LDH, CAT), and the content of MDA in the gut. MPs, NPs, and AED combined exposure test investigated mRNA profiles of immune-related genes (IL-1β, IL-6, IL-8, IL-10) and hormone receptor genes (ARα, ARβ, ERα, ERβ) in the liver of fish. Our results indicated that MPs emerged in various tissues (gill, gut, and liver) of mosquitofish. Besides, NPs and MPs caused enteric abnormal enzyme activity after 48 h of exposure, which was particularly pronounced in the MPs-AED group. MPs induced significant upregulation of inflammatory factors and gonadal factor genes after 96 h of exposure, which was more pronounced when co-exposed with AED. In conclusion, NPs and MPs caused mechanisms of immune damage and inflammatory response. MPs were found to be more likely to cause adverse reactions than NPs, and these responses were enhanced by the combined effects of AED. This study demonstrated that AED can exacerbate the negative effects of MPs and NPs on mosquitofish. It provided an important basis for the effective assessment of MPs and NPs on bioaccumulation and biochemical status of mosquitofish. Additionally, it serves as a foundation to investigate the interactive effects of microplastics and EDCs in living organisms.
Collapse
Affiliation(s)
- Qiujie Wang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Zhiheng Zuo
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Chaonan Zhang
- Zhejiang Ecological Civilization Academy, Zhejiang, 313000, Huzhou, China
| | - Bin Ye
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Jixing Zou
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|