1
|
Didamoony MA, Soubh AA, Ahmed LA. Cutting-edge insights into liver fibrosis: advanced therapeutic strategies and future perspectives using engineered mesenchymal stem cell-derived exosomes. Drug Deliv Transl Res 2025:10.1007/s13346-024-01784-7. [PMID: 39853531 DOI: 10.1007/s13346-024-01784-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/26/2024] [Indexed: 01/26/2025]
Abstract
Liver fibrosis is still a serious health concern worldwide, and there is increasing interest in mesenchymal stem cells (MSCs) with tremendous potential for treating this disease because of their regenerative and paracrine effects. Recently, many researches have focused on using the released exosomes (EXOs) from stem cells to treat liver fibrosis rather than using parent stem cells themselves. MSC-derived EXOs (MSC-EXOs) have demonstrated favourable outcomes similar to cell treatment in terms of regenerative, immunomodulatory, anti-apoptotic, anti-oxidant, anti-necroptotic, anti-inflammatory and anti-fibrotic actions in several models of liver fibrosis. EXOs are superior to their parent cells in several terms, including lower immunogenicity and risk of tumour formation. However, maintaining the stability and efficacy of EXOs after in vivo transplantation remains a major challenge in their clinical applicability. Therefore, several strategies have been applied in EXOs engineering, such as parental cell modification or modifying EXOs directly to achieve optimum performance of EXOs in treating liver fibrosis. Herein, we discuss the underlying mechanisms of liver fibrosis with an overview of the available therapies, among them EXOs. We also summarise the recent developments in improving the effectiveness of EXOs with the advantages and limitations of these approaches in terms of the upcoming clinical applications.
Collapse
Affiliation(s)
- Manar A Didamoony
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Egyptian Russian University, Cairo, 11829, Egypt.
| | - Ayman A Soubh
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Ahram Canadian University, 6th of October City, Giza, 12451, Egypt
| | - Lamiaa A Ahmed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt.
| |
Collapse
|
2
|
Baky NAA, Fouad LM, Ahmed KA, Alzokaky AA. Mechanistic insight into the hepatoprotective effect of Moringa oleifera Lam leaf extract and telmisartan against carbon tetrachloride-induced liver fibrosis: plausible roles of TGF-β1/SMAD3/SMAD7 and HDAC2/NF-κB/PPARγ pathways. Drug Chem Toxicol 2025; 48:84-97. [PMID: 38835191 DOI: 10.1080/01480545.2024.2358066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 05/16/2024] [Indexed: 06/06/2024]
Abstract
The increasing prevalence and limited therapeutic options for liver fibrosis necessitates more medical attention. Our study aims to investigate the potential molecular targets by which Moringa oleifera Lam leaf extract (Mor) and/or telmisartan (Telm) alleviate carbon tetrachloride (CCl4)-induced liver fibrosis in rats. Liver fibrosis was induced in male Sprague-Dawley rats by intraperitoneal injection of 50% CCl4 (1 ml/kg) every 72 hours, for 8 weeks. Intoxicated rats with CCl4 were simultaneously orally administrated Mor (400 mg/kg/day for 8 weeks) and/or Telm (10 mg/kg/day for 8 weeks). Treatment of CCl4-intoxicated rats with Mor/Telm significantly reduced serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activities compared to CCl4 intoxicated group (P < 0.001). Additionally, Mor/Telm treatment significantly reduced the level of hepatic inflammatory, profibrotic, and apoptotic markers including; nuclear factor-kappa B (NF-κB), tumor necrosis factor-alpha (TNF-α), transforming growth factor-βeta1 (TGF-β1), and caspase-3. Interestingly, co-treatment of CCl4-intoxicated rats with Mor/Telm downregulated m-RNA expression of histone deacetylase 2 (HDAC2) (71.8%), and reduced protein expression of mothers against decapentaplegic homolog 3 (p-SMAD3) (70.6%) compared to untreated animals. Mor/Telm regimen also elevated p-SMAD7 protein expression as well as m-RNA expression of peroxisome proliferator-activated receptor γ (PPARγ) (3.6 and 3.1 fold, respectively p < 0.05) compared to CCl4 intoxicated group. Histopathological picture of the liver tissue intoxicated with CCl4 revealed marked improvement by Mor/Telm co-treatment. Conclusively, this study substantiated the hepatoprotective effect of Mor/Telm regimen against CCl4-induced liver fibrosis through suppression of TGF-β1/SMAD3, and HDAC2/NF-κB signaling pathways and up-regulation of SMAD7 and PPARγ expression.
Collapse
Affiliation(s)
- Nayira A Abdel Baky
- Department of Pharmacology and Toxicology, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| | - Lamiaa M Fouad
- Department of Pharmacology and Toxicology, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| | - Kawkab A Ahmed
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Cairo, Egypt
| | - Amany A Alzokaky
- Department of Pharmacology and Toxicology, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
- Department of Pharmacology and Biochemistry, Faculty of Pharmacy, Horus University, New Damietta, Egypt
| |
Collapse
|
3
|
Yoladi FB, Palabiyik-Yucelik SS, Bahador Zirh E, Halici Z, Baydar T. Effects of idebenone and coenzyme Q10 on NLRP3/caspase-1/IL-1β pathway regulation on ethanol-induced hepatotoxicity in rats. Drug Chem Toxicol 2024; 47:1205-1217. [PMID: 38804209 DOI: 10.1080/01480545.2024.2351191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 04/29/2024] [Indexed: 05/29/2024]
Abstract
Chronic and excessive alcohol consumption leads to liver toxicity. There is a need to investigate effective therapeutic strategies to alleviate alcohol-induced liver injury, which remains the leading cause of liver-related morbidity and mortality worldwide. Therefore here, we looked into and evaluated how ethanol-induced hepatotoxicity was affected by coenzyme Q10 (CoQ10) and its analog, idebenone (IDE), on the NLRP3/caspase-1/IL-1 pathway. Hepatotoxicity induced in rats through the oral administration of gradually increasing dosages of ethanol (from 2 to 6 g/kg/day) over 30 days and the effect of CoQ10 (10 or 20 mg/kg) and IDE (50 or 100 mg/kg) were evaluated. Serum hepatotoxicity markers (ALT, AST, GGT, ALP, and TBIL), tissue oxidative stress markers and the mRNA expressions of IL-1β, IL-18, TGF-β, NF-κB, NLRP3, and caspase-1 were evaluated. Masson's trichrome staining was also used to visualize fibrosis in the liver tissue. The results indicated that ethanol exposure led to hepatotoxicity as well as considerable NLRP3/caspase-1/IL-1β pathway activation. Moreover, CoQ10 or IDE treatment reduced measured parameters in a dosage-dependent manner. Thus, by inhibiting the NLRP3/caspase-1/IL-1 pathway, CoQ10 and IDE can prevent the hepatotoxicity caused by ethanol, although CoQ10 is more effective than IDE. This study will provide insight into new therapeutic avenues that take advantage of the anti-inflammatory and antioxidant properties of CoQ10 and IDE in ethanol-induced liver diseases.
Collapse
Affiliation(s)
- Fatma Betül Yoladi
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Atatürk University, Erzurum, Turkey
- Department of Toxicology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Saziye Sezin Palabiyik-Yucelik
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Atatürk University, Erzurum, Turkey
- Clinical Research, Development and Design Application and Research Center, Atatürk University, Erzurum, Turkey
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Ondokuz Mayıs University, Samsun, Turkey
| | - Elham Bahador Zirh
- Department of Histology and Embryology, Faculty of Medicine, TOBB University of Economics and Technology, Ankara, Turkey
| | - Zekai Halici
- Clinical Research, Development and Design Application and Research Center, Atatürk University, Erzurum, Turkey
- Department of Pharmacology, Faculty of Medicine, Ataturk University, Erzurum, Turkey
| | - Terken Baydar
- Department of Toxicology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| |
Collapse
|
4
|
Zhang Q, Liang Q, Wang G, Xie X, Cao Y, Sheng N, Zeng Z, Ren C. Highly Selective Artificial K + Transporters Reverse Liver Fibrosis In Vivo. JACS AU 2024; 4:3869-3883. [PMID: 39483224 PMCID: PMC11522913 DOI: 10.1021/jacsau.4c00521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/08/2024] [Accepted: 08/16/2024] [Indexed: 11/03/2024]
Abstract
Liver fibrosis is a life-threatening disease that currently lacks clinically effective therapeutic agents. Given the close correlation between dysregulated intracellular K+ homeostasis and the progression of liver fibrosis, developing artificial K+ transporters mimicking the essential function of their natural counterparts in regulating intracellular K+ levels might offer an appealing yet unexplored treatment strategy. Here, we present an unconventional class of artificial K+ transporters involving the "motional" collaboration between two K+ transporter molecules. In particular, 6C6 exhibits an impressive EC50 value of 0.28 μM (i.e., 0.28 mol % relative to lipid) toward K+ and an exceptionally high K+/Na+ selectivity of 15.5, representing one of the most selective artificial K+ transporters reported to date. Most importantly, our study demonstrates, for the first time, the potential therapeutic effect of K+-selective artificial ion transporters in reversing liver fibrosis both in vitro and in vivo.
Collapse
Affiliation(s)
- Qiuping Zhang
- State
Key Laboratory of Cellular Stress Biology and Fujian Provincial Key
Laboratory of Innovative Drug Target Research, School of Pharmaceutical
Sciences, Xiamen University, Xiamen, Fujian 361102, China
- Shenzhen
Research Institute of Xiamen University, Shenzhen, Guangdong 518057, China
| | - Qinghong Liang
- State
Key Laboratory of Cellular Stress Biology and Fujian Provincial Key
Laboratory of Innovative Drug Target Research, School of Pharmaceutical
Sciences, Xiamen University, Xiamen, Fujian 361102, China
- Shenzhen
Research Institute of Xiamen University, Shenzhen, Guangdong 518057, China
| | - Guijiang Wang
- State
Key Laboratory of Cellular Stress Biology and Fujian Provincial Key
Laboratory of Innovative Drug Target Research, School of Pharmaceutical
Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Xiaopan Xie
- State
Key Laboratory of Cellular Stress Biology and Fujian Provincial Key
Laboratory of Innovative Drug Target Research, School of Pharmaceutical
Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Yin Cao
- State
Key Laboratory of Cellular Stress Biology and Fujian Provincial Key
Laboratory of Innovative Drug Target Research, School of Pharmaceutical
Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Nan Sheng
- State
Key Laboratory of Cellular Stress Biology and Fujian Provincial Key
Laboratory of Innovative Drug Target Research, School of Pharmaceutical
Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Zhiping Zeng
- State
Key Laboratory of Cellular Stress Biology and Fujian Provincial Key
Laboratory of Innovative Drug Target Research, School of Pharmaceutical
Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Changliang Ren
- State
Key Laboratory of Cellular Stress Biology and Fujian Provincial Key
Laboratory of Innovative Drug Target Research, School of Pharmaceutical
Sciences, Xiamen University, Xiamen, Fujian 361102, China
- Shenzhen
Research Institute of Xiamen University, Shenzhen, Guangdong 518057, China
| |
Collapse
|
5
|
Jin Y, Kozan D, Young ED, Hensley MR, Shen MC, Wen J, Moll T, Anderson JL, Kozan H, Rawls JF, Farber SA. A high-cholesterol zebrafish diet promotes hypercholesterolemia and fasting-associated liver steatosis. J Lipid Res 2024; 65:100637. [PMID: 39218217 DOI: 10.1016/j.jlr.2024.100637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 07/22/2024] [Accepted: 08/07/2024] [Indexed: 09/04/2024] Open
Abstract
Zebrafish are an ideal model organism to study lipid metabolism and to elucidate the molecular underpinnings of human lipid-associated disorders. Unlike murine models, to which various standardized high lipid diets such as a high-cholesterol diet (HCD) are available, there has yet to be a uniformly adopted zebrafish HCD protocol. In this study, we have developed an improved HCD protocol and thoroughly tested its impact on zebrafish lipid deposition and lipoprotein regulation in a dose- and time-dependent manner. The diet stability, reproducibility, and fish palatability were also validated. Fish fed HCD developed hypercholesterolemia as indicated by significantly elevated ApoB-containing lipoproteins (ApoB-LPs) and increased plasma levels of cholesterol and cholesterol esters. Feeding of the HCD to larvae for 8 days produced hepatic steatosis that became more stable and sever after 1 day of fasting and was associated with an opaque liver phenotype (dark under transmitted light). Unlike larvae, adult fish fed HCD for 14 days followed by a 3-day fast did not develop a stable fatty liver phenotype, though the fish had higher ApoB-LP levels in plasma and an upregulated lipogenesis gene fasn in adipose tissue. In conclusion, our HCD zebrafish protocol represents an effective and reliable approach for studying the temporal characteristics of the physiological and biochemical responses to high levels of dietary cholesterol and provides insights into the mechanisms that may underlie fatty liver disease.
Collapse
Affiliation(s)
- Yang Jin
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD, USA; Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, Aas, Norway
| | - Darby Kozan
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD, USA; Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| | - Eric D Young
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD, USA; Division of Gastrointestinal and Liver Pathology, Department of Pathology, Johns Hopkins Hospital, Baltimore, MD, USA
| | - Monica R Hensley
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD, USA
| | - Meng-Chieh Shen
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD, USA
| | - Jia Wen
- Department of Molecular Genetics and Microbiology, Duke Microbiome Center, Duke University School of Medicine, Durham, NC, USA
| | - Tabea Moll
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD, USA; Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| | - Jennifer L Anderson
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD, USA
| | - Hannah Kozan
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD, USA
| | - John F Rawls
- Department of Molecular Genetics and Microbiology, Duke Microbiome Center, Duke University School of Medicine, Durham, NC, USA
| | - Steven A Farber
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD, USA; Department of Biology, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
6
|
Macdonald JK, Taylor HB, Wang M, Delacourt A, Edge C, Lewin DN, Kubota N, Fujiwara N, Rasha F, Marquez CA, Ono A, Oka S, Chayama K, Lewis S, Taouli B, Schwartz M, Fiel MI, Drake RR, Hoshida Y, Mehta AS, Angel PM. The Spatial Extracellular Proteomic Tumor Microenvironment Distinguishes Molecular Subtypes of Hepatocellular Carcinoma. J Proteome Res 2024; 23:3791-3805. [PMID: 38980715 PMCID: PMC11385377 DOI: 10.1021/acs.jproteome.4c00099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 05/31/2024] [Accepted: 06/15/2024] [Indexed: 07/10/2024]
Abstract
Hepatocellular carcinoma (HCC) mortality rates continue to increase faster than those of other cancer types due to high heterogeneity, which limits diagnosis and treatment. Pathological and molecular subtyping have identified that HCC tumors with poor outcomes are characterized by intratumoral collagenous accumulation. However, the translational and post-translational regulation of tumor collagen, which is critical to the outcome, remains largely unknown. Here, we investigate the spatial extracellular proteome to understand the differences associated with HCC tumors defined by Hoshida transcriptomic subtypes of poor outcome (Subtype 1; S1; n = 12) and better outcome (Subtype 3; S3; n = 24) that show differential stroma-regulated pathways. Collagen-targeted mass spectrometry imaging (MSI) with the same-tissue reference libraries, built from untargeted and targeted LC-MS/MS was used to spatially define the extracellular microenvironment from clinically-characterized, formalin-fixed, paraffin-embedded tissue sections. Collagen α-1(I) chain domains for discoidin-domain receptor and integrin binding showed distinctive spatial distribution within the tumor microenvironment. Hydroxylated proline (HYP)-containing peptides from the triple helical regions of fibrillar collagens distinguished S1 from S3 tumors. Exploratory machine learning on multiple peptides extracted from the tumor regions could distinguish S1 and S3 tumors (with an area under the receiver operating curve of ≥0.98; 95% confidence intervals between 0.976 and 1.00; and accuracies above 94%). An overall finding was that the extracellular microenvironment has a high potential to predict clinically relevant outcomes in HCC.
Collapse
Affiliation(s)
- Jade K. Macdonald
- Department
of Cell and Molecular Pharmacology, Medical
University of South Carolina, Charleston, South Carolina 29425, United States
| | - Harrison B. Taylor
- Department
of Cell and Molecular Pharmacology, Medical
University of South Carolina, Charleston, South Carolina 29425, United States
| | - Mengjun Wang
- Department
of Cell and Molecular Pharmacology, Medical
University of South Carolina, Charleston, South Carolina 29425, United States
| | - Andrew Delacourt
- Department
of Cell and Molecular Pharmacology, Medical
University of South Carolina, Charleston, South Carolina 29425, United States
| | - Christin Edge
- Department
of Cell and Molecular Pharmacology, Medical
University of South Carolina, Charleston, South Carolina 29425, United States
| | - David N. Lewin
- Department
of Cell and Molecular Pharmacology, Medical
University of South Carolina, Charleston, South Carolina 29425, United States
| | - Naoto Kubota
- Liver
Tumor Translational Research Program, Simmons Comprehensive Cancer
Center, Division of Digestive and Liver Diseases, Department of Internal
Medicine, University of Texas Southwestern
Medical Center, Dallas, Texas 75390, United States
| | - Naoto Fujiwara
- Liver
Tumor Translational Research Program, Simmons Comprehensive Cancer
Center, Division of Digestive and Liver Diseases, Department of Internal
Medicine, University of Texas Southwestern
Medical Center, Dallas, Texas 75390, United States
| | - Fahmida Rasha
- Liver
Tumor Translational Research Program, Simmons Comprehensive Cancer
Center, Division of Digestive and Liver Diseases, Department of Internal
Medicine, University of Texas Southwestern
Medical Center, Dallas, Texas 75390, United States
| | - Cesia A. Marquez
- Liver
Tumor Translational Research Program, Simmons Comprehensive Cancer
Center, Division of Digestive and Liver Diseases, Department of Internal
Medicine, University of Texas Southwestern
Medical Center, Dallas, Texas 75390, United States
| | - Atsushi Ono
- Department
of Gastroenterology, Graduate School of
Biomedical & Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| | - Shiro Oka
- Department
of Gastroenterology, Graduate School of
Biomedical & Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| | - Kazuaki Chayama
- Hiroshima
Institute of Life Sciences, Hiroshima 734-8553, Japan
- Collaborative
Research Laboratory of Medical Innovation, Research Center for Hepatology
and Gastroenterology, Hiroshima University, Hiroshima 734-8553, Japan
- RIKEN Center
for Integrative Medical Sciences, Yokohama 230-0045, Japan
| | - Sara Lewis
- Department
of Radiology, Icahn School of Medicine at
Mount Sinai, New York, New York 10029, United States
| | - Bachir Taouli
- Department
of Radiology, Icahn School of Medicine at
Mount Sinai, New York, New York 10029, United States
| | - Myron Schwartz
- Department
of Radiology, Icahn School of Medicine at
Mount Sinai, New York, New York 10029, United States
- Department
of Surgery, Icahn School of Medicine at
Mount Sinai, New York, New York 10029, United States
| | - M Isabel Fiel
- Department
of Radiology, Icahn School of Medicine at
Mount Sinai, New York, New York 10029, United States
- Department
of Pathology, Icahn School of Medicine at
Mount Sinai, New York, New York 10029, United States
| | - Richard R. Drake
- Department
of Cell and Molecular Pharmacology, Medical
University of South Carolina, Charleston, South Carolina 29425, United States
| | - Yujin Hoshida
- Liver
Tumor Translational Research Program, Simmons Comprehensive Cancer
Center, Division of Digestive and Liver Diseases, Department of Internal
Medicine, University of Texas Southwestern
Medical Center, Dallas, Texas 75390, United States
| | - Anand S. Mehta
- Department
of Cell and Molecular Pharmacology, Medical
University of South Carolina, Charleston, South Carolina 29425, United States
| | - Peggi M. Angel
- Department
of Cell and Molecular Pharmacology, Medical
University of South Carolina, Charleston, South Carolina 29425, United States
| |
Collapse
|
7
|
Guo Y, Li T, Zhao Z, Sun Q, Chen M, Jiang Y, Yao Z, Hu B. Liver fibrosis automatic diagnosis utilizing dense-fusion attention contrastive learning network. Med Phys 2024; 51:5550-5562. [PMID: 38753547 DOI: 10.1002/mp.17130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 04/07/2024] [Accepted: 04/22/2024] [Indexed: 05/18/2024] Open
Abstract
BACKGROUND Liver fibrosis poses a significant public health challenge given its elevated incidence and associated mortality rates. Diffusion-Weighted Imaging (DWI) serves as a non-invasive diagnostic tool for supporting the identification of liver fibrosis. Deep learning, as a computer-aided diagnostic technology, can assist in recognizing the stage of liver fibrosis by extracting abstract features from DWI images. However, gathering samples is often challenging, posing a common dilemma in previous research. Moreover, previous studies frequently overlooked the cross-comparison information and latent connections among different DWI parameters. Thus, it is becoming a challenge to identify effective DWI parameters and dig potential features from multiple categories in a dataset with limited samples. PURPOSE A self-defined Multi-view Contrastive Learning Network is developed to automatically classify multi-parameter DWI images and explore synergies between different DWI parameters. METHODS A Dense-fusion Attention Contrastive Learning Network (DACLN) is designed and used to recognize DWI images. Concretely, a multi-view contrastive learning framework is constructed to train and extract features from raw multi-parameter DWI. Besides, a Dense-fusion module is designed to integrate feature and output predicted labels. RESULTS We evaluated the performance of the proposed model on a set of real clinical data and analyzed the interpretability by Grad-CAM and annotation analysis, achieving average scores of 0.8825, 0.8702, 0.8933, 0.8727, and 0.8779 for accuracy, precision, recall, specificity and F-1 score. Of note, the experimental results revealed that IVIM-f, CTRW-β, and MONO-ADC exhibited significant recognition ability and complementarity. CONCLUSION Our method achieves competitive accuracy in liver fibrosis diagnosis using the limited multi-parameter DWI dataset and finds three types of DWI parameters with high sensitivity for diagnosing liver fibrosis, which suggests potential directions for future research.
Collapse
Affiliation(s)
- Yuhui Guo
- School of Mathematics and Statistics, Lanzhou University, Lanzhou, China
- Gansu Provincial Key Laboratory of Wearable Computing, Lanzhou University, Lanzhou, China
| | - Tongtong Li
- Gansu Provincial Key Laboratory of Wearable Computing, Lanzhou University, Lanzhou, China
- School of Information Science and Engineering, Lanzhou University, Lanzhou, China
| | - Ziyang Zhao
- Gansu Provincial Key Laboratory of Wearable Computing, Lanzhou University, Lanzhou, China
- School of Information Science and Engineering, Lanzhou University, Lanzhou, China
| | - Qi Sun
- Gansu Provincial Key Laboratory of Wearable Computing, Lanzhou University, Lanzhou, China
- School of Information Science and Engineering, Lanzhou University, Lanzhou, China
| | - Miao Chen
- Gansu Provincial Key Laboratory of Wearable Computing, Lanzhou University, Lanzhou, China
- School of Information Science and Engineering, Lanzhou University, Lanzhou, China
| | - Yanli Jiang
- Department of Magnetic Resonance, Lanzhou University Second Hospital, Lanzhou, China
| | - Zhijun Yao
- Gansu Provincial Key Laboratory of Wearable Computing, Lanzhou University, Lanzhou, China
- School of Information Science and Engineering, Lanzhou University, Lanzhou, China
| | - Bin Hu
- Gansu Provincial Key Laboratory of Wearable Computing, Lanzhou University, Lanzhou, China
- School of Medical Technology, Beijing Institute of Technology, Beijing, China
- CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- Joint Research Center for Cognitive Neurosensor Technology of Lanzhou University & Institute of Semiconductors, Chinese Academy of Sciences, Lanzhou, China
| |
Collapse
|
8
|
He L, Xu J, Huang P, Bai Y, Chen H, Xu X, Hu Y, Liu J, Zhang H. miR-9-5p and miR-221-3p Promote Human Mesenchymal Stem Cells to Alleviate Carbon Tetrachloride-Induced Liver Injury by Enhancing Human Mesenchymal Stem Cell Engraftment and Inhibiting Hepatic Stellate Cell Activation. Int J Mol Sci 2024; 25:7235. [PMID: 39000343 PMCID: PMC11241704 DOI: 10.3390/ijms25137235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 07/16/2024] Open
Abstract
Mesenchymal stem cells (MSCs) have shown great potential for the treatment of liver injuries, and the therapeutic efficacy greatly depends on their homing to the site of injury. In the present study, we detected significant upregulation of hepatocyte growth factor (HGF) in the serum and liver in mice with acute or chronic liver injury. In vitro study revealed that upregulation of miR-9-5p or miR-221-3p promoted the migration of human MSCs (hMSCs) toward HGF. Moreover, overexpression of miR-9-5p or miR-221-3p promoted hMSC homing to the injured liver and resulted in significantly higher engraftment upon peripheral infusion. hMSCs reduced hepatic necrosis and inflammatory infiltration but showed little effect on extracellular matrix (ECM) deposition. By contrast, hMSCs overexpressing miR-9-5p or miR-221-3p resulted in not only less centrilobular necrosis and venous congestion but also a significant reduction of ECM deposition, leading to obvious improvement of hepatocyte morphology and alleviation of fibrosis around central vein and portal triads. Further studies showed that hMSCs inhibited the activation of hepatic stellate cells (HSCs) but could not decrease the expression of TIMP-1 upon acute injury and the expression of MCP-1 and TIMP-1 upon chronic injury, while hMSCs overexpressing miR-9-5p or miR-221-3p led to further inactivation of HSCs and downregulation of all three fibrogenic and proinflammatory factors TGF-β, MCP-1, and TIMP-1 upon both acute and chronic injuries. Overexpression of miR-9-5p or miR-221-3p significantly downregulated the expression of α-SMA and Col-1α1 in activated human hepatic stellate cell line LX-2, suggesting that miR-9-5p and miR-221-3p may partially contribute to the alleviation of liver injury by preventing HSC activation and collagen expression, shedding light on improving the therapeutic efficacy of hMSCs via microRNA modification.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Huanxiang Zhang
- Department of Cell Biology, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou 215123, China; (L.H.); (J.X.)
| |
Collapse
|
9
|
Destro ALF, Gonçalves DC, Alves TDS, Gregório KP, da Silva VM, Santos VR, de Castro OW, Filho HB, Garbino GST, Gonçalves RV, Oliveira JMD, Freitas MB. Iron and aluminum ore mining pollution induce oxidative and tissue damage on fruit-eating bats from the Atlantic Forest. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133285. [PMID: 38154190 DOI: 10.1016/j.jhazmat.2023.133285] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/30/2023] [Accepted: 12/13/2023] [Indexed: 12/30/2023]
Abstract
Mining, a vital industry for economic growth, poses significant environmental pollution challenges. Failures in tailings dam containment have caused environmental contamination and raised concerns about preserving the globally significant biodiversity in the Atlantic Forest, which is under severe threat. Fruit-eating bats are key for forest regeneration as essential seed dispersers and pollinators. This study focuses on two keystone species, Artibeus lituratus and Sturnira lilium, exploring the effects of iron ore mining area (FEOA) and aluminum ore mining area (ALOA) on these bats, respectively, and comparing to individuals from a preserved Atlantic Forest fragment (FFA). Bats from FEOA showed higher Aluminum (Al), Calcium (Ca), Iron (Fe) and Barium (Ba) liver accumulation, as well as Ca and Fe muscle accumulation. These animals also showed higher liver and kidney oxidative damage associated with liver fibrosis and kidney inflammation. Brain and muscle also showed oxidative stress. Bats from ALOA showed higher Ca and Ba liver accumulation and Ca, Zinc (Zn), and Ba muscle accumulation, along with higher brain oxidative stress, liver fibrosis, and kidney inflammation. Our findings indicate that iron and aluminum ore mining activities cause adverse effects on bat tissues, posing a potential threat to biodiversity maintenance in the Atlantic Forest.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Hernando Baggio Filho
- Department of Geography, Federal University of the Jequitinhonha and Mucuri Valleys, MG, Brazil
| | | | | | - Jerusa Maria de Oliveira
- Rede Nordeste de Biotecnologia (RENORBIO), Institute of Chemistry and Biotechnology, Federal University of Alagoas, Maceió, AL, Brazil
| | | |
Collapse
|
10
|
Mekala S, Sukumar G, Chawla S, Geesala R, Prashanth J, Reddy BJM, Mainkar P, Das A. Therapeutic Potential of Benzimidazoisoquinoline Derivatives in Alleviating Murine Hepatic Fibrosis. Chem Biodivers 2024; 21:e202301429. [PMID: 38221801 DOI: 10.1002/cbdv.202301429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 01/09/2024] [Accepted: 01/09/2024] [Indexed: 01/16/2024]
Abstract
Short Title: Benzimidazoisoquinoline derivatives as potent antifibrotics Hepatic fibrosis is a pathological condition of liver disease with an increasing number of cases worldwide. Therapeutic strategies are warranted to target the activated hepatic stellate cells (HSCs), the collagen-producing cells, an effective strategy for controlling the disease progression. Benzimidazoisoquinoline derivatives were synthesized as hybrid molecules by the combination of benzimidazoles and isoquinolines to evaluate their anti-fibrotic potential using an in-vitro and in-vivo model of hepatic fibrosis. A small library of benzimidazoisoquinoline derivatives (1-17 and 18-21) was synthesized from 2-aryl benzimidazole and acetylene functionalities through C-H and N-H activation. Compounds (10 and its recently synthesized derivatives 18-21) depicted a significant decrease in PDGF-BB and/or TGFβ-induced proliferation (1.7-1.9 -fold), migration (3.5-5.0 -fold), and fibrosis-related gene expressions in HSCs. These compounds could revert the hepatic damage caused by chronic exposure to hepatotoxicants, ethanol, and/or carbon tetrachloride as evident from the histological, biochemical, and molecular analysis. Anti-fibrotic effect of the compounds was supported by the decrease in the malondialdehyde level, collagen deposition, and gene expression levels of fibrosis-related markers such as α-SMA, COL1α1, PDGFRβ, and TGFRIIβ in the preclinical models of hepatic fibrosis. In conclusion, the synthesized benzimidazoisoquinoline derivatives (compounds 18, 19, 20, and 21) possess anti-fibrotic therapeutic potential against liver fibrosis.
Collapse
Affiliation(s)
- Sowmya Mekala
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad, TS-500 007, INDIA
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, INDIA
| | - Genji Sukumar
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad, TS-500007, INDIA
- Department of Chemistry, Adikavi Nannaya University, Rajamahendravaram, AP-533 296, INDIA
| | - Shilpa Chawla
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad, TS-500 007, INDIA
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, INDIA
| | - Ramasatyaveni Geesala
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad, TS-500 007, INDIA
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, INDIA
| | - Jupally Prashanth
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, INDIA
- Centre for X-ray Crystallography, Department of Analytical & Structural Chemistry, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad, TS-500 007, INDIA
| | - B Jagan Mohan Reddy
- Department of Chemistry, Adikavi Nannaya University, Rajamahendravaram, AP-533 296, INDIA
| | - Prathama Mainkar
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, INDIA
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad, TS-500007, INDIA
| | - Amitava Das
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad, TS-500 007, INDIA
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, INDIA
| |
Collapse
|
11
|
Meng X, Wang D, Zhang H, Kang T, Meng X, Liang S. Portulaca oleracea L. extract relieve mice liver fibrosis by inhibiting TLR-4/NF-κB, Bcl-2/Bax and TGF-β1/Smad2 signalling transduction. Nat Prod Res 2024:1-9. [PMID: 38164691 DOI: 10.1080/14786419.2023.2300034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 12/21/2023] [Indexed: 01/03/2024]
Abstract
Portulaca oleracea L. are annual herb, which has various pharmacological effects including hepatoprotective property. However, the effect of Portulaca oleracea L. (POL-1) in mice with carbon tetrachloride (CCl4)-induced liver fibrosis and its mechanism of action have not been clarified. POL-1 ameliorated the CCl4-induced liver fibrosis in mice, as shown by decreased collagen deposition and the decreased expression of liver fibrosis marker collagen I and α-smooth muscle actin (α-SMA) mRNA. In addition, treatment with POL-1 suppressed the proliferation of activated human hepatic stellate cell line (LX-2). POL-1 inhibited the oxidative stress and inflammation in fibrotic livers of mice. Mechanistically, POL-1 inhibited the CCl4-induced expression of toll-like receptor-4 (TLR4), myeloid differentiation factor 88 (MyD88), nuclear factor kappa-B (NF-κBp65) p65, Bcl2-associated X (Bax), transforming growth factor-β1 (TGF-β1) and drosophila mothers against decapentaplegic 2 (Smad2) proteins, upregulated B-cell lymphoma -2 (Bcl-2) proteins in livers of mice. These findings suggested that POL-1 attenuated liver fibrosis.
Collapse
Affiliation(s)
- Xianqun Meng
- Department of Traditional Chinese Medicine Identification, Liaoning University of Traditional Chinese Medicine, Dalian, China
| | - Dan Wang
- Department of Traditional Chinese Medicine Identification, Liaoning University of Traditional Chinese Medicine, Dalian, China
| | - Hui Zhang
- Department of Traditional Chinese Medicine Identification, Liaoning University of Traditional Chinese Medicine, Dalian, China
| | - Tingguo Kang
- Department of Traditional Chinese Medicine Identification, Liaoning University of Traditional Chinese Medicine, Dalian, China
| | - Xiansheng Meng
- Department of Traditional Chinese Medicine Identification, Liaoning University of Traditional Chinese Medicine, Dalian, China
| | - Shanshan Liang
- Plant Polysaccharide Research Center, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| |
Collapse
|
12
|
Verma S, Ishteyaque S, Washimkar KR, Verma S, Nilakanth Mugale M. Mitochondrial-mediated nuclear remodeling and macrophage polarizations: A key switch from liver fibrosis to HCC progression. Exp Cell Res 2024; 434:113878. [PMID: 38086504 DOI: 10.1016/j.yexcr.2023.113878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/24/2023] [Accepted: 12/03/2023] [Indexed: 12/17/2023]
Abstract
Liver fibrosis is a significant health burden worldwide and has emerged as the leading cause of Hepatocellular carcinoma (HCC) incidence. Mitochondria are the dynamic organelles that regulate the differentiation, survival, and polarization of macrophages. Nuclear-DNA-associated proteins, micro-RNAs, as well as macrophage polarization are essential for maintaining intracellular and extra-cellular homeostasis in the liver parenchyma. Dysregulated mitochondrial coding genes (ETS complexes I, II, III, IV, and V), non-coding RNAs (mitomiRs), and nuclear alteration lead to the production of reactive oxygen species (ROS) and inflammation which are implicated in the transition of liver fibrosis into HCC. Recent findings indicated the protecting effect of E74-like factor 3/peroxisome proliferator-activated receptor-γ (Elf-3/PPAR-γ). HDAR-y inhibits the deacetylation of PPAR-y and maintains the PPAR-y pathway. Elf-3 plays a tumor suppressive role through epithelial-mesenchymal transition-related gene and zinc finger E-box binding homeobox 2 (ZEB-2) domain. Additionally, the development of HCC includes the PI3K/Akt/mTOR and transforming Growth Factor β (TGF-β) pathway that promotes the Epithelial-mesenchymal transition (EMT) through Smad/Snail/Slug signaling cascade. In contrast, the TLR2/NOX2/autophagy axis promotes M2 polarization in HCC. Thus, a thorough understanding of the mitochondrial and nuclear reciprocal relationship related to macrophage polarization could provide new research opportunities concerning diseases with a significant impact on liver parenchyma towards developing liver fibrosis or liver cancer. Moreover, this knowledge can be used to develop new therapeutic strategies to treat liver diseases.
Collapse
Affiliation(s)
- Shobhit Verma
- Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute (CSIR-CDRI), Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sharmeen Ishteyaque
- Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute (CSIR-CDRI), Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Kaveri R Washimkar
- Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute (CSIR-CDRI), Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Smriti Verma
- Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute (CSIR-CDRI), Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Madhav Nilakanth Mugale
- Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute (CSIR-CDRI), Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
13
|
Zhang H, Xu J. Unveiling thioacetamide-induced toxicity: Multi-organ damage and omitted bone toxicity. Hum Exp Toxicol 2024; 43:9603271241241807. [PMID: 38531387 DOI: 10.1177/09603271241241807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
Thioacetamide (TAA), a widely employed hepatotoxic substance, has gained significant traction in the induction of liver failure disease models. Upon administration of TAA to experimental animals, the production of potent oxidative derivatives ensues, culminating in the activation of oxidative stress and subsequent infliction of severe damage upon multiple organs via dissemination through the bloodstream. This review summarized the various organ damages and corresponding mechanistic explanations observed in previous studies using TAA in toxicological animal experiments. The principal pathological consequences arising from TAA exposure encompass oxidative stress, inflammation, lipid peroxidation, fibrosis, apoptosis induction, DNA damage, and osteoclast formation. Recent in vivo and in vitro studies on TAA bone toxicity have confirmed that long-term high-dose use of TAA not only induces liver damage in experimental animals but also accompanies bone damage, which was neglected for a long time. By using TAA to model diseases in experimental animals and controlling TAA dosage, duration of use, and animal exposure environment, we can induce various organ injury models. It should be noted that TAA-induced injuries have a time-dependent effect. Finally, in our daily lives, especially for researchers, we should take precautions to minimize TAA exposure and reduce the probability of related organ injuries.
Collapse
Affiliation(s)
- Haodong Zhang
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, P.R. China
| | - Jian Xu
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, P.R. China
| |
Collapse
|
14
|
Jin Y, Kozan D, Anderson JL, Hensley M, Shen MC, Wen J, Moll T, Kozan H, Rawls JF, Farber SA. A high-cholesterol zebrafish diet promotes hypercholesterolemia and fasting-associated liver triglycerides accumulation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.01.565134. [PMID: 37961364 PMCID: PMC10635069 DOI: 10.1101/2023.11.01.565134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Zebrafish are an ideal model organism to study lipid metabolism and to elucidate the molecular underpinnings of human lipid-associated disorders. In this study, we provide an improved protocol to assay the impact of a high-cholesterol diet (HCD) on zebrafish lipid deposition and lipoprotein regulation. Fish fed HCD developed hypercholesterolemia as indicated by significantly elevated ApoB-containing lipoproteins (ApoB-LP) and increased plasma levels of cholesterol and cholesterol esters. Feeding of the HCD to larvae (8 days followed by a 1 day fast) and adult female fish (2 weeks, followed by 3 days of fasting) was also associated with a fatty liver phenotype that presented as severe hepatic steatosis. The HCD feeding paradigm doubled the levels of liver triacylglycerol (TG), which was striking because our HCD was only supplemented with cholesterol. The accumulated liver TG was unlikely due to increased de novo lipogenesis or inhibited β-oxidation since no differentially expressed genes in these pathways were found between the livers of fish fed the HCD versus control diets. However, fasted HCD fish had significantly increased lipogenesis gene fasn in adipose tissue and higher free fatty acids (FFA) in plasma. This suggested that elevated dietary cholesterol resulted in lipid accumulation in adipocytes, which supplied more FFA during fasting, promoting hepatic steatosis. In conclusion, our HCD zebrafish protocol represents an effective and reliable approach for studying the temporal characteristics of the physiological and biochemical responses to high levels of dietary cholesterol and provides insights into the mechanisms that may underlie fatty liver disease.
Collapse
Affiliation(s)
- Yang Jin
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD, United States
- Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, Aas, Norway
| | - Darby Kozan
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD, United States
- Department of Biology, Johns Hopkins University, Baltimore, MD, United States
| | - Jennifer L Anderson
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD, United States
| | - Monica Hensley
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD, United States
| | - Meng-Chieh Shen
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD, United States
| | - Jia Wen
- Department of Molecular Genetics and Microbiology, Duke Microbiome Center, Duke University School of Medicine, Durham, NC, United States
| | - Tabea Moll
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD, United States
- Department of Biology, Johns Hopkins University, Baltimore, MD, United States
| | - Hannah Kozan
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD, United States
| | - John F. Rawls
- Department of Molecular Genetics and Microbiology, Duke Microbiome Center, Duke University School of Medicine, Durham, NC, United States
| | - Steven A. Farber
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD, United States
- Department of Biology, Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
15
|
Kasahara N, Imi Y, Amano R, Shinohara M, Okada K, Hosokawa Y, Imamori M, Tomimoto C, Kunisawa J, Kishino S, Ogawa J, Ogawa W, Hosooka T. A gut microbial metabolite of linoleic acid ameliorates liver fibrosis by inhibiting TGF-β signaling in hepatic stellate cells. Sci Rep 2023; 13:18983. [PMID: 37923895 PMCID: PMC10624680 DOI: 10.1038/s41598-023-46404-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 10/31/2023] [Indexed: 11/06/2023] Open
Abstract
The antidiabetic drug pioglitazone ameliorates insulin resistance by activating the transcription factor PPARγ. In addition to its blood glucose-lowering action, pioglitazone exerts pleiotropic effects including amelioration of nonalcoholic fatty liver disease (NAFLD)/nonalcoholic steatohepatitis (NASH). The mechanism by which pioglitazone achieves this latter effect has remained unclear, however. We here show that pioglitazone administration increases the amount of linoleic acid (LA) metabolites in adipose tissue of KK-Ay mice. These metabolites are produced by lactic acid bacteria in the gut, and pioglitazone also increased the fraction of Lactobacillus in the gut microbiota. Administration of the LA metabolite HYA (10-hydroxy-cis-12-octadecenoic acid) to C57BL/6 J mice fed a high-fat diet improved liver histology including steatosis, inflammatory cell infiltration, and fibrosis. Gene ontology analysis of RNA-sequencing data for the liver revealed that the top category for genes downregulated by HYA treatment was related to extracellular matrix, and the expression of individual genes related to fibrosis was confirmed to be attenuated by HYA treatment. Mechanistically, HYA suppressed TGF-β-induced Smad3 phosphorylation and fibrosis-related gene expression in human hepatic stellate cells (LX-2). Our results implicate LA metabolites in the mechanism by which pioglitazone ameliorates liver fibrosis, and they suggest that HYA is a potential therapeutic for NAFLD/NASH.
Collapse
Affiliation(s)
- Nanaho Kasahara
- Laboratory of Nutritional Physiology, Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, 52-1 Yada, Suruga-Ku, Shizuoka, 422-8526, Japan
| | - Yukiko Imi
- Laboratory of Nutritional Physiology, Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, 52-1 Yada, Suruga-Ku, Shizuoka, 422-8526, Japan
| | - Reina Amano
- Laboratory of Nutritional Physiology, Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, 52-1 Yada, Suruga-Ku, Shizuoka, 422-8526, Japan
| | - Masakazu Shinohara
- Division of Molecular Epidemiology, Department of Future Medicine Sciences, Kobe University Graduate School of Medicine, Kobe, Hyogo, 650-0017, Japan
- The Integrated Center for Mass Spectrometry, Kobe University Graduate School of Medicine, Kobe, Hyogo, 650-0017, Japan
| | - Kumiko Okada
- Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Hyogo, 650-0017, Japan
| | - Yusei Hosokawa
- Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Hyogo, 650-0017, Japan
| | - Makoto Imamori
- Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Hyogo, 650-0017, Japan
| | | | - Jun Kunisawa
- Laboratory of Vaccine Materials and Laboratory of Gut Environmental System, Microbial Research Center for Health and Medicine, National Institutes of Biomedical Innovation, Health, and Nutrition (NIBIOHN), Osaka, 567-0085, Japan
| | - Shigenobu Kishino
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo-Ku, Kyoto, 606-8502, Japan
| | - Jun Ogawa
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo-Ku, Kyoto, 606-8502, Japan
| | - Wataru Ogawa
- Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Hyogo, 650-0017, Japan
| | - Tetsuya Hosooka
- Laboratory of Nutritional Physiology, Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, 52-1 Yada, Suruga-Ku, Shizuoka, 422-8526, Japan.
- Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Hyogo, 650-0017, Japan.
- Laboratory of Vaccine Materials and Laboratory of Gut Environmental System, Microbial Research Center for Health and Medicine, National Institutes of Biomedical Innovation, Health, and Nutrition (NIBIOHN), Osaka, 567-0085, Japan.
| |
Collapse
|
16
|
Meng X, Kuang H, Wang Q, Zhang H, Wang D, Kang T. A polysaccharide from Codonopsis pilosula roots attenuates carbon tetrachloride-induced liver fibrosis via modulation of TLR4/NF-κB and TGF-β1/Smad3 signaling pathway. Int Immunopharmacol 2023; 119:110180. [PMID: 37068337 DOI: 10.1016/j.intimp.2023.110180] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 03/22/2023] [Accepted: 04/10/2023] [Indexed: 04/19/2023]
Abstract
The present work reported the extraction, purification, characterization of a polysaccharide from roots of Codonopsis pilosula (CPP-A-1) and its effect on liver fibrosis. The findings exhibited that the molecular weight of CPP-A-1 was 9424 Da, and monosaccharide composition were glucose and fructose and minor contents of arabinose. Structural characterization of CPP-A-1 has a backbone consisting of→(2-β-D-Fruf-1)n→ (n ≈ 46-47). Treatment with CPP-A-1 inhibited the proliferation of transforming growth factor-beta 1 (TGF-β)-activated human hepatic stellate cell line (LX-2), and induced cell apoptosis. We used carbon tetrachloride (CCl4) to construct mice model of liver fibrosis and subsequently administered CPP-A-1 treatment. The results showed that CPP-A-1 alleviated CCl4-induced liver fibrosis as demonstrated by reversing liver histological changes, decreased serum alanine aminotransferase (ALT), aspartate aminotransferase (AST) contents, collagen deposition, and downregulated fibrosis-related collagen I and α-smooth muscle actin (α-SMA), and inhibited the generation of excessive extracellular matrix (ECM) components by restoring the balance between matrix metalloproteinases (MMPs) and its inhibitor (TIMPs). Moreover, CPP-A-1 improved anti-oxidation effects detected by promoting liver superoxide dismutase (SOD), glutathione (GSH) and Mn-SOD levels, and inhibition of liver malondialdehyde (MDA) and iNOS levels. CPP-A-1 also ameliorated the inflammatory factor (tumor necrosis factor-alpha (TNF-α) and interleukin (IL)-6), and expression of inflammatory factor genes (TNF-α, IL-11 mRNA). In addition, our results showed that CPP-A-1 inhibited Toll-like receptor 4 (TLR4)/nuclear factor kappa-B (NF-κB) and transforming growth factor-β1 (TGF-β1)/drosophila mothers against decapentaplegic 3 (Smad3) signaling pathways. Furthermore, In vitro tests of LX-2 cells demonstrated that CPP-A-1 not only inhibited α-SMA expression with lipopolysaccharide (LPS) or TGF-β1 stimulation, but also inhibited TLR4/NF-κB and TGF-β1/Smad3 signaling, similar to corresponding small-molecule inhibitors. Therefore, CPP-A-1 might exert suppressive effects against liver fibrosis by regulating TLR4/NF-κB and TGF-β1/Smad3 signaling, our findings support a possible application of CPP-A-1 for the treatment of liver fibrosis.
Collapse
Affiliation(s)
- Xianqun Meng
- Department of Traditional Chinese Medicine Identification, Liaoning University Of Traditional Chinese Medicine, Dalian 116600, China
| | - Haixue Kuang
- Key Laboratory of Chinese Materia Medica, Heilongjiang University of Chinese Medicine, Ministry of Education, Harbin 150040, China
| | - Qiuhong Wang
- Key Laboratory of Chinese Medicinal Herbs Preparation, Guangdong Pharmaceutical University, Guangdong 510000, China
| | - Hui Zhang
- Department of Traditional Chinese Medicine Identification, Liaoning University Of Traditional Chinese Medicine, Dalian 116600, China
| | - Dan Wang
- Department of Traditional Chinese Medicine Identification, Liaoning University Of Traditional Chinese Medicine, Dalian 116600, China.
| | - Tingguo Kang
- Department of Traditional Chinese Medicine Identification, Liaoning University Of Traditional Chinese Medicine, Dalian 116600, China.
| |
Collapse
|
17
|
Abou Rayia DM, Ashour DS, Abo Safia HS, Abdel Ghafar MT, Amer RS, Saad AE. Human umbilical cord blood mesenchymal stem cells as a potential therapy for schistosomal hepatic fibrosis: an experimental study. Pathog Glob Health 2023; 117:190-202. [PMID: 35435145 PMCID: PMC9970248 DOI: 10.1080/20477724.2022.2064795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
The objective of our study was to assess the effect of human umbilical cord blood (HUCB) mesenchymal stem cells (MSCs) transplantation on schistosomal hepatic fibrosis in mice. The study animals were divided into three groups. Group I is a control group, where the mice were infected with Schistosoma mansoni cercariae and remained untreated. The mice of the other two groups were infected and treated with either praziquantel (Group II) or HUCB-MSCs (Group III). Liver function tests, as well as histopathological evaluation of liver fibrosis using hematoxylin and eosin and Masson's trichrome stains, were performed. Additionally, an immunohistochemical study was carried out using anti-glial fibrillary acidic protein (GFAP) in hepatic stellate cells. Compared to the control group, the treated (praziquantel and MSCs) groups showed a substantial improvement, with a significant difference regarding the histopathological evaluation of liver fibrosis in the MSCs-treated group. In conclusion, MSCs could be a promising and efficient cell therapy for liver fibrosis.
Collapse
Affiliation(s)
- Dina M Abou Rayia
- Medical Parasitology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Dalia S Ashour
- Medical Parasitology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Hend S Abo Safia
- Pathology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | | | - Rania S Amer
- Clinical Pathology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Abeer E Saad
- Medical Parasitology Department, Faculty of Medicine, Tanta University, Tanta, Egypt.,Medical Parasitology Sub-unit, Pathology Department, College of Medicine, Jouf University, Sakaka, Saudi Arabia
| |
Collapse
|
18
|
Lin CY, Mamani UF, Guo Y, Liu Y, Cheng K. Peptide-Based siRNA Nanocomplexes Targeting Hepatic Stellate Cells. Biomolecules 2023; 13:448. [PMID: 36979383 PMCID: PMC10046633 DOI: 10.3390/biom13030448] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 03/04/2023] Open
Abstract
Liver fibrosis is the excessive accumulation of extracellular matrix (ECM) in the liver due to chronic injuries and inflammation. These injuries activate and transform quiescent hepatic stellate cells (HSCs) into proliferative myofibroblast-like cells, which are the key contributors to the secretin of ECM in the fibrotic liver. The insulin-like growth factor 2 receptor (IGF2R) is a multifunctional receptor that is overexpressed on activated HSCs and is a specific molecular marker of activated HSCs in the fibrotic liver. We recently discovered an IGF2R-specific peptide that significantly increases the binding affinity and uptake of a protein-based siRNA nanocomplex to activated HSCs. However, there is a potential concern about the immunogenicity of protein-based siRNA delivery systems. In this study, we used the IGF2R-specific peptide to modify a small peptide-based siRNA nanocomplex for HSC-specific drug delivery. We incorporated a short spacer and glutamate residues into the IGF2R peptides. The siRNA nanocomplex modified with the IGF2R-3GK6E peptide demonstrated higher HSC specificity compared to an unmodified nanocomplex. This peptide-based nanocomplex provides a promising platform to effectively deliver Pcbp2 siRNA to activated HSCs for the treatment of liver fibrosis.
Collapse
Affiliation(s)
| | | | | | | | - Kun Cheng
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO 64108, USA
| |
Collapse
|
19
|
Zhang C, Shao Q, Liu M, Wang X, Loor JJ, Jiang Q, Cuan S, Li X, Wang J, Li Y, He L, Huang Y, Liu G, Lei L. Liver fibrosis is a common pathological change in the liver of dairy cows with fatty liver. J Dairy Sci 2023; 106:2700-2715. [PMID: 36823013 DOI: 10.3168/jds.2022-22021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 10/24/2022] [Indexed: 02/23/2023]
Abstract
Fatty liver (i.e., hepatic lipidosis) is a prevalent metabolic disorder in dairy cows during the transition period, characterized by excess hepatic accumulation of triglyceride (TG), tissue dysfunction, and cell death. Detailed pathological changes, particularly hepatic fibrosis, during fatty liver remain to be determined. Liver fibrosis occurs as a consequence of liver damage, resulting from the excessive accumulation of extracellular matrix, which distorts the architecture of the normal liver, compromising its normal synthetic and metabolic functions. Thus, we aimed to investigate liver fibrosis status and its potential causal factors including oxidative stress, hepatocyte apoptosis, and production of inflammatory cytokines in the liver of cows with fatty liver. Forty-five dairy cows (parity, 3-5) were selected, and liver biopsy and blood were collected on the second week postpartum (days in milk, 10-14 d). On the basis of the degree of lipid accumulation in liver, selected cows were categorized into normal (n = 25; TG <1% wet wt), mild fatty liver (n = 15; 1% ≤ TG <5% wet wt), and moderate fatty liver (n = 5; 5% ≤ TG <10% wet wt). Compared with normal cows, blood concentrations of nonesterified fatty acids and β-hydroxybutyrate, along with alanine aminotransferase and aspartate aminotransferase activities, were greater in the cows with fatty liver (mild and moderate). Hepatic extracellular matrix deposition, as indicated by Picrosirius red staining, was greater in cows with fatty liver than those with normal ones. In addition, we observed an increased proportion of collagen type I fiber in extracellular matrix with increased lipid accumulation in the liver. Compared with normal cows, the area of α-smooth muscle actin (α-SMA)-positive staining along with the mRNA abundance of collagen type I α 1 (COL1A1), ACTA2 (gene encoding α-SMA), and transforming growth factor-β (TGFB) were greater in cows with fatty liver. Compared with normal cows, hepatic contents of malondialdehyde, glutathione disulfide, and 8-isoprostane were greater, whereas total antioxidant capacity, the hepatic content of glutathione, and activities of antioxidant indicators, including superoxide dismutase, glutathione peroxidase, and catalase, were lower in cows with fatty liver. The number of terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling-positive cells and abundance of apoptosis-related molecules BAX, CASP3, CASP8, and CASP9 were greater in cows with fatty liver. However, mRNA abundance of the anti-apoptotic gene BCL2 did not differ. The mRNA abundance of pro-inflammatory cytokines including tumor necrosis factor-α (TNFA), interleukin-1β (IL1B), and interleukin-6 (IL6) was greater in the liver of cows with fatty liver. Overall, the present study indicated that fibrosis is a common pathological response to liver damage and is associated with oxidative stress, hepatocyte death, and inflammation.
Collapse
Affiliation(s)
- Cai Zhang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, China
| | - Qi Shao
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun, 130062, Jilin, China
| | - Mingchao Liu
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, 071001, China
| | - Xueying Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, China
| | - Juan J Loor
- Mammalian NutriPhysioGenomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801
| | - Qianming Jiang
- Mammalian NutriPhysioGenomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801
| | - Shunan Cuan
- College of Biological and Pharmaceutical Engineering, West Anhui University, Lu'an 237012, China
| | - Xinwei Li
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun, 130062, Jilin, China
| | - Jianguo Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shanxi, China
| | - Yuanxiao Li
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, China
| | - Lei He
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, China
| | - Yong Huang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, China
| | - Guowen Liu
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun, 130062, Jilin, China.
| | - Lin Lei
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun, 130062, Jilin, China.
| |
Collapse
|
20
|
Li S, Zhuge A, Wang K, Xia J, Wang Q, Han S, Shen J, Li L. Obeticholic acid and ferrostatin-1 differentially ameliorate non-alcoholic steatohepatitis in AMLN diet-fed ob/ob mice. Front Pharmacol 2022; 13:1081553. [PMID: 36588706 PMCID: PMC9800415 DOI: 10.3389/fphar.2022.1081553] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022] Open
Abstract
Introduction: Non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH) are common chronic liver diseases with limited treatment options. Methods: Ob/ob mice (6 weeks old) were fed with the Control diet or amylin liver NASH (AMLN) diet for 24 weeks to establish the NASH, the AMLN diet-fed mice were treated with obeticholic acid (OCA), ferrostatin-1 (Fer-1) or their combination for 7 weeks. Finally, various clinical profiles were assessed. Results: Our results indicate that Fer-1 exerts better effects on improving body weight, blood glucose levels, transaminase levels and insulin resistance than OCA. OCA has a profound effect on ameliorating lipid accumulation. OCA and Fer-1 differentially inhibit the activation of hepatic Kupffer cells and HSCs. The combination of OCA and Fer-1 significantly reduces inflammation and protects mice against liver oxidative stress. OCA and Fer-1 differentially reshape the intestinal microbiota and affect the hepatic lipidome. Discussion: Our study compares the effects of OCA, Fer-1 and their combination on various clinical profiles in NASH. These data demonstrate that different drug combinations results in different improvements, and these discoveries provide a reference for the use of the OCA, Fer-1 and their combination in the clinical treatment of NAFLD/NASH.
Collapse
Affiliation(s)
- Shengjie Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Aoxiang Zhuge
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Kaicen Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiafeng Xia
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qiangqiang Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shengyi Han
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jian Shen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China,Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China,*Correspondence: Lanjuan Li,
| |
Collapse
|
21
|
Malik P, Pillai S, Agarwal K, Abdelwahed S, Bhandari R, Singh A, Chidharla A, Patel K, Singh P, Manaktala P, Rabbani R, Koritala T, Gupta S. Diagnostic Accuracy of Elastography and Liver Disease: A Meta-Analysis. Gastroenterology Res 2022; 15:232-239. [PMID: 36407808 PMCID: PMC9635782 DOI: 10.14740/gr1557] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 09/19/2022] [Indexed: 08/10/2023] Open
Abstract
BACKGROUND Ultrasound-based transient elastography (TE) is a non-invasive alternative to liver biopsy for the staging of hepatic fibrosis due to various chronic liver diseases. This meta-analysis aims to assess the diagnostic accuracy of TE for detecting liver cirrhosis (F4) and severe fibrosis (F3) in patients with chronic liver diseases, in comparison to the gold standard liver biopsy. METHODS A systematic search was performed using PubMed search engine following Preferred Reporting Items for Systematic reviews and Meta-Analysis (PRISMA) guidelines from inception to May 2021. The meta-analysis studies evaluating the diagnostic accuracy of TE for severe fibrosis and cirrhosis were identified. We conducted a meta-meta-analysis to generate pooled estimates of the sensitivity, specificity, and diagnostic odds ratios (ORs) for F3 and F4 fibrosis stage. RESULTS We included five studies with a total of 124 sub-studies and 20,341 patients in our analysis. Three studies have reported the diagnostic accuracy of TE in detecting F3/severe fibrosis stage and found 81.9% pooled sensitivity (95% confidence interval (CI): 79.9-83.7%; P < 0.001) (I2 = 0%), 84.7% pooled specificity (95% CI: 81.3-87.6%) (I2 = 81%; P = 0.02). All five studies reported the diagnostic accuracy of TE in detecting F4/liver cirrhosis stage. We found 84.8% pooled sensitivity (95% CI: 81.4-87.7%) (I2 = 86.4%; P < 0.001), 87.5% pooled specificity (95% CI: 85.4-89.3%) (I2 = 90%; P < 0.001) and pooled diagnostic OR (41.8; 95% CI: 3.9 - 56.5) (I2 = 87%; P < 0.001). CONCLUSIONS Ultrasound-based TE has excellent diagnostic accuracy for identifying cirrhosis and liver fibrosis stages 3. Future studies should focus on estimating the diagnostic accuracy of other fibrosis stages in chronic liver disease patients. This will eventually decrease the risk associated with invasive liver biopsy.
Collapse
Affiliation(s)
- Preeti Malik
- Department of Pathology, Montefiore Medical Center, Bronx, NY, USA
- Preeti Malik and Shreejith Pillai contributed equally to this article as first authors
| | - Shreejith Pillai
- Department of Internal Medicine, Henry Ford Health System, Detroit, MI, USA
- Preeti Malik and Shreejith Pillai contributed equally to this article as first authors
| | - Kriti Agarwal
- Department of Internal Medicine, Hackensack Meridian Health Palisades Medical Center, North Bergen, NJ, USA
| | - Salwa Abdelwahed
- Department of Family and Community Medicine, University of Missouri, Kansas City, MO, USA
| | - Renu Bhandari
- Department of Internal Medicine, Manipal College of Medical Sciences, Pokhara, Nepal
| | - Abhishek Singh
- Department of Internal Medicine, Mount Sinai Morningside, New York, NY, USA
| | - Anusha Chidharla
- Department of Hematology Oncology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Kajal Patel
- Department of Internal Medicine, Smt Kashibai Navale Medical College, Nahre, Maharashtra, India
| | | | - Pritika Manaktala
- Department of Internal Medicine, Canton Medical Education Foundation/NEOMED, Canton, OH, USA
| | - Rizwan Rabbani
- Department of Internal Medicine, Temple University Hospital, Philadelphia, PA, USA
| | - Thoyaja Koritala
- Department of Internal Medicine, Mayo Clinic Health System, Mankato, MN, USA
| | - Sachin Gupta
- Department of Internal Medicine, Reading Hospital, West Reading, PA, USA
| |
Collapse
|
22
|
Zhou L, Liang Q, Li Y, Cao Y, Li J, Yang J, Liu J, Bi J, Liu Y. Collagenase-I decorated co-delivery micelles potentiate extracellular matrix degradation and hepatic stellate cell targeting for liver fibrosis therapy. Acta Biomater 2022; 152:235-254. [PMID: 36087869 DOI: 10.1016/j.actbio.2022.08.065] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 08/25/2022] [Accepted: 08/29/2022] [Indexed: 11/01/2022]
Abstract
Liver fibrosis is a pathological process of multiple chronic liver diseases progressing to cirrhosis for which there are currently no effective treatment options. During fibrosis progression, the overproduction of extracellular matrix (ECM) collagen secreted by hepatic stellate cells (HSCs) greatly impedes drug delivery and reduces drug therapeutic effects. In this study, a glycyrrhetinic acid (GA)-conjugated prodrug micellar system with collagenase I (COL) decoration (COL-HA-GA, abbreviated as CHG) was designed to codelivery sorafenib (Sora/CHG, abbreviated as S/CHG) for potentiating ECM degradation and HSCs targeting on liver fibrosis therapy. In ECM barrier models established in vitro or in vivo, CHG micelles efficiently degraded pericellular collagen and demonstrated enormous ECM penetration abilities as well as superior HSCs internalization. Moreover, CHG micelles exhibited more Sora & GA accumulations and activated HSCs targeting efficiencies in the fibrotic livers than those in the normal livers. More importantly, S/CHG micelles were more effective in anti-liver fibrosis by lowering the collagen content, inhibiting the HSCs activation, as well as down-regulating the fibrosis-related factors, leading to reverse the fibrotic liver to normal liver through the multi-mechanisms including angiogenesis reduction, liver fibrosis microenvironment regulation, and epithelial-mesenchymal transition inhibition. In conclusion, the developed COL decorated nano-codelivery system with fibrotic ECM collagen degradation and activated HSCs targeting dual-functions exhibited great potential for liver fibrosis therapy. STATEMENT OF SIGNIFICANCE: A glycyrrhetinic acid (GA)-conjugated prodrug with collagenase I (COL) decoration (CHG) was designed for codelivery with sorafenib (S/CHG), potentiating extracellular matrix (ECM) degradation-penetration and hepatic stellate cells (HSCs) targeting on liver fibrosis therapy. In ECM barrier models, CHG micelles efficiently degraded pericellular collagen and demonstrated ECM penetration abilities, as well as displayed superior HSCs internalization. Moreover, S/CHG micelles were more effective in anti-liver fibrosis by lowering the collagen content, inhibiting the HSCs activation, as well as down-regulating cytokines, reversing the fibrotic liver to normal through various mechanisms. In conclusion, the developed fibrotic ECM degradation and HSCs targeting dual-functional nano-codelivery system provided a prospective potentiality in liver fibrosis therapy.
Collapse
Affiliation(s)
- Liyue Zhou
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, No. 1160, Shengli Street, Yinchuan, 750004, China
| | - Qiangwei Liang
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, No. 1160, Shengli Street, Yinchuan, 750004, China
| | - Yifan Li
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, No. 1160, Shengli Street, Yinchuan, 750004, China
| | - Yongjing Cao
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, No. 1160, Shengli Street, Yinchuan, 750004, China
| | - Juan Li
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, No. 1160, Shengli Street, Yinchuan, 750004, China
| | - Jiayu Yang
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, No. 1160, Shengli Street, Yinchuan, 750004, China
| | - Jinxia Liu
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, No. 1160, Shengli Street, Yinchuan, 750004, China
| | - Jiawei Bi
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, No. 1160, Shengli Street, Yinchuan, 750004, China
| | - Yanhua Liu
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, No. 1160, Shengli Street, Yinchuan, 750004, China.
| |
Collapse
|
23
|
Karmacharya MB, Hada B, Park SR, Kim KH, Choi BH. Granulocyte-macrophage colony-stimulating factor (GM-CSF) shows therapeutic effect on dimethylnitrosamine (DMN)-induced liver fibrosis in rats. PLoS One 2022; 17:e0274126. [PMID: 36054162 PMCID: PMC9439244 DOI: 10.1371/journal.pone.0274126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 08/22/2022] [Indexed: 11/18/2022] Open
Abstract
This study was undertaken to investigate the inhibitory effects of granulocyte-macrophage colony-stimulating factor (GM-CSF) on dimethylnitrosamine (DMN)-induced liver fibrosis in rats. Liver fibrosis was induced in Sprague-Dawley rats by injecting DMN intraperitoneally (at 10 mg/kg of body weight) daily for three consecutive days per week for 4 weeks. To investigate the effect of GM-CSF on disease onset, GM-CSF (50 μg/kg of body weight) was co-treated with DMN for 2 consecutive days per week for 4 weeks (4-week groups). To observe the effect of GM-CSF on the progression of liver fibrosis, GM-CSF was post-treated alone at 5–8 weeks after the 4 weeks of DMN injection (8-week groups). We found that DMN administration for 4 weeks produced molecular and pathological manifestations of liver fibrosis, that is, it increased the expressions of collagen type I, alpha-smooth muscle actin (α-SMA), and transforming growth factor-β1 (TGF-β1), and decreased peroxisome proliferator-activated receptor gamma (PPAR-γ) expression. In addition, elevated serum levels of aspartate aminotransferase (AST), total bilirubin level (TBIL), and decreased albumin level (ALB) were observed. In both the 4-week and 8-week groups, GM-CSF clearly improved the pathological liver conditions in the gross and histological observations, and significantly recovered DMN-induced increases in AST and TBIL and decreases in ALB serum levels to normal. GM-CSF also significantly decreased DMN-induced increases in collagen type I, α-SMA, and TGF-β1 and increased DMN-induced decreases in PPAR-γ expression. In the DMN groups, survival decreased continuously for 8 weeks after DMN treatment for the first 4 weeks. GM-CSF showed a survival benefit when co-treated for the first 4 weeks but a marginal effect when post-treated for 5–8 weeks. In conclusion, co-treatment of GM-CSF showed therapeutic effects on DMN-induced liver fibrosis and survival rates in rats, while post-treatment efficiently blocked liver fibrosis.
Collapse
Affiliation(s)
| | - Binika Hada
- Department of Biomedical Sciences, Inha University College of Medicine, Incheon, South Korea
| | - So Ra Park
- Department of Physiology and Biophysics, Inha University College of Medicine, Incheon, South Korea
| | - Kil Hwan Kim
- Veterans Medical Research Institute, Veterans Health Service Medical Center, Seoul, South Korea
- * E-mail: (BHC); (KHK)
| | - Byung Hyune Choi
- Department of Biomedical Sciences, Inha University College of Medicine, Incheon, South Korea
- * E-mail: (BHC); (KHK)
| |
Collapse
|
24
|
Aly AA, Zaky EA, Khatab NR, Hameed AM, Kadasah S. The Biological and Chemical Ameliorative Effects of Bread Substituted with Dried Moringa Leaves. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.103875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|
25
|
Sferrazzo G, Palmeri R, Restuccia C, Parafati L, Siracusa L, Spampinato M, Carota G, Distefano A, Di Rosa M, Tomasello B, Costantino A, Gulisano M, Li Volti G, Barbagallo I. Mangifera indica L. Leaves as a Potential Food Source of Phenolic Compounds with Biological Activity. Antioxidants (Basel) 2022; 11:antiox11071313. [PMID: 35883804 PMCID: PMC9312095 DOI: 10.3390/antiox11071313] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/24/2022] [Accepted: 06/27/2022] [Indexed: 12/25/2022] Open
Abstract
It is well recognized that functional foods rich in antioxidants and antiinflammation agents including polyphenols, probiotics/prebiotics, and bioactive compounds have been found to have positive effects on the aging process. In particular, fruits play an important role in regular diet, promoting good health and longevity. In this study, we investigated on biological properties of extract obtained from Mangifera indica L. leaves in preclinical in vitro models. Specifically, the profile and content of bioactive compounds, the antimicrobial potential toward food spoilage and pathogenic bacterial species, and the eventually protective effect in inflammation were examined. Our findings revealed that MLE was rich in polyphenols, showing a content exclusively in the subclass of benzophenone/xanthone metabolites, and these phytochemical compounds demonstrated the highest antioxidant capacity and greatest in vitro antibacterial activity toward different bacterial species such as Bacillus cereus, B. subtilis, Pseudomonas fluorescens, Staphylococcus aureus, and St. haemolyticus. Furthermore, our data showed an in vitro anti-inflammatory, antioxidant, and antifibrotic activity.
Collapse
Affiliation(s)
- Giuseppe Sferrazzo
- Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy; (G.S.); (B.T.); (A.C.); (M.G.)
| | - Rosa Palmeri
- Department of Agricultural, Food and Environment, University of Catania, 95123 Catania, Italy; (R.P.); (C.R.); (L.P.)
| | - Cristina Restuccia
- Department of Agricultural, Food and Environment, University of Catania, 95123 Catania, Italy; (R.P.); (C.R.); (L.P.)
| | - Lucia Parafati
- Department of Agricultural, Food and Environment, University of Catania, 95123 Catania, Italy; (R.P.); (C.R.); (L.P.)
| | - Laura Siracusa
- Istituto di Chimica Biomolecolare del CNR (ICB-CNR), Via Paolo Gaifami 18, 95126 Catania, Italy;
| | - Mariarita Spampinato
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 87, 95125 Catania, Italy; (M.S.); (G.C.); (A.D.); (M.D.R.); (G.L.V.)
| | - Giuseppe Carota
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 87, 95125 Catania, Italy; (M.S.); (G.C.); (A.D.); (M.D.R.); (G.L.V.)
| | - Alfio Distefano
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 87, 95125 Catania, Italy; (M.S.); (G.C.); (A.D.); (M.D.R.); (G.L.V.)
| | - Michelino Di Rosa
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 87, 95125 Catania, Italy; (M.S.); (G.C.); (A.D.); (M.D.R.); (G.L.V.)
| | - Barbara Tomasello
- Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy; (G.S.); (B.T.); (A.C.); (M.G.)
| | - Angelita Costantino
- Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy; (G.S.); (B.T.); (A.C.); (M.G.)
- Interuniversity Consortium for Biotechnology, Area di Ricerca, Padriciano, 34149 Trieste, Italy
| | - Massimo Gulisano
- Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy; (G.S.); (B.T.); (A.C.); (M.G.)
- Interuniversity Consortium for Biotechnology, Area di Ricerca, Padriciano, 34149 Trieste, Italy
| | - Giovanni Li Volti
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 87, 95125 Catania, Italy; (M.S.); (G.C.); (A.D.); (M.D.R.); (G.L.V.)
| | - Ignazio Barbagallo
- Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy; (G.S.); (B.T.); (A.C.); (M.G.)
- Correspondence:
| |
Collapse
|
26
|
Hameed S, Ur Rehman A, Massey S, Syed NIH, Anwar F, Ahmed D, Ahmad S. Grevillea robusta Delayed the Progression of Experimentally Induced Hepatic Fibrosis and Cirrhosis in Wistar Rats by Attenuating the Expression of Smooth Muscle Actin, Collagen, and TGF-β. Front Pharmacol 2022; 13:904584. [PMID: 35784733 PMCID: PMC9240227 DOI: 10.3389/fphar.2022.904584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 04/20/2022] [Indexed: 11/26/2022] Open
Abstract
The chronic damage to the liver causes fibrosis, especially when different proteins are accumulated in the liver, which is the basic characteristic of chronic liver damage. The excessive accumulation of the matrix protein such as collagen causes liver fibrosis. Liver fibrosis leads to cirrhosis, liver failure, and portal vein hypertension. Plants having antioxidants, free radical scavenging activities, and anti-inflammatory constituents are believed to be hepatoprotective in nature. Grevillea robusta (GR) is native to the subtropical environment. Its in vitro antioxidant, cytotoxic, and free radical scavenging activities are known, while the effect on liver fibrosis and cirrhosis remains elusive. The aim of this study was to evaluate the hepatoprotective and antifibrotic effects of Grevillea robusta plant. GR leaf extract (GREE) was prepared from the hydroethanolic extract (70%). Polyphenol and flavonoid contents and the in vitro antioxidant activity of the extract were determined. In vivo hepatitis was induced in Wistar rats by continual IP injections of CCl4. GREE was administered by oral gavage at a dose of 100, 300, and 500 mg/kg of body weight once daily for 4 weeks. Variations in rat’s body weight, liver-to-body weight ratio, serum alanine aminotransferases, gamma-glutamyltransferase, liver histology, and cellular markers of liver fibrosis were evaluated. Serum levels of alanine aminotransferase (ALT) (p < 0.05) and gamma-glutamyltransferase (γ-GT) (p < 0.001) were decreased in the treatment group compared with the disease control group. RBC count was increased (p < 0.001) in the treatment group compared with the disease control group. The expression of alpha-SMA was downregulated to 40% (p < 0.05) and that of collagen was decreased by 9% (p < 0.05) compared with the disease control group. Extracellular matrix deposition and necrotic areas were also decreased as compared to the disease control group. It can be concluded that GR possesses hepatoprotective action by virtue of antioxidant constituents and delays the progression of liver cirrhosis by suppressing the activation of extracellular matrix–producing cells in the liver.
Collapse
Affiliation(s)
- Saaid Hameed
- Faculty of Pharmacy, The University of Lahore, Lahore, Pakistan
| | - Atta Ur Rehman
- Department of Pharmacy, Faculty of Natural Sciences, Forman Christian College, Lahore, Pakistan
- *Correspondence: Atta Ur Rehman, ; Fareeha Anwar,
| | - Shazma Massey
- Department of Chemistry, Faculty of Natural Sciences, Forman Christian College, Lahore, Pakistan
| | | | - Fareeha Anwar
- Riphah Institute of Pharmaceutical Sciences, Lahore Campus, Lahore, Pakistan
- *Correspondence: Atta Ur Rehman, ; Fareeha Anwar,
| | - Dildar Ahmed
- Department of Chemistry, Faculty of Natural Sciences, Forman Christian College, Lahore, Pakistan
| | - Sarfraz Ahmad
- Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, ON, Canada
| |
Collapse
|
27
|
Al Danaf L, Hussein Kamareddine M, Fayad E, Hussain A, Farhat S. Correlation between Fibroscan and laboratory tests in non-alcoholic fatty liver disease/non-alcoholic steatohepatitis patients for assessing liver fibrosis. World J Hepatol 2022; 14:744-753. [PMID: 35646268 PMCID: PMC9099100 DOI: 10.4254/wjh.v14.i4.744] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 07/14/2021] [Accepted: 03/16/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Non-alcoholic fatty liver disease (NAFLD) is a spectrum of disease ranging from simple steatosis to non-alcoholic steatohepatitis (NASH), through to advanced fibrosis and cirrhosis. Many patients with NAFLD remain undiagnosed and recognizing those at risk is very crucial. Although liver biopsy is the gold standard method for diagnosing and staging NAFLD, non-invasive imaging and lab modalities are also very promising in diagnosing these diseases. AIM To explore some of these non-invasive modalities in this context and assess how they hold up in terms of making a diagnosis while avoiding an invasive procedure like a liver biopsy. METHODS This study was conducted on NAFLD/NASH patients (n = 73) who underwent Fibroscan examinations at Saint George Hospital University Medical Center over 17 mo in order to assess liver fibrosis. Obtained Fibroscan results were correlated to laboratory tests and calculated aspartate transaminase (AST)/alanine transaminase (ALT) ratio, AST platelet ratio index (APRI) score and Fibrosis-4 score. RESULTS A significant age difference was observed across fibrosis stages of investigated patients. The mean stiffness score was 9.48 ± 11.77 KPa. A significant negative correlation was observed between ALT, AST, Albumin, gamma-glutamyl transferase, cholesterol, LDL, HDL, triglycerides, and ALP when compared across fibrosis stages. On the other hand, a significant positive correlation was found between Bilirubin, PT INR, partial thromboplastin time, glucose, and Platelet count when compared across fibrosis stages, in addition to AST/ALT ratio, APRI, and Fib-4 scores. CONCLUSION This study showed that Ultrasound alone is not efficient in the assessment of advancement of liver disease. Furthermore, the high positive relation between AST/ALT ratio, APRI and Fib-4 scores with fibrosis stages in NAFLD patients suggests that they could be used clinically in combination with Fibroscan to predict significant fibrosis and cirrhosis and to avoid liver biopsy.
Collapse
Affiliation(s)
- Layal Al Danaf
- Department of Radiological Science, American University of Science and Technology, Faculty of Health Sciences, Beirut 1100, Lebanon
| | | | - Emilie Fayad
- Department of Radiology, Saint George Hospital University Medical Center, Beirut 1100, Lebanon
| | - Aniqa Hussain
- Faculty of Medicine, University of New South Wales, Sydney 2052, Australia
| | - Said Farhat
- Department of Gastroenterology, Saint George Hospital University Medical Center, Beirut 1100, Lebanon.
| |
Collapse
|
28
|
Hazrati A, Malekpour K, Soudi S, Hashemi SM. Mesenchymal Stromal/Stem Cells and Their Extracellular Vesicles Application in Acute and Chronic Inflammatory Liver Diseases: Emphasizing on the Anti-Fibrotic and Immunomodulatory Mechanisms. Front Immunol 2022; 13:865888. [PMID: 35464407 PMCID: PMC9021384 DOI: 10.3389/fimmu.2022.865888] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 03/15/2022] [Indexed: 12/21/2022] Open
Abstract
Various factors, including viral and bacterial infections, autoimmune responses, diabetes, drugs, alcohol abuse, and fat deposition, can damage liver tissue and impair its function. These factors affect the liver tissue and lead to acute and chronic liver damage, and if left untreated, can eventually lead to cirrhosis, fibrosis, and liver carcinoma. The main treatment for these disorders is liver transplantation. Still, given the few tissue donors, problems with tissue rejection, immunosuppression caused by medications taken while receiving tissue, and the high cost of transplantation, liver transplantation have been limited. Therefore, finding alternative treatments that do not have the mentioned problems is significant. Cell therapy is one of the treatments that has received a lot of attention today. Hepatocytes and mesenchymal stromal/stem cells (MSCs) are used in many patients to treat liver-related diseases. In the meantime, the use of mesenchymal stem cells has been studied more than other cells due to their favourable characteristics and has reduced the need for liver transplantation. These cells increase the regeneration and repair of liver tissue through various mechanisms, including migration to the site of liver injury, differentiation into liver cells, production of extracellular vesicles (EVs), secretion of various growth factors, and regulation of the immune system. Notably, cell therapy is not entirely excellent and has problems such as cell rejection, undesirable differentiation, accumulation in unwanted locations, and potential tumorigenesis. Therefore, the application of MSCs derived EVs, including exosomes, can help treat liver disease and prevent its progression. Exosomes can prevent apoptosis and induce proliferation by transferring different cargos to the target cell. In addition, these vesicles have been shown to transport hepatocyte growth factor (HGF) and can promote the hepatocytes'(one of the most important cells in the liver parenchyma) growths.
Collapse
Affiliation(s)
- Ali Hazrati
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Kosar Malekpour
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Sara Soudi
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Seyed Mahmoud Hashemi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
29
|
Huang Z, Khalifa MO, Gu W, Li TS. Hydrostatic pressure induces pro-fibrotic properties in hepatic stellate cells via the RhoA/ROCK signaling pathway. FEBS Open Bio 2022; 12:1230-1240. [PMID: 35357779 PMCID: PMC9157409 DOI: 10.1002/2211-5463.13405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 02/28/2022] [Accepted: 03/29/2022] [Indexed: 11/11/2022] Open
Abstract
Elevated interstitial fluid hydrostatic pressure is commonly observed in diseased livers. We herein examined the hypothesis that hydrostatic pressure induces hepatic stellate cells to acquire pro-fibrotic properties under pathological conditions. Human hepatic stellate cells were exposed to 50 mmHg pressure for 24 hours. Although we observed few changes of cell growth and morphology, PCR array data on the expression of fibrosis-associated genes suggested the acquisition of pro-fibrotic properties. The exposure of hepatic stellate cells to 50 mmHg pressure for 24 hours also significantly enhanced the expression of RhoA, ROCK1, α-SMA, TGF-β1 , p-MLC and p-Smad2, and this was effectively attenuated by ROCK inhibitor Y-27632. Our ex vivo experimental data suggests that elevated interstitial fluid hydrostatic pressure under pathological conditions may promote liver fibrosis by inducing acquisition of pro-fibrotic properties of hepatic stellate cells through the RhoA/ROCK signaling pathway.
Collapse
Affiliation(s)
- Zisheng Huang
- Department of Stem Cell Biology, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, 852-8523, Japan.,Department of Stem Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan
| | - Mahmoud Osman Khalifa
- Department of Stem Cell Biology, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, 852-8523, Japan.,Department of Stem Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan
| | - Weili Gu
- Department of Hepatopancreatobiliary Surgery, Guangzhou First People's Hospital, Guangzhou, 510180, China
| | - Tao-Sheng Li
- Department of Stem Cell Biology, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, 852-8523, Japan.,Department of Stem Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan
| |
Collapse
|
30
|
Salvoza N, Bedin C, Saccani A, Tiribelli C, Rosso N. The Beneficial Effects of Triterpenic Acid and Acteoside in an In Vitro Model of Nonalcoholic Steatohepatitis (NASH). Int J Mol Sci 2022; 23:ijms23073562. [PMID: 35408923 PMCID: PMC8998673 DOI: 10.3390/ijms23073562] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/18/2022] [Accepted: 03/21/2022] [Indexed: 02/04/2023] Open
Abstract
Triterpenic acid (TA) and acteoside (ACT), the major components of APPLIVER and ACTEOS, respectively, have been reported to exert hepatoprotective effects, but the molecular mechanisms remain elusive, particularly in the NAFLD/NASH context. We assessed their effects in our well-established in vitro model resembling the pathophysiological mechanisms involved in NASH. Human hepatocytes and hepatic stellate cells were exposed to free fatty acids (FFA) alone or in combination with APPLIVER and ACTEOS as a mono- or co-culture. Steatosis, inflammation, generation of reactive oxygen species (ROS), and collagen deposition were determined. ACTEOS reduced both the TNF-α and ROS production, and, most importantly, attenuated collagen deposition elicited by the excess of FFA in the co-culture model. APPLIVER also showed inhibition of both TNF-α production and collagen deposition caused by FFA accumulation. The compounds alone did not induce any cellular effects. The present study showed the efficacy of APPLIVER and ACTEOS on pathophysiological mechanisms related to NASH. These in vitro data suggest that these compounds deserve further investigation for possible use in NASH treatment.
Collapse
Affiliation(s)
- Noel Salvoza
- Fondazione Italiana Fegato—ONLUS, Area Science Park, Basovizza SS14 km 163.5, 34149 Trieste, Italy;
- Philippine Council for Health Research and Development, DOST-Bicutan, Taguig City 1631, Philippines
| | - Chiara Bedin
- ABResearch S.R.L., Via dell’Impresa 1, 36040 Brendola, Italy; (C.B.); (A.S.)
| | - Andrea Saccani
- ABResearch S.R.L., Via dell’Impresa 1, 36040 Brendola, Italy; (C.B.); (A.S.)
| | - Claudio Tiribelli
- Fondazione Italiana Fegato—ONLUS, Area Science Park, Basovizza SS14 km 163.5, 34149 Trieste, Italy;
- Correspondence: (C.T.); (N.R.)
| | - Natalia Rosso
- Fondazione Italiana Fegato—ONLUS, Area Science Park, Basovizza SS14 km 163.5, 34149 Trieste, Italy;
- Correspondence: (C.T.); (N.R.)
| |
Collapse
|
31
|
Diagnostic Value of Serum Chitinase-3-Like Protein 1 for Liver Fibrosis: A Meta-analysis. BIOMED RESEARCH INTERNATIONAL 2022; 2022:3227957. [PMID: 35360517 PMCID: PMC8961437 DOI: 10.1155/2022/3227957] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 12/08/2021] [Accepted: 01/03/2022] [Indexed: 02/07/2023]
Abstract
Background Serum chitinase-3-like protein 1 (CHI3L1) is a promising marker for diagnosing liver fibrosis. This meta-analysis was carried out to assess the diagnostic performance of serum CHI3L1 for the estimation of liver fibrosis. Methods Systematic searches were performed on PubMed, Embase, Web of Science, Scopus, the Cochrane Library, Google Scholar, Sinomed, the China National Knowledge Infrastructure (CNKI), the Chinese Medical Journal Database, and the Wanfang databases for available studies. The primary studies were screened strictly according to inclusion and exclusion criteria, and sensitivity, specificity, and other measures of accuracy of serum CHI3L1 for evaluating liver fibrosis were pooled with 95% confidence intervals. I2 was calculated to assess heterogeneity, and sources of heterogeneity were explored by subgroup analysis. Deeks' test was used to assess for publication bias, and likelihood ratio was used to determine posttest probability. Results Our research integrated 11 articles, accounting for 1897 patients older than 18 years old. The pooled sensitivity and specificity for significant fibrosis, advanced fibrosis, and cirrhosis were 0.79 and 0.82 with an area under the receiver operating characteristic curve (AUC) of 0.85, 0.81 and 0.83 with an AUC of 0.91, and 0.72 and 0.74 with an AUC of 0.85, respectively. Random-effects models were used to assess for significant heterogeneity, and subgroup analysis showed that age and aetiology of included patients were likely sources of heterogeneity. No potential publication bias was found for serum CHI3L1 in the diagnosis of significant fibrosis, advanced fibrosis, or cirrhosis, and posttest probability was moderate. Conclusion Measurement of serum CHI3L1 is a feasible diagnostic tool for liver fibrosis.
Collapse
|
32
|
Shi R, Zhang Z, Zhu A, Xiong X, Zhang J, Xu J, Sy MS, Li C. Targeting Type I Collagen for Cancer Treatment. Int J Cancer 2022; 151:665-683. [PMID: 35225360 DOI: 10.1002/ijc.33985] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 02/11/2022] [Accepted: 02/14/2022] [Indexed: 11/07/2022]
Abstract
Collagen is the most abundant protein in animals. Interactions between tumor cells and collagen influence every step of tumor development. Type I collagen is the main fibrillar collagen in the extracellular matrix and is frequently up-regulated during tumorigenesis. The binding of type I collagen to its receptors on tumor cells promotes tumor cell proliferation, epithelial-mesenchymal transition, and metastasis. Type I collagen also regulates the efficacy of tumor therapies, such as chemotherapy, radiotherapy, and immunotherapy. Furthermore, type I collagen fragments are diagnostic markers of metastatic tumors and have prognostic value. Inhibition of type I collagen synthesis has been reported to have anti-tumor effects in animal models. However, collagen has also been shown to possess anti-tumor activity. Therefore, the roles that type I collagen plays in tumor biology are complex and tumor type-dependent. In this review, we discuss the expression and regulation of synthesis of type I collagen, as well as the role up-regulated type I collagen plays in various stages of cancer progression. We also discuss the role of collagen in tumor therapy. Finally, we highlight several recent approaches targeting type I collagen for cancer treatment. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Run Shi
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Key Laboratory for Cell Homeostasis and Cancer Research of Guangdong High Education Institute, Guangzhou, China
| | - Zhe Zhang
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Key Laboratory for Cell Homeostasis and Cancer Research of Guangdong High Education Institute, Guangzhou, China
| | - Ankai Zhu
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Key Laboratory for Cell Homeostasis and Cancer Research of Guangdong High Education Institute, Guangzhou, China
| | - Xingxing Xiong
- Department of Operating Room, Jiangxi Cancer Hospital of Nanchang University, Nanchang, China
| | - Jie Zhang
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Key Laboratory for Cell Homeostasis and Cancer Research of Guangdong High Education Institute, Guangzhou, China
| | - Jiang Xu
- Department of Stomatology, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
| | - Man-Sun Sy
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Chaoyang Li
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Key Laboratory for Cell Homeostasis and Cancer Research of Guangdong High Education Institute, Guangzhou, China
| |
Collapse
|
33
|
Zhou L, Li Y, Liang Q, Liu J, Liu Y. Combination therapy based on targeted nano drug co-delivery systems for liver fibrosis treatment: A review. J Drug Target 2022; 30:577-588. [PMID: 35179094 DOI: 10.1080/1061186x.2022.2044485] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Liver fibrosis is the hallmark of liver disease and occurs prior to the stages of cirrhosis and hepatocellular carcinoma. Any type of liver damage or inflammation can result in fibrosis. Fibrosis does not develop overnight, but rather as a result of the long-term action of injury factors. At present, however, there are no good treatment methods or specific drugs other than removing the pathogenic factors. Drug application is still limited, which means that drugs with good performance in vitro cannot achieve good therapeutic effects in vivo, owing to various factors such as poor drug targeting, large side effects, and strong hydrophobicity. Hepatic stellate cells (HSC) are the primary effector cells in liver fibrosis. The nano-drug delivery system is a new and safe drug delivery system that has many advantages which are widely used in the field of liver fibrosis. Drug resistance and side effects can be reduced when two or more drugs are used in combination drug delivery. Combination therapy of drugs with different targets has emerged as a novel approach to treating liver fibrosis, and the nano co-delivery system enhances the benefits of combination therapy. While nano co-delivery systems can maximize benefits while avoiding drug side effects, this is precisely the advantage of the nano co-delivery system. This review briefly described the pathogenesis and current treatment strategies, the different co-delivery systems of combination drugs in the nano delivery system, and targeting strategies for nano delivery systems on liver fibrosis therapy. Because of their superior performance, nano delivery systems and targeting drug delivery systems have received a lot of attention in the new drug delivery system. The new delivery systems offer a new pathway in the treatment of liver fibrosis, and it is believed that it can be a new treatment for fibrosis in the future. Nano co-delivery system of combination drugs and targeting strategies has proven the effectiveness of anti-fibrosis at the experimental level.
Collapse
Affiliation(s)
- Liyue Zhou
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Yifan Li
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Qiangwei Liang
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Jinxia Liu
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Yanhua Liu
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, Yinchuan, China.,Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan, China
| |
Collapse
|
34
|
Wang Y, Chen B, Xiao C, Yu J, Bu X, Jiang F, Ding W, Ge Z. Effect of miR-183-5p on Cholestatic Liver Fibrosis by Regulating Fork Head Box Protein O1 Expression. Front Physiol 2021; 12:737313. [PMID: 34867446 PMCID: PMC8639207 DOI: 10.3389/fphys.2021.737313] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 10/11/2021] [Indexed: 11/13/2022] Open
Abstract
Liver fibrosis is a common pathological feature of end-stage liver disease and has no effective treatment. MicroRNAs (miRNAs) have been found to modulate gene expression in liver disease. But the potential role of miRNA in hepatic fibrosis is still unclear. The objective of this research is to study the potential mechanism and biological function of miR-183-5p in liver fibrosis. In this study, we used high-throughput sequencing to find that miR-183-5p is upregulated in human fibrotic liver tissues. In addition, miR-183-5p was upregulated both in rat liver fibrosis tissue induced by bile-duct ligation (BDL) and activated LX-2 cells (human hepatic stellate cell line) according to the result of quantitative real-time PCR (RT-qPCR). Moreover, the inhibition of miR-183-5p alleviated liver fibrosis, decreased the fibrotic biomarker levels in vitro and in vivo, and led toLX-2 cell proliferation inhibition and, apoptosis induction. The result of dual-luciferase assay revealed that miR-183-5p suppressed fork head box protein O1 (FOXO1) expression by binding to its 3'UTR directly. Next, we used lentivirus to overexpress FOXO1 in LX-2 cells, and we found that overexpression of FOXO1 reversed the promotion of miR-183-5p on liver fibrosis, reducing the fibrotic biomarker levels inLX-2 cells, inhibitingLX-2 cell proliferation, and promoting apoptosis. Furthermore, overexpression of FOXO1 prevented the activation of the transforming growth factor (TGF)-β signaling pathway in TGF-β1-induced LX-2 cells according to the result of western blotting. In conclusion, the findings showed thatmiR-183-5p might act as a key regulator of liver fibrosis, and miR-183-5p could promote cholestatic liver fibrosis by inhibiting FOXO1 expression through the TGF-β signaling pathway. Thus, inhibition of miR-183-5pmay be a new way to prevent and improve liver fibrosis.
Collapse
Affiliation(s)
- Yongxin Wang
- Department of Hepatobiliary-Pancreatic Surgery, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Bin Chen
- Department of Hepatobiliary-Pancreatic Surgery, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Chengcheng Xiao
- Department of Urology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Jiang Yu
- Department of Hepatobiliary-Pancreatic Surgery, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Xiangyang Bu
- Department of Hepatobiliary-Pancreatic Surgery, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Fengxing Jiang
- Department of Hepatobiliary-Pancreatic Surgery, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Weijie Ding
- Department of Hepatobiliary-Pancreatic Surgery, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Zhong Ge
- Department of Hepatobiliary-Pancreatic Surgery, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| |
Collapse
|
35
|
Arman T, Baron JA, Lynch KD, White LA, Aldan J, Clarke JD. MCLR-elicited hepatic fibrosis and carcinogenic gene expression changes persist in rats with diet-induced nonalcoholic steatohepatitis through a 4-week recovery period. Toxicology 2021; 464:153021. [PMID: 34740672 PMCID: PMC8629135 DOI: 10.1016/j.tox.2021.153021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 10/08/2021] [Accepted: 10/29/2021] [Indexed: 12/30/2022]
Abstract
Nonalcoholic steatohepatitis (NASH) causes liver extracellular matrix (ECM) remodeling and is a risk factor for fibrosis and hepatocellular carcinoma (HCC). Microcystin-LR (MCLR) is a hepatotoxin produced by fresh-water cyanobacteria that causes a NASH-like phenotype, liver fibrosis, and is also a risk factor for HCC. The focus of the current study was to investigate and compare hepatic recovery after cessation of MCLR exposure in healthy versus NASH animals. Male Sprague-Dawley rats were fed either a control or a high fat/high cholesterol (HFHC) diet for eight weeks. Animals received either vehicle or 30 μg/kg MCLR (i.p: 2 weeks, alternate days). Animals were euthanized at one of three time points: at the completion of the MCLR exposure period and after 2 and 4 weeks of recovery. Histological staining suggested that after four weeks of recovery the MCLR-exposed HFHC group had less steatosis and more fibrosis compared to the vehicle-exposed HFHC group and MCLR-exposed control group. RNA-Seq analysis revealed dysregulation of ECM genes after MCLR exposure in both control and HFHC groups that persisted only in the HFHC groups during recovery. After 4 weeks of recovery, MCLR hepatotoxicity in pre-existing NASH persistently dysregulated genes related to cellular differentiation and HCC. These data demonstrate impaired hepatic recovery and persistent carcinogenic changes after MCLR toxicity in pre-existing NASH.
Collapse
Affiliation(s)
- Tarana Arman
- Department of Pharmaceutical Sciences, Washington State University, Spokane, WA, 99202, United States
| | - J Allen Baron
- Department of Pharmaceutical Sciences, Washington State University, Spokane, WA, 99202, United States
| | - Katherine D Lynch
- Department of Pharmaceutical Sciences, Washington State University, Spokane, WA, 99202, United States
| | - Laura A White
- Washington Animal Disease Diagnostic Laboratory, Washington State University, Pullman, WA, 99164, United States
| | - Johnny Aldan
- Department of Pharmaceutical Sciences, Washington State University, Spokane, WA, 99202, United States
| | - John D Clarke
- Department of Pharmaceutical Sciences, Washington State University, Spokane, WA, 99202, United States.
| |
Collapse
|
36
|
Revealing the role of miRNA-489 as a new onco-suppressor factor in different cancers based on pre-clinical and clinical evidence. Int J Biol Macromol 2021; 191:727-737. [PMID: 34562537 DOI: 10.1016/j.ijbiomac.2021.09.089] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 09/13/2021] [Accepted: 09/14/2021] [Indexed: 01/17/2023]
Abstract
Recently, microRNAs (miRNAs) have shown to be potential therapeutic, diagnostic and prognostic targets in disease therapy. These endogenous non-coding RNAs contribute to regulation of different cellular events that are necessary for maintaining physiological condition. Dysregulation of miRNAs is correlated with development of various pathological events such as neurological disorders, cardiovascular diseases, and cancer. miRNA-489 is a new emerging miRNA and studies are extensively investigating its role in pathological conditions. Herein, potential function of miRNA-489 as tumor-suppressor in various cancers is described. miRNA-489 is able to sensitize cancer cells into chemotherapy by disrupting molecular pathways involved in cancer growth such as PI3K/Akt, and induction of apoptosis. The PROX1 and SUZ12 as oncogenic pathways, are affected by miRNA-489 in suppressing metastasis of cancer cells. Wnt/β-catenin as an oncogenic factor ensuring growth and malignancy of tumors is inhibited via miRNA-489 function. For enhancing drug sensitivity of tumors, restoring miRNA-489 expression is a promising strategy. The lncRNAs can modulate miRNA-489 expression in tumors and studies about circRNA role in miRNA-489 modulation should be performed. The expression level of miRNA-489 is a diagnostic tool for tumor detection. Besides, down-regulation of miRNA-489 in tumors provides unfavorable prognosis.
Collapse
|
37
|
Huang YJ, Cao J, Lee CY, Wu YM. Umbilical cord blood plasma-derived exosomes as a novel therapy to reverse liver fibrosis. Stem Cell Res Ther 2021; 12:568. [PMID: 34772443 PMCID: PMC8588641 DOI: 10.1186/s13287-021-02641-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 10/28/2021] [Indexed: 02/08/2023] Open
Abstract
Background Cirrhosis is a chronic liver disease whereby scar tissue replaces healthy liver parenchyma, leading to disruption of the liver architecture and hepatic dysfunction. Currently, there is no effective disease-modifying therapy for liver fibrosis. Recently, our group demonstrated that human umbilical cord blood (UCB) plasma possesses therapeutic effects in a rat model of acute liver failure. Methods In the current study, we tested whether exosomes (Exo) existed in UCB plasma and if they produced any antifibrotic benefits in a liver fibrosis model. Results Our results showed that UCB-Exo improved liver function and increased matrix metalloproteinase/tissue inhibitor of metalloproteinase degradation to reduce the degree of fibrosis. Moreover, UCB-Exo were found to suppress hepatic stellate cell (HSC) activity in vitro. These effects were associated with suppression of transforming growth factor-β/inhibitor of DNA binding 1 signaling. Conclusions These results further support that UCB-Exo have antifibrotic effects in mice with liver fibrosis and activated HSCs and may herald a new cell-free antifibrotic therapy.
Collapse
Affiliation(s)
- Yu-Jen Huang
- Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | - Jerry Cao
- Department of Surgery, Wollongong Hospital, Loftus Street, Wollongong, NSW, 2500, Australia
| | - Chih-Yuan Lee
- Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | - Yao-Ming Wu
- Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan. .,Department of Surgery, National Taiwan University Hospital and National Taiwan University College of Medicine, No. 7, Chung-Shan South Road, Taipei, Taiwan.
| |
Collapse
|
38
|
Cong S, Liu Y, Li Y, Chen Y, Chen R, Zhang B, Yu L, Hu Y, Zhao X, Mu M, Cheng M, Huang Z. MiR-571 affects the development and progression of liver fibrosis by regulating the Notch3 pathway. Sci Rep 2021; 11:21854. [PMID: 34750395 PMCID: PMC8575893 DOI: 10.1038/s41598-021-00638-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 10/07/2021] [Indexed: 11/09/2022] Open
Abstract
Exploring the expression of miR-571 in patients with liver fibrosis and its role in the progression of liver fibrosis. A total of 74 patients with liver fibrosis in our institution from September to December 2018 were collected for study, and the expression of miR-571, Notch3 and Jagged1 in patients with different progressions of liver fibrosis was determined by RT-PCR and Western blot analysis. Set up Notch3 up group and Notch3 down regulated group, RT-PCR and Western blot were used to determine the effect of Notch signaling on the expression of fibrogenic factors. CCK-8, cell scratch assays, Transwell assays, flow cytometry were used to determine the effect of miR-571 on LX-2 proliferation, migration, apoptosis in human stem stellate cells, and RT-PCR, Western blot assays were performed to determine the effect of miR-571 on the Notch3 signaling pathway and the expression of profibrogenic factors. miR-571, Notch3 and Jagged1 are up-regulated in patients with liver fibrosis and is associated with the progression of liver fibrosis. Notch3 signaling pathway can promote the expression of fibroblast in human hepatic stellate cells; miR-571 can inhibit the apoptosis of human hepatic stellate cells, promote cell proliferation and migration; up regulation of miR-571 can promote the expression of Notch3 and Jagged1, and up-regulation of miR-571 also promoted the expression of related fibroblasts. MiR-571 can promote the activation of human stem cell stellate cells and the expression of fibroblast related factors through Notch3 signaling pathway.
Collapse
Affiliation(s)
- Shuo Cong
- School of Basic Medicine Sciences, Guizhou Medical University, 9 Beijing Road, Guiyang, Guizhou, China.,Clinical Laboratory Center, Guizhou Cancer Hospital, 1, Beijing West Road, Guiyang, Guizhou, China
| | - Yongmei Liu
- Clinical Laboratory Center, The Affiliated Hospital of Guizhou Medical University, 28, Guiyi Street, Guiyang, Guizhou, China
| | - Yi Li
- College of Medical Laboratory, Guizhou Medical University, 28, Guiyi Street, Guiyang, Guizhou, China
| | - Yu Chen
- Clinical Laboratory Center, The Affiliated Hospital of Guizhou Medical University, 28, Guiyi Street, Guiyang, Guizhou, China
| | - Rui Chen
- Department of Acupuncture and Moxibustion, The Affiliated Hospital of Guizhou Medical University, 28, Guiyi Street, Guiyang, Guizhou, China
| | - Baofang Zhang
- Department of Infectious Diseases, The Affiliated Hospital of Guizhou Medical University, 28, Guiyi Street, Guiyang, Guizhou, China
| | - Lei Yu
- Department of Obstetrics and Gynecology, Maternal and Child Health Hospital of Guiyang Province, 63 Ruijin South Road, Yunyan District, Guiyang City, Guizhou Province, China
| | - Yaxin Hu
- Prenatal Diagnosis Center, The Affiliated Hospital of Guizhou Medical University, 9 Beijing Road, Guiyang City, Guizhou, China
| | - Xueke Zhao
- Department of Infectious Diseases, The Affiliated Hospital of Guizhou Medical University, 28, Guiyi Street, Guiyang, Guizhou, China
| | - Mao Mu
- Department of Infectious Diseases, The Affiliated Hospital of Guizhou Medical University, 28, Guiyi Street, Guiyang, Guizhou, China
| | - Mingliang Cheng
- Department of Infectious Diseases, The Affiliated Hospital of Guizhou Medical University, 28, Guiyi Street, Guiyang, Guizhou, China.
| | - Zhi Huang
- School of Basic Medicine Sciences, Guizhou Medical University, 9 Beijing Road, Guiyang, Guizhou, China. .,Department of interventional radiology, the Affiliated Baiyun Hospital of Guizhou Medical University, Guiyang, 550005, P. R. China.
| |
Collapse
|
39
|
Ahrari A, Najafzadehvarzi H, Taravati A, Tohidi F. The inhibitory effect of PLGA-encapsulated berberine on hepatotoxicity and α-smooth muscle actin (α-SMA) gene expression. Life Sci 2021; 284:119884. [PMID: 34389401 DOI: 10.1016/j.lfs.2021.119884] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 08/03/2021] [Accepted: 08/06/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Liver injury results in excessive extracellular matrix (ECM) deposition in the liver, which is mainly produced by hepatic stellate cells (HSC). Alpha-smooth muscle actin (α-SMA) and liver enzymes are the two hallmarks of liver injury. Previously, it has been confirmed that berberine (BBR) attenuates liver injury. This study aimed to investigate the protective effect of Poly Lactic-co-Glycolic Acid (PLGA) encapsulated BBR against liver injury. METHODS Nanoprecipitation, encapsulation, and physio-chemical characterization of BBR-PLGA nanoparticles (BBR-PLGA-NP) have been done. The protective effects of BBR-PLGA-NPs and BBR against carbon tetrachloride (CCl4)-treated Wistar rats were investigated. The serum levels of alanine aminotransferase and aspartate transaminase were measured, and the expression level of α-SMA was quantified by qRT-PCR. To evaluate the liver changes, morphological and histological staining was done. RESULTS BBR-PLGA-NPs markedly reduced serum ALT and AST in rats treated with CCl4. Although the expression level of α-SMA was downregulated in the CCl4-injected rats that were treated with BBR, α-SMA expression in this group was still remarkably higher than the control group. α-SMA mRNA was significantly under-expressed (p < 0.05) by BBR-PLGA-NPs and the hepatic histology revealed BBR-PLGA-NPs made further improvements than free BBR. CONCLUSION The use of nanoparticle to encapsulate BBR is a worthy approach to enhance the curative effect of BBR against liver injuries, which donate a safe and effective drug delivery strategy to treat liver injuries.
Collapse
Affiliation(s)
- Asma Ahrari
- Department of Medical Biotechnology, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Hossein Najafzadehvarzi
- Department of Pharmacology, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran; Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Ali Taravati
- Department of Molecular and Cell Biology, Faculty of Basic Sciences, University of Mazandaran, Babolsar, Iran
| | - Fatemeh Tohidi
- Department of Medical Biotechnology, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran; Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran; Cancer Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran.
| |
Collapse
|
40
|
Bourebaba N, Marycz K. Hepatic stellate cells role in the course of metabolic disorders development - A molecular overview. Pharmacol Res 2021; 170:105739. [PMID: 34171492 DOI: 10.1016/j.phrs.2021.105739] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 06/07/2021] [Accepted: 06/19/2021] [Indexed: 02/08/2023]
Abstract
Fibrosis is characterized by an abnormal accumulation of extracellular matrix (ECM) constituents in the liver parenchyma that lead to hepatic cirrhosis. After liver injury, the hepatic stellate cells (HSCs) undergo a response called "activation", transforming the cells into proliferative, fibrogenic and contractile myofibroblasts, representing the main collagen-producing cells in the injured tissue. Activated HSCs are considered as pro-inflammatory cells producing cytokines and several hepatomatogens; they are additionally involved in the recruitment of Kupffer cells, circulating monocytes and macrophages through the production of chemokines. Moreover, HSC have been proposed as being involved in the development of insulin resistance mainly mediated by their inflammatory properties, which undeniably links their activation to the development of diabetes and Non-alcoholic fatty liver disease. In addition, when the liver is injured, a complex interaction between hepatocytes and HSCs occurs, inducing mitochondrial dysfunction, which contributes to the accumulation of fats in hepatocytes that trigger to liver lipotoxicity. These mechanisms underlying the activation of HSC suggest their major role in the development of metabolic disorders. It turns out that several molecules including MicroRNAs and proteins have the ability to inhibit the activation and the proliferation of HSCs, which makes them interesting therapeutic targets for the subsequent management of metabolic conditions. This review focuses on the mechanisms and molecular pathways underlying the initiation and onset of metabolic disorders following HSCs activation, as well as on molecular therapeutic targets, which could limit their fibrogenic transdifferentiation and therefore improve the liver condition in the course of metabolic imbalance.
Collapse
Affiliation(s)
- Nabila Bourebaba
- Department of Experimental Biology, Faculty of Biology and Animal Science, Wrocław University of Environmental and Life Sciences, Norwida 27B, 50-375 Wrocław, Poland; International Institute of Translational Medicine, Jesionowa 11, 55-114, Malin, Wisznia Mała, Poland
| | - Krzysztof Marycz
- Department of Experimental Biology, Faculty of Biology and Animal Science, Wrocław University of Environmental and Life Sciences, Norwida 27B, 50-375 Wrocław, Poland; International Institute of Translational Medicine, Jesionowa 11, 55-114, Malin, Wisznia Mała, Poland.
| |
Collapse
|
41
|
Lin CY, Adhikary P, Cheng K. Cellular protein markers, therapeutics, and drug delivery strategies in the treatment of diabetes-associated liver fibrosis. Adv Drug Deliv Rev 2021; 174:127-139. [PMID: 33857552 PMCID: PMC8217274 DOI: 10.1016/j.addr.2021.04.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 02/18/2021] [Accepted: 04/08/2021] [Indexed: 02/08/2023]
Abstract
Liver fibrosis is the excessive accumulation of extracellular matrix due to chronic injuries, such as viral infection, alcohol abuse, high-fat diet, and toxins. Liver fibrosis is reversible before it progresses to cirrhosis and hepatocellular carcinoma. Type 2 diabetes significantly increases the risk of developing various complications including liver diseases. Abundant evidence suggests that type 2 diabetes and liver diseases are bidirectionally associated. Patients with type 2 diabetes experience more severe symptoms and accelerated progression of live diseases. Obesity and insulin resistance resulting from hyperlipidemia and hyperglycemia are regarded as the two major risk factors that link type 2 diabetes and liver fibrosis. This review summarizes possible mechanisms of the association between type 2 diabetes and liver fibrosis. The cellular protein markers that can be used for diagnosis and therapy of type 2 diabetes-associated liver fibrosis are discussed. We also highlight the potential therapeutic agents and their delivery systems that have been investigated for type 2 diabetes-associated liver fibrosis.
Collapse
Affiliation(s)
- Chien-Yu Lin
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO 64108, United States
| | - Pratik Adhikary
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO 64108, United States
| | - Kun Cheng
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO 64108, United States.
| |
Collapse
|
42
|
Lim H, Lee H, Lim Y. Effect of vitamin D 3 supplementation on hepatic lipid dysregulation associated with autophagy regulatory AMPK/Akt-mTOR signaling in type 2 diabetic mice. Exp Biol Med (Maywood) 2021; 246:1139-1147. [PMID: 33541129 PMCID: PMC8142114 DOI: 10.1177/1535370220987524] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 12/21/2020] [Indexed: 01/15/2023] Open
Abstract
Vitamin D3 has been reported to protect liver against non-alcoholic fatty liver disease (NAFLD) by attenuating hepatic lipid dysregulation in type 2 diabetes mellitus (T2DM). However, the mechanism of vitamin D3 on hepatic lipid metabolism-associated autophagy in hyperglycemia-induced NAFLD remains yet to be exactly elucidated. C57BL/6J mice were intraperitoneally injected with 30 mg/kg of streptozotocin and fed a high-fat diet for induction of diabetes. All mice were administered with vehicle or vitamin D3 (300 ng/kg or 600 ng/kg) by oral gavage for 12 weeks. Histological demonstrations of the hepatic tissues were obtained by H&E staining and the protein levels related to lipid metabolism and autophagy signaling were analyzed by Western blot. Treatment with vitamin D3 improved insulin resistance, liver damage, and plasma lipid profiles, and decreased hepatic lipid content in the diabetic mice. Moreover, vitamin D3 administration ameliorated hepatic lipid dysregulation by downregulating lipogenesis and upregulating lipid oxidation under diabetic condition. Importantly, vitamin D3 treatment induced autophagy by activating AMP-activated protein kinase (AMPK), inactivating Akt and ultimately blocking mammalian target of rapamycin (mTOR) activation in the T2DM mice. Additionally, vitamin D3 was found to be effective in anti-apoptosis and anti-fibrosis in the liver of diabetic mice. The results suggested that vitamin D3 may ameliorate hepatic lipid dysregulation by activating autophagy regulatory AMPK/Akt-mTOR signaling in T2DM, providing insights into its beneficial effects on NAFLD in type 2 diabetic patients.
Collapse
Affiliation(s)
- Hyewon Lim
- Department of Food and Nutrition, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Heaji Lee
- Department of Food and Nutrition, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Yunsook Lim
- Department of Food and Nutrition, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
43
|
Sufleţel RT, Melincovici CS, Gheban BA, Toader Z, Mihu CM. Hepatic stellate cells - from past till present: morphology, human markers, human cell lines, behavior in normal and liver pathology. ROMANIAN JOURNAL OF MORPHOLOGY AND EMBRYOLOGY 2021; 61:615-642. [PMID: 33817704 PMCID: PMC8112759 DOI: 10.47162/rjme.61.3.01] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Hepatic stellate cell (HSC), initially analyzed by von Kupffer, in 1876, revealed to be an extraordinary mesenchymal cell, essential for both hepatocellular function and lesions, being the hallmark of hepatic fibrogenesis and carcinogenesis. Apart from their implications in hepatic injury, HSCs play a vital role in liver development and regeneration, xenobiotic response, intermediate metabolism, and regulation of immune response. In this review, we discuss the current state of knowledge regarding HSCs morphology, human HSCs markers and human HSC cell lines. We also summarize the latest findings concerning their roles in normal and liver pathology, focusing on their impact in fibrogenesis, chronic viral hepatitis and liver tumors.
Collapse
Affiliation(s)
- Rada Teodora Sufleţel
- Discipline of Histology, Department of Morphological Sciences, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania;
| | | | | | | | | |
Collapse
|
44
|
Dzyubak B, Li J, Chen J, Mara KC, Therneau TM, Venkatesh SK, Ehman RL, Allen AM, Yin M. Automated Analysis of Multiparametric Magnetic Resonance Imaging/Magnetic Resonance Elastography Exams for Prediction of Nonalcoholic Steatohepatitis. J Magn Reson Imaging 2021; 54:122-131. [PMID: 33586159 DOI: 10.1002/jmri.27549] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 01/18/2021] [Accepted: 01/21/2021] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Nonalcoholic fatty liver disease (NAFLD) affects 25% of the global population. The standard of diagnosis, biopsy, is invasive and affected by sampling error and inter-reader variability. We hypothesized that widely available rapid MRI techniques could be used to predict nonalcoholic steatohepatitis (NASH) noninvasively by measuring liver stiffness, with magnetic resonance elastography (MRE), and liver fat, with chemical shift-encoded (CSE) MRI. Besides, we validate an automated image analysis technique to maximize the utility of these methods. PURPOSE To implement and test an automated system for analyzing CSE-MRI and MRE data coupled with model-based prediction of NASH. STUDY TYPE Prospective. SUBJECTS Eighty-three patients with suspected NAFLD. FIELD STRENGTH/SEQUENCE A 1.5 T using a flow-compensated motion-encoded gradient echo MRE sequence and a multiecho CSE-MRI sequence. ASSESSMENTS The MRE and CSE-MRI data were analyzed by two readers (5+ and 1 years of experience) and an automated algorithm. A logistic regression model to predict pathology-diagnosed NASH was trained based on stiffness and proton density fat fraction, and the area under the receiver operating characteristic curve (AUROC) was calculated using 10-fold cross validation for models based on both automated and manual measurements. A separate model was trained to predict the NASH severity score (NAS). STATISTICAL TESTS Pearson's correlation, Bland-Altman, AUROC, C-statistic. RESULTS The agreement between automated measurements and the more experienced reader (R2 = 0.87 for stiffness and R2 = 0.99 for proton density fat fraction [PDFF]) was slightly better than the agreement between readers (R2 = 0.85 and 0.98). The model for predicting biopsy-diagnosed NASH had an AUROC of 0.87. The NAS-prediction model had a C-statistic of 0.85. DATA CONCLUSION We demonstrated a workflow that used a limited MRI acquisition protocol and fully automated analysis to predict NASH with high accuracy. These methods show promise to provide a reliable noninvasive alternative to biopsy for NASH-screening in populations with NAFLD. LEVEL OF EVIDENCE 2 TECHNICAL EFFICACY STAGE: 2.
Collapse
Affiliation(s)
| | - Jiahui Li
- Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | - Jie Chen
- Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | | | | | | | | | - Alina M Allen
- GI and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | - Meng Yin
- Radiology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
45
|
Su SB, Qin SY, Xian XL, Huang FF, Huang QL, ZhangDi HJ, Jiang HX. Interleukin-22 regulating Kupffer cell polarization through STAT3/Erk/Akt crosstalk pathways to extenuate liver fibrosis. Life Sci 2021; 264:118677. [PMID: 33129875 DOI: 10.1016/j.lfs.2020.118677] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/14/2020] [Accepted: 10/24/2020] [Indexed: 12/19/2022]
Abstract
AIMS Interleukin (IL)-22 activates multiple signaling pathways to exert anti-inflammatory effects, but few studies have examined whether and how IL-22 may shift macrophage polarization between M1 (pro-inflammatory) and M2 (anti-inflammatory) states and thereby influence the progression of hepatic fibrosis. MAIN METHODS Utilized CCl4 to induce liver fibrosis in mice, detected the role of IL-22 in inhibiting liver fibrosis by regulating Kupffer cells (KCs) polarization in vivo and in vitro. U937 cells were used to confirm the mechanism of IL-22 regulating macrophage polarization via the STAT3/Erk/Akt pathways. Human liver specimens were collected to verify the correlation between the levels of IL-22 and KCs during liver fibrogenesis. KEY FINDINGS During CCl4-induced liver fibrosis progression in mice, adding exogenous IL-22 significantly inhibited pro-fibrogenic and macrophage phenotype-altering factors secreted by M1-KCs, and it increased the number of M2-KCs. In co-cultures of hepatic stellate cells and KCs from mice treated with IL-22, a high M2/M1-KCs ratio inhibited collagen production and stellate cell activation. These results suggest that IL-22 can increase the ratio of M2-KCs to M1-KCs and thereby attenuate the progression of liver fibrosis. Mechanistic studies in vitro showed that IL-22 promoted polarization of lipopolysaccharide-treated U937 macrophages from M1 to M2. The cytokine exerted these effects by activating the STAT3 pathway while suppressing Erk1/2 and Akt pathways. Furthermore, immunofluorescent staining in human liver specimens confirmed that IL-22 levels positively correlated with the number of M2-KCs during liver fibrogenesis. SIGNIFICANCE IL-22 regulates the STAT3/Erk/Akt to increase the M2/M1-KCs ratio and thereby slow liver fibrogenesis.
Collapse
Affiliation(s)
- Si-Biao Su
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Province, China
| | - Shan-Yu Qin
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Province, China
| | - Xiao-Long Xian
- Graduate School of Guangxi Medical University, Nanning 530021, Guangxi Province, China
| | - Fei-Fei Huang
- Graduate School of Guangxi Medical University, Nanning 530021, Guangxi Province, China
| | - Qiu-Lan Huang
- Graduate School of Guangxi Medical University, Nanning 530021, Guangxi Province, China
| | - Han-Jing ZhangDi
- Graduate School of Guangxi Medical University, Nanning 530021, Guangxi Province, China
| | - Hai-Xing Jiang
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Province, China.
| |
Collapse
|
46
|
Li J, Dong S, Ye M, Peng G, Luo J, Wang C, Wang J, Zhao Q, Chang Y, Wang H. MicroRNA-489-3p Represses Hepatic Stellate Cells Activation by Negatively Regulating the JAG1/Notch3 Signaling Pathway. Dig Dis Sci 2021; 66:143-150. [PMID: 32144602 DOI: 10.1007/s10620-020-06174-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 02/24/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND The transformation of hepatic stellate cells (HSCs) into collagen-producing myofibroblasts is a key event in hepatic fibrogenesis. Recent studies have shown that microRNAs (miRNAs) play a critical role in the transformation of HSCs. However, the function of miR-489-3p in liver fibrosis remains unclear. METHODS Here, we detected the levels of miR-489-3p and jagged canonical Notch ligand 1 (JAG1) in liver fibrosis by using CCl4-treated rats as an in vivo model and transforming growth factor-beta 1 (TGF-β1)-treated HSC cell lines LX-2 and HSC-T6 as in vitro models. The expression of profibrotic markers was affected by transfecting LX-2 cells with either miR-489-3p mimic or si-JAG1. A dual-luciferase reporter assay was carried out to study the interaction of JAG1 with miR-489-3p. RESULTS We found that miR-489-3p was remarkably decreased while JAG1 was increased in liver fibrosis models both in vivo and in vitro. Overexpression of miR-489-3p reduced the expression of profibrotic markers and the activation of LX-2 cells induced by TGF-β1. Moreover, miR-489-3p decreased the expression of jagged canonical Notch ligand 1 (JAG1) in LX-2 cells by interacting with its 3'-UTR. As JAG1 is a Notch ligand, decreased JAG1 by miR-489-3p inhibited the Notch signaling pathway. Moreover, the downregulation of JAG1 inhibited the expression of fibrotic markers. CONCLUSION Our results indicate that miR-489-3p can inhibit HSC activation by inhibiting the JAG1/Notch3 signaling pathway.
Collapse
Affiliation(s)
- Juanjuan Li
- Department of Gastroenterology/Hepatology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430071, Hubei, China
| | - Shouquan Dong
- Department of Gastroenterology/Hepatology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430071, Hubei, China
| | - Mingliang Ye
- Department of Gastroenterology/Hepatology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430071, Hubei, China
| | - Ganjing Peng
- Department of Gastroenterology/Hepatology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430071, Hubei, China
| | - Jie Luo
- Department of Gastroenterology/Hepatology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430071, Hubei, China
| | - Chun Wang
- Department of Gastroenterology/Hepatology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430071, Hubei, China
| | - Jing Wang
- Department of Gastroenterology/Hepatology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430071, Hubei, China
| | - Qiu Zhao
- Department of Gastroenterology/Hepatology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430071, Hubei, China
| | - Ying Chang
- Department of Gastroenterology/Hepatology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430071, Hubei, China
| | - Hongling Wang
- Department of Gastroenterology/Hepatology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430071, Hubei, China. .,The Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Wuhan, 430071, Hubei, China.
| |
Collapse
|
47
|
Song M, Chae YJ, Koppula S, Kim MK, Yoon T. Chrysanthemum indicum ethanol extract attenuates hepatic stellate cell activation in vitro and thioacetamide-induced hepatofibrosis in rats. Asian Pac J Trop Biomed 2021. [DOI: 10.4103/2221-1691.328057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
48
|
Frohlich J, Vinciguerra M. Candidate rejuvenating factor GDF11 and tissue fibrosis: friend or foe? GeroScience 2020; 42:1475-1498. [PMID: 33025411 PMCID: PMC7732895 DOI: 10.1007/s11357-020-00279-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 09/22/2020] [Indexed: 12/13/2022] Open
Abstract
Growth differentiation factor 11 (GDF11 or bone morphogenetic protein 11, BMP11) belongs to the transforming growth factor-β superfamily and is closely related to other family member-myostatin (also known as GDF8). GDF11 was firstly identified in 2004 due to its ability to rejuvenate the function of multiple organs in old mice. However, in the past few years, the heralded rejuvenating effects of GDF11 have been seriously questioned by many studies that do not support the idea that restoring levels of GDF11 in aging improves overall organ structure and function. Moreover, with increasing controversies, several other studies described the involvement of GDF11 in fibrotic processes in various organ setups. This review paper focuses on the GDF11 and its pro- or anti-fibrotic actions in major organs and tissues, with the goal to summarize our knowledge on its emerging role in regulating the progression of fibrosis in different pathological conditions, and to guide upcoming research efforts.
Collapse
Affiliation(s)
- Jan Frohlich
- International Clinical Research Center, St. Anne's University Hospital, Pekarska 53, 656 91, Brno, Czech Republic
| | - Manlio Vinciguerra
- International Clinical Research Center, St. Anne's University Hospital, Pekarska 53, 656 91, Brno, Czech Republic.
- Institute for Liver and Digestive Health, Division of Medicine, University College London (UCL), London, UK.
| |
Collapse
|
49
|
Liu H, Lv C, Lu J. Panax ginseng C. A. Meyer as a potential therapeutic agent for organ fibrosis disease. Chin Med 2020; 15:124. [PMID: 33292321 PMCID: PMC7683279 DOI: 10.1186/s13020-020-00400-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 10/27/2020] [Accepted: 11/06/2020] [Indexed: 12/14/2022] Open
Abstract
Background Ginseng (Panax ginseng C. A. Meyer), a representative Chinese herbal medicine, can improve the body’s antioxidant and anti-inflammatory capacity. Recently, scientists have shifted emphasis towards the initial stages of different malignant diseases—corresponding organ fibrosis and explored the essential role of P. ginseng in the treatment of fibrotic diseases. Main body In the first instance, the review generalizes the molecular mechanisms and common therapeutic methods of fibrosis. Next, due to the convenience and safety of individual medication, the research progress of ginseng extract and formulas in treating liver fibrosis, pulmonary fibrosis, myocardial fibrosis, and renal fibrosis has been systematically summarized. Finally, we describe active ingredients isolated from P. ginseng for their outstanding anti-fibrotic properties and further reveal the potential therapeutic prospect and limitations of P. ginseng in fibrotic diseases. Conclusions P. ginseng can be regarded as a valuable herbal medicine against fibrous tissue proliferation. Ginseng extract, derived formulas and monomers can inhibit the abundant deposition of extracellular matrix which caused by repeated damage and provide protection for fibrotic organs. Although the molecular mechanisms such as transforming growth factor β signal transduction have been confirmed, future studies should still focus on exploring the underlying mechanisms of P. ginseng in treating fibrotic disease including the therapeutic targets of synergistic action of multiple components in P. ginseng. Moreover, it is also necessary to carry out clinical trial to evaluate the feasibility of P. ginseng in combination with common fibrosis drugs.
Collapse
Affiliation(s)
- Hao Liu
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110006, PR China
| | - Chongning Lv
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110006, PR China.,Liaoning Provincial Key Laboratory of TCM Resources Conservation and Development, Shenyang Pharmaceutical University, Shenyang, 110006, PR China
| | - Jincai Lu
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110006, PR China. .,Liaoning Provincial Key Laboratory of TCM Resources Conservation and Development, Shenyang Pharmaceutical University, Shenyang, 110006, PR China.
| |
Collapse
|
50
|
Mai ZH, Huang Y, Huang D, Huang ZS, He ZX, Li PL, Zhang S, Weng JF, Gu WL. Reversine and herbal Xiang-Sha-Liu-Jun-Zi decoction ameliorate thioacetamide-induced hepatic injury by regulating the RelA/NF-κB/caspase signaling pathway. Open Life Sci 2020; 15:696-710. [PMID: 33817258 PMCID: PMC7747499 DOI: 10.1515/biol-2020-0059] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 05/30/2020] [Accepted: 05/30/2020] [Indexed: 02/07/2023] Open
Abstract
This study investigated the anti-fibrotic effects of reversine and Chinese medicine Xiang–Sha–Liu–Jun–Zi decoction (XSLJZD) on thioacetamide (TAA)-induced hepatic injury. Sprague-Dawley rats were intraperitoneally administered with TAA, then injected with reversine intraperitoneally, and/or orally provided with XSLJZD. TAA resulted in liver injury with increases in the liver index and levels of serum aspartate aminotransferase (AST) and alanine aminotransferase. Reversine alleviated the liver index and AST level and improved TAA-induced pathological changes but decreased TAA-induced collagen deposition, and α-smooth muscle actin and transforming growth factor-β1 expression. Reversine also modulated the mRNA levels of inflammatory cytokines, such as RelA, interleukin (IL)-17A, IL-22, IL-1β, IL-6, NLR family pyrin domain containing 3, platelet-derived growth factor, and monocyte chemoattractant protein, and suppressed nuclear factor (NF)-κB (p65) phosphorylation and caspase 1 activation. Meanwhile, XSLJZD protected TAA-injured liver without increasing fibrosis and enhanced the regulating effect of reversine on RelA, IL-17A, IL-1β, and MCP-1 cytokines. In conclusion, reversine ameliorates liver injury and inhibits inflammation reaction by regulating NF-κB, and XSLJZD protects the liver through its synergistic effect with reversine on regulating inflammatory cytokines.
Collapse
Affiliation(s)
- Zhen-Hao Mai
- Department of Surgery, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, No.1 Panfu Road, Yuexiu District, Guangzhou, Guangdong 518180, People's Republic of China.,Guangzhou Medical University, Guangzhou, Guangdong 510180, People's Republic of China
| | - Yu Huang
- Department of Surgery, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, No.1 Panfu Road, Yuexiu District, Guangzhou, Guangdong 518180, People's Republic of China.,Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou, Guangdong 510180, People's Republic of China
| | - Di Huang
- Department of Surgery, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, No.1 Panfu Road, Yuexiu District, Guangzhou, Guangdong 518180, People's Republic of China.,Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou, Guangdong 510180, People's Republic of China
| | - Zi-Sheng Huang
- Department of Surgery, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, No.1 Panfu Road, Yuexiu District, Guangzhou, Guangdong 518180, People's Republic of China.,Guangzhou Medical University, Guangzhou, Guangdong 510180, People's Republic of China
| | - Zhi-Xiang He
- Department of Surgery, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, No.1 Panfu Road, Yuexiu District, Guangzhou, Guangdong 518180, People's Republic of China
| | - Pei-Lin Li
- Department of Surgery, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, No.1 Panfu Road, Yuexiu District, Guangzhou, Guangdong 518180, People's Republic of China
| | - Shuai Zhang
- Department of Surgery, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, No.1 Panfu Road, Yuexiu District, Guangzhou, Guangdong 518180, People's Republic of China.,Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou, Guangdong 510180, People's Republic of China
| | - Jie-Feng Weng
- Department of Surgery, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, No.1 Panfu Road, Yuexiu District, Guangzhou, Guangdong 518180, People's Republic of China.,Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou, Guangdong 510180, People's Republic of China
| | - Wei-Li Gu
- Department of Surgery, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, No.1 Panfu Road, Yuexiu District, Guangzhou, Guangdong 518180, People's Republic of China.,Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou, Guangdong 510180, People's Republic of China
| |
Collapse
|