1
|
Zhou Z, Zhang S, Bi Y, Duan W, Gao H. A novel mutation in the ATP7B gene causing hepatolenticular degeneration in a Chinese family: A case report. Medicine (Baltimore) 2024; 103:e38849. [PMID: 39093796 PMCID: PMC11296479 DOI: 10.1097/md.0000000000038849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 06/17/2024] [Indexed: 08/04/2024] Open
Abstract
INTRODUCTION Hepatolenticular degeneration (Wilson disease) is an autosomal recessive monogenic disorder caused by mutations in the ATPase copper transporting beta (ATP7B) gene located on human chromosome 13. This gene encodes a copper-transporting P-type ATPase (ATP7B). Recent studies have revealed that the ATP7B gene is predominantly affected by a few hotspot mutations, with the His1069Gln mutation in exon 14 accounting for 50 to 80% of cases. In China, the Arg778Leu mutation in exon 8 is the most prevalent. However, the discovery of novel mutant genes persists. CASE PRESENTATION A 56-year-old Chinese female was referred to our hospital with a liver injury and cirrhosis. Her parents, 2 younger brothers, and children exhibited no signs of liver function impairment. Whole-exome sequencing was conducted on the proband's genomic DNA, and Sanger sequencing was performed on 6 family members for first-generation verification. CONCLUSIONS We identified a novel c.3715G > T (p.Val1239Phe) variant mutation in the ATP7B gene in the patient. The ATP7B c.3715G > T (p.Val1239Phe) variant is predicted to impact the copper transport P-type ATPase. When combined with another mutant gene to form a compound heterozygous mutation, it can lead to hepatolenticular degeneration. This discovery broadens the range of pathogenic genes in the ATP7B gene.
Collapse
Affiliation(s)
- Zhibo Zhou
- Department of Infectious Diseases, Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan (Hangzhou) Hospital, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, P. R. China
| | - Sainan Zhang
- Department of Infectious Diseases, Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan (Hangzhou) Hospital, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, P. R. China
| | - Yunjiao Bi
- Zhejiang Chinese Medical University, Hangzhou, P. R. China
| | - Wenyuan Duan
- Department of Precision Medicine Testing Center, Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan (Hangzhou) Hospital, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, P. R. China
| | - Hainv Gao
- Department of Infectious Diseases, Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan (Hangzhou) Hospital, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, P. R. China
| |
Collapse
|
2
|
Huang Y, Wang LL, Liu ZB, Chen C, Ren X, Luo AT, Ma JH, Antzelevitch C, Barajas-Martínez H, Hu D. Underlying mechanism of atrial fibrillation-associated Nppa-I137T mutation and cardiac effect of potential drug therapy. Heart Rhythm 2024; 21:184-196. [PMID: 37924963 DOI: 10.1016/j.hrthm.2023.10.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 10/16/2023] [Accepted: 10/27/2023] [Indexed: 11/06/2023]
Abstract
BACKGROUND More than a hundred genetic loci have been associated with atrial fibrillation (AF). But the exact mechanism remains unclear and the treatment needs to be improved. OBJECTIVE This study aimed to investigate the mechanism and potential treatment of NPPA mutation-associated AF. METHODS Nppa knock-in (KI, p.I137T) rats were generated, and cardiac function was evaluated. Blood pressure was recorded using a tail-cuff system. The expression levels were measured using real-time polymerase chain reaction, enzyme-linked immunosorbent assay or Western blot analysis, and RNA-sequence analysis. Programmed electrical stimulation, patch clamp, and multielectrode array were used to record the electrophysical characteristics. RESULTS Mutant rats displayed downregulated expression of atrial natriuretic peptide but elevated blood pressure and enlarged left atrial end-diastolic diameter. Further, gene topology analysis suggested that the majority of differently expressed genes in Nppa KI rats were related to inflammation, electrical remodeling, and structural remodeling. The expression levels of C-C chemokine ligand 5 and galectin-3 involved in remodeling were higher, while there were declined levels of Nav1.5, Cav1.2, and connexin 40. AF was more easily induced in KI rats. Electrical remodeling included abbreviated action potentials, effective refractory period, increased late sodium current, and reduced calcium current, giving rise to conduction abnormalities. These electrophysiological changes could be reversed by the late sodium current blocker ranolazine and the Nav1.8 blocker A-803467. CONCLUSION Our findings suggest that structural remodeling related to inflammation and fibrosis and electrical remodeling involved in late sodium current underly the major effects of the Nppa (p.I137T) variant to induce AF, which can be attenuated by the late sodium current blocker and Nav1.8 blocker.
Collapse
Affiliation(s)
- Yan Huang
- Department of Cardiology and Cardiovascular Research Institute, Renmin Hospital of Wuhan University, Wuhan, Hubei, China; Hubei Key Laboratory of Cardiology, Wuhan, Hubei, China
| | - Ling-Ling Wang
- Department of Cardiology and Cardiovascular Research Institute, Renmin Hospital of Wuhan University, Wuhan, Hubei, China; Hubei Key Laboratory of Cardiology, Wuhan, Hubei, China
| | - Zhe-Bo Liu
- Department of Cardiology and Cardiovascular Research Institute, Renmin Hospital of Wuhan University, Wuhan, Hubei, China; Hubei Key Laboratory of Cardiology, Wuhan, Hubei, China
| | - Cheng Chen
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiang Ren
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - An-Tao Luo
- Cardio-Electrophysiological Research Laboratory, Medical College of Wuhan University of Science and Technology, Wuhan, Hubei, China; Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Medical College of Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Ji-Hua Ma
- Cardio-Electrophysiological Research Laboratory, Medical College of Wuhan University of Science and Technology, Wuhan, Hubei, China; Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Medical College of Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Charles Antzelevitch
- Lankenau Institute for Medical Research, Wynnewood, Pennsylvania; Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Hector Barajas-Martínez
- Lankenau Institute for Medical Research, Wynnewood, Pennsylvania; Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Dan Hu
- Department of Cardiology and Cardiovascular Research Institute, Renmin Hospital of Wuhan University, Wuhan, Hubei, China; Hubei Key Laboratory of Cardiology, Wuhan, Hubei, China.
| |
Collapse
|
3
|
Silva Cunha P, Antunes DO, Laranjo S, Coutinho A, Abecasis J, Oliveira MM. Case report: Mutation in NPPA gene as a cause of fibrotic atrial myopathy. Front Cardiovasc Med 2023; 10:1149717. [PMID: 37363091 PMCID: PMC10285104 DOI: 10.3389/fcvm.2023.1149717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Accepted: 05/19/2023] [Indexed: 06/28/2023] Open
Abstract
Early-onset atrial fibrillation (AF) can be the manifestation of a genetic atrial myopathy. However, specific genetic identification of a mutation causing atrial fibrosis is rare. We report a case of a young patient with an asymptomatic AF, diagnosed during a routine examination. The cardiac MRI revealed extensive atrial fibrosis and the electrophysiology study showed extensive areas of low voltage. The genetic investigation identified a homozygous pathogenic variant in the NPPA gene in the index case and the presence of the variant in heterozygosity in both parents.
Collapse
Affiliation(s)
- Pedro Silva Cunha
- Arrhythmology, Pacing and Electrophysiology Unit, Cardiology Service, Santa Marta Hospital, Centro Hospitalar Universitário Lisboa Central, Lisbon, Portugal
- Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
- Cardiovascular Department, Hospital Lusíadas Lisboa, Lisbon, Portugal
| | - Diana Oliveira Antunes
- Genetics Department, Hospital Dona Estefânia, Centro Hospitalar Universitário Lisboa Central, Lisbon, Portugal
- GenoMed Diagnóstico Medicina Molecular, Instituto de Medicina Molecular, Lisbon, Portugal
| | - Sérgio Laranjo
- Arrhythmology, Pacing and Electrophysiology Unit, Cardiology Service, Santa Marta Hospital, Centro Hospitalar Universitário Lisboa Central, Lisbon, Portugal
- NOVA Medical School, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Ana Coutinho
- GenoMed Diagnóstico Medicina Molecular, Instituto de Medicina Molecular, Lisbon, Portugal
| | - João Abecasis
- Cardiovascular Department, Hospital Lusíadas Lisboa, Lisbon, Portugal
- NOVA Medical School, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Mário Martins Oliveira
- Arrhythmology, Pacing and Electrophysiology Unit, Cardiology Service, Santa Marta Hospital, Centro Hospitalar Universitário Lisboa Central, Lisbon, Portugal
- Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
4
|
Lin L, Li K, Tian B, Jia M, Wang Q, Xu C, Xiong L, Wang Q, Zeng Y, Wang P. Two Novel Functional Mutations in Promoter Region of SCN3B Gene Associated with Atrial Fibrillation. Life (Basel) 2022; 12:life12111794. [PMID: 36362949 PMCID: PMC9698146 DOI: 10.3390/life12111794] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/01/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022] Open
Abstract
The sodium voltage-gated channel beta subunit 3 (SCN3B) plays a crucial role in electrically excitable cells and conduction tissue in the heart. Some previous studies have established that genetic modification in sodium voltage-channel genes encoding for the cardiac β-subunits, such as SCN1B, SCN2B, SCN3B and SCN4B, can result in atrial fibrillation (AF). In the current study, we identified two rare variants in 5′UTR (NM_018400.4: c.-324C>A, rs976125894 and NM_018400.4: c.-303C>T, rs1284768362) of SCN3B in two unrelated lone AF patients. Our further functional studies discovered that one of them, the A allele of c.-324C>A (rs976125894), can improve transcriptional activity and may raise SCN3B expression levels. The A allele of c.-324C>A (rs976125894) has higher transcriptional activity when it interacts with GATA4, as we confirmed transcription factor GATA4 is a regulator of SCN3B. To the best of our knowledge, the current study is the first to demonstrate that the gain-of-function mutation of SCN3B can produce AF and the first to link a mutation occurring in the non-coding 5′UTR region of SCN3B to lone AF. The work also offers empirical proof that GATA4 is a critical regulator of SCN3B gene regulation. Our findings may serve as an encyclopedia for AF susceptibility variants and can also provide insight into the investigation of the functional mechanisms behind AF variants discovered by genetic methods.
Collapse
Affiliation(s)
- Liyan Lin
- Department of Clinical Laboratory, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430077, China
| | - Ke Li
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Institute, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- Human Genome Research Center, College of Life and Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Beijia Tian
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Institute, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- Human Genome Research Center, College of Life and Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Mengru Jia
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Institute, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- Human Genome Research Center, College of Life and Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Qianyan Wang
- Liyuan Cardiovascular Center, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430077, China
| | - Chengqi Xu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Institute, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- Human Genome Research Center, College of Life and Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Liang Xiong
- Department of Clinical Laboratory, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430077, China
| | - Qing Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Institute, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- Human Genome Research Center, College of Life and Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yali Zeng
- Department of Clinical Laboratory, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430077, China
- Correspondence: (Y.Z.); (P.W.)
| | - Pengyun Wang
- Department of Clinical Laboratory, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430077, China
- Correspondence: (Y.Z.); (P.W.)
| |
Collapse
|
5
|
Abstract
Atrial fibrillation (AF) is the most common cardiac arrhythmia despite substantial efforts to understand the pathophysiology of the condition and develop improved treatments. Identifying the underlying causative mechanisms of AF in individual patients is difficult and the efficacy of current therapies is suboptimal. Consequently, the incidence of AF is steadily rising and there is a pressing need for novel therapies. Research has revealed that defects in specific molecular pathways underlie AF pathogenesis, resulting in electrical conduction disorders that drive AF. The severity of this so-called electropathology correlates with the stage of AF disease progression and determines the response to AF treatment. Therefore, unravelling the molecular mechanisms underlying electropathology is expected to fuel the development of innovative personalized diagnostic tools and mechanism-based therapies. Moreover, the co-creation of AF studies with patients to implement novel diagnostic tools and therapies is a prerequisite for successful personalized AF management. Currently, various treatment modalities targeting AF-related electropathology, including lifestyle changes, pharmaceutical and nutraceutical therapy, substrate-based ablative therapy, and neuromodulation, are available to maintain sinus rhythm and might offer a novel holistic strategy to treat AF.
Collapse
Affiliation(s)
- Bianca J J M Brundel
- Department of Physiology, Amsterdam University Medical Centers, VU Universiteit, Amsterdam Cardiovascular Sciences, Amsterdam, Netherlands.
| | - Xun Ai
- Department of Physiology and Cell Biology, College of Medicine/Wexner Medical Center, The Ohio State University, Columbus, OH, USA
| | | | - Myrthe F Kuipers
- AFIPonline.org, Atrial Fibrillation Innovation Platform, Amsterdam, Netherlands
| | - Gregory Y H Lip
- Liverpool Centre for Cardiovascular Science, University of Liverpool and Liverpool Heart & Chest Hospital, Liverpool, UK
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | | |
Collapse
|
6
|
Wang P, Wang Y, Peng H, Wang J, Zheng Q, Wang P, Wang J, Zhang H, Huang Y, Xiong L, Zhang R, Xia Y, Wang QK, Xu C. Functional rare variant in a C/EBP beta binding site in NINJ2 gene increases the risk of coronary artery disease. Aging (Albany NY) 2021; 13:25393-25407. [PMID: 34897030 PMCID: PMC8714150 DOI: 10.18632/aging.203755] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 11/11/2021] [Indexed: 11/26/2022]
Abstract
Objective: NINJ2 regulates activation of vascular endothelial cells, and genome-wide association studies showed that variants in NINJ2 confer risk to stroke. However, whether variants in NINJ2 are associated with coronary artery disease (CAD) is unknown. Methods: We genotyped rs34166160 in NINJ2 in two independent Chinese GeneID populations which included 2,794 CAD cases and 4,131 controls, and performed genetics association studies. Functional studies were also performed to reveal the mechanisms. Results: Allele rs34166160 significantly confers risk to CAD in the GeneID Hubei population which contained 1,440 CAD cases and 2,660 CAD-free controls (observed P-obs = 6.39 × 10−3 with an odds ratio (OR) was 3.39, adjusted P-adj = 8.12 × 10−3 with an OR of 3.10). The association was replicated in another population, GeneID Shandong population contained 1,354 CAD cases and 1,471 controls (P-obs = 3.33 × 10−3 with an OR of 3.14, P-adj = 0.01 with an OR of 2.74). After combining the two populations, the association was more significant (P-obs = 1.57 × 10−5 with an OR of 3.58, P-adj = 3.41 × 10−4 with an OR of 2.80). In addition, we found that rs34166160 was associated with the mRNA expression level of NINJ2 and the flanking region of rs34166160 can directly bind with transcriptional factor CCAAT-box/enhancer-binding protein beta, and the risk A allele has more transcription activity than non-risk C allele with or without LPS in HUVEC cells. Conclusions: Our study demonstrates that the functional rare variant rs34166160 in NINJ2 confers risk to CAD for the first time, and these findings further expand the range of the pathology of CAD and atherosclerosis.
Collapse
Affiliation(s)
- Pengyun Wang
- Department of Clinical Laboratory, Liyuan Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Yifan Wang
- Human Genome Research Center, Cardio-X Institute, College of Life Science and Technology of Huazhong University of Science and Technology, Wuhan, PR China
| | - Huixin Peng
- Human Genome Research Center, Cardio-X Institute, College of Life Science and Technology of Huazhong University of Science and Technology, Wuhan, PR China
| | - Jingjing Wang
- State Key Laboratory for Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, PR China
| | - Qian Zheng
- Human Genome Research Center, Cardio-X Institute, College of Life Science and Technology of Huazhong University of Science and Technology, Wuhan, PR China
| | - Pengxia Wang
- Human Genome Research Center, Cardio-X Institute, College of Life Science and Technology of Huazhong University of Science and Technology, Wuhan, PR China
| | - Jing Wang
- Human Genome Research Center, Cardio-X Institute, College of Life Science and Technology of Huazhong University of Science and Technology, Wuhan, PR China
| | - Hongfu Zhang
- Human Genome Research Center, Cardio-X Institute, College of Life Science and Technology of Huazhong University of Science and Technology, Wuhan, PR China
| | - Yufeng Huang
- Precision Medical Laboratory, Tongji Medical College, Wuhan Children's Hospital (Wuhan Maternal and Child Health Care Hospital), Huazhong University of Science and Technology, Wuhan, PR China
| | - Liang Xiong
- Department of Clinical Laboratory, Liyuan Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Rongfeng Zhang
- Department of Cardiology, First Affiliated Hospital of Dalian Medical University, Dalian, PR China
| | - Yunlong Xia
- Department of Cardiology, First Affiliated Hospital of Dalian Medical University, Dalian, PR China
| | - Qing K Wang
- Human Genome Research Center, Cardio-X Institute, College of Life Science and Technology of Huazhong University of Science and Technology, Wuhan, PR China
| | - Chengqi Xu
- Human Genome Research Center, Cardio-X Institute, College of Life Science and Technology of Huazhong University of Science and Technology, Wuhan, PR China
| |
Collapse
|
7
|
Machine Learning and Bioinformatics Framework Integration to Potential Familial DCM-Related Markers Discovery. Genes (Basel) 2021; 12:genes12121946. [PMID: 34946895 PMCID: PMC8701745 DOI: 10.3390/genes12121946] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 11/26/2021] [Accepted: 11/29/2021] [Indexed: 12/11/2022] Open
Abstract
Objectives: Dilated cardiomyopathy (DCM) is characterized by a specific transcriptome. Since the DCM molecular network is largely unknown, the aim was to identify specific disease-related molecular targets combining an original machine learning (ML) approach with protein-protein interaction network. Methods: The transcriptomic profiles of human myocardial tissues were investigated integrating an original computational approach, based on the Custom Decision Tree algorithm, in a differential expression bioinformatic framework. Validation was performed by quantitative real-time PCR. Results: Our preliminary study, using samples from transplanted tissues, allowed the discovery of specific DCM-related genes, including MYH6, NPPA, MT-RNR1 and NEAT1, already known to be involved in cardiomyopathies Interestingly, a combination of these expression profiles with clinical characteristics showed a significant association between NEAT1 and left ventricular end-diastolic diameter (LVEDD) (Rho = 0.73, p = 0.05), according to severity classification (NYHA-class III). Conclusions: The use of the ML approach was useful to discover preliminary specific genes that could lead to a rapid selection of molecular targets correlated with DCM clinical parameters. For the first time, NEAT1 under-expression was significantly associated with LVEDD in the human heart.
Collapse
|
8
|
Wang J, Tang L, Xu A, Zhang S, Jiang H, Pei P, Li H, Lv T, Yang Y, Qian N, Naidu K, Yang W. Identification of mutations in the ATP7B gene in 14 Wilson disease children: Case series. Medicine (Baltimore) 2021; 100:e25463. [PMID: 33879678 PMCID: PMC8078297 DOI: 10.1097/md.0000000000025463] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 03/18/2021] [Indexed: 01/04/2023] Open
Abstract
INTRODUCTION Wilson Disease (WD) is an autosomal recessive inherited metabolic disease caused by mutations in the ATPase copper transporting beta gene (ATP7B). WD can cause fatal neurological and hepatic disorders if not diagnosed and treated. OBJECTIVE To analyze the disease-causing mutations of 14 Chinese WD children, 11 of whom are diagnosed with hepatic disorders, 2 with neurological degeneration and 1 with both hepatic and neurological disorders. METHODS All ATP7B coding regions were analyzed by Sanger sequencing. Single nucleotide polymorphisms (SNPs) functional impacts were assessed by combining the results of four bioinformatics tools (Poly-phen-2, SIFT, PANTHER-PSEP and PhD-SNPs) in an index that reflects the combined probability (cPdel) of an amino acid change to be deleterious to the protein function. RESULTS Two novel variants involved in WD development, c.1448_1455del (p.Arg483SerfsX19) and c.4144G>T (p.Glu1382Stop), and 11 previously reported mutations were detected. Both new variants result in shortened and dysfunctional ATP7B proteins. cPdel score suggests that SNPs may be deleterious to the ATP7B functionality. CONCLUSIONS This study enriches the library of the ATP7B mutations that lead to WD and can be used as a basis for genetic counseling, for WD prevention and clinical and prenatal diagnosis. Those SNPs that are believed to be harmless to ATP7B protein may be involved in the pathogenesis of WD.
Collapse
Affiliation(s)
| | | | - Anqi Xu
- Nangjing Red Cross Blood Center, Nangjing
| | | | | | | | - Hongmei Li
- Clinical Laboratory Center, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei
| | - Tingting Lv
- Department of Rehabilitation Medicine, Laian People's Hospital, Chuzhou
| | | | | | - Keegan Naidu
- School of International Studies, Anhui Medical University, Hefei, Anhui, PR China
| | | |
Collapse
|
9
|
Wang P, Cheng M, Wang P, Xiong L, Zeng Y, Tu X, Zhang R, Xia Y, Wu G, Wang Q, Cheng X, Xu C. SNP rs2243828 in MPO associated with myeloperoxidase level and atrial fibrillation risk in Chinese Han population. J Cell Mol Med 2021; 24:10263-10266. [PMID: 33460291 PMCID: PMC7520285 DOI: 10.1111/jcmm.15644] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 06/10/2020] [Accepted: 06/29/2020] [Indexed: 12/01/2022] Open
Abstract
Previous studies shown that myeloperoxidase (MPO) level is higher in patients with atrial fibrillation (AF); however, no genetic evidence between MPO and AF risk in human population was observed. Therefore, the present study was aimed to investigate the association between rs2243828, a variant in promoter region of MPO and the risk of AF in Chinese GeneID population. The results demonstrated that the minor G allele of rs2243828 showed a significant association with AF in two independent population (GeneID‐north population with 694 AF cases and 710 controls, adjusted P‐adj = 6.25 × 10−3 with an odds ratio was 0.77, GeneID‐central population with 1106 cases and 1501 controls, P‐adj = 9.88 × 10−5 with an odds ratio was 0.75). The results also showed G allele was significantly associated with lower plasma concentration of myeloperoxidase in general population. We also observed a significant difference of odds ratio between subgroups of hypertension and non‐hypertension. Therefore, our findings identified variant in MPO associated with risk of AF and it may give strong evidence to link the inflammation with the incidence of AF.
Collapse
Affiliation(s)
- Pengyun Wang
- Department of Clinical Laboratory, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mian Cheng
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pengxia Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research and Cardio-X Institute, Huazhong University of Science and Technology, Wuhan, China
| | - Liang Xiong
- Department of Clinical Laboratory, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yali Zeng
- Department of Clinical Laboratory, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xin Tu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research and Cardio-X Institute, Huazhong University of Science and Technology, Wuhan, China
| | - Rongfeng Zhang
- Department of Cardiology, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yunlong Xia
- Department of Cardiology, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Gang Wu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Qing Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research and Cardio-X Institute, Huazhong University of Science and Technology, Wuhan, China.,Center for Cardiovascular Genetics, Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, OH, USA.,Department of Molecular Medicine, CCLCM, Cleveland, OH, USA.,Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Xiang Cheng
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chengqi Xu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research and Cardio-X Institute, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
10
|
Zhang J, Johnsen SP, Guo Y, Lip GYH. Epidemiology of Atrial Fibrillation: Geographic/Ecological Risk Factors, Age, Sex, Genetics. Card Electrophysiol Clin 2021; 13:1-23. [PMID: 33516388 DOI: 10.1016/j.ccep.2020.10.010] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Atrial fibrillation is the most common arrhythmia globally. The global prevalence of atrial fibrillation is positively correlated with the sociodemographic index of different regions. Advancing age, male sex, and Caucasian race are risk factors; female sex is correlated with higher atrial fibrillation mortality worldwide likely owing to thromboembolic risk. African American ethnicity is associated with lower atrial fibrillation risk, same as Asian and Hispanic/Latino ethnicities compared with Caucasians. Atrial fibrillation may be heritable, and more than 100 genetic loci have been identified. A polygenic risk score and clinical risk factors are feasible and effective in risk stratification of incident disease.
Collapse
Affiliation(s)
- Juqian Zhang
- Liverpool Centre for Cardiovascular Science, University of Liverpool and Liverpool Heart and Chest Hospital, Liverpool, L14 3PE, UK
| | - Søren Paaske Johnsen
- Department of Clinical Medicine, Aalborg University, Søndre Skovvej 15, Aalborg, Aalborg 9000, Denmark
| | - Yutao Guo
- Liverpool Centre for Cardiovascular Science, University of Liverpool and Liverpool Heart and Chest Hospital, Liverpool, L14 3PE, UK; Department of Cardiology, Medical School of Chinese PLA, Chinese PLA General Hospital, Beijing, China
| | - Gregory Y H Lip
- Liverpool Centre for Cardiovascular Science, University of Liverpool and Liverpool Heart and Chest Hospital, Liverpool, L14 3PE, UK; Department of Clinical Medicine, Aalborg University, Søndre Skovvej 15, Aalborg, Aalborg 9000, Denmark; Department of Cardiology, Medical School of Chinese PLA, Chinese PLA General Hospital, Beijing, China.
| |
Collapse
|
11
|
Xu C, Zhang R, Xia Y, Xiong L, Yang W, Wang P. Annotation of susceptibility SNPs associated with atrial fibrillation. Aging (Albany NY) 2020; 12:16981-16998. [PMID: 32902410 PMCID: PMC7521544 DOI: 10.18632/aging.103615] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 06/18/2020] [Indexed: 01/24/2023]
Abstract
OBJECTIVE Genome-wide association studies (GWAS) and the candidate gene based association studies have identified a panel of variants associated with atrial fibrillation (AF), however, most of the identified single nucleotide polymorphisms (SNPs) were found located within intergenic or intronic genomic regions, and whether the positive SNPs have a real biological function is unknown, and the real disease causing gene need to be studied. RESULTS The current results of the genetic studies including common variants identified by GWAS (338 index SNPs) and candidate gene based association studies (40 SNPs) were summarized. CONCLUSION Our study suggests the relationship between genetic variants and possible targeted genes, and provides insight into potential genetic pathways underlying AF incidence and development. The results may provide an encyclopedia of AF susceptibility SNPs and shed light on the functional mechanisms of AF variants identified through genetic studies. METHODS We summarized AF susceptibility SNPs identified by GWAS and candidate gene based association studies, and give a comprehensive functional annotation of all these AF susceptibility loci. by genomic annotation, microRNA binding prediction, promoter activity analysis, enhancer activity analysis, transcription factors binding activity prediction, expression quantitative trait loci (eQTL) analysis, long-range transcriptional regulatory function analysis, gene ontology and pathway enrichment analysis.
Collapse
Affiliation(s)
- Chengqi Xu
- College of Life Science and Technology, Center for Human Genome Research and Cardio-X Institute, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Rongfeng Zhang
- Department of Cardiology, First Affiliated Hospital of Dalian Medical University, Dalian 116011, P. R. China
| | - Yunlong Xia
- Department of Cardiology, First Affiliated Hospital of Dalian Medical University, Dalian 116011, P. R. China
| | - Liang Xiong
- Department of Clinical Laboratory, Liyuan Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430077, P. R. China
| | - Wei Yang
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun 130041, P. R. China
| | - Pengyun Wang
- Department of Clinical Laboratory, Liyuan Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430077, P. R. China
| |
Collapse
|
12
|
Zhang S, Li L, Wang J. Wilson disease patient with rare heterozygous mutations in ATP7B accompanied by distinctive nocturnal enuresis: A case report. Medicine (Baltimore) 2020; 99:e20997. [PMID: 32664103 PMCID: PMC7360279 DOI: 10.1097/md.0000000000020997] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
INTRODUCTION Wilson disease (WD) is an autosomal-recessive disorder of copper metabolism, which exhibits various symptoms due to the combination of environmental and genetic factors. Here, we report a WD patient who displayed distinctive symptom of nocturnal enuresis. PATIENT CONCERNS The patient was a 31-year old woman, who recently developed nocturnal enuresis, combined with hand tremors, trouble speaking, and panic disorder at night. DIAGNOSIS The patient had been diagnosed with WD by Kayser-Fleischer rings, abnormal copper metabolism, neuropsychiatric symptoms, and magnetic resonance imaging when she was 17. The diagnosis was further confirmed by genetic analysis, which revealed a compound heterozygous mutations in ATP7B gene (c.2195T>C and c.3044T>C). The patient exhibited nocturnal enuresis, but the ambulatory electroencephalogram, routine urinalysis, residual urine detection, color doppler ultrasound of kidney, ureter, and bladder all displayed no abnormality. INTERVENTIONS The patient was treated with sodium dimercaptosulphonate, supplemented with Glutathione and Encephalin-inosine. OUTCOMES The urinary copper excretion level decreased gradually, and the nocturnal enuresis was alleviated along with the neuropsychiatric symptoms by copper chelation therapy. CONCLUSION In this study, we proved that variants c.2195T>C and c.3044T>C is involved in pathogenesis of WD, and revealed that nocturnal enuresis may be a symptom of WD.
Collapse
Affiliation(s)
| | - Liangyong Li
- Department of Neurology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, China
| | | |
Collapse
|
13
|
Huang X, Li Y, Zhang J, Wang X, Li Z, Li G. The molecular genetic basis of atrial fibrillation. Hum Genet 2020; 139:1485-1498. [PMID: 32617797 DOI: 10.1007/s00439-020-02203-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 06/26/2020] [Indexed: 12/15/2022]
Abstract
As the most common cardiac arrhythmia, atrial fibrillation (AF) is a major risk factor for stroke, heart failure, and premature death with considerable associated costs. However, no available treatment options have optimal benefit-harm profiles currently, reflecting an incomplete understanding of the biological mechanisms underlying this complex arrhythmia. Recently, molecular epidemiological studies, especially genome-wide association studies, have emphasized the substantial genetic component of AF etiology. A comprehensive mapping of the genetic underpinnings for AF can expand our knowledge of AF mechanism and further facilitate the process of locating novel therapeutics for AF. Here we provide a state-of-the-art review of the molecular genetics of AF incorporating evidence from linkage analysis and candidate gene, as well as genome-wide association studies of common variations and rare copy number variations; potential epigenetic modifications (e.g., DNA methylation, histone modification, and non-coding RNAs) are also involved. We also outline the challenges in mechanism investigation and potential future directions in this article.
Collapse
Affiliation(s)
- Xin Huang
- Center for Clinical Epidemiology and Methodology (CCEM), Guangdong Second Provincial General Hospital, 466 Newport Middle Road, Haizhu District, Guangzhou, 510317, Guangdong, China
| | - Yuhui Li
- Department of Cardiology, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Junguo Zhang
- Center for Clinical Epidemiology and Methodology (CCEM), Guangdong Second Provincial General Hospital, 466 Newport Middle Road, Haizhu District, Guangzhou, 510317, Guangdong, China
| | - Xiaojie Wang
- Center for Clinical Epidemiology and Methodology (CCEM), Guangdong Second Provincial General Hospital, 466 Newport Middle Road, Haizhu District, Guangzhou, 510317, Guangdong, China
| | - Ziyi Li
- Center for Clinical Epidemiology and Methodology (CCEM), Guangdong Second Provincial General Hospital, 466 Newport Middle Road, Haizhu District, Guangzhou, 510317, Guangdong, China
| | - Guowei Li
- Center for Clinical Epidemiology and Methodology (CCEM), Guangdong Second Provincial General Hospital, 466 Newport Middle Road, Haizhu District, Guangzhou, 510317, Guangdong, China. .,Department of Health Research Methods, Evidence, and Impact (HEI), McMaster University Hamilton, 1280 Main St West, Hamilton, ON, L8S 4L8, Canada.
| |
Collapse
|
14
|
Larupa Santos J, Rodríguez I, S. Olesen M, Hjorth Bentzen B, Schmitt N. Investigating gene-microRNA networks in atrial fibrillation patients with mitral valve regurgitation. PLoS One 2020; 15:e0232719. [PMID: 32392228 PMCID: PMC7213724 DOI: 10.1371/journal.pone.0232719] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 04/20/2020] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Atrial fibrillation (AF) is predicted to affect around 17.9 million individuals in Europe by 2060. The disease is associated with severe electrical and structural remodelling of the heart, and increased the risk of stroke and heart failure. In order to improve treatment and find new drug targets, the field needs to better comprehend the exact molecular mechanisms in these remodelling processes. OBJECTIVES This study aims to identify gene and miRNA networks involved in the remodelling of AF hearts in AF patients with mitral valve regurgitation (MVR). METHODS Total RNA was extracted from right atrial biopsies from patients undergoing surgery for mitral valve replacement or repair with AF and without history of AF to test for differentially expressed genes and miRNAs using RNA-sequencing and miRNA microarray. In silico predictions were used to construct a mRNA-miRNA network including differentially expressed mRNAs and miRNAs. Gene and chromosome enrichment analysis were used to identify molecular pathways and high-density AF loci. RESULTS We found 644 genes and 43 miRNAs differentially expressed in AF patients compared to controls. From these lists, we identified 905 pairs of putative miRNA-mRNA interactions, including 37 miRNAs and 295 genes. Of particular note, AF-associated miR-130b-3p, miR-338-5p and miR-208a-3p were differentially expressed in our AF tissue samples. These miRNAs are predicted regulators of several differentially expressed genes associated with cardiac conduction and fibrosis. We identified two high-density AF loci in chromosomes 14q11.2 and 6p21.3. CONCLUSIONS AF in MVR patients is associated with down-regulation of ion channel genes and up-regulation of extracellular matrix genes. Other AF related genes are dysregulated and several are predicted to be targeted by miRNAs. Our novel miRNA-mRNA regulatory network provides new insights into the mechanisms of AF.
Collapse
Affiliation(s)
- Joana Larupa Santos
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen N, Denmark
| | - Ismael Rodríguez
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen N, Denmark
| | - Morten S. Olesen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen N, Denmark
- Department of Cardiology, Laboratory for Molecular Cardiology, The Heart Centre, Rigshospitalet, University Hospital of Copenhagen, Copenhagen Ø, Denmark
| | - Bo Hjorth Bentzen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen N, Denmark
| | - Nicole Schmitt
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen N, Denmark
| |
Collapse
|
15
|
Rahmutula D, Zhang H, Wilson EE, Olgin JE. Absence of natriuretic peptide clearance receptor attenuates TGF-β1-induced selective atrial fibrosis and atrial fibrillation. Cardiovasc Res 2020; 115:357-372. [PMID: 30239604 DOI: 10.1093/cvr/cvy224] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Accepted: 09/14/2018] [Indexed: 01/04/2023] Open
Abstract
Aims TGF-β1 plays an important role in atrial fibrosis and atrial fibrillation (AF); previous studies have shown that the atria are more susceptible to TGF-β1 mediated fibrosis than the ventricles. Natriuretic peptides (NPs) play an important role in cardiac remodelling and fibrosis, but the role of natriuretic peptide clearance (NPR-C) receptor is largely unknown. We investigated the role of NPR-C in modulating TGF-β1 signalling in the atria. Methods and results MHC-TGF-β1 transgenic (TGF-β1-Tx) mice, which develop isolated atrial fibrosis and AF, were cross-bred with NPR-C knock-out mice (NPR-C-KO). Transverse aortic constriction (TAC) was performed in wild type (Wt) and NPR-C knockout mice to study. Atrial fibrosis and AF inducibility in a pathophysiologic model. Electrophysiology, molecular, and histologic studies were performed in adult mice. siRNA was used to interrogate the interaction between TGF-β1 and NP signalling pathways in isolated atrial and ventricular fibroblasts/myofibroblasts. NPR-C expression level was 17 ± 5.8-fold higher in the atria compared with the ventricle in Wt mice (P = 0.009). Cross-bred mice demonstrated markedly decreased pSmad2 and collagen expression, atrial fibrosis, and AF compared with TGF-β1-Tx mice with intact NPR-C. There was a marked reduction in atrial fibrosis gene expression and AF inducibility in the NPR-C-KO-TAC mice compared with Wt-TAC. In isolated fibroblasts, knockdown of NPR-C resulted in a marked reduction of pSmad2 (56 ± 4% and 24 ± 14% reduction in atrial and ventricular fibroblasts, respectively) and collagen (76 ± 15% and 35 ± 23% reduction in atrial and ventricular fibroblasts/myofibroblasts, respectively) in response to TGF-β1 stimulation. This effect was reversed by simultaneously knocking down NPR-A but not with simultaneous knock down of PKG-1. Conclusion The differential response to TGF-β1 stimulated fibrosis between the atria and ventricle are in part mediated by the abundance of NPR-C receptors in the atria.
Collapse
Affiliation(s)
- Dolkun Rahmutula
- Division of Cardiology, Cardiovascular Research Institute, University of California, San Francisco, 505 Parnassus Avenue, M1182, Box 0124, San Francisco, CA, USA
| | - Hao Zhang
- Division of Cardiology, Cardiovascular Research Institute, University of California, San Francisco, 505 Parnassus Avenue, M1182, Box 0124, San Francisco, CA, USA
| | - Emily E Wilson
- Division of Cardiology, Cardiovascular Research Institute, University of California, San Francisco, 505 Parnassus Avenue, M1182, Box 0124, San Francisco, CA, USA
| | - Jeffrey E Olgin
- Division of Cardiology, Cardiovascular Research Institute, University of California, San Francisco, 505 Parnassus Avenue, M1182, Box 0124, San Francisco, CA, USA
| |
Collapse
|
16
|
Ragab AAY, Sitorus GDS, Brundel BBJJM, de Groot NMS. The Genetic Puzzle of Familial Atrial Fibrillation. Front Cardiovasc Med 2020; 7:14. [PMID: 32118049 PMCID: PMC7033574 DOI: 10.3389/fcvm.2020.00014] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 01/28/2020] [Indexed: 12/17/2022] Open
Abstract
Atrial fibrillation (AF) is the most common clinical tachyarrhythmia. In Europe, AF is expected to reach a prevalence of 18 million by 2060. This estimate will increase hospitalization for AF to 4 million and 120 million outpatient visits. Besides being an independent risk factor for mortality, AF is also associated with an increased risk of morbidities. Although there are many well-defined risk factors for developing AF, no identifiable risk factors or cardiac pathology is seen in up to 30% of the cases. The heritability of AF has been investigated in depth since the first report of familial atrial fibrillation (FAF) in 1936. Despite the limited value of animal models, the advances in molecular genetics enabled identification of many common and rare variants related to FAF. The importance of AF heritability originates from the high prevalence of lone AF and the lack of clear understanding of the underlying pathophysiology. A better understanding of FAF will facilitate early identification of people at high risk of developing FAF and subsequent development of more effective management options. In this review, we reviewed FAF epidemiological studies, identified common and rare variants, and discussed their clinical implications and contributions to developing new personalized therapeutic strategies.
Collapse
Affiliation(s)
- Ahmed A Y Ragab
- Department of Cardiology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Gustaf D S Sitorus
- Department of Cardiology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Bianca B J J M Brundel
- Department of Physiology, Institute for Cardiovascular Research, VU Medical Center, Amsterdam, Netherlands
| | - Natasja M S de Groot
- Department of Cardiology, Erasmus University Medical Center, Rotterdam, Netherlands
| |
Collapse
|
17
|
Abstract
Background Atrial fibrillation (AF) is a common arrhythmia seen in clinical practice. Occasionally, no common risk factors are present in patients with this arrhythmia. This suggests the potential underlying role of genetic factors associated with predisposition to developing AF. Methods and Results We conducted a comprehensive review of the literature through large online libraries, including PubMed. Many different potassium and sodium channel mutations have been discussed in their relation to AF. There have also been non–ion channel mutations that have been linked to AF. Genome‐wide association studies have helped in identifying potential links between single‐nucleotide polymorphisms and AF. Ancestry studies have also highlighted a role of genetics in AF. Blacks with a higher percentage of European ancestry are at higher risk of developing AF. The emerging field of ablatogenomics involves the use of genetic profiles in their relation to recurrence of AF after catheter ablation. Conclusions The evidence for the underlying role of genetics in AF continues to expand. Ultimately, the role of genetics in risk stratification of AF and its recurrence is of significant interest. No established risk scores that are useful in clinical practice are present to date.
Collapse
Affiliation(s)
- Julien Feghaly
- 1 Department of Internal Medicine St Louis University Hospital St Louis MO
| | - Patrick Zakka
- 2 Department of Internal Medicine Emory University Hospital Atlanta GA
| | - Barry London
- 3 Department of Cardiovascular Medicine University of Iowa Carver College of Medicine Iowa City IA
| | - Calum A MacRae
- 4 Department of Cardiovascular Medicine Brigham and Women's Hospital Boston MA
| | - Marwan M Refaat
- 5 Department of Cardiovascular Medicine American University of Beirut Medical Center Beirut Lebanon
| |
Collapse
|
18
|
Wei LK, Quan LS. Biomarkers for ischemic stroke subtypes: A protein-protein interaction analysis. Comput Biol Chem 2019; 83:107116. [PMID: 31561071 DOI: 10.1016/j.compbiolchem.2019.107116] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 07/10/2019] [Accepted: 08/26/2019] [Indexed: 01/21/2023]
Abstract
According to the Trial of Org 10172 in Acute Stroke Treatment, ischemic stroke is classified into five subtypes. However, the predictive biomarkers of ischemic stroke subtypes are still largely unknown. The utmost objective of this study is to map, construct and analyze protein-protein interaction (PPI) networks for all subtypes of ischemic stroke, and to suggest the predominant biological pathways for each subtypes. Through 6285 protein data retrieved from PolySearch2 and STRING database, the first PPI networks for all subtypes of ischemic stroke were constructed. Notably, F2 and PLG were identified as the critical proteins for large artery atherosclerosis (LAA), lacunar, cardioembolic, stroke of other determined etiology (SOE) and stroke of undetermined etiology (SUE). Gene ontology and DAVID analysis revealed that GO:0030193 regulation of blood coagulation and GO:0051917 regulation of fibrinolysis were the important functional clusters for all the subtypes. In addition, inflammatory pathway was the key etiology for LAA and lacunar, while FOS and JAK2/STAT3 signaling pathways might contribute to cardioembolic stroke. Due to many risk factors associated with SOE and SUE, the precise etiology for these two subtypes remained to be concluded.
Collapse
Affiliation(s)
- Loo Keat Wei
- Department of Biological Science, Faculty of Science, Universiti Tunku Abdul Rahman, Bandar Barat, 31900 Kampar, Perak, Malaysia.
| | - Leong Shi Quan
- Department of Biological Science, Faculty of Science, Universiti Tunku Abdul Rahman, Bandar Barat, 31900 Kampar, Perak, Malaysia
| |
Collapse
|
19
|
Cheng C, Liu H, Tan C, Tong D, Zhao Y, Liu X, Si W, Wang L, Liang L, Li J, Wang C, Chen Q, Du Y, Wang QK, Ren X. Mutation in NPPA causes atrial fibrillation by activating inflammation and cardiac fibrosis in a knock-in rat model. FASEB J 2019; 33:8878-8891. [PMID: 31034774 DOI: 10.1096/fj.201802455rrr] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Atrial fibrillation (AF) affects >30 million individuals worldwide. However, no genetic mutation from human patients with AF has been linked to inflammation. Here, we show that AF-associated human variant p.Ile138Thr in natriuretic peptide A (NPPA) encoding the atrial natriuretic peptide (ANP) causes inflammation, fibroblast activation, atrial fibrosis, and AF in knock-in (KI) rats. Variant p.Ile138Thr inhibits the interaction between ANP and its receptor natriuretic peptide receptor A and reduces intracellular cGMP levels. RNA sequencing and follow-up analyses showed that mutant ANP (mANP) activates multiple innate immunity pathways, including TNF-α, NF-κB, and IL-1β signaling. mANP induces differentiation of cardiac fibroblasts (CFs) to myofibroblasts and promotes CF proliferation and fibrosis. These results suggest that NPPA variant p.Ile138Thr causes AF by activating TNF-α, NF-κB, and IL-1β signaling, inflammation, and fibrosis. Multiple computational programs suggest that p.Ile138Thr is damaging or deleterious. Based on the 2015 American College of Medical Genetics and Genomics Standards and Guidelines, p.Ile138Thr can be classified as a likely pathogenic variant. Variant p.Ile138Thr was found only in Asian people in the Genome Aggregation Database and Exome Aggregation Consortium database at an averaged frequency of 0.026%. An estimated 1.15 million Asian people carry the variant and might be at risk of AF. The KI rats may provide an inflammation-based, genetic animal model for AF valuable for testing anti-inflammation or other therapies for AF.-Cheng, C., Liu, H., Tan, C., Tong, D., Zhao, Y., Liu, X., Si, W., Wang, L., Liang, L., Li, J., Wang, C., Chen, Q., Du, Y., Wang, Q. K., Ren, X. Mutation in NPPA causes atrial fibrillation by activating inflammation and cardiac fibrosis in a knock-in rat model.
Collapse
Affiliation(s)
- Chen Cheng
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
| | - Huixia Liu
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Chengcheng Tan
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
| | - Doudou Tong
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
| | - Yongxuan Zhao
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
| | - Xia Liu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
| | - Wenxia Si
- Department of Basic Medicine, Medical College, Hubei Polytechnic University, Huangshi, China
| | - Linlin Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
| | - Lina Liang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
| | - Jia Li
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
| | - Chenghui Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
| | - Qiuyun Chen
- Department of Molecular Cardiology, Cleveland Clinic, Cleveland, Ohio, USA.,Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Cleveland, Ohio, USA
| | - Yimei Du
- Institute of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; and
| | - Qing K Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China.,Department of Molecular Cardiology, Cleveland Clinic, Cleveland, Ohio, USA.,Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Cleveland, Ohio, USA.,Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio, USA
| | - Xiang Ren
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
20
|
Han M, Zhao M, Cheng C, Huang Y, Han S, Li W, Tu X, Luo X, Yu X, Liu Y, Chen Q, Ren X, Wang QK, Ke T. Lamin A mutation impairs interaction with nucleoporin NUP155 and disrupts nucleocytoplasmic transport in atrial fibrillation. Hum Mutat 2018; 40:310-325. [PMID: 30488537 DOI: 10.1002/humu.23691] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 11/19/2018] [Accepted: 11/26/2018] [Indexed: 12/19/2022]
Abstract
Atrial fibrillation (AF) is the most common cardiac arrhythmia. Here, we show the identification and functional characterization of one AF-associated mutation p.Arg399Cys in lamin A/C. Co-immunoprecipitation and GST pull-down assays demonstrate that lamin A/C interacts with NUP155, which is a nucleoporin and causes AF when mutated. Lamin A/C mutation p.Arg399Cys impairs the interaction between lamin A/C and NUP155, and increases extractability of NUP155 from the nuclear envelope (NE). Mutation p.Arg399Cys leads to aggregation of lamin A/C in the nucleus, although it does not impair the integrity of NE upon cellular stress. Mutation p.Arg399Cys inhibits the export of HSP70 mRNA and the nuclear import of HSP70 protein. Electrophysiological studies show that mutation p.Arg399Cys decreases the peak cardiac sodium current by decreasing the cell surface expression level of cardiac sodium channel Nav 1.5, but does not affect IKr potassium current. In conclusion, our results indicate that lamin A/C mutation p.Arg399Cys weakens the interaction between nuclear lamina (lamin A/C) and the nuclear pore complex (NUP155), leading to the development of AF. The findings provide a novel molecular mechanism for the pathogenesis of AF.
Collapse
Affiliation(s)
- Meng Han
- The Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Miao Zhao
- The Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Chen Cheng
- The Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Yuan Huang
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, P. R. China
| | - Shengna Han
- Department of Pharmacology, Basic Medical College, Zhengzhou University, Zhengzhou, P. R. China
| | - Wenjuan Li
- The Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Xin Tu
- The Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Xuan Luo
- The Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Xiaoling Yu
- The Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Yinan Liu
- The Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Qiuyun Chen
- Center for Cardiovascular Genetics, Department of Molecular Cardiology, Lerner Research Institute, Department of Cardiovascular Medicine, Cleveland Clinic, Cleveland, Ohio
- Department of Molecular Medicine, Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio
| | - Xiang Ren
- The Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Qing Kenneth Wang
- The Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan, P. R. China
- Center for Cardiovascular Genetics, Department of Molecular Cardiology, Lerner Research Institute, Department of Cardiovascular Medicine, Cleveland Clinic, Cleveland, Ohio
- Department of Molecular Medicine, Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio
| | - Tie Ke
- The Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan, P. R. China
| |
Collapse
|
21
|
Xiong X, Naji DH, Wang B, Zhao Y, Wang J, Wang D, Zhang Y, Li S, Chen S, Huang Y, Yang Q, Wang X, Yin D, Tu X, Chen Q, Ma X, Xu C, Wang QK. Significant Association between OPG/TNFRSF11B Variant and Common Complex Ischemic Stroke. J Stroke Cerebrovasc Dis 2018; 27:1683-1691. [PMID: 29501268 DOI: 10.1016/j.jstrokecerebrovasdis.2018.01.029] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 01/02/2018] [Accepted: 01/28/2018] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND The serum level of osteoprotegerin (encoded by OPG or TNFRSF11B) was previously shown to be increased in patients with ischemic stroke. A single nucleotide polymorphism rs3134069 in the TNFRSF11B gene was previously associated with ischemic stroke in a population of diabetic patients in Italy. It remains to be determined whether rs3134069 is associated with ischemic stroke in the general population or populations without diabetes. MATERIALS AND METHODS We genotyped rs3134069 and performed a case-control association study to test whether rs3134069 is associated with ischemic stroke in 2 independent Chinese Han populations, including a China-Central population with 1629 cases and 1504 controls and a China-Northern population with 1206 cases and 720 controls. RESULTS rs3134069 showed significant association with ischemic stroke in the China-Central population (P = 9.24 × 10-3, odds ratio [OR] = 1.50). The association was replicated in the independent China-Northern population (P = 2.45 × 10-4, OR = 1.53). The association became more significant in the combined population (P = 7.09 × 10-6, OR = 1.41). The associations remained significant in the male population, female population, and population without type 2 diabetes. Our expression quantitative trait loci analysis found that the minor allele C of rs3134069 was significantly associated with a decreasedexpression level of TNFRSF11B (P = .002). CONCLUSIONS This study demonstrates that rs3134069 in TNFRSF11B increases risk of ischemic stroke by decreasing TNFRSF11B expression.
Collapse
Affiliation(s)
- Xin Xiong
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Institute, College of Life Science and Technology, Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
| | - Duraid Hamied Naji
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Institute, College of Life Science and Technology, Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
| | - Binbin Wang
- National Research Institute for Family Planning, Beijing, China
| | - Yuanyuan Zhao
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Institute, College of Life Science and Technology, Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
| | - Junhan Wang
- Department of Clinical Laboratory of University Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Dan Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Institute, College of Life Science and Technology, Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
| | - Yuting Zhang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Institute, College of Life Science and Technology, Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
| | - Sisi Li
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Institute, College of Life Science and Technology, Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
| | - Shanshan Chen
- Key Laboratory for Molecular Diagnosis of Hubei Province, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yufeng Huang
- Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qin Yang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Institute, College of Life Science and Technology, Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaojing Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Institute, College of Life Science and Technology, Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
| | - Dan Yin
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Institute, College of Life Science and Technology, Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
| | - Xin Tu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Institute, College of Life Science and Technology, Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
| | - Qiuyun Chen
- Center for Cardiovascular Genetics, Cleveland Clinic, Cleveland, Ohio; Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Xu Ma
- National Research Institute for Family Planning, Beijing, China
| | - Chengqi Xu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Institute, College of Life Science and Technology, Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China.
| | - Qing K Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Institute, College of Life Science and Technology, Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China; Center for Cardiovascular Genetics, Cleveland Clinic, Cleveland, Ohio; Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio; Department of Molecular Medicine, Case Western Reserve University, Cleveland, Ohio; Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio.
| |
Collapse
|
22
|
Wang P, Qin W, Wang P, Huang Y, Liu Y, Zhang R, Li S, Yang Q, Wang X, Chen F, Liu J, Yang B, Cheng X, Liao Y, Wu Y, Ke T, Tu X, Ren X, Yang Y, Xia Y, Luo X, Liu M, Li H, Liu J, Xiao Y, Chen Q, Xu C, Wang QK. Genomic Variants in NEURL, GJA1 and CUX2 Significantly Increase Genetic Susceptibility to Atrial Fibrillation. Sci Rep 2018; 8:3297. [PMID: 29459676 PMCID: PMC5818533 DOI: 10.1038/s41598-018-21611-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 02/07/2018] [Indexed: 12/18/2022] Open
Abstract
Atrial fibrillation (AF) is the most common arrhythmia. In 2014, two new meta-GWAS identified 5 AF loci, including the NEURL locus, GJA1 locus, CAND2 locus, and TBX5 locus in the European ancestry populations and the NEURL locus and CUX2 locus in a Japanese population. The TBX5 locus for AF was reported by us in 2013 in the Chinese population. Here we assessed the association between AF and SNPs in the NEURL, GJA1, CAND2 and CUX2 loci in the Chinese Han population. We carried out a large case-control association study with 1,164 AF patients and 1,460 controls. Significant allelic and genotypic associations were identified between NEURL variant rs6584555 and GJA1 variant rs13216675 and AF. Significant genotypic association was found between CUX2 SNP rs6490029 and AF. No association was found between CAND2 variant rs4642101 and AF, which may be due to an insufficient power of the sample size for rs4642101. Together with our previous findings, seven of fifteen AF loci (<50%) identified by GWAS in the European ancestry populations conferred susceptibility to AF in the Chinese population, and explained approximately 14.5% of AF heritability. On the other hand, two AF loci identified in the Japanese population were both replicated in the Chinese population.
Collapse
Affiliation(s)
- Pengxia Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Center, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Weixi Qin
- School of Life Science and Engineering, Graduate School, Lanzhou University of Technology, Lanzhou, P.R. China
| | - Pengyun Wang
- Department of Clinical Laboratory, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Yufeng Huang
- Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Ying Liu
- Department of Cardiology, First Affiliated Hospital of Dalian Medical University, Dalian, P.R. China
| | - Rongfeng Zhang
- Department of Cardiology, First Affiliated Hospital of Dalian Medical University, Dalian, P.R. China
| | - Sisi Li
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Center, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Qin Yang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Center, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Xiaojing Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Center, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Feifei Chen
- Department of Cardiology, First Affiliated Hospital of Dalian Medical University, Dalian, P.R. China
| | - Jingqiu Liu
- Department of Cardiology, First Affiliated Hospital of Dalian Medical University, Dalian, P.R. China
| | - Bo Yang
- Department of Cardiology, People's Hospital, Wuhan University, Wuhan, P.R. China
| | - Xiang Cheng
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Yuhua Liao
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Yanxia Wu
- Department of Cardiology, the First Affiliated Hospital of Wuhan City, Wuhan, P.R. China
| | - Tie Ke
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Center, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Xin Tu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Center, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Xiang Ren
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Center, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Yanzong Yang
- Department of Cardiology, First Affiliated Hospital of Dalian Medical University, Dalian, P.R. China
| | - Yunlong Xia
- Department of Cardiology, First Affiliated Hospital of Dalian Medical University, Dalian, P.R. China
| | - Xiaoping Luo
- Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Mugen Liu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Center, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - He Li
- Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Jingyu Liu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Center, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Yi Xiao
- College of Physics, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Qiuyun Chen
- Center for Cardiovascular Genetics, Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA.
- Department of Molecular Medicine, Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio, USA.
| | - Chengqi Xu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Center, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, P.R. China.
| | - Qing K Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Center, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, P.R. China.
- Center for Cardiovascular Genetics, Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA.
- Department of Molecular Medicine, Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio, USA.
| |
Collapse
|
23
|
Huang Y, Yang J, Xie W, Li Q, Zeng Z, Sui H, Shan Z, Huang Z. A novel KCND3 mutation associated with early-onset lone atrial fibrillation. Oncotarget 2017; 8:115503-115512. [PMID: 29383177 PMCID: PMC5777789 DOI: 10.18632/oncotarget.23303] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 12/05/2017] [Indexed: 01/08/2023] Open
Abstract
Atrial fibrillation (AF) is the most common arrhythmia in the clinic. While previous studies have identified AF-associated mutations in several genes, the genetic basis for AF remains unclear. Here, we identified a novel T361S missense mutation in potassium voltage-gated channel, shal-related subfamily, member 3 (KCND3) from a Chinese Han family ancestor with lone AF. The wild-type (WT) or mutant T361S of Kv4.3 protein (encoded by KCND3) were co-expressed with the auxiliary subunit K+ channel-Interacting Protein (KChIP2) in HEK293 cells, and transient outward potassium current (Ito) were recorded using patch-clamp methods, and the surface or total protein levels of Kv4.3 were analyzed by western blot. Ito density, measured at 60 mV, for T361S was significantly higher than that for WT. Both the steady-state activation and inactivation curves showed a remarkable hyperpolarizing shift in T361S. Moreover, recovery from inactivation after a 500-ms depolarizing pulse was significantly delayed for T361S compared with that for WT. Mechanistically, the gain of function of Ito elicited by T361S was associated with the increased expression of cell surface and total cell protein of Kv4.3. The computer stimulation revealed that the T361S mutation shortened the action potential duration through an increased Itoin Human Atrial Model. In conclusion, we identified a novel T361S mutation in KCND3 associated with AF in the Chinese Han family. The T361S mutant result in the changes in channel kinetics as well as the up-regulation of Kv4.3 protein, which may be a critical driver for lone AF as observed in the patient.
Collapse
Affiliation(s)
- Yuan Huang
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering, Ministry of Education, Hubei University of Technology, Wuhan 430068, China
| | - Jiawei Yang
- Department of Cardiology, Jingzhou Central Hospital, The Second Clinical Medical College, Yangtze University, Jingzhou 434020, China
| | - Wanyi Xie
- Xiamen Key Laboratory of Chiral Drugs, Medical College, Xiamen University, Xiamen 361003, China
| | - Qince Li
- Biocomputing Research Center, School of Computer Science and Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Zhipeng Zeng
- Department of Cardiology, The First Affiliated Hospital of Xiamen University, Xiamen 361003, China
| | - Haibo Sui
- Biocomputing Research Center, School of Computer Science and Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Zhonggui Shan
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Xiamen University, Xiamen 361003, China
| | - Zhengrong Huang
- Department of Cardiology, The First Affiliated Hospital of Xiamen University, Xiamen 361003, China
| |
Collapse
|
24
|
Lack of association between the APLNR variant rs9943582 with ischemic stroke in the Chinese Han GeneID population. Oncotarget 2017; 8:107678-107684. [PMID: 29296197 PMCID: PMC5746099 DOI: 10.18632/oncotarget.22588] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 11/04/2017] [Indexed: 11/25/2022] Open
Abstract
Stroke is one of the most common causes of death worldwide. Genetic risk factors have been found to play important roles in the pathology of ischemic stroke. In a previous genome-wide association study, a functional variant (rs9943582, –154G/A) in the 5’ flanking region of the apelin receptor gene (APLNR) was shown to be significantly associated with stroke in the Japanese population. However, the association required validation in other ethnicities. To validate the genetic relationship between APLNR and ischemic stroke in the Chinese Han population, we genotyped rs9943582 in a case–control population containing 1,158 ischemic stroke patients and 1,265 common controls enrolled from the GeneID database, and performed a genetic association study. We detected no allelic or genotypic associations between rs9943582 and ischemic stroke in the Chinese Han GeneID population, although the study population provided sufficient statistical power. This finding indicates that the association between the APLNR variant and ischemic stroke or atherosclerosis may need further validation.
Collapse
|
25
|
Abstract
Atrial fibrillation (AF) is a common clinical arrhythmia that appears to be highly heritable, despite representing a complex interplay of several disease processes that generally do not manifest until later in life. In this manuscript, we will review the genetic basis of this complex trait established through studies of familial AF, linkage and candidate gene studies of common AF, genome wide association studies (GWAS) of common AF, and transcriptomic studies of AF. Since AF is associated with a five-fold increase in the risk of stroke, we also review the intersection of common genetic factors associated with both of these conditions. Similarly, we highlight the intersection of common genetic markers associated with some risk factors for AF, such as hypertension and obesity, and AF. Lastly, we describe a paradigm where genetic factors predispose to the risk of AF, but which may require additional stress and trigger factors in older age to allow for the clinical manifestation of AF.
Collapse
Affiliation(s)
| | - Mina K Chung
- Department of Cardiovascular Medicine, Heart & Vascular Institute, Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Ave., J2-2, Cleveland, OH, 44195, USA.
| |
Collapse
|
26
|
Yin D, Naji DH, Xia Y, Li S, Bai Y, Jiang G, Zhao Y, Wang X, Huang Y, Chen S, Fa J, Tan C, Zhou M, Zhou Y, Wang L, Liu Y, Chen F, Liu J, Chen Q, Tu X, Xu C, Wang QK. Genomic Variant in IL-37 Confers A Significant Risk of Coronary Artery Disease. Sci Rep 2017; 7:42175. [PMID: 28181534 PMCID: PMC5299598 DOI: 10.1038/srep42175] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 01/05/2017] [Indexed: 12/14/2022] Open
Abstract
The interleukin 1 family plays an important role in the immune and inflammatory responses. Coronary artery disease (CAD) is a chronic inflammatory disease. However, the genetic association between IL-37, the seventh member of the IL-1 family, and CAD is unknown. Here we show that a single nucleotide polymorphism in the IL-37 gene (rs3811047) confers a significant risk of CAD. We have performed an association analysis between rs3811047 and CAD in two independent populations with 2,501 patients and 3,116 controls from China. Quantitative RT-PCR analysis has been performed to determine if the IL-37 expression level is influenced by rs3811047. We show that the minor allele A of rs3811047 is significantly associated with CAD in two independent populations under a recessive model (Padj = 5.51 × 10-3/OR = 1.56 in the GeneID Northernern population and Padj = 1.23 × 10-3/OR = 1.45 in the GeneID Central population). The association became more significant in the combined population (Padj = 9.70 × 10-6/OR = 1.47). Moreover, the association remains significant in a CAD case control population matched for age and sex. Allele A of rs3811047 shows significant association with a decreased mRNA expression level of IL-37 (n = 168, P = 3.78 × 10-4). These data suggest that IL37 is a new susceptibility gene for CAD, which provides a potential target for the prevention and treatment of CAD.
Collapse
Affiliation(s)
- Dan Yin
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan, P. R. China.,BGI-Wuhan, Wuhan 430075, China; BGI-Shenzhen, Shenzhen 518083, China
| | - Duraid Hamied Naji
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Yunlong Xia
- Cardiovascualr Hospital, the First Affiliated Hospital of Dalian Medical University, Dalian, Wuhan, P. R. China
| | - Sisi Li
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Ying Bai
- Center of Prenatal Diagnosis, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Hunan, P. R. China
| | - Guiqing Jiang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Yuanyuan Zhao
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Xiaojing Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Yufeng Huang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Shanshan Chen
- Key Laboratory for Molecular Diagnosis of Hubei Province, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, P. R. China
| | - Jingjing Fa
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Chengcheng Tan
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Mengchen Zhou
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Yingchao Zhou
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Longfei Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Ying Liu
- Cardiovascualr Hospital, the First Affiliated Hospital of Dalian Medical University, Dalian, Wuhan, P. R. China
| | - Feifei Chen
- Cardiovascualr Hospital, the First Affiliated Hospital of Dalian Medical University, Dalian, Wuhan, P. R. China
| | - Jingqiu Liu
- Cardiovascualr Hospital, the First Affiliated Hospital of Dalian Medical University, Dalian, Wuhan, P. R. China
| | - Qiuyun Chen
- Center for Cardiovascular Genetics, Department of Molecular Cardiology, Lerner Research Institute, Department of Cardiovascular Medicine, Cleveland Clinic, Cleveland, Ohio, USA.,Department of Molecular Medicine, Department of Genetics and Genome Science, Case Western Reserve University, Cleveland, OH, USA
| | - Xin Tu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Chengqi Xu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Qing K Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan, P. R. China.,Center for Cardiovascular Genetics, Department of Molecular Cardiology, Lerner Research Institute, Department of Cardiovascular Medicine, Cleveland Clinic, Cleveland, Ohio, USA.,Department of Molecular Medicine, Department of Genetics and Genome Science, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
27
|
Zhao LQ, Zhang GB, Wen ZJ, Huang CK, Wu HQ, Xu J, Qi BZ, Wang ZM, Shi YY, Liu SW. Common variants predict recurrence after nonfamilial atrial fibrillation ablation in Chinese Han population. Int J Cardiol 2016; 227:360-366. [PMID: 27843048 DOI: 10.1016/j.ijcard.2016.11.057] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 08/10/2016] [Accepted: 11/05/2016] [Indexed: 11/26/2022]
Abstract
BACKGROUND Genome-wide association studies (GWAS) have identified several loci associated with atrial fibrillation (AF) and have been reportedly associated with response to catheter ablation for AF in patients of European ancestry; however, associations between susceptibility loci and clinical recurrence of AF after catheter ablation have not been examined in Chinese Han populations. To the personalization of catheter ablation for AF, we examined whether these single nucleotide polymorphisms (SNPs) can predict clinical outcomes after catheter ablation for AF in Chinese Han population. METHODS AND RESULTS The association between 8 SNPs and AF was studied in 1418 AF patients and 1424 controls by the unconditional logistic regression analysis. The survival analyses were used to compare AT/AF recurrence differences among 438 AF patients, which were classified by the genotype of rs2200733. rs2200733 and rs6590357 were significantly associated with AF in Chinese Han population. In addition, rs2200733 was associated with clinical recurrence of AF after catheter ablation. In Kaplan-Meier survival analysis, the recurrence-free rates for AF with TT and with TC+CC were 35.5% and 61.9%, respectively (P=0.0009). In multivariate Cox regression analysis, rs2200733 was strong independent risk factor for recurrence. CONCLUSION rs2200733 risk allele at the 4q25 predicted impaired clinical response to catheter ablation for AF in Chinese Han population. Our findings suggested rs2200733 polymorphism may be used as a clinical tool for selection of patients for AF catheter ablation.
Collapse
Affiliation(s)
- Li-Qun Zhao
- Department of Cardiology, Shanghai First People's Hospital Affiliated to Shanghai JiaoTong University, Shanghai 200080, China
| | - Guo-Bing Zhang
- Department of Cardiology, Shanghai First People's Hospital Affiliated to Shanghai JiaoTong University, Shanghai 200080, China
| | - Zu-Jia Wen
- Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Chun-Kai Huang
- Department of Cardiology, Shanghai First People's Hospital Affiliated to Shanghai JiaoTong University, Shanghai 200080, China
| | - Hai-Qing Wu
- Department of Cardiology, Shanghai First People's Hospital Affiliated to Shanghai JiaoTong University, Shanghai 200080, China
| | - Juan Xu
- Department of Cardiology, Shanghai First People's Hospital Affiliated to Shanghai JiaoTong University, Shanghai 200080, China
| | - Bao-Zhen Qi
- Department of Cardiology, Shanghai First People's Hospital Affiliated to Shanghai JiaoTong University, Shanghai 200080, China
| | - Zhi-Min Wang
- Department of Genetics, Shanghai-MOST Key Laboratory of Health and Disease Genomics, Chinese National Human Genome Center and Shanghai Industrial Technology Institute (SITI), Shanghai 201203, China.
| | - Yong-Yong Shi
- Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, 200030, China.
| | - Shao-Wen Liu
- Department of Cardiology, Shanghai First People's Hospital Affiliated to Shanghai JiaoTong University, Shanghai 200080, China.
| |
Collapse
|
28
|
The Role of Pharmacogenetics in Atrial Fibrillation Therapeutics: Is Personalized Therapy in Sight? J Cardiovasc Pharmacol 2016; 67:9-18. [PMID: 25970841 DOI: 10.1097/fjc.0000000000000280] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Atrial fibrillation (AF) is the most common sustained cardiac arrhythmia worldwide requiring therapy. Despite recent advances in catheter-based and surgical therapy, antiarrhythmic drugs (AADs) remain the mainstay of treatment for symptomatic AF. However, response in individual patients is highly variable with over half the patients treated with rhythm control therapy experiencing recurrence of AF within a year. Contemporary AADs used to suppress AF are incompletely and unpredictably effective and associated with significant risks of proarrhythmia and noncardiac toxicities. Furthermore, this "one-size" fits all strategy for selecting antiarrhythmics is based largely on minimizing risk of adverse effects rather than on the likelihood of suppressing AF. The limited success of rhythm control therapy is in part due to heterogeneity of the underlying substrate, interindividual differences in disease mechanisms, and our inability to predict response to AADs in individual patients. Genetic studies of AF over the past decade have revealed that susceptibility to and response to therapy for AF is modulated by the underlying genetic substrate. However, the bedside application of these new discoveries to the management of AF patients has thus far been disappointing. This may in part be related to our limited understanding about genetic predictors of drug response in general, the challenges associated with determining efficacy of response to AADs, and lack of randomized genotype-directed clinical trials. Nonetheless, recent studies have shown that common AF susceptibility risk alleles at the chromosome 4q25 locus modulated response to AADs, electrical cardioversion, and ablation therapy. This monograph discusses how genetic approaches to AF have not only provided important insights into underlying mechanisms but also identified AF subtypes that can be better targeted with more mechanism-based "personalized" therapy.
Collapse
|
29
|
Yu A, Zhang J, Liu H, Liu B, Meng L. Identification of nondiabetic heart failure-associated genes by bioinformatics approaches in patients with dilated ischemic cardiomyopathy. Exp Ther Med 2016; 11:2602-2608. [PMID: 27284354 DOI: 10.3892/etm.2016.3252] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 03/03/2016] [Indexed: 12/24/2022] Open
Abstract
Heart failure (HF) is a common pathological condition affecting 4% of the worldwide population. However, approaches for predicting or treating nondiabetic HF (ND-HF) progression are insufficient. In the current study, the gene expression profile GSE26887 was analyzed, which contained samples from 5 healthy controls, 7 diabetes mellitus-HF patients and 12 ND-HF patients with dilated ischemic cardiomyopathy. The dataset of 5 healthy controls and 12 ND-HF patients was normalized with robust multichip average analysis and the differentially expressed genes (DEGs) were screened by unequal variance t-test and multiple-testing correction. In addition, the protein-protein interaction (PPI) network of the upregulated and downregulated genes was constructed using the Search Tool for the Retrieval of Interacting Genes/Proteins database and the Cytoscape software platform. Subsequently, gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed. A total of 122 upregulated and 133 downregulated genes were detected. The most significantly up- and downregulated genes were EIF1AY and SERPINE1, respectively. In addition, 38 and 77 nodes were obtained in the up- and downregulated PPI network. DEGs that owned the highest connectivity degree were USP9Y and UTY in the upregulated network, and CD44 in the downregulated networks, respectively. NPPA and SERPINE1 were also found to be hub genes in the PPI network. Several GO terms and pathways that were enriched by DEGs were identified, and the most significantly enriched KEGG pathways were drug metabolism and extracellular matrix-receptor interaction. In conclusion, the two DEGs, NPPA and SERPINE1, may be important in the pathogenesis of HF and may be used for the diagnosis and treatment of HF.
Collapse
Affiliation(s)
- Anzhong Yu
- Department of Cardiology, Jinan No. 4 People's Hospital, Jinan, Shandong 250031, P.R. China
| | - Jingyao Zhang
- Department of Blood Purification, Jinan Infectious Disease Hospital, Jinan, Shandong 250021, P.R. China
| | - Haiyan Liu
- Department of Internal Medicine, Jinan Minzu Hospital, Jinan, Shandong 250014, P.R. China
| | - Bing Liu
- Department of Cardiology, Jinan No. 4 People's Hospital, Jinan, Shandong 250031, P.R. China
| | - Lingdong Meng
- Department of Cardiology, Jinan No. 4 People's Hospital, Jinan, Shandong 250031, P.R. China
| |
Collapse
|
30
|
Wang C, Wu M, Qian J, Li B, Tu X, Xu C, Li S, Chen S, Zhao Y, Huang Y, Shi L, Cheng X, Liao Y, Chen Q, Xia Y, Yao W, Wu G, Cheng M, Wang QK. Identification of rare variants in TNNI3 with atrial fibrillation in a Chinese GeneID population. Mol Genet Genomics 2016; 291:79-92. [PMID: 26169204 PMCID: PMC4713376 DOI: 10.1007/s00438-015-1090-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 06/30/2015] [Indexed: 02/07/2023]
Abstract
Despite advances by genome-wide association studies (GWAS), much of heritability of common human diseases remains missing, a phenomenon referred to as 'missing heritability'. One potential cause for 'missing heritability' is the rare susceptibility variants overlooked by GWAS. Atrial fibrillation (AF) is the most common arrhythmia seen at hospitals and increases risk of stroke by fivefold and doubles risk of heart failure and sudden death. Here, we studied one large Chinese family with AF and hypertrophic cardiomyopathy (HCM). Whole-exome sequencing analysis identified a mutation in TNNI3, R186Q, that co-segregated with the disease in the family, but did not exist in >1583 controls, suggesting that R186Q causes AF and HCM. High-resolution melting curve analysis and direct DNA sequence analysis were then used to screen mutations in all exons and exon-intron boundaries of TNNI3 in a panel of 1127 unrelated AF patients and 1583 non-AF subjects. Four novel missense variants were identified in TNNI3, including E64G, M154L, E187G and D196G in four independent AF patients, but no variant was found in 1583 non-AF subjects. All variants were not found in public databases, including the ExAC Browser database with 60,706 exomes. These data suggest that rare TNNI3 variants are associated with AF (P = 0.03). TNNI3 encodes troponin I, a key regulator of the contraction-relaxation function of cardiac muscle and was not previously implicated in AF. Thus, this study may identify a new biological pathway for the pathogenesis of AF and provides evidence to support the rare variant hypothesis for missing heritability.
Collapse
Affiliation(s)
- Chuchu Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Center for Human Genome Research and Cardio-X Institute, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Manman Wu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Center for Human Genome Research and Cardio-X Institute, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Jin Qian
- Central Hospital of Suizhou City, Suizhou, 441300, China
| | - Bin Li
- Xiang Yang Central Hospital, Xiangyang, 441021, China
| | - Xin Tu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Center for Human Genome Research and Cardio-X Institute, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Chengqi Xu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Center for Human Genome Research and Cardio-X Institute, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Sisi Li
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Center for Human Genome Research and Cardio-X Institute, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Shanshan Chen
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Center for Human Genome Research and Cardio-X Institute, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yuanyuan Zhao
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Center for Human Genome Research and Cardio-X Institute, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yufeng Huang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Center for Human Genome Research and Cardio-X Institute, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Lisong Shi
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Center for Human Genome Research and Cardio-X Institute, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Xiang Cheng
- Institute of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yuhua Liao
- Institute of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Qiuyun Chen
- Department of Molecular Cardiology, Center for Cardiovascular Genetics, Cleveland Clinic Lerner Research Institute, Cleveland, OH, 44195, USA
| | - Yunlong Xia
- Department of Cardiology, First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China
| | - Wei Yao
- Central Hospital of Suizhou City, Suizhou, 441300, China
| | - Gang Wu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Mian Cheng
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Qing K Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Center for Human Genome Research and Cardio-X Institute, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.
- Department of Molecular Cardiology, Center for Cardiovascular Genetics, Cleveland Clinic Lerner Research Institute, Cleveland, OH, 44195, USA.
| |
Collapse
|
31
|
Liu Y, Wang J, Qin Y, Huang C, Archacki S, Ma J, Li D, Liu M. Identification of three mutations in the MVK gene in six patients associated with disseminated superficial actinic porokeratosis. Clin Chim Acta 2016; 454:124-9. [DOI: 10.1016/j.cca.2016.01.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 01/08/2016] [Accepted: 01/11/2016] [Indexed: 12/19/2022]
|
32
|
Chen S, Wang X, Wang J, Zhao Y, Wang D, Tan C, Fa J, Zhang R, Wang F, Xu C, Huang Y, Li S, Yin D, Xiong X, Li X, Chen Q, Tu X, Yang Y, Xia Y, Xu C, Wang QK. Genomic variant in CAV1 increases susceptibility to coronary artery disease and myocardial infarction. Atherosclerosis 2016; 246:148-156. [PMID: 26775120 DOI: 10.1016/j.atherosclerosis.2016.01.008] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 12/11/2015] [Accepted: 01/06/2016] [Indexed: 12/20/2022]
Abstract
BACKGROUND The CAV1 gene encodes caveolin-1 expressed in cell types relevant to atherosclerosis. Cav-1-null mice showed a protective effect on atherosclerosis under the ApoE(-/-) background. However, it is unknown whether CAV1 is linked to CAD and MI in humans. In this study we analyzed a tagSNP for CAV1 in intron 2, rs3807989, for potential association with CAD. METHODS AND RESULTS We performed case-control association studies in three independent Chinese Han populations from GeneID, including 1249 CAD cases and 841 controls in Population I, 1260 cases and 833 controls in Population II and 790 cases and 1212 controls in Population III (a total of 3299 cases and 2886 controls). We identified significant association between rs3807989 and CAD in three independent populations and in the combined population (Padj = 2.18 × 10(-5), OR = 1.19 for minor allele A). We also detected significant association between rs3807989 and MI (Padj = 5.43 × 10(-5), OR = 1.23 for allele A). Allele A of SNP rs3807989 was also associated with a decreased level of LDL cholesterol. Although rs3807989 is a tagSNP for both CAV1 and nearby CAV2, allele A of SNP rs3807989 was associated with an increased expression level of CAV1 (both mRNA and protein), but not CAV2. CONCLUSIONS The data in this study demonstrated that rs3807989 at the CAV1/CAV2 locus was associated with significant risk of CAD and MI by increasing expression of CAV1 (but not CAV2). Thus, CAV1 becomes a strong candidate susceptibility gene for CAD/MI in humans.
Collapse
Affiliation(s)
- Shanshan Chen
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Institute, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaojing Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Institute, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
| | - Junhan Wang
- Department of Clinical Laboratory, University Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Yuanyuan Zhao
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Institute, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
| | - Dan Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Institute, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
| | - Chengcheng Tan
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Institute, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
| | - Jingjing Fa
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Institute, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
| | - Rongfeng Zhang
- Department of Cardiology, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Fan Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Institute, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
| | - Chaoping Xu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Institute, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
| | - Yufeng Huang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Institute, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
| | - Sisi Li
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Institute, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
| | - Dan Yin
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Institute, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
| | - Xin Xiong
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Institute, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
| | - Xiuchun Li
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Institute, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
| | - Qiuyun Chen
- Center for Cardiovascular Genetics, Department of Molecular Cardiology, Cleveland Clinic, and Department of Molecular Medicine, CCLCM, Case Western Reserve University, Cleveland, OH 44195, USA
| | - Xin Tu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Institute, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
| | - Yanzong Yang
- Department of Cardiology, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yonglong Xia
- Department of Cardiology, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Chengqi Xu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Institute, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
| | - Qing K Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Institute, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China.,Center for Cardiovascular Genetics, Department of Molecular Cardiology, Cleveland Clinic, and Department of Molecular Medicine, CCLCM, Case Western Reserve University, Cleveland, OH 44195, USA
| |
Collapse
|
33
|
Huang Y, Wang C, Yao Y, Zuo X, Chen S, Xu C, Zhang H, Lu Q, Chang L, Wang F, Wang P, Zhang R, Hu Z, Song Q, Yang X, Li C, Li S, Zhao Y, Yang Q, Yin D, Wang X, Si W, Li X, Xiong X, Wang D, Huang Y, Luo C, Li J, Wang J, Chen J, Wang L, Wang L, Han M, Ye J, Chen F, Liu J, Liu Y, Wu G, Yang B, Cheng X, Liao Y, Wu Y, Ke T, Chen Q, Tu X, Elston R, Rao S, Yang Y, Xia Y, Wang QK. Molecular Basis of Gene-Gene Interaction: Cyclic Cross-Regulation of Gene Expression and Post-GWAS Gene-Gene Interaction Involved in Atrial Fibrillation. PLoS Genet 2015; 11:e1005393. [PMID: 26267381 PMCID: PMC4534423 DOI: 10.1371/journal.pgen.1005393] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 06/25/2015] [Indexed: 01/08/2023] Open
Abstract
Atrial fibrillation (AF) is the most common cardiac arrhythmia at the clinic. Recent GWAS identified several variants associated with AF, but they account for <10% of heritability. Gene-gene interaction is assumed to account for a significant portion of missing heritability. Among GWAS loci for AF, only three were replicated in the Chinese Han population, including SNP rs2106261 (G/A substitution) in ZFHX3, rs2200733 (C/T substitution) near PITX2c, and rs3807989 (A/G substitution) in CAV1. Thus, we analyzed the interaction among these three AF loci. We demonstrated significant interaction between rs2106261 and rs2200733 in three independent populations and combined population with 2,020 cases/5,315 controls. Compared to non-risk genotype GGCC, two-locus risk genotype AATT showed the highest odds ratio in three independent populations and the combined population (OR=5.36 (95% CI 3.87-7.43), P=8.00×10-24). The OR of 5.36 for AATT was significantly higher than the combined OR of 3.31 for both GGTT and AACC, suggesting a synergistic interaction between rs2106261 and rs2200733. Relative excess risk due to interaction (RERI) analysis also revealed significant interaction between rs2106261 and rs2200733 when exposed two copies of risk alleles (RERI=2.87, P<1.00×10-4) or exposed to one additional copy of risk allele (RERI=1.29, P<1.00×10-4). The INTERSNP program identified significant genotypic interaction between rs2106261 and rs2200733 under an additive by additive model (OR=0.85, 95% CI: 0.74-0.97, P=0.02). Mechanistically, PITX2c negatively regulates expression of miR-1, which negatively regulates expression of ZFHX3, resulting in a positive regulation of ZFHX3 by PITX2c; ZFHX3 positively regulates expression of PITX2C, resulting in a cyclic loop of cross-regulation between ZFHX3 and PITX2c. Both ZFHX3 and PITX2c regulate expression of NPPA, TBX5 and NKX2.5. These results suggest that cyclic cross-regulation of gene expression is a molecular basis for gene-gene interactions involved in genetics of complex disease traits.
Collapse
Affiliation(s)
- Yufeng Huang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Center, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
| | - Chuchu Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Center, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
| | - Yufeng Yao
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Center, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoyu Zuo
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Shanshan Chen
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Center, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
| | - Chengqi Xu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Center, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
| | - Hongfu Zhang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Center, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
| | - Qiulun Lu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Center, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
| | - Le Chang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Center, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
| | - Fan Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Center, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
| | - Pengxia Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Center, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
| | - Rongfeng Zhang
- Department of Cardiology, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Zhenkun Hu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Center, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
| | - Qixue Song
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Center, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaowei Yang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Center, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
| | - Cong Li
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Center, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
| | - Sisi Li
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Center, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
| | - Yuanyuan Zhao
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Center, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
| | - Qin Yang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Center, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
| | - Dan Yin
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Center, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaojing Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Center, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
| | - Wenxia Si
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Center, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
| | - Xiuchun Li
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Center, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
| | - Xin Xiong
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Center, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
| | - Dan Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Center, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
| | - Yuan Huang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Center, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
| | - Chunyan Luo
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Center, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
| | - Jia Li
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Center, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
| | - Jingjing Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Center, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Chen
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Center, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
| | - Longfei Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Center, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
| | - Li Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Center, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
| | - Meng Han
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Center, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
| | - Jian Ye
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Center, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
| | - Feifei Chen
- Department of Cardiology, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Jingqiu Liu
- Department of Cardiology, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Ying Liu
- Department of Cardiology, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Gang Wu
- Department of Cardiology, People’s Hospital, Wuhan University, Wuhan, China
| | - Bo Yang
- Department of Cardiology, People’s Hospital, Wuhan University, Wuhan, China
| | - Xiang Cheng
- Department of Cardiology, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Yuhua Liao
- Department of Cardiology, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Yanxia Wu
- Department of Cardiology, the First Affiliated Hospital of Wuhan City, Wuhan, China
| | - Tie Ke
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Center, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
| | - Qiuyun Chen
- Center for Cardiovascular Genetics, Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
- Department of Molecular Medicine, Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Xin Tu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Center, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
| | - Robert Elston
- Department of Epidemiology and Biostatistics, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
| | - Shaoqi Rao
- Institute of Medical Systems Biology and Department of Medical Statistics and Epidemiology, School of Public Health, Guangdong Medical College, Dongguan, China
| | - Yanzong Yang
- Department of Cardiology, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yunlong Xia
- Department of Cardiology, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Qing K. Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Center, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
- Center for Cardiovascular Genetics, Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
- Department of Molecular Medicine, Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio, United States of America
| |
Collapse
|
34
|
Palatinus JA, Das S. Your Father and Grandfather's Atrial Fibrillation: A Review of the Genetics of the Most Common Pathologic Cardiac Dysrhythmia. Curr Genomics 2015; 16:75-81. [PMID: 26085805 PMCID: PMC4467307 DOI: 10.2174/1389202916666150108222031] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 12/24/2014] [Accepted: 01/06/2015] [Indexed: 12/19/2022] Open
Abstract
Atrial fibrillation (AF) remains the most common pathologic dysrhythmia in humans with a prevalence of 1-2% of the total population and as high as 10% of the elderly. AF is an independent risk marker for cardiovascular mortality and morbidity, and given the increasing age of the population, represents an increasing burden of disease. Although age and hypertension are known risk factors for development of AF, the study of families with early onset AF revealed mutations in genes coding for ion channels and other proteins involved in electrotonic coupling as likely culprits for the pathology in select cases. Recent investigations using Genome-Wide Association Studies have revealed several single nucleotide polymorphisms (SNPs) that appear to be associated with AF and have highlighted new genes in the proximity of the SNPs that may potentially contribute to the development of the dysrhythmia. Here we review the genetics of AF and discuss how application of GWAS and next generation sequencing have advanced our knowledge of AF and further investigations may yield novel therapeutic targets for the disease.
Collapse
Affiliation(s)
- Joseph A Palatinus
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Saumya Das
- Cardiovascular Institute, Beth Israel Deaconess Medical Center, Boston, MA, USA
| |
Collapse
|
35
|
Christophersen IE, Ellinor PT. Genetics of atrial fibrillation: from families to genomes. J Hum Genet 2015; 61:61-70. [DOI: 10.1038/jhg.2015.44] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Revised: 03/27/2015] [Accepted: 04/07/2015] [Indexed: 12/19/2022]
|
36
|
Chen S, Wang C, Wang X, Xu C, Wu M, Wang P, Tu X, Wang QK. Significant Association Between CAV1 Variant rs3807989 on 7p31 and Atrial Fibrillation in a Chinese Han Population. J Am Heart Assoc 2015; 4:JAHA.115.001980. [PMID: 25953654 PMCID: PMC4599427 DOI: 10.1161/jaha.115.001980] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Background Recent genome-wide association studies (GWAS) in European ancestry populations revealed several genomic loci for atrial fibrillation (AF). We previously replicated the 4q25 locus (PITX2) and 16q22 locus (ZFHX3) in the Chinese population, but not the KCNN3 locus on 1q21. With single-nucleotide polymorphism rs3807989 in CAV1 encoding caveolin-1, however, controversial results were reported in 2 Chinese replication studies. Methods and Results Six remaining AF genetic loci from GWAS, including rs3807989/CAV1, rs593479/PRRX1, rs6479562/C9orf3, rs10824026/SYNPO2L, rs1152591/SYNE2, and rs7164883/HCN4, were analyzed in a Chinese Han population with 941 cases and 562 controls. Only rs3807989 showed significant association with AF (Padj=4.77×10−5), and the finding was replicated in 2 other independent populations with 709 cases and 2175 controls, 463 cases and 644 controls, and the combined population with a total of 2113 cases and 3381 controls (Padj=2.20×10−9; odds ratio [OR]=1.34 for major allele G). Meta-analysis, together with data from previous reports in Chinese and Japanese populations, also showed a significant association between rs3807989 and AF (P=3.40×10−4; OR=1.24 for allele G). We also found that rs3807989 showed a significant association with lone AF in 3 independent populations and in the combined population (Padj=3.85×10−8; OR=1.43 for major allele G). Conclusions The data in this study revealed a significant association between rs3807989 and AF in the Chinese Han population. Together with the findings that caveolin-1 interacts with potassium channels Kir2.1, KCNH2, and HCN4 and sodium channels Nav1.5 and Nav1.8, CAV1 becomes a strong candidate susceptibility gene for AF across different ethnic populations. This study is the first to show a significant association between rs3807989 and lone AF.
Collapse
Affiliation(s)
- Shanshan Chen
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Institute, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China (S.C., C.W., X.W., C.X., M.W., P.W., X.T., Q.K.W.)
| | - Chuchu Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Institute, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China (S.C., C.W., X.W., C.X., M.W., P.W., X.T., Q.K.W.)
| | - Xiaojing Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Institute, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China (S.C., C.W., X.W., C.X., M.W., P.W., X.T., Q.K.W.)
| | - Chengqi Xu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Institute, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China (S.C., C.W., X.W., C.X., M.W., P.W., X.T., Q.K.W.)
| | - Manman Wu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Institute, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China (S.C., C.W., X.W., C.X., M.W., P.W., X.T., Q.K.W.)
| | - Pengxia Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Institute, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China (S.C., C.W., X.W., C.X., M.W., P.W., X.T., Q.K.W.)
| | - Xin Tu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Institute, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China (S.C., C.W., X.W., C.X., M.W., P.W., X.T., Q.K.W.)
| | - Qing K Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Institute, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China (S.C., C.W., X.W., C.X., M.W., P.W., X.T., Q.K.W.) Center for Cardiovascular Genetics, Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH (Q.K.W.) Department of Molecular Medicine, Department of Genetics and Genome Sciences, CCLCM, Case Western Reserve University, Cleveland, OH (Q.K.W.)
| |
Collapse
|
37
|
Roberts JD, Gollob MH. A contemporary review on the genetic basis of atrial fibrillation. Methodist Debakey Cardiovasc J 2015; 10:18-24. [PMID: 24932358 DOI: 10.14797/mdcj-10-1-18] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Atrial fibrillation is the most common sustained cardiac arrhythmia, and affected individuals suffer from increased rates of heart failure, stroke, and death. Despite the enormous clinical burden that it exerts on patients and health care systems, contemporary treatment strategies have only modest efficacy that likely stems from our limited understanding of its underlying pathophysiology. Epidemiological studies have provided unequivocal evidence that the arrhythmia has a substantial heritable component. Subsequent investigations into the genetics underlying atrial fibrillation have suggested that there is considerable interindividual variability in the pathophysiology characterizing the arrhythmia. This heterogeneity may partly account for the poor treatment efficacy of current therapies. Subdividing atrial fibrillation into mechanistic subtypes on the basis of genotype illustrates the heterogeneous nature of the arrhythmia and may ultimately help guide treatment strategies. A pharmacogenetic approach to the management of atrial fibrillation may lead to dramatic improvements in treatment efficacy and improved patient outcomes.
Collapse
|
38
|
Abstract
Atrial fibrillation (AF) is the most common arrhythmia and is associated with increased morbidity. As the population ages and the prevalence of AF continues to rise, the socioeconomic consequences of AF will become increasingly burdensome. Although there are well-defined clinical risk factors for AF, a significant heritable component is also recognized. To identify the molecular basis for the heritability of AF, investigators have used a combination of classical Mendelian genetics, candidate gene screening, and genome-wide association studies. However, these avenues have, as yet, failed to define the majority of the heritability of AF. The goal of this review is to describe the results from both candidate gene and genome-wide studies, as well as to outline potential future avenues for creating a more complete understanding of AF genetics. Ultimately, a more comprehensive view of the genetic underpinnings for AF will lead to the identification of novel molecular pathways and improved risk prediction of this complex arrhythmia.
Collapse
Affiliation(s)
- Nathan R Tucker
- From the Cardiovascular Research Center, Massachusetts General Hospital, Boston
| | | |
Collapse
|
39
|
Atrial natriuretic peptide gene variants and circulating levels: implications in cardiovascular diseases. Clin Sci (Lond) 2014; 127:1-13. [PMID: 24611929 DOI: 10.1042/cs20130427] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
ANP (atrial natriuretic peptide), discovered 30 years ago in rat cardiac atria, has been extensively investigated with regard to physiology, pathophysiology, cardiovascular disease therapeutics and molecular genetic aspects. Besides its diuretic, natriuretic and vasorelaxant effects, novel properties of this hormone have been described. Thus anti-hypertrophic, anti-fibrotic, anti-proliferative and anti-inflammatory actions suggest that ANP contributes not only to haemodynamic homoeostasis and adjustments, but has also a role in cardiovascular remodelling. Circulating ANP levels represent a valuable biomarker in cardiovascular diseases. ANP structure is highly conserved among species, indicating a key role in cardiovascular health. Thus an abnormal ANP structure may contribute to an increased risk of disease due to altered functions at either the vascular or cardiac level. Among others, the 2238T>C exon 3 variant has been associated with endothelial cell damage and dysfunction and with an increased risk of acute cardiovascular events, a frameshift mutation within exon 3 has been related to increased risk of atrial fibrillation, and ANP gene variants have been linked to increased risk of hypertension in different ethnic groups. On the other hand, the rs5068 variant, falling within the 3' UTR and associated with higher circulating ANP levels, has been shown to have a beneficial cardioprotective and metabolic effect. Dissecting out the disease mechanisms dependent on specific ANP molecular variants may reveal information useful in the clinical setting for diagnostic, prognostic and therapeutic purposes. Furthermore, insights from molecular genetic analysis of ANP may well integrate advancing knowledge on the role of ANP as a significant biomarker in patients affected by cardiovascular diseases.
Collapse
|
40
|
Balouch MA, Kolek MJ, Darbar D. Improved understanding of the pathophysiology of atrial fibrillation through the lens of discrete pathological pathways. Glob Cardiol Sci Pract 2014; 2014:24-36. [PMID: 25054116 PMCID: PMC4104374 DOI: 10.5339/gcsp.2014.5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Accepted: 03/19/2014] [Indexed: 12/19/2022] Open
Abstract
Atrial fibrillation (AF) is a common disorder with a complex and incompletely understood pathophysiology. Genetic approaches to understanding the pathophysiology of AF have led to the identification of several biological pathways important in the pathogenesis of the arrhythmia. These include pathways important for cardiac development, generation and propagation of atrial electrical impulses, and atrial remodeling and fibrosis. While common and rare genetic variants in these pathways are associated with increased susceptibility to AF, they differ substantially among patients with lone versus typical AF. Furthermore, how these pathways converge to a final common clinical phenotype of AF is unclear and might also vary among different patient populations. Here, we review the contemporary knowledge of AF pathogenesis and discuss how derangement in cardiac development, ion channel dysfunction, and promotion of atrial fibrosis may contribute to this common and important clinical disorder.
Collapse
Affiliation(s)
- Muhammad A Balouch
- Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Matthew J Kolek
- Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Dawood Darbar
- Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
41
|
Francia P, Ricotta A, Frattari A, Stanzione R, Modestino A, Mercanti F, Adduci C, Sensini I, Cotugno M, Balla C, Rubattu S, Volpe M. Atrial natriuretic Peptide single nucleotide polymorphisms in patients with nonfamilial structural atrial fibrillation. CLINICAL MEDICINE INSIGHTS-CARDIOLOGY 2013; 7:153-9. [PMID: 24093000 PMCID: PMC3782394 DOI: 10.4137/cmc.s12239] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Background Atrial natriuretic peptide (ANP) has antihypertrophic and antifibrotic properties that are relevant to AF substrates. The –G664C and rs5065 ANP single nucleotide polymorphisms (SNP) have been described in association with clinical phenotypes, including hypertension and left ventricular hypertrophy. A recent study assessed the association of early AF and rs5065 SNPs in low-risk subjects. In a Caucasian population with moderate-to-high cardiovascular risk profile and structural AF, we conducted a case-control study to assess whether the ANP –G664C and rs5065 SNP associate with nonfamilial structural AF. Methods 168 patients with nonfamilial structural AF and 168 age- and sex-matched controls were recruited. The rs5065 and –G664C ANP SNPs were genotyped. Results The study population had a moderate-to-high cardiovascular risk profile with 86% having hypertension, 23% diabetes, 26% previous myocardial infarction, and 23% left ventricular systolic dysfunction. Patients with AF had greater left atrial diameter (44 ± 7 vs. 39 ± 5 mm; P < 0.001) and higher plasma NTproANP levels (6240 ± 5317 vs. 3649 ± 2946 pmol/mL; P < 0.01). Odds ratios (ORs) for rs5065 and –G664C gene variants were 1.1 (95% confidence interval [CI], 0.7–1.8; P = 0.71) and 1.2 (95% CI, 0.3–3.2; P = 0.79), respectively, indicating no association with AF. There were no differences in baseline clinical characteristics among carriers and noncarriers of the –664C and rs5065 minor allele variants. Conclusions We report lack of association between the rs5065 and –G664C ANP gene SNPs and AF in a Caucasian population of patients with structural AF. Further studies will clarify whether these or other ANP gene variants affect the risk of different subphenotypes of AF driven by distinct pathophysiological mechanisms.
Collapse
Affiliation(s)
- Pietro Francia
- Cardiology, Department of Clinical and Molecular Medicine, St. Andrea Hospital, Sapienza University, Rome, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Abstract
Atrial fibrillation (AF) is the most-common sustained arrhythmia observed in clinical practice, but response to therapy is highly variable between patients. Current drug therapies to suppress AF are incompletely and unpredictably effective and carry substantial risk of proarrhythmia and noncardiac toxicities. The limited success of therapy for AF is partially the result of heterogeneity of the underlying substrate, interindividual differences in disease mechanisms, and our inability to predict response to therapies in individual patients. In this Review, we discuss the evidence that variability in response to drug therapy is also conditioned by the underlying genetic substrate for AF. Increased susceptibility to AF is mediated through diverse genetic mechanisms, including modulation of the atrial action-potential duration, conduction slowing, and impaired cell-to-cell communication, as well as novel mechanisms, such as regulation of signalling proteins important in the pathogenesis of AF. However, the translation of genetic data to the care of the patients with AF has been limited because of poor understanding of the underlying mechanisms associated with common AF-susceptibility loci, a dearth of prospective, adequately powered studies, and the challenges associated with determining efficacy of antiarrhythmic drugs. What is apparent, however, is the need for appropriately designed, genotype-directed clinical trials.
Collapse
Affiliation(s)
- Dawood Darbar
- Departments of Medicine and Pharmacology, Vanderbilt University School of Medicine, 2215B Garland Avenue, Nashville, TN 37323-6602, USA.
| | | |
Collapse
|
43
|
Polymorphisms but not mutations of the KCNQ1 gene are associated with lone atrial fibrillation in the Chinese Han population. ScientificWorldJournal 2013; 2013:373454. [PMID: 23710137 PMCID: PMC3654283 DOI: 10.1155/2013/373454] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Accepted: 03/18/2013] [Indexed: 01/08/2023] Open
Abstract
Background. Recent studies suggest that mutation of the slow delayed rectifier potassium channel (IKs) contributes to familial atrial fibrillation (FAF). In the current study, we identified common genetic variants of KCNQ1 and explored the potential association between KCNQ1 polymorphism with lone AF (LAF). Methods. Clinical data and blood samples were collected from 190 Han Chinese patients with sporadic AF and matched healthy controls. Variants of the KCNQ1 gene were identified using single-strand conformational polymorphism (SSCP) analysis. A case-control association study in KCNQ1 identified six known single-nucleotide polymorphisms (SNPs) during SSCP screening of the 190 LAF patients and 190 healthy controls. Results. One of the SNPs in KCNQ1 was strongly associated with LAF; significant allelic association was detected rs59233444 (P = 0.013, OR = 1.469, 95% confidence interval (CI): 1.083–1.993). A multiple regression analysis indicated that rs59233444 is an independent risk factor for LAF. Twelve new variants were identified in KCNQ1, including one in the 5′-UTR, two in the 3′-UTR, six in introns, two synonymous substitutions, and one missense substitution. Variants c.1009C>T, c.1860C>T, and c.+2285C>T were not present in the 190 controls, and the others were identified in controls at various frequencies. Conclusions. rs59233444, a common SNP but not mutation in the coding regions of the KCNQ1 gene, is a risk factor for LAF in Chinese Han population.
Collapse
|
44
|
A novel NKX2.5 loss-of-function mutation responsible for familial atrial fibrillation. Int J Mol Med 2013; 31:1119-26. [PMID: 23525379 DOI: 10.3892/ijmm.2013.1316] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Accepted: 02/27/2013] [Indexed: 01/08/2023] Open
Abstract
Atrial fibrillation (AF) represents the most common form of sustained cardiac arrhythmia and accounts for substantial morbidity and mortality. Increasing evidence demonstrates that abnormal cardiovascular development is involved in the pathogenesis of AF. In this study, the coding exons and splice sites of the NKX2.5 gene, which encodes a homeodomain-containing transcription factor pivotal for normal cardiovascular morphogenesis, were sequenced in 110 unrelated index patients with familial AF. The available relatives of the mutation carrier and 200 unrelated ethnically-matched healthy individuals serving as controls were subsequently genotyped. The disease-causing potential of the identified NKX2.5 variation was predicted by MutationTaster. The functional characteristics of the mutant NKX2.5 protein were analyzed using a dual-luciferase reporter assay system. As a result, a novel heterozygous NKX2.5 mutation, p.F145S, was identified in a family with AF transmitted as an autosomal dominant trait, which co-segregated with AF in the family with complete penetrance. The detected substitution, which altered the amino acid completely conserved evolutionarily across species, was absent in 400 control chromosomes and was automatically predicted to be causative. Functional analysis demonstrated that the NKX2.5 mutant was associated with significantly decreased transcriptional activity compared with its wild-type counterpart. To the best of our knowledge, this is the first report on the association of the NKX2.5 loss-of-function mutation with increased susceptibility to familial AF. The findings of the present study provide novel insights into the molecular mechanism underlying AF, suggesting the potential implications for the early prophylaxis and allele-specific therapy of AF.
Collapse
|
45
|
Wang XH, Huang CX, Wang Q, Li RG, Xu YJ, Liu X, Fang WY, Yang YQ. A novel GATA5 loss-of-function mutation underlies lone atrial fibrillation. Int J Mol Med 2012; 31:43-50. [PMID: 23175127 DOI: 10.3892/ijmm.2012.1189] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Accepted: 08/16/2012] [Indexed: 11/06/2022] Open
Abstract
Atrial fibrillation (AF), the most common sustained cardiac arrhythmia, is associated with significantly increased morbidity and mortality. Cumulative evidence highlights the importance of genetic defects in the pathogenesis of AF. However, AF is of remarkable heterogeneity and the genetic determinants of AF in a vast majority of patients remain illusive. In this study, the coding exons and splice junctions of the GATA5 gene, which encodes a zinc-finger transcription factor essential for normal cardiogenesis, were sequenced in 118 unrelated patients with lone AF. The available relatives of the index patient carrying an identified mutation and 200 unrelated ethnically-matched healthy individuals used as controls were genotyped. The functional effect of the mutant GATA5 was characterized in contrast to its wild-type counterpart using a luciferase reporter assay system. As a result, a novel heterozygous GATA5 mutation, p.W200G, was identified in a family with AF inherited as an autosomal dominant trait. The mutation was absent in 200 control individuals and the altered amino acid was completely conserved evolutionarily across species. Functional analysis showed that the mutation of GATA5 was associated with a significantly decreased transcriptional activity. These findings provide novel insight into the molecular mechanism involved in AF, suggesting potential implications for the early prophylaxis and gene-specific therapy of AF.
Collapse
Affiliation(s)
- Xin-Hua Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, PR China
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Li J, Liu WD, Yang ZL, Yang YQ. Novel GATA6 loss-of-function mutation responsible for familial atrial fibrillation. Int J Mol Med 2012; 30:783-90. [PMID: 22824924 DOI: 10.3892/ijmm.2012.1068] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2012] [Accepted: 06/19/2012] [Indexed: 11/06/2022] Open
Abstract
Atrial fibrillation (AF) is the most commonly sustained cardiac arrhythmia, and confers a substantially increased risk of morbidity and mortality. Increasing evidence has indicated that hereditary defects are implicated in AF. However, AF is genetically heterogeneous and the genetic etiology of AF in a significant portion of patients remains unclear. In this study, the entire coding sequence and splice junctions of the GATA6 gene, which encodes a zinc-finger transcription factor crucial for cardiogenesis, were sequenced in 140 unrelated patients with lone AF. The available relatives of the index patient carrying an identified mutation and 200 unrelated ethnically-matched healthy individuals used as the controls were genotyped. The functional characteristics of the mutant GATA6 were assessed in contrast to its wild-type counterpart using a luciferase reporter assay system. As a result, a novel heterozygous GATA6 mutation, p.G469V, was identified in a family with AF inherited in an autosomal dominant pattern. The mutation was absent in the 200 control individuals and the altered amino acid was completely conserved across species. Functional analysis demonstrated that the GATA6 mutation was associated with a significantly decreased transcriptional activity. The findings provide novel insight into the molecular mechanism involved in the pathogenesis of AF, as well as insight into potential therapies for the prevention and treatment of AF.
Collapse
Affiliation(s)
- Jian Li
- Department of Emergency, Pu Nan Hospital, Shanghai 200125, PR China
| | | | | | | |
Collapse
|
47
|
Perrin MJ, Gollob MH. The role of atrial natriuretic peptide in modulating cardiac electrophysiology. Heart Rhythm 2011; 9:610-5. [PMID: 22083030 DOI: 10.1016/j.hrthm.2011.11.019] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Indexed: 11/29/2022]
Abstract
Since the discovery of atrial natriuretic peptide (ANP) in 1981, significant progress has been made in understanding the mechanism of its release and its role in salt and water balance in the body. It has also become clear that ANP plays a key role in cardiac electrophysiology, modulating the autonomic nervous system and regulating the function of cardiac ion channels. The clinical importance of this role was established when mutations in NPPA, the gene encoding ANP, were identified as a cause of familial atrial fibrillation. This review examines our current understanding of the electrophysiological effects of ANP, and their physiological relationship to clinical studies linking ANP and atrial fibrillation.
Collapse
Affiliation(s)
- Mark J Perrin
- University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | | |
Collapse
|
48
|
Xiao J, Liang D, Chen YH. The genetics of atrial fibrillation: from the bench to the bedside. Annu Rev Genomics Hum Genet 2011; 12:73-96. [PMID: 21682648 DOI: 10.1146/annurev-genom-082410-101515] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Atrial fibrillation (AF) has become a growing global epidemic and a financial burden for society. The past 10 years have seen significant advances in our understanding of the genetic aspects of AF: At least 2 chromosomal loci and 17 causal genes have been identified in familial AF, and an additional 7 common variants and single-nucleotide polymorphisms in 11 different genes have been indicated in nonfamilial AF. However, the current management strategies for AF are suboptimal. The integration of genetic information into clinical practice may aid the early identification of AF patients who are at risk as well as the characterization of molecular pathways that culminate in AF, with the eventual result of better treatment. Never before has such an opportunity arisen to advance our understanding of the biology of AF through the translation of genetics findings from the bench to the bedside.
Collapse
Affiliation(s)
- Junjie Xiao
- Key Laboratory of Arrhythmias, Ministry of Education, and Department of Cardiology, East Hospital, Tongji University School of Medicine, Shanghai 200120, China.
| | | | | |
Collapse
|
49
|
Yang YQ, Wang MY, Zhang XL, Tan HW, Shi HF, Jiang WF, Wang XH, Fang WY, Liu X. GATA4 loss-of-function mutations in familial atrial fibrillation. Clin Chim Acta 2011; 412:1825-30. [PMID: 21708142 DOI: 10.1016/j.cca.2011.06.017] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2011] [Revised: 06/10/2011] [Accepted: 06/11/2011] [Indexed: 12/13/2022]
Abstract
BACKGROUND Atrial fibrillation (AF) is the most common sustained cardiac arrhythmia and a major source of the substantially increased morbidity and mortality. Growing studies demonstrate that genetic defects play pivotal roles in a subgroup of AF. However, AF is a genetically heterogeneous disorder and the molecular basis of AF in a majority of cases remains unknown. METHODS The whole coding region of the GATA4 gene, which encodes a zinc-finger transcription factor essential for cardiogenesis, was analyzed in 130 unrelated probands with AF in contrast to 200 unrelated ethnically matched healthy individuals used as controls. The available family members of the probands harboring the identified mutations were genotyped. The functional effect of the mutant GATA4 was characterized using a luciferase reporter assay system. RESULTS Two novel heterozygous GATA4 mutations, p.S70T and p.S160T, were identified in 2 unrelated families with AF inherited as an autosomal dominant trait, respectively, which co-segregated with AF in each family with complete penetrance. Functional analysis showed that the mutations of GATA4 were associated with a significantly decreased transcriptional activity. CONCLUSION The findings provide new insight into the molecular mechanism involved in the pathogenesis of AF, suggesting the potential implications in the genetic diagnosis and gene-specific therapy of this common arrhythmia.
Collapse
Affiliation(s)
- Yi-Qing Yang
- Department of Cardiovascular Research, Shanghai Chest Hospital, Medical College of Shanghai Jiaotong University, PR China.
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Li C, Wang F, Yang Y, Fu F, Xu C, Shi L, Li S, Xia Y, Wu G, Cheng X, Liu H, Wang C, Wang P, Hao J, Ke Y, Zhao Y, Liu M, Zhang R, Gao L, Yu B, Zeng Q, Liao Y, Yang B, Tu X, Wang QK. Significant association of SNP rs2106261 in the ZFHX3 gene with atrial fibrillation in a Chinese Han GeneID population. Hum Genet 2010; 129:239-46. [PMID: 21107608 DOI: 10.1007/s00439-010-0912-6] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2010] [Accepted: 11/03/2010] [Indexed: 01/08/2023]
Abstract
Atrial fibrillation (AF) is the most common cardiac rhythm disorder at the clinical setting and accounts for up to 15% of all strokes. Recent genome-wide association studies (GWAS) identified two single nucleotide polymorphisms (SNPs), rs2106261 and rs7193343 in ZFHX3 (zinc finger homeobox 3 gene) and rs13376333 in KCNN3 (encoding a potassium intermediate/small conductance calcium-activated channel, subfamily N, member 3) that showed significant association with AF in multiple populations of European ancestry. Here, we studied a Chinese Han, GeneID cohort consisting of 650 AF patients and 1,447 non-AF controls to test whether the GWAS findings on ZFHX3/KCNN3 and AF can be expanded to a different ethnic population. No significant association was detected for rs7193343 in ZFHX3 and rs13376333 in KCNN3. However, significant association was identified between rs2106261 in ZFHX3 and AF in the GeneID population for both allelic frequencies (P=0.001 after adjusting for covariates of age, gender, hypertension, coronary artery disease, and diabetes mellitus; OR=1.32), and genotypic frequencies assuming either an additive or recessive model (OR=1.29, P=0.001 and OR=1.77, P =0.00018, respectively). When only lone AF cases were analyzed, the association remained significant (OR=1.50, P=0.001 for allelic association; OR=1.45, P=0.001 for an additive model; OR=2.24, P=0.000043 for a recessive model). Our results indicate that rs2106261 in ZFHX3 confers a significant risk of AF in a Chinese Han population. The study expands the association between ZFHX3 and AF to a non-European ancestry population and provides the first evidence of a cross-race susceptibility of the 16q22 AF locus.
Collapse
Affiliation(s)
- Cong Li
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|