1
|
Alkafaas SS, Elsalahaty MI, Ismail DF, Radwan MA, Elkafas SS, Loutfy SA, Elshazli RM, Baazaoui N, Ahmed AE, Hafez W, Diab M, Sakran M, El-Saadony MT, El-Tarabily KA, Kamal HK, Hessien M. The emerging roles of sphingosine 1-phosphate and SphK1 in cancer resistance: a promising therapeutic target. Cancer Cell Int 2024; 24:89. [PMID: 38419070 PMCID: PMC10903003 DOI: 10.1186/s12935-024-03221-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 01/09/2024] [Indexed: 03/02/2024] Open
Abstract
Cancer chemoresistance is a problematic dilemma that significantly restrains numerous cancer management protocols. It can promote cancer recurrence, spreading of cancer, and finally, mortality. Accordingly, enhancing the responsiveness of cancer cells towards chemotherapies could be a vital approach to overcoming cancer chemoresistance. Tumour cells express a high level of sphingosine kinase-1 (SphK1), which acts as a protooncogenic factor and is responsible for the synthesis of sphingosine-1 phosphate (S1P). S1P is released through a Human ATP-binding cassette (ABC) transporter to interact with other phosphosphingolipids components in the interstitial fluid in the tumor microenvironment (TME), provoking communication, progression, invasion, and tumor metastasis. Also, S1P is associated with several impacts, including anti-apoptotic behavior, metastasis, mesenchymal transition (EMT), angiogenesis, and chemotherapy resistance. Recent reports addressed high levels of S1P in several carcinomas, including ovarian, prostate, colorectal, breast, and HCC. Therefore, targeting the S1P/SphK signaling pathway is an emerging therapeutic approach to efficiently attenuate chemoresistance. In this review, we comprehensively discussed S1P functions, metabolism, transport, and signaling. Also, through a bioinformatic framework, we pointed out the alterations of SphK1 gene expression within different cancers with their impact on patient survival, and we demonstrated the protein-protein network of SphK1, elaborating its sparse roles. Furthermore, we made emphasis on different machineries of cancer resistance and the tight link with S1P. We evaluated all publicly available SphK1 inhibitors and their inhibition activity using molecular docking and how SphK1 inhibitors reduce the production of S1P and might reduce chemoresistance, an approach that might be vital in the course of cancer treatment and prognosis.
Collapse
Affiliation(s)
- Samar Sami Alkafaas
- Molecular Cell Biology Unit, Division of Biochemistry, Department of Chemistry, Faculty of Science, Tanta University, Tanta, 31527, Egypt.
| | - Mohamed I Elsalahaty
- Biochemistry Division, Department of Chemistry, Faculty of Science, Tanta University, Tanta, 31527, Egypt.
| | - Doha F Ismail
- Biochemistry Division, Department of Chemistry, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Mustafa Ali Radwan
- Biochemistry Division, Department of Chemistry, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Sara Samy Elkafas
- Production Engineering and Mechanical Design Department, Faculty of Engineering, Menofia University, Menofia, Egypt
- Faculty of Control System and Robotics, ITMO University, Saint-Petersburg, 197101, Russia
| | - Samah A Loutfy
- Virology and Immunology Unit, Cancer Biology Department, National Cancer Institute, Cairo University, Cairo, Egypt
- Nanotechnology Research Center, British University, Cairo, Egypt
| | - Rami M Elshazli
- Biochemistry and Molecular Genetics Unit, Department of Basic Sciences, Faculty of Physical Therapy, Horus University-Egypt, New Damietta, 34517, Egypt
| | - Narjes Baazaoui
- Biology Department, College of Sciences and Arts Muhayil Assir, King Khalid University, Abha 61421, Saudi Arabia
| | - Ahmed Ezzat Ahmed
- Biology Department, College of Science, King Khalid University, Abha 61413, Saudi Arabia
| | - Wael Hafez
- NMC Royal Hospital, 16th Street, 35233, Khalifa, Abu Dhabi, United Arab Emirates
- Medical Research Division, Department of Internal Medicine, The National Research Centre, Cairo 11511, Egypt
| | - Mohanad Diab
- Burjeel Hospital Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Mohamed Sakran
- Biochemistry Division, Department of Chemistry, Faculty of Science, Tanta University, Tanta, 31527, Egypt
- Biochemistry Department, Faculty of Science, University of Tabuk, Tabuk 47512, Saudi Arabia
| | - Mohamed T El-Saadony
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Khaled A El-Tarabily
- Department of Biology, College of Science, United Arab Emirates University, Al-Ain 15551, United Arab Emirates
| | - Hani K Kamal
- Anatomy and Histology, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mohamed Hessien
- Molecular Cell Biology Unit, Division of Biochemistry, Department of Chemistry, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| |
Collapse
|
2
|
HDL and Lipid Metabolism. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1377:49-61. [DOI: 10.1007/978-981-19-1592-5_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
3
|
Stadler JT, Wadsack C, Marsche G. Fetal High-Density Lipoproteins: Current Knowledge on Particle Metabolism, Composition and Function in Health and Disease. Biomedicines 2021; 9:biomedicines9040349. [PMID: 33808220 PMCID: PMC8067099 DOI: 10.3390/biomedicines9040349] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 03/24/2021] [Accepted: 03/25/2021] [Indexed: 12/20/2022] Open
Abstract
Cholesterol and other lipids carried by lipoproteins play an indispensable role in fetal development. Recent evidence suggests that maternally derived high-density lipoprotein (HDL) differs from fetal HDL with respect to its proteome, size, and function. Compared to the HDL of adults, fetal HDL is the major carrier of cholesterol and has a unique composition that implies other physiological functions. Fetal HDL is enriched in apolipoprotein E, which binds with high affinity to the low-density lipoprotein receptor. Thus, it appears that a primary function of fetal HDL is the transport of cholesterol to tissues as is accomplished by low-density lipoproteins in adults. The fetal HDL-associated bioactive sphingolipid sphingosine-1-phosphate shows strong vasoprotective effects at the fetoplacental vasculature. Moreover, lipoprotein-associated phospholipase A2 carried by fetal-HDL exerts anti-oxidative and athero-protective functions on the fetoplacental endothelium. Notably, the mass and activity of HDL-associated paraoxonase 1 are about 5-fold lower in the fetus, accompanied by an attenuation of anti-oxidative activity of fetal HDL. Cholesteryl ester transfer protein activity is reduced in fetal circulation despite similar amounts of the enzyme in maternal and fetal serum. This review summarizes the current knowledge on fetal HDL as a potential vasoprotective lipoprotein during fetal development. We also provide an overview of whether and how the protective functionalities of HDL are impaired in pregnancy-related syndromes such as pre-eclampsia or gestational diabetes mellitus.
Collapse
Affiliation(s)
- Julia T. Stadler
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Universitätsplatz 4, 8010 Graz, Austria
- Correspondence: (J.T.S.); (G.M.); Tel.: +43-316-385-74115 (J.T.S.); +43-316-385-74128 (G.M.)
| | - Christian Wadsack
- Department of Obstetrics and Gynecology, Medical University of Graz, Auenbruggerplatz 14, 8036 Graz, Austria;
| | - Gunther Marsche
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Universitätsplatz 4, 8010 Graz, Austria
- Correspondence: (J.T.S.); (G.M.); Tel.: +43-316-385-74115 (J.T.S.); +43-316-385-74128 (G.M.)
| |
Collapse
|
4
|
Engelbrecht E, MacRae CA, Hla T. Lysolipids in Vascular Development, Biology, and Disease. Arterioscler Thromb Vasc Biol 2020; 41:564-584. [PMID: 33327749 DOI: 10.1161/atvbaha.120.305565] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Membrane phospholipid metabolism forms lysophospholipids, which possess unique biochemical and biophysical properties that influence membrane structure and dynamics. However, lysophospholipids also function as ligands for G-protein-coupled receptors that influence embryonic development, postnatal physiology, and disease. The 2 most well-studied species-lysophosphatidic acid and S1P (sphingosine 1-phosphate)-are particularly relevant to vascular development, physiology, and cardiovascular diseases. This review summarizes the role of lysophosphatidic acid and S1P in vascular developmental processes, endothelial cell biology, and their roles in cardiovascular disease processes. In addition, we also point out the apparent connections between lysophospholipid biology and the Wnt (int/wingless family) pathway, an evolutionarily conserved fundamental developmental signaling system. The discovery that components of the lysophospholipid signaling system are key genetic determinants of cardiovascular disease has warranted current and future research in this field. As pharmacological approaches to modulate lysophospholipid signaling have entered the clinical sphere, new findings in this field promise to influence novel therapeutic strategies in cardiovascular diseases.
Collapse
Affiliation(s)
- Eric Engelbrecht
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery (E.E., T.H.), Harvard Medical School, Boston, MA
| | - Calum A MacRae
- Division of Cardiovascular Medicine, Brigham and Women's Hospital, Department of Medicine (C.A.M.), Harvard Medical School, Boston, MA
| | - Timothy Hla
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery (E.E., T.H.), Harvard Medical School, Boston, MA
| |
Collapse
|
5
|
Bergougnan L, Andersen G, Plum-Mörschel L, Evaristi MF, Poirier B, Tardat A, Ermer M, Herbrand T, Arrubla J, Coester HV, Sansone R, Heiss C, Vitse O, Hurbin F, Boiron R, Benain X, Radzik D, Janiak P, Muslin AJ, Hovsepian L, Kirkesseli S, Deutsch P, Parkar AA. Endothelial-protective effects of a G-protein-biased sphingosine-1 phosphate receptor-1 agonist, SAR247799, in type-2 diabetes rats and a randomized placebo-controlled patient trial. Br J Clin Pharmacol 2020; 87:2303-2320. [PMID: 33125753 PMCID: PMC8247405 DOI: 10.1111/bcp.14632] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 10/20/2020] [Accepted: 10/24/2020] [Indexed: 12/12/2022] Open
Abstract
Aims SAR247799 is a G‐protein‐biased sphingosine‐1 phosphate receptor‐1 (S1P1) agonist designed to activate endothelial S1P1 and provide endothelial‐protective properties, while limiting S1P1 desensitization and consequent lymphocyte‐count reduction associated with higher doses. The aim was to show whether S1P1 activation can promote endothelial effects in patients and, if so, select SAR247799 doses for further clinical investigation. Methods Type‐2 diabetes patients, enriched for endothelial dysfunction (flow‐mediated dilation, FMD <7%; n = 54), were randomized, in 2 sequential cohorts, to 28‐day once‐daily treatment with SAR247799 (1 or 5 mg in ascending cohorts), placebo or 50 mg sildenafil (positive control) in a 5:2:2 ratio per cohort. Endothelial function was assessed by brachial artery FMD. Renal function, biomarkers and lymphocytes were measured following 5‐week SAR247799 treatment (3 doses) to Zucker diabetic fatty rats and the data used to select the doses for human testing. Results The maximum FMD change from baseline vs placebo for all treatments was reached on day 35; mean differences vs placebo were 0.60% (95% confidence interval [CI] −0.34 to 1.53%; P = .203) for 1 mg SAR247799, 1.07% (95% CI 0.13 to 2.01%; P = .026) for 5 mg SAR247799 and 0.88% (95% CI −0.15 to 1.91%; P = .093) for 50 mg sildenafil. Both doses of SAR247799 were well tolerated, did not affect blood pressure, and were associated with minimal‐to‐no lymphocyte reduction and small‐to‐moderate heart rate decrease. Conclusion These data provide the first human evidence suggesting endothelial‐protective properties of S1P1 activation, with SAR247799 being as effective as the clinical benchmark, sildenafil. Further clinical testing of SAR247799, at sub‐lymphocyte‐reducing doses (≤5 mg), is warranted in vascular diseases associated with endothelial dysfunction.
Collapse
Affiliation(s)
- Luc Bergougnan
- Sanofi R&D, 1 Avenue Pierre Brossolette, Chilly Mazarin, France
| | | | | | | | - Bruno Poirier
- Sanofi R&D, 1 Avenue Pierre Brossolette, Chilly Mazarin, France
| | - Agnes Tardat
- Sanofi R&D, 371 Rue du Professeur Blayac, Montpellier, France
| | | | | | | | | | - Roberto Sansone
- Division of Cardiology, Pulmonary diseases and Vascular medicine, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Christian Heiss
- Department of Clinical and Experimental Medicine, University of Surrey, Stag Hill, Guildford, UK
| | - Olivier Vitse
- Sanofi R&D, 371 Rue du Professeur Blayac, Montpellier, France
| | - Fabrice Hurbin
- Sanofi R&D, 371 Rue du Professeur Blayac, Montpellier, France
| | - Rania Boiron
- Sanofi R&D, 1 Avenue Pierre Brossolette, Chilly Mazarin, France
| | - Xavier Benain
- Sanofi R&D, 371 Rue du Professeur Blayac, Montpellier, France
| | - David Radzik
- Sanofi R&D, 1 Avenue Pierre Brossolette, Chilly Mazarin, France
| | - Philip Janiak
- Sanofi R&D, 1 Avenue Pierre Brossolette, Chilly Mazarin, France
| | | | | | | | | | | |
Collapse
|
6
|
Pan J, Cui X, Wang G, Xue K, Hu J, Zhou L. Predictive value of serum CTRP9 and STIM1 for restenosis after cerebrovascular stent implantation and its relationship with vasoactive substances and inflammatory cytokines. Exp Ther Med 2020; 20:2617-2622. [PMID: 32793308 DOI: 10.3892/etm.2020.9104] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 07/16/2020] [Indexed: 01/15/2023] Open
Abstract
Predictive value of serum complement Clq tumor necrosis factor-related protein 9 (CTRP9) and serum stromal interaction molecule 1 (STIM1) was investigated for restenosis after cerebrovascular stent implantation, as well as its relationship with vasoactive substances and inflammatory cytokines. In this prospective study, 128 patients with cerebral infarction treated with cerebrovascular stent implantation in Yantaishan Hospital were recruited. A total of 66 cases with restenosis after cerebrovascular stent implantation were included in group A, and 62 cases without stenosis were included in group B. Serum CTRP9 and STIM1 levels were measured by enzyme-linked immunosorbent assay (ELISA). ROC curves of serum CTRP9 and STIM1 levels in patients with postoperative restenosis were drawn. The vasoactive substances nitric oxide (NO), tumor necrosis factor α (TNF-α) and interleukin-6 (IL-6) were analyzed by ELISA. The correlation of serum CTRP9, STIM1 levels and NO, TNF-α, IL-6 were analyzed by Pearson correlation coefficient. Serum CTRP9 and NO levels in group A were significantly lower than those in group B. The levels of serum STIM1, TNF-α and IL-6 in group A were significantly higher than those in group B (P<0.001). The sensitivity and specificity of serum CTRP9 level in the diagnosis of restenosis after cerebrovascular stent implantation were, respectively, 59.68 and 75.76%. Those of serum STIM1 were, respectively, 87.10 and 46.97% and those of the combination of serum CTRP9 and STIM1 were 90.32 and 48.48%. Serum CTRP9 level was positively correlated with NO, and negatively correlated with TNF-α and IL-6. STIM1 was positively correlated with TNF-α and IL-6, and negatively correlated with NO (P<0.001). Serum CTRP9 level was significantly decreased in patients with restenosis after cerebrovascular stent implantation, while STIM1 level was significantly up-regulated. Both were correlated with the change of NO, IL-6 and TNF-α levels, therefore they could be used as biological indicators for prediction of restenosis after cerebrovascular stent implantation.
Collapse
Affiliation(s)
- Jiming Pan
- Department of Neurosurgery, Yantaishan Hospital, Yantai, Shandong 264000, P.R. China
| | - Xinguo Cui
- Department of Neurosurgery, Yantaishan Hospital, Yantai, Shandong 264000, P.R. China
| | - Guangbin Wang
- Department of Neurosurgery, Yantaishan Hospital, Yantai, Shandong 264000, P.R. China
| | - Kun Xue
- Department of Neurosurgery, Yantaishan Hospital, Yantai, Shandong 264000, P.R. China
| | - Jia Hu
- Department of Neurosurgery, Yantaishan Hospital, Yantai, Shandong 264000, P.R. China
| | - Lu Zhou
- Clinical Laboratory, Yantai Hospital of Traditional Chinese Medicine, Yantai, Shandong 264000, P.R. China
| |
Collapse
|
7
|
Song HE, Lee SH, Kim SJ, Kim BJ, Yoo HJ, Koh JM. Association of circulating levels of total and protein-bound sphingosine 1-phosphate with osteoporotic fracture. J Investig Med 2020; 68:1295-1299. [DOI: 10.1136/jim-2020-001322] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/23/2020] [Indexed: 11/03/2022]
Abstract
The biological activity and effects of circulating sphingosine 1-phosphate (S1P) might be dependent on the carrier protein. Although S1P is known to be a biomarker for osteoporotic fracture (OF), its role according to its carrier protein (high-density lipoprotein (HDL), low-density lipoprotein (LDL), or albumin) has not yet been studied. We measured the protein-bound S1P levels and bone mineral density (BMD) in 58 postmenopausal women with OF and 58 age-matched and body mass index–matched postmenopausal women without OF. Albumin-bound S1P was the most abundant. Before adjustment, women with OF had higher total S1P (p=0.046) and albumin-bound S1P (p=0.026) levels than those without OF, but there was no difference in the levels of HDL-bound or LDL-bound S1P. After adjustment for confounders including BMD, women with OF had only higher levels of total S1P than those without OF (p=0.047). Before adjustment, the OR for OF was higher in subjects in the highest quartile for total S1P (OR 5.36, 95% CI 1.22 to 23.63) or albumin-bound S1P (OR 4.48, 95% CI 1.22 to 16.42). After adjustment for confounders including BMD, statistical significance persisted only for total S1P (OR 2.23, 95% CI 1.12 to 4.81). These findings suggest that the positive association of S1P with OF is mainly due to level of total plasma S1P and not due to the differing contributions from specific carrier protein-bound fractions.
Collapse
|
8
|
Bergougnan L, Armani S, Golor G, Tardat A, Vitse O, Hurbin F, Scemama M, Poitiers F, Radzik D, Gaudin C, Hovsepian L, Muslin AJ, Kirkesseli S, Deutsch P, Parkar AA. First-in-human study of the safety, tolerability, pharmacokinetics and pharmacodynamics of single and multiple oral doses of SAR247799, a selective G-protein-biased sphingosine-1 phosphate receptor-1 agonist for endothelial protection. Br J Clin Pharmacol 2020; 87:598-611. [PMID: 32520410 PMCID: PMC9328431 DOI: 10.1111/bcp.14422] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 04/25/2020] [Accepted: 05/05/2020] [Indexed: 11/28/2022] Open
Abstract
Aims SAR247799 is a selective G‐protein‐biased sphingosine‐1 phosphate receptor‐1 (S1P1) agonist with potential to restore endothelial function in vascular pathologies. SAR247799, a first‐in‐class molecule differentiated from previous S1P1‐desensitizing molecules developed for multiple sclerosis, can activate S1P1 without desensitization and consequent lymphopenia. The aim was to characterize SAR247799 for its safety, tolerability, pharmacokinetics and pharmacodynamics (activation and desensitization). Methods SAR247799 was administered orally to healthy subjects in a double‐blind, randomized, placebo‐controlled study with single (2.5–37.5 mg) or 2‐week once‐daily (0.5–15 mg) doses. An open‐label single dose pilot food‐interaction arm with 10 mg SAR247799 in cross‐over design was also performed. Results SAR247799 was well tolerated and, at the higher end of the dose ranges, caused the expected dose‐dependent pharmacodynamics associated with S1P1 activation (heart rate reduction) and S1P1 desensitization (lymphocyte count reduction). SAR247799 demonstrated dose‐proportional increases in exposure and was eliminated with an apparent terminal half‐life of 31.2–33.1 hours. Food had a small effect on the pharmacokinetics of SAR247799. SAR247799 had a low volume of distribution (7–23 L), indicating a potential to achieve dose separation for endothelial vs cardiac S1P1 activation pharmacology. A supratherapeutic dose (10 mg) of SAR247799 produced sustained heart rate reduction over 14 days, demonstrating cardiac S1P1 activation without tachyphylaxis. Sub‐lymphocyte‐reducing doses (≤5 mg) of SAR247799, which, based on preclinical data, are projected to activate S1P1 and exhibit endothelial‐protective properties, had minimal‐to‐no heart rate reduction and displayed no marked safety findings. Conclusion SAR247799 is suitable for exploring the biological role of endothelial S1P1 activation without causing receptor desensitization.
Collapse
|
9
|
Satta N, Frias MA, Vuilleumier N, Pagano S. Humoral Immunity Against HDL Particle: A New Perspective in Cardiovascular Diseases? Curr Pharm Des 2020; 25:3128-3146. [PMID: 31470782 DOI: 10.2174/1381612825666190830164917] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 08/24/2019] [Indexed: 01/03/2023]
Abstract
BACKGROUND Autoimmune diseases are closely associated with cardiovascular diseases (CVD). Over the last decades, the comprehension of atherosclerosis, the principal initiator of CVD, evolved from a lipidcentered disease to a predominant inflammatory and immune response-driven disease displaying features of autoimmunity against a broad range of auto-antigens, including lipoproteins. Among them, high density lipoproteins (HDL) are important actors of cholesterol transport and bear several anti-atherogenic properties, raising a growing interest as therapeutic targets to decrease atherosclerosis and CVD burden, with nevertheless rather disappointing results so far. Reflecting HDL composition complexity, autoimmune responses and autoantibodies against various HDL components have been reported. RESULTS In this review, we addressed the important complexity of humoral autoimmunity towards HDL and particularly how this autoimmune response could help improving our understanding of HDL biological implication in atherosclerosis and CVD. We also discussed several issues related to specific HDL autoantibody subclasses characteristics, including etiology, prognosis and pathological mechanisms according to Rose criteria. CONCLUSION Finally, we addressed the possible clinical value of using these antibodies not only as potential biomarkers of atherogenesis and CVD, but also as a factor potentially mitigating the benefit of HDL-raising therapies.
Collapse
Affiliation(s)
- Nathalie Satta
- Division of Laboratory Medicine, Department of Diagnostic, Geneva University Hospitals, 4 rue Gabrielle Perret-Gentil, 1205 Geneva, Switzerland.,Department of Medical Specialties, Faculty of Medicine, University of Geneva, 1 rue Michel Servet, 1211 Geneva, Switzerland
| | - Miguel A Frias
- Division of Laboratory Medicine, Department of Diagnostic, Geneva University Hospitals, 4 rue Gabrielle Perret-Gentil, 1205 Geneva, Switzerland.,Department of Medical Specialties, Faculty of Medicine, University of Geneva, 1 rue Michel Servet, 1211 Geneva, Switzerland
| | - Nicolas Vuilleumier
- Division of Laboratory Medicine, Department of Diagnostic, Geneva University Hospitals, 4 rue Gabrielle Perret-Gentil, 1205 Geneva, Switzerland.,Department of Medical Specialties, Faculty of Medicine, University of Geneva, 1 rue Michel Servet, 1211 Geneva, Switzerland
| | - Sabrina Pagano
- Division of Laboratory Medicine, Department of Diagnostic, Geneva University Hospitals, 4 rue Gabrielle Perret-Gentil, 1205 Geneva, Switzerland.,Department of Medical Specialties, Faculty of Medicine, University of Geneva, 1 rue Michel Servet, 1211 Geneva, Switzerland
| |
Collapse
|
10
|
Del Gaudio I, Sreckovic I, Zardoya-Laguardia P, Bernhart E, Christoffersen C, Frank S, Marsche G, Illanes SE, Wadsack C. Circulating cord blood HDL-S1P complex preserves the integrity of the feto-placental vasculature. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158632. [PMID: 31954174 DOI: 10.1016/j.bbalip.2020.158632] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 01/08/2020] [Accepted: 01/11/2020] [Indexed: 12/14/2022]
Abstract
Perinatal and long-term offspring morbidities are strongly dependent on the preservation of placental vascular homeostasis during pregnancy. In adults, the HDL-apoM-S1P complex protects the endothelium and maintains vascular integrity. However, the metabolism and biology of cord blood-derived HDLs (referred to as neonatal HDL, nHDL) strikingly differ from those in adults. Here, we investigate the role of neonatal HDLs in the regulation of placental vascular function. We show that nHDL is a major carrier of sphingosine-1-phosphate (S1P), which is anchored to the particle through apoM (rs = 0.90, p < 0.0001) in the fetal circulation. Furthermore, this complex interacts with S1P receptors on the feto-placental endothelium and activates specifically extracellular signal-regulated protein kinases 1 and 2 (ERK) and phospholipase C (PLC) downstream signaling, promotes endothelial cell proliferation and calcium flux. Notably, the nHDL-S1P complex triggers actin filaments reorganization, leading to an enhancement of placental endothelial barrier function. Additionally, nHDL induces vasorelaxation of isolated placental chorionic arteries. Taken together, these results suggest that circulating nHDL exerts vasoprotective effects on the feto-placental endothelial barrier mainly via S1P signaling.
Collapse
Affiliation(s)
- Ilaria Del Gaudio
- Department of Obstetrics and Gynecology, Medical University of Graz, Graz, Austria
| | - Ivana Sreckovic
- Department of Obstetrics and Gynecology, Medical University of Graz, Graz, Austria
| | | | - Eva Bernhart
- Department of Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Christina Christoffersen
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Clinical Biochemistry, Rigshospitalet, Copenhagen, Denmark
| | - Saša Frank
- Department of Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Gunther Marsche
- Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria
| | - Sebastian E Illanes
- Laboratory of Reproductive Biology, Center for Biomedical Research, Faculty of Medicine, Universidad de Los Andes, Santiago, Chile; Department of Obstetrics and Gynecology, Faculty of Medicine, Universidad de Los Andes, Santiago, Chile; Department of Obstetrics and Gynecology, Clinica Davila, Santiago, Chile
| | - Christian Wadsack
- Department of Obstetrics and Gynecology, Medical University of Graz, Graz, Austria.
| |
Collapse
|
11
|
Diarte-Añazco EMG, Méndez-Lara KA, Pérez A, Alonso N, Blanco-Vaca F, Julve J. Novel Insights into the Role of HDL-Associated Sphingosine-1-Phosphate in Cardiometabolic Diseases. Int J Mol Sci 2019; 20:ijms20246273. [PMID: 31842389 PMCID: PMC6940915 DOI: 10.3390/ijms20246273] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 12/09/2019] [Accepted: 12/10/2019] [Indexed: 02/07/2023] Open
Abstract
Sphingolipids are key signaling molecules involved in the regulation of cell physiology. These species are found in tissues and in circulation. Although they only constitute a small fraction in lipid composition of circulating lipoproteins, their concentration in plasma and distribution among plasma lipoproteins appears distorted under adverse cardiometabolic conditions such as diabetes mellitus. Sphingosine-1-phosphate (S1P), one of their main representatives, is involved in regulating cardiomyocyte homeostasis in different models of experimental cardiomyopathy. Cardiomyopathy is a common complication of diabetes mellitus and represents a main risk factor for heart failure. Notably, plasma concentration of S1P, particularly high-density lipoprotein (HDL)-bound S1P, may be decreased in patients with diabetes mellitus, and hence, inversely related to cardiac alterations. Despite this, little attention has been given to the circulating levels of either total S1P or HDL-bound S1P as potential biomarkers of diabetic cardiomyopathy. Thus, this review will focus on the potential role of HDL-bound S1P as a circulating biomarker in the diagnosis of main cardiometabolic complications frequently associated with systemic metabolic syndromes with impaired insulin signaling. Given the bioactive nature of these molecules, we also evaluated its potential of HDL-bound S1P-raising strategies for the treatment of cardiometabolic disease.
Collapse
Affiliation(s)
- Elena M. G. Diarte-Añazco
- Institut de Recerca de l’Hospital de la Santa Creu i Sant Pau, and Institut d’Investigació Biomèdica Sant Pau (IIB Sant Pau), 08041 Barcelona, Spain;
- Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Bellaterra (Barcelona), Spain;
| | - Karen Alejandra Méndez-Lara
- Institut de Recerca de l’Hospital de la Santa Creu i Sant Pau, and Institut d’Investigació Biomèdica Sant Pau (IIB Sant Pau), 08041 Barcelona, Spain;
- Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Bellaterra (Barcelona), Spain;
- Correspondence: (K.A.M.-L.); (F.B.-V.); (J.J.)
| | - Antonio Pérez
- Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Bellaterra (Barcelona), Spain;
- Centro de Investigación Biomédica en Red (CIBER) de Diabetes y Enfermedades Metabólicas Asociadas, CIBERDEM, 28029 Madrid, Spain;
- Servei d’Endocrinologia, Hospital de la Santa Creu i Sant Pau, IIB Sant Pau, 08041 Barcelona, Spain
| | - Núria Alonso
- Centro de Investigación Biomédica en Red (CIBER) de Diabetes y Enfermedades Metabólicas Asociadas, CIBERDEM, 28029 Madrid, Spain;
- Servei d’Endocrinologia, Hospital Universitari Germans Trias i Pujol, Badalona, 08916 Barcelona, Spain
| | - Francisco Blanco-Vaca
- Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Bellaterra (Barcelona), Spain;
- Centro de Investigación Biomédica en Red (CIBER) de Diabetes y Enfermedades Metabólicas Asociadas, CIBERDEM, 28029 Madrid, Spain;
- Servei de Bioquímica, Hospital de la Santa Creu i Sant Pau, IIB Sant Pau, 08041 Barcelona, Spain
- Correspondence: (K.A.M.-L.); (F.B.-V.); (J.J.)
| | - Josep Julve
- Institut de Recerca de l’Hospital de la Santa Creu i Sant Pau, and Institut d’Investigació Biomèdica Sant Pau (IIB Sant Pau), 08041 Barcelona, Spain;
- Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Bellaterra (Barcelona), Spain;
- Centro de Investigación Biomédica en Red (CIBER) de Diabetes y Enfermedades Metabólicas Asociadas, CIBERDEM, 28029 Madrid, Spain;
- Correspondence: (K.A.M.-L.); (F.B.-V.); (J.J.)
| |
Collapse
|
12
|
Rencuzogullari I, Karabağ Y, Çağdaş M, Karakoyun S, Seyis S, Gürsoy MO, Yesin M, Artaç İ, İliş D, Tanboğa İH. Assessment of the relationship between preprocedural C-reactive protein/albumin ratio and stent restenosis in patients with ST-segment elevation myocardial infarction. REVISTA PORTUGUESA DE CARDIOLOGIA (ENGLISH EDITION) 2019. [DOI: 10.1016/j.repce.2019.05.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
13
|
Rencuzogullari I, Karabağ Y, Çağdaş M, Karakoyun S, Seyis S, Gürsoy MO, Yesin M, Artaç İ, İliş D, Tanboğa İH. Assessment of the relationship between preprocedural C-reactive protein/albumin ratio and stent restenosis in patients with ST-segment elevation myocardial infarction. Rev Port Cardiol 2019; 38:269-277. [DOI: 10.1016/j.repc.2018.08.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 05/27/2018] [Accepted: 08/24/2018] [Indexed: 01/28/2023] Open
|
14
|
Joo HJ, Jeong HS, Kook H, Lee SH, Park JH, Hong SJ, Yu CW, Lim DS. Impact of hyperuricemia on clinical outcomes after percutaneous coronary intervention for in-stent restenosis. BMC Cardiovasc Disord 2018; 18:114. [PMID: 29890945 PMCID: PMC5996510 DOI: 10.1186/s12872-018-0840-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 05/17/2018] [Indexed: 12/22/2022] Open
Abstract
Background There have been limited data on the impact of hyperuricemia on long-term clinical outcomes after percutaneous coronary intervention (PCI) for in-stent restenosis (ISR). Methods From January 2009 to July 2015, 317 patients who underwent repeat PCI for ISR were divided into two groups: patients with normal serum uric acid (UA) levels (normal UA group) and patients with higher serum UA levels (higher UA group). The higher UA group included patients with serum UA levels > 6.8 mg/dL or patients who were taking anti-hyperuricemic medication. Results During a median follow-up period of 1088 days, the cumulative incidence rates of major adverse event (MAE), including a composite of all-cause death, non-fatal myocardial infarction, and any revascularization, were similar between the two groups (higher UA 36.4% vs. normal UA 29.9%, p = 0.389, log-rank p = 0.367). Follow-up angiographic data showed similar outcomes of late lumen loss (0.8 ± 0.9 mm vs. 0.8 ± 1.1 mm, p = 0.895) and binary restenosis rate (28.1% vs. 34.7%, p = 0.622). Multivariate Cox regression analysis indicated higher levels of low-density lipoprotein cholesterol (hazard ratio [HR] 1.011, 95% confidence interval [CI] 1.003–1.019, p = 0.006) and lower left ventricular ejection fraction (HR 0.972, 95% CI 0.948–0.996, p = 0.022), but not UA levels, to be the independent risk predictors of MAE. Conclusion Hyperuricemia is not associated with poor clinical outcomes after repeat PCI for ISR lesions. Electronic supplementary material The online version of this article (10.1186/s12872-018-0840-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hyung Joon Joo
- Department of Cardiology, Cardiovascular Center, Korea University Anam Hospital, 126-1, 5ka, Anam-dong, Sungbuk-ku, Seoul, 136-705, Republic of Korea
| | - Han Saem Jeong
- Department of Cardiology, Cardiovascular Center, Korea University Anam Hospital, 126-1, 5ka, Anam-dong, Sungbuk-ku, Seoul, 136-705, Republic of Korea
| | - Hyungdon Kook
- Department of Cardiology, Cardiovascular Center, Korea University Anam Hospital, 126-1, 5ka, Anam-dong, Sungbuk-ku, Seoul, 136-705, Republic of Korea
| | - Seung Hun Lee
- Department of Cardiology, Cardiovascular Center, Korea University Anam Hospital, 126-1, 5ka, Anam-dong, Sungbuk-ku, Seoul, 136-705, Republic of Korea
| | - Jae Hyoung Park
- Department of Cardiology, Cardiovascular Center, Korea University Anam Hospital, 126-1, 5ka, Anam-dong, Sungbuk-ku, Seoul, 136-705, Republic of Korea
| | - Soon Jun Hong
- Department of Cardiology, Cardiovascular Center, Korea University Anam Hospital, 126-1, 5ka, Anam-dong, Sungbuk-ku, Seoul, 136-705, Republic of Korea
| | - Cheol Woong Yu
- Department of Cardiology, Cardiovascular Center, Korea University Anam Hospital, 126-1, 5ka, Anam-dong, Sungbuk-ku, Seoul, 136-705, Republic of Korea
| | - Do-Sum Lim
- Department of Cardiology, Cardiovascular Center, Korea University Anam Hospital, 126-1, 5ka, Anam-dong, Sungbuk-ku, Seoul, 136-705, Republic of Korea.
| |
Collapse
|
15
|
Tomizawa N, Yamamoto K, Inoh S, Nojo T, Nakamura S. High-risk Plaque and Calcification Detected by Coronary CT Angiography to Predict Future Cardiovascular Events After Percutaneous Coronary Intervention. Acad Radiol 2018; 25:486-493. [PMID: 29195787 DOI: 10.1016/j.acra.2017.10.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 10/24/2017] [Accepted: 10/27/2017] [Indexed: 12/28/2022]
Abstract
RATIONALE AND OBJECTIVES The purpose of this study was to investigate whether high-risk plaque (HRP) and calcium assessed by coronary computed tomography (CT) could predict future cardiovascular events after second-generation drug-eluting stent (DES) placement. MATERIALS AND METHODS We analyzed 317 patients from December 2012 to April 2015 who underwent coronary CT followed by DES placement. HRP was defined as a plaque with positive remodeling and low attenuation or a plaque with a napkin-ring sign. Coronary calcium was assessed by Agatston score (AS). Patients were divided into three groups: low risk, HRP negative and AS <400; intermediate risk, HRP positive and AS ≥400; high risk, HRP positive and AS ≥400. The primary end point was a composite of all-cause mortality, myocardial infarction, fatal arrhythmia, or repeated revascularization. Kaplan-Meier analysis was used to estimate the distribution of time to events. RESULTS A total of 74 events (23%) occurred during a median follow-up of 25.8 months. Patients with primary end points had HRP more frequently (70% vs 51%, P = 0.003) and were more calcified (AS, 471 [interquartile range, 143-1614] vs 289 [interquartile range, 63-787]; P = 0.01) than patients without primary end points. The frequency of primary end point increased significantly in the intermediate- and high-risk patients (P = 0.0011). Multivariate analysis showed that the hazard ratio of the intermediate- and high-risk groups was 1.91 (95% confidence interval, 1.04-3.77; P = 0.037) and 2.66 (95% confidence interval, 1.27-5.73; P = 0.009), respectively. CONCLUSION Plaque and calcification analysis by coronary CT could predict future cardiovascular events after second-generation DES placement.
Collapse
Affiliation(s)
- Nobuo Tomizawa
- Department of Radiology, New Tokyo Hospital, 1271 Wanagaya, Matsudo, Chiba 270-2232, Japan.
| | - Kodai Yamamoto
- Department of Radiology, New Tokyo Hospital, 1271 Wanagaya, Matsudo, Chiba 270-2232, Japan
| | - Shinichi Inoh
- Department of Radiology, New Tokyo Hospital, 1271 Wanagaya, Matsudo, Chiba 270-2232, Japan
| | - Takeshi Nojo
- Department of Radiology, New Tokyo Hospital, 1271 Wanagaya, Matsudo, Chiba 270-2232, Japan
| | - Sunao Nakamura
- Department of Cardiology, New Tokyo Hospital, Matsudo, Chiba, Japan
| |
Collapse
|
16
|
Cao M, Ji C, Zhou Y, Huang W, Ni W, Tong X, Wei JF. Sphingosine kinase inhibitors: A patent review. Int J Mol Med 2018; 41:2450-2460. [PMID: 29484372 DOI: 10.3892/ijmm.2018.3505] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 01/30/2018] [Indexed: 11/05/2022] Open
Abstract
Sphingosine kinases (SphKs) catalyze the conversion of the sphingosine to the promitogenic/migratory product, sphingosine-1-phosphate (S1P). SphK/S1P pathway has been linked to the progression of cancer and various other diseases including allergic inflammatory disease, cardiovascular diseases, rejection after transplantation, the central nervous system, and virus infections. Therefore, SphKs represent potential new targets for developing novel therapeutics for these diseases. The history and development of SphK inhibitors are discussed, summarizing SphK inhibitors by their structures, and describing some applications of SphK inhibitors. We concluded: i) initial SphK inhibitors based on sphingosine have low specificity with several important off-targets. Identification the off-targets that would work synergistically with SphKs, and developing compounds that target the unique C4 domain of SphKs should be the focus of future studies. ii) The modifications of SphK inhibitors, which are devoted to increasing the selectivity to one of the two isoforms, now focus on the alkyl length, the spacer between the head and linker rings, and the insertion and the position of lipidic group in tail region. iii) SphK/S1P signaling pathway holds therapeutic values for many diseases. To find the exact function of each isoform of SphKs increasing the number of SphK inhibitor clinical trials is necessary.
Collapse
Affiliation(s)
- Mengda Cao
- Department of Geriatrics, Beijing Hospital, National Center of Gerontology, Dongcheng, Beijing 100730, P.R. China
| | - Chunmei Ji
- Research Division of Clinical Pharmacology, Τhe First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Yanjun Zhou
- Research Division of Clinical Pharmacology, Τhe First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Wen Huang
- Research Division of Clinical Pharmacology, Τhe First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Weiwei Ni
- Research Division of Clinical Pharmacology, Τhe First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Xunliang Tong
- Department of Geriatrics, Beijing Hospital, National Center of Gerontology, Dongcheng, Beijing 100730, P.R. China
| | - Ji-Fu Wei
- Research Division of Clinical Pharmacology, Τhe First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| |
Collapse
|
17
|
Woudberg NJ, Pedretti S, Lecour S, Schulz R, Vuilleumier N, James RW, Frias MA. Pharmacological Intervention to Modulate HDL: What Do We Target? Front Pharmacol 2018; 8:989. [PMID: 29403378 PMCID: PMC5786575 DOI: 10.3389/fphar.2017.00989] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 12/22/2017] [Indexed: 12/24/2022] Open
Abstract
The cholesterol concentrations of low-density lipoprotein (LDL) and high-density lipoprotein (HDL) have traditionally served as risk factors for cardiovascular disease. As such, novel therapeutic interventions aiming to raise HDL cholesterol have been tested in the clinical setting. However, most trials led to a significant increase in HDL cholesterol with no improvement in cardiovascular events. The complexity of the HDL particle, which exerts multiple physiological functions and is comprised of a number of subclasses, has raised the question as to whether there should be more focus on HDL subclass and function rather than cholesterol quantity. We review current data regarding HDL subclasses and subclass-specific functionality and highlight how current lipid modifying drugs such as statins, cholesteryl ester transfer protein inhibitors, fibrates and niacin often increase cholesterol concentrations of specific HDL subclasses. In addition this review sets out arguments suggesting that the HDL3 subclass may provide better protective effects than HDL2.
Collapse
Affiliation(s)
- Nicholas J. Woudberg
- Hatter Institute for Cardiovascular Research in Africa and South African Medical Research Council Inter-University Cape Heart Group, Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Sarah Pedretti
- Hatter Institute for Cardiovascular Research in Africa and South African Medical Research Council Inter-University Cape Heart Group, Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Division of Endocrinology, Diabetes, Hypertension and Nutrition, Department of Internal Medicine Specialities, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Sandrine Lecour
- Hatter Institute for Cardiovascular Research in Africa and South African Medical Research Council Inter-University Cape Heart Group, Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Rainer Schulz
- Institute of Physiology, Justus Liebig University Giessen, Giessen, Germany
| | - Nicolas Vuilleumier
- Division of Laboratory Medicine, Department of Genetics and Laboratory Medicine, Geneva University Hospitals, Geneva, Switzerland
| | - Richard W. James
- Division of Endocrinology, Diabetes, Hypertension and Nutrition, Department of Internal Medicine Specialities, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Miguel A. Frias
- Division of Endocrinology, Diabetes, Hypertension and Nutrition, Department of Internal Medicine Specialities, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Division of Laboratory Medicine, Department of Genetics and Laboratory Medicine, Geneva University Hospitals, Geneva, Switzerland
| |
Collapse
|
18
|
Egom EE, Shiwani HA, Pharithi RB, Canning R, Khan B, Hiani YE, Maher V. Dynamic changes of the composition of plasma HDL particles in patients with cardiac disease: Spotlight on sphingosine-1-phosphate/serum amyloid A ratio. Clin Exp Pharmacol Physiol 2017; 45:319-325. [DOI: 10.1111/1440-1681.12888] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Revised: 10/26/2017] [Accepted: 10/27/2017] [Indexed: 11/28/2022]
Affiliation(s)
- Emmanuel E Egom
- Department of Cardiology; The Adelaide and Meath Hospital Dublin; Incorporating the National Children Hospital; Dublin Ireland
| | - Haaris A Shiwani
- Department of Clinical Medicine; Education Division; Trinity College Dublin; The University of Dublin; Dublin Ireland
| | - Rebabonye B Pharithi
- Department of Cardiology; The Adelaide and Meath Hospital Dublin; Incorporating the National Children Hospital; Dublin Ireland
| | | | - Barkat Khan
- Department of Cardiology; The Adelaide and Meath Hospital Dublin; Incorporating the National Children Hospital; Dublin Ireland
| | - Yassine El Hiani
- Department of Physiology and Biophysics; Dalhousie University; Halifax Canada
| | - Vincent Maher
- Department of Cardiology; The Adelaide and Meath Hospital Dublin; Incorporating the National Children Hospital; Dublin Ireland
- Department of Clinical Medicine; Education Division; Trinity College Dublin; The University of Dublin; Dublin Ireland
- Institute of Technology Tallaght; Dublin Ireland
| |
Collapse
|
19
|
Sasset L, Zhang Y, Dunn TM, Di Lorenzo A. Sphingolipid De Novo Biosynthesis: A Rheostat of Cardiovascular Homeostasis. Trends Endocrinol Metab 2016; 27:807-819. [PMID: 27562337 PMCID: PMC5075255 DOI: 10.1016/j.tem.2016.07.005] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 07/07/2016] [Accepted: 07/20/2016] [Indexed: 01/01/2023]
Abstract
Sphingolipids (SL) are both fundamental structural components of the eukaryotic membranes and signaling molecules that regulate a variety of biological functions. The highly-bioactive lipids, ceramide and sphingosine-1-phosphate, have emerged as important regulators of cardiovascular function in health and disease. In this review we discuss recent insights into the role of SLs, particularly ceramide and sphingosine-1-phosphate, in the pathophysiology of the cardiovascular system. We also highlight advances into the molecular mechanisms regulating serine palmitoyltransferase, the first and rate-limiting enzyme of de novo SL biosynthesis, with an emphasis on the recently discovered inhibitors of serine palmitoyltransferase, ORMDL and NOGO-B proteins. Understanding the molecular mechanisms regulating this biosynthetic pathway may lead to the development of novel therapeutic approaches for the treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Linda Sasset
- Center for Vascular Biology, Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, Cornell University, New York, NY 10065, USA
| | - Yi Zhang
- Center for Vascular Biology, Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, Cornell University, New York, NY 10065, USA
| | - Teresa M Dunn
- Department of Biochemistry and Molecular Biology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Annarita Di Lorenzo
- Center for Vascular Biology, Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, Cornell University, New York, NY 10065, USA.
| |
Collapse
|
20
|
Annema W, von Eckardstein A. Dysfunctional high-density lipoproteins in coronary heart disease: implications for diagnostics and therapy. Transl Res 2016; 173:30-57. [PMID: 26972566 DOI: 10.1016/j.trsl.2016.02.008] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Revised: 02/15/2016] [Accepted: 02/17/2016] [Indexed: 12/18/2022]
Abstract
Low plasma levels of high-density lipoprotein (HDL) cholesterol are associated with increased risks of coronary heart disease. HDL mediates cholesterol efflux from macrophages for reverse transport to the liver and elicits many anti-inflammatory and anti-oxidative activities which are potentially anti-atherogenic. Nevertheless, HDL has not been successfully targeted by drugs for prevention or treatment of cardiovascular diseases. One potential reason is the targeting of HDL cholesterol which does not capture the structural and functional complexity of HDL particles. Hundreds of lipid species and dozens of proteins as well as several microRNAs have been identified in HDL. This physiological heterogeneity is further increased in pathologic conditions due to additional quantitative and qualitative molecular changes of HDL components which have been associated with both loss of physiological function and gain of pathologic dysfunction. This structural and functional complexity of HDL has prevented clear assignments of molecules to the functions of normal HDL and dysfunctions of pathologic HDL. Systematic analyses of structure-function relationships of HDL-associated molecules and their modifications are needed to test the different components and functions of HDL for their relative contribution in the pathogenesis of atherosclerosis. The derived biomarkers and targets may eventually help to exploit HDL for treatment and diagnostics of cardiovascular diseases.
Collapse
Affiliation(s)
- Wijtske Annema
- Institute of Clinical Chemistry, University Hospital Zurich, Zurich, Switzerland
| | | |
Collapse
|
21
|
Keul P, van Borren MMGJ, Ghanem A, Müller FU, Baartscheer A, Verkerk AO, Stümpel F, Schulte JS, Hamdani N, Linke WA, van Loenen P, Matus M, Schmitz W, Stypmann J, Tiemann K, Ravesloot JH, Alewijnse AE, Hermann S, Spijkers LJA, Hiller KH, Herr D, Heusch G, Schäfers M, Peters SLM, Chun J, Levkau B. Sphingosine-1-Phosphate Receptor 1 Regulates Cardiac Function by Modulating Ca2+ Sensitivity and Na+/H+ Exchange and Mediates Protection by Ischemic Preconditioning. J Am Heart Assoc 2016; 5:JAHA.116.003393. [PMID: 27207969 PMCID: PMC4889204 DOI: 10.1161/jaha.116.003393] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Background Sphingosine‐1‐phosphate plays vital roles in cardiomyocyte physiology, myocardial ischemia–reperfusion injury, and ischemic preconditioning. The function of the cardiomyocyte sphingosine‐1‐phosphate receptor 1 (S1P1) in vivo is unknown. Methods and Results Cardiomyocyte‐restricted deletion of S1P1 in mice (S1P1αMHCCre) resulted in progressive cardiomyopathy, compromised response to dobutamine, and premature death. Isolated cardiomyocytes from S1P1αMHCCre mice revealed reduced diastolic and systolic Ca2+ concentrations that were secondary to reduced intracellular Na+ and caused by suppressed activity of the sarcolemmal Na+/H+ exchanger NHE‐1 in the absence of S1P1. This scenario was successfully reproduced in wild‐type cardiomyocytes by pharmacological inhibition of S1P1 or sphingosine kinases. Furthermore, Sarcomere shortening of S1P1αMHCCre cardiomyocytes was intact, but sarcomere relaxation was attenuated and Ca2+ sensitivity increased, respectively. This went along with reduced phosphorylation of regulatory myofilament proteins such as myosin light chain 2, myosin‐binding protein C, and troponin I. In addition, S1P1 mediated the inhibitory effect of exogenous sphingosine‐1‐phosphate on β‐adrenergic–induced cardiomyocyte contractility by inhibiting the adenylate cyclase. Furthermore, ischemic precondtioning was abolished in S1P1αMHCCre mice and was accompanied by defective Akt activation during preconditioning. Conclusions Tonic S1P1 signaling by endogenous sphingosine‐1‐phosphate contributes to intracellular Ca2+ homeostasis by maintaining basal NHE‐1 activity and controls simultaneously myofibril Ca2+ sensitivity through its inhibitory effect on adenylate cyclase. Cardioprotection by ischemic precondtioning depends on intact S1P1 signaling. These key findings on S1P1 functions in cardiac physiology may offer novel therapeutic approaches to cardiac diseases.
Collapse
Affiliation(s)
- Petra Keul
- Institute for Pathophysiology, Westdeutsches Herz- und Gefäßzentrum, Universitätsklinikum Essen, Essen, Germany
| | | | - Alexander Ghanem
- Department of Cardiology, Universitätsklinikum Bonn, Bonn, Germany
| | | | | | - Arie O Verkerk
- Heart Failure Research Center, AMC, University of Amsterdam, The Netherlands
| | - Frank Stümpel
- Institute for Pharmakology und Toxikology, Münster, Germany
| | | | - Nazha Hamdani
- Department of Cardiovascular Physiology, Ruhr University Bochum, Bochum, Germany
| | - Wolfgang A Linke
- Department of Cardiovascular Physiology, Ruhr University Bochum, Bochum, Germany
| | - Pieter van Loenen
- Department of Pharmacology & Pharmacotherapy, AMC, University of Amsterdam, The Netherlands
| | - Marek Matus
- Institute for Pharmakology und Toxikology, Münster, Germany Department of Pharmacology and Toxicology, Comenius University, Bratislava, Slovakia
| | | | - Jörg Stypmann
- Medizinische Klinik und Poliklinik C, Universitätsklinikum Münster, Münster, Germany
| | - Klaus Tiemann
- Medizinische Klinik und Poliklinik C, Universitätsklinikum Münster, Münster, Germany
| | | | - Astrid E Alewijnse
- Department of Pharmacology & Pharmacotherapy, AMC, University of Amsterdam, The Netherlands
| | - Sven Hermann
- European Institute for Molecular Imaging, Münster, Germany
| | - Léon J A Spijkers
- Department of Pharmacology & Pharmacotherapy, AMC, University of Amsterdam, The Netherlands
| | - Karl-Heinz Hiller
- MRB Forschungszentrum Magnet-Resonanz-Bayern e.V., Würzburg, Germany
| | - Deron Herr
- Department of Molecular Biology, Scripps Research Institute, La Jolla, CA
| | - Gerd Heusch
- Institute for Pathophysiology, Westdeutsches Herz- und Gefäßzentrum, Universitätsklinikum Essen, Essen, Germany
| | | | - Stephan L M Peters
- Department of Pharmacology & Pharmacotherapy, AMC, University of Amsterdam, The Netherlands
| | - Jerold Chun
- Department of Molecular Biology, Scripps Research Institute, La Jolla, CA
| | - Bodo Levkau
- Institute for Pathophysiology, Westdeutsches Herz- und Gefäßzentrum, Universitätsklinikum Essen, Essen, Germany
| |
Collapse
|
22
|
Brinck JW, Thomas A, Lauer E, Jornayvaz FR, Brulhart-Meynet MC, Prost JC, Pataky Z, Löfgren P, Hoffstedt J, Eriksson M, Pramfalk C, Morel S, Kwak BR, van Eck M, James RW, Frias MA. Diabetes Mellitus Is Associated With Reduced High-Density Lipoprotein Sphingosine-1-Phosphate Content and Impaired High-Density Lipoprotein Cardiac Cell Protection. Arterioscler Thromb Vasc Biol 2016; 36:817-24. [PMID: 26966278 DOI: 10.1161/atvbaha.115.307049] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 02/29/2016] [Indexed: 11/16/2022]
Abstract
OBJECTIVE The dyslipidemia of type 2 diabetes mellitus has multiple etiologies and impairs lipoprotein functionality, thereby increasing risk for cardiovascular disease. High-density lipoproteins (HDLs) have several beneficial effects, notably protecting the heart from myocardial ischemia. We hypothesized that glycation of HDL could compromise this cardioprotective effect. APPROACH AND RESULTS We used in vitro (cardiomyocytes) and ex vivo (whole heart) models subjected to oxidative stress together with HDL isolated from diabetic patients and nondiabetic HDL glycated in vitro (methylglyoxal). Diabetic and in vitro glycated HDL were less effective (P<0.05) than control HDL in protecting from oxidative stress. Protection was significantly, inversely correlated with the degree of in vitro glycation (P<0.001) and the levels of hemoglobin A1c in diabetic patients (P<0.007). The ability to activate protective, intracellular survival pathways involving Akt, Stat3, and Erk1/2 was significantly reduced (P<0.05) using glycated HDL. Glycation reduced the sphingosine-1-phosphate (S1P) content of HDL, whereas the S1P concentrations of diabetic HDL were inversely correlated with hemoglobin A1c (P<0.005). The S1P contents of in vitro glycated and diabetic HDL were significantly, positively correlated (both <0.01) with cardiomyocyte survival during oxidative stress. Adding S1P to diabetic HDL increased its S1P content and restored its cardioprotective function. CONCLUSIONS Our data demonstrate that glycation can reduce the S1P content of HDL, leading to increased cardiomyocyte cell death because of less effective activation of intracellular survival pathways. It has important implications for the functionality of HDL in diabetes mellitus because HDL-S1P has several beneficial effects on the vasculature.
Collapse
Affiliation(s)
- Jonas W Brinck
- From the Department of Internal Medicine, Division of Endocrinology, Diabetology, Hypertension and Nutrition, Medical Faculty, Geneva University, Geneva, Switzerland (J.W.B., F.R.J., M.-C.B.-M., R.W.J., M.A.F.); University Centre of Legal Medicine, Unit of Toxicology, Lausanne-Geneva, Switzerland (A.T., E.L., J.-C.P.); Faculty of Biology and Medicine, Lausanne University Hospital, Lausanne University, Lausanne, Switzerland (A.T.); Department of Community Medicine, Service of Therapeutic Education for Chronic Diseases, WHO Collaborating Centre, University Hospitals of Geneva and University of Geneva, Geneva, Switzerland (Z.P.); Department of Medicine, Karolinska Institute, Stockholm, Sweden (J.W.B., P.L., J.H., M.E.); Molecular Nutrition Unit, Department of Biosciences and Nutrition, Karolinska Institute, Stockholm, Sweden (C.P.); Division of Clinical Chemistry, Department of Laboratory Medicine, Karolinska Institute, Stockholm, Sweden (C.P.); Department of Pathology and Immunology, Medical Faculty, Geneva University, Geneva, Switzerland (S.M., B.R.K.); and Leiden Academic Centre for Drug Research, Division of Biopharmaceutics, Cluster of BioTherapeutics, Leiden University, Leiden, The Netherlands (M.v.E.).
| | - Aurélien Thomas
- From the Department of Internal Medicine, Division of Endocrinology, Diabetology, Hypertension and Nutrition, Medical Faculty, Geneva University, Geneva, Switzerland (J.W.B., F.R.J., M.-C.B.-M., R.W.J., M.A.F.); University Centre of Legal Medicine, Unit of Toxicology, Lausanne-Geneva, Switzerland (A.T., E.L., J.-C.P.); Faculty of Biology and Medicine, Lausanne University Hospital, Lausanne University, Lausanne, Switzerland (A.T.); Department of Community Medicine, Service of Therapeutic Education for Chronic Diseases, WHO Collaborating Centre, University Hospitals of Geneva and University of Geneva, Geneva, Switzerland (Z.P.); Department of Medicine, Karolinska Institute, Stockholm, Sweden (J.W.B., P.L., J.H., M.E.); Molecular Nutrition Unit, Department of Biosciences and Nutrition, Karolinska Institute, Stockholm, Sweden (C.P.); Division of Clinical Chemistry, Department of Laboratory Medicine, Karolinska Institute, Stockholm, Sweden (C.P.); Department of Pathology and Immunology, Medical Faculty, Geneva University, Geneva, Switzerland (S.M., B.R.K.); and Leiden Academic Centre for Drug Research, Division of Biopharmaceutics, Cluster of BioTherapeutics, Leiden University, Leiden, The Netherlands (M.v.E.)
| | - Estelle Lauer
- From the Department of Internal Medicine, Division of Endocrinology, Diabetology, Hypertension and Nutrition, Medical Faculty, Geneva University, Geneva, Switzerland (J.W.B., F.R.J., M.-C.B.-M., R.W.J., M.A.F.); University Centre of Legal Medicine, Unit of Toxicology, Lausanne-Geneva, Switzerland (A.T., E.L., J.-C.P.); Faculty of Biology and Medicine, Lausanne University Hospital, Lausanne University, Lausanne, Switzerland (A.T.); Department of Community Medicine, Service of Therapeutic Education for Chronic Diseases, WHO Collaborating Centre, University Hospitals of Geneva and University of Geneva, Geneva, Switzerland (Z.P.); Department of Medicine, Karolinska Institute, Stockholm, Sweden (J.W.B., P.L., J.H., M.E.); Molecular Nutrition Unit, Department of Biosciences and Nutrition, Karolinska Institute, Stockholm, Sweden (C.P.); Division of Clinical Chemistry, Department of Laboratory Medicine, Karolinska Institute, Stockholm, Sweden (C.P.); Department of Pathology and Immunology, Medical Faculty, Geneva University, Geneva, Switzerland (S.M., B.R.K.); and Leiden Academic Centre for Drug Research, Division of Biopharmaceutics, Cluster of BioTherapeutics, Leiden University, Leiden, The Netherlands (M.v.E.)
| | - François R Jornayvaz
- From the Department of Internal Medicine, Division of Endocrinology, Diabetology, Hypertension and Nutrition, Medical Faculty, Geneva University, Geneva, Switzerland (J.W.B., F.R.J., M.-C.B.-M., R.W.J., M.A.F.); University Centre of Legal Medicine, Unit of Toxicology, Lausanne-Geneva, Switzerland (A.T., E.L., J.-C.P.); Faculty of Biology and Medicine, Lausanne University Hospital, Lausanne University, Lausanne, Switzerland (A.T.); Department of Community Medicine, Service of Therapeutic Education for Chronic Diseases, WHO Collaborating Centre, University Hospitals of Geneva and University of Geneva, Geneva, Switzerland (Z.P.); Department of Medicine, Karolinska Institute, Stockholm, Sweden (J.W.B., P.L., J.H., M.E.); Molecular Nutrition Unit, Department of Biosciences and Nutrition, Karolinska Institute, Stockholm, Sweden (C.P.); Division of Clinical Chemistry, Department of Laboratory Medicine, Karolinska Institute, Stockholm, Sweden (C.P.); Department of Pathology and Immunology, Medical Faculty, Geneva University, Geneva, Switzerland (S.M., B.R.K.); and Leiden Academic Centre for Drug Research, Division of Biopharmaceutics, Cluster of BioTherapeutics, Leiden University, Leiden, The Netherlands (M.v.E.)
| | - Marie-Claude Brulhart-Meynet
- From the Department of Internal Medicine, Division of Endocrinology, Diabetology, Hypertension and Nutrition, Medical Faculty, Geneva University, Geneva, Switzerland (J.W.B., F.R.J., M.-C.B.-M., R.W.J., M.A.F.); University Centre of Legal Medicine, Unit of Toxicology, Lausanne-Geneva, Switzerland (A.T., E.L., J.-C.P.); Faculty of Biology and Medicine, Lausanne University Hospital, Lausanne University, Lausanne, Switzerland (A.T.); Department of Community Medicine, Service of Therapeutic Education for Chronic Diseases, WHO Collaborating Centre, University Hospitals of Geneva and University of Geneva, Geneva, Switzerland (Z.P.); Department of Medicine, Karolinska Institute, Stockholm, Sweden (J.W.B., P.L., J.H., M.E.); Molecular Nutrition Unit, Department of Biosciences and Nutrition, Karolinska Institute, Stockholm, Sweden (C.P.); Division of Clinical Chemistry, Department of Laboratory Medicine, Karolinska Institute, Stockholm, Sweden (C.P.); Department of Pathology and Immunology, Medical Faculty, Geneva University, Geneva, Switzerland (S.M., B.R.K.); and Leiden Academic Centre for Drug Research, Division of Biopharmaceutics, Cluster of BioTherapeutics, Leiden University, Leiden, The Netherlands (M.v.E.)
| | - Jean-Christophe Prost
- From the Department of Internal Medicine, Division of Endocrinology, Diabetology, Hypertension and Nutrition, Medical Faculty, Geneva University, Geneva, Switzerland (J.W.B., F.R.J., M.-C.B.-M., R.W.J., M.A.F.); University Centre of Legal Medicine, Unit of Toxicology, Lausanne-Geneva, Switzerland (A.T., E.L., J.-C.P.); Faculty of Biology and Medicine, Lausanne University Hospital, Lausanne University, Lausanne, Switzerland (A.T.); Department of Community Medicine, Service of Therapeutic Education for Chronic Diseases, WHO Collaborating Centre, University Hospitals of Geneva and University of Geneva, Geneva, Switzerland (Z.P.); Department of Medicine, Karolinska Institute, Stockholm, Sweden (J.W.B., P.L., J.H., M.E.); Molecular Nutrition Unit, Department of Biosciences and Nutrition, Karolinska Institute, Stockholm, Sweden (C.P.); Division of Clinical Chemistry, Department of Laboratory Medicine, Karolinska Institute, Stockholm, Sweden (C.P.); Department of Pathology and Immunology, Medical Faculty, Geneva University, Geneva, Switzerland (S.M., B.R.K.); and Leiden Academic Centre for Drug Research, Division of Biopharmaceutics, Cluster of BioTherapeutics, Leiden University, Leiden, The Netherlands (M.v.E.)
| | - Zoltan Pataky
- From the Department of Internal Medicine, Division of Endocrinology, Diabetology, Hypertension and Nutrition, Medical Faculty, Geneva University, Geneva, Switzerland (J.W.B., F.R.J., M.-C.B.-M., R.W.J., M.A.F.); University Centre of Legal Medicine, Unit of Toxicology, Lausanne-Geneva, Switzerland (A.T., E.L., J.-C.P.); Faculty of Biology and Medicine, Lausanne University Hospital, Lausanne University, Lausanne, Switzerland (A.T.); Department of Community Medicine, Service of Therapeutic Education for Chronic Diseases, WHO Collaborating Centre, University Hospitals of Geneva and University of Geneva, Geneva, Switzerland (Z.P.); Department of Medicine, Karolinska Institute, Stockholm, Sweden (J.W.B., P.L., J.H., M.E.); Molecular Nutrition Unit, Department of Biosciences and Nutrition, Karolinska Institute, Stockholm, Sweden (C.P.); Division of Clinical Chemistry, Department of Laboratory Medicine, Karolinska Institute, Stockholm, Sweden (C.P.); Department of Pathology and Immunology, Medical Faculty, Geneva University, Geneva, Switzerland (S.M., B.R.K.); and Leiden Academic Centre for Drug Research, Division of Biopharmaceutics, Cluster of BioTherapeutics, Leiden University, Leiden, The Netherlands (M.v.E.)
| | - Patrik Löfgren
- From the Department of Internal Medicine, Division of Endocrinology, Diabetology, Hypertension and Nutrition, Medical Faculty, Geneva University, Geneva, Switzerland (J.W.B., F.R.J., M.-C.B.-M., R.W.J., M.A.F.); University Centre of Legal Medicine, Unit of Toxicology, Lausanne-Geneva, Switzerland (A.T., E.L., J.-C.P.); Faculty of Biology and Medicine, Lausanne University Hospital, Lausanne University, Lausanne, Switzerland (A.T.); Department of Community Medicine, Service of Therapeutic Education for Chronic Diseases, WHO Collaborating Centre, University Hospitals of Geneva and University of Geneva, Geneva, Switzerland (Z.P.); Department of Medicine, Karolinska Institute, Stockholm, Sweden (J.W.B., P.L., J.H., M.E.); Molecular Nutrition Unit, Department of Biosciences and Nutrition, Karolinska Institute, Stockholm, Sweden (C.P.); Division of Clinical Chemistry, Department of Laboratory Medicine, Karolinska Institute, Stockholm, Sweden (C.P.); Department of Pathology and Immunology, Medical Faculty, Geneva University, Geneva, Switzerland (S.M., B.R.K.); and Leiden Academic Centre for Drug Research, Division of Biopharmaceutics, Cluster of BioTherapeutics, Leiden University, Leiden, The Netherlands (M.v.E.)
| | - Johan Hoffstedt
- From the Department of Internal Medicine, Division of Endocrinology, Diabetology, Hypertension and Nutrition, Medical Faculty, Geneva University, Geneva, Switzerland (J.W.B., F.R.J., M.-C.B.-M., R.W.J., M.A.F.); University Centre of Legal Medicine, Unit of Toxicology, Lausanne-Geneva, Switzerland (A.T., E.L., J.-C.P.); Faculty of Biology and Medicine, Lausanne University Hospital, Lausanne University, Lausanne, Switzerland (A.T.); Department of Community Medicine, Service of Therapeutic Education for Chronic Diseases, WHO Collaborating Centre, University Hospitals of Geneva and University of Geneva, Geneva, Switzerland (Z.P.); Department of Medicine, Karolinska Institute, Stockholm, Sweden (J.W.B., P.L., J.H., M.E.); Molecular Nutrition Unit, Department of Biosciences and Nutrition, Karolinska Institute, Stockholm, Sweden (C.P.); Division of Clinical Chemistry, Department of Laboratory Medicine, Karolinska Institute, Stockholm, Sweden (C.P.); Department of Pathology and Immunology, Medical Faculty, Geneva University, Geneva, Switzerland (S.M., B.R.K.); and Leiden Academic Centre for Drug Research, Division of Biopharmaceutics, Cluster of BioTherapeutics, Leiden University, Leiden, The Netherlands (M.v.E.)
| | - Mats Eriksson
- From the Department of Internal Medicine, Division of Endocrinology, Diabetology, Hypertension and Nutrition, Medical Faculty, Geneva University, Geneva, Switzerland (J.W.B., F.R.J., M.-C.B.-M., R.W.J., M.A.F.); University Centre of Legal Medicine, Unit of Toxicology, Lausanne-Geneva, Switzerland (A.T., E.L., J.-C.P.); Faculty of Biology and Medicine, Lausanne University Hospital, Lausanne University, Lausanne, Switzerland (A.T.); Department of Community Medicine, Service of Therapeutic Education for Chronic Diseases, WHO Collaborating Centre, University Hospitals of Geneva and University of Geneva, Geneva, Switzerland (Z.P.); Department of Medicine, Karolinska Institute, Stockholm, Sweden (J.W.B., P.L., J.H., M.E.); Molecular Nutrition Unit, Department of Biosciences and Nutrition, Karolinska Institute, Stockholm, Sweden (C.P.); Division of Clinical Chemistry, Department of Laboratory Medicine, Karolinska Institute, Stockholm, Sweden (C.P.); Department of Pathology and Immunology, Medical Faculty, Geneva University, Geneva, Switzerland (S.M., B.R.K.); and Leiden Academic Centre for Drug Research, Division of Biopharmaceutics, Cluster of BioTherapeutics, Leiden University, Leiden, The Netherlands (M.v.E.)
| | - Camilla Pramfalk
- From the Department of Internal Medicine, Division of Endocrinology, Diabetology, Hypertension and Nutrition, Medical Faculty, Geneva University, Geneva, Switzerland (J.W.B., F.R.J., M.-C.B.-M., R.W.J., M.A.F.); University Centre of Legal Medicine, Unit of Toxicology, Lausanne-Geneva, Switzerland (A.T., E.L., J.-C.P.); Faculty of Biology and Medicine, Lausanne University Hospital, Lausanne University, Lausanne, Switzerland (A.T.); Department of Community Medicine, Service of Therapeutic Education for Chronic Diseases, WHO Collaborating Centre, University Hospitals of Geneva and University of Geneva, Geneva, Switzerland (Z.P.); Department of Medicine, Karolinska Institute, Stockholm, Sweden (J.W.B., P.L., J.H., M.E.); Molecular Nutrition Unit, Department of Biosciences and Nutrition, Karolinska Institute, Stockholm, Sweden (C.P.); Division of Clinical Chemistry, Department of Laboratory Medicine, Karolinska Institute, Stockholm, Sweden (C.P.); Department of Pathology and Immunology, Medical Faculty, Geneva University, Geneva, Switzerland (S.M., B.R.K.); and Leiden Academic Centre for Drug Research, Division of Biopharmaceutics, Cluster of BioTherapeutics, Leiden University, Leiden, The Netherlands (M.v.E.)
| | - Sandrine Morel
- From the Department of Internal Medicine, Division of Endocrinology, Diabetology, Hypertension and Nutrition, Medical Faculty, Geneva University, Geneva, Switzerland (J.W.B., F.R.J., M.-C.B.-M., R.W.J., M.A.F.); University Centre of Legal Medicine, Unit of Toxicology, Lausanne-Geneva, Switzerland (A.T., E.L., J.-C.P.); Faculty of Biology and Medicine, Lausanne University Hospital, Lausanne University, Lausanne, Switzerland (A.T.); Department of Community Medicine, Service of Therapeutic Education for Chronic Diseases, WHO Collaborating Centre, University Hospitals of Geneva and University of Geneva, Geneva, Switzerland (Z.P.); Department of Medicine, Karolinska Institute, Stockholm, Sweden (J.W.B., P.L., J.H., M.E.); Molecular Nutrition Unit, Department of Biosciences and Nutrition, Karolinska Institute, Stockholm, Sweden (C.P.); Division of Clinical Chemistry, Department of Laboratory Medicine, Karolinska Institute, Stockholm, Sweden (C.P.); Department of Pathology and Immunology, Medical Faculty, Geneva University, Geneva, Switzerland (S.M., B.R.K.); and Leiden Academic Centre for Drug Research, Division of Biopharmaceutics, Cluster of BioTherapeutics, Leiden University, Leiden, The Netherlands (M.v.E.)
| | - Brenda R Kwak
- From the Department of Internal Medicine, Division of Endocrinology, Diabetology, Hypertension and Nutrition, Medical Faculty, Geneva University, Geneva, Switzerland (J.W.B., F.R.J., M.-C.B.-M., R.W.J., M.A.F.); University Centre of Legal Medicine, Unit of Toxicology, Lausanne-Geneva, Switzerland (A.T., E.L., J.-C.P.); Faculty of Biology and Medicine, Lausanne University Hospital, Lausanne University, Lausanne, Switzerland (A.T.); Department of Community Medicine, Service of Therapeutic Education for Chronic Diseases, WHO Collaborating Centre, University Hospitals of Geneva and University of Geneva, Geneva, Switzerland (Z.P.); Department of Medicine, Karolinska Institute, Stockholm, Sweden (J.W.B., P.L., J.H., M.E.); Molecular Nutrition Unit, Department of Biosciences and Nutrition, Karolinska Institute, Stockholm, Sweden (C.P.); Division of Clinical Chemistry, Department of Laboratory Medicine, Karolinska Institute, Stockholm, Sweden (C.P.); Department of Pathology and Immunology, Medical Faculty, Geneva University, Geneva, Switzerland (S.M., B.R.K.); and Leiden Academic Centre for Drug Research, Division of Biopharmaceutics, Cluster of BioTherapeutics, Leiden University, Leiden, The Netherlands (M.v.E.)
| | - Miranda van Eck
- From the Department of Internal Medicine, Division of Endocrinology, Diabetology, Hypertension and Nutrition, Medical Faculty, Geneva University, Geneva, Switzerland (J.W.B., F.R.J., M.-C.B.-M., R.W.J., M.A.F.); University Centre of Legal Medicine, Unit of Toxicology, Lausanne-Geneva, Switzerland (A.T., E.L., J.-C.P.); Faculty of Biology and Medicine, Lausanne University Hospital, Lausanne University, Lausanne, Switzerland (A.T.); Department of Community Medicine, Service of Therapeutic Education for Chronic Diseases, WHO Collaborating Centre, University Hospitals of Geneva and University of Geneva, Geneva, Switzerland (Z.P.); Department of Medicine, Karolinska Institute, Stockholm, Sweden (J.W.B., P.L., J.H., M.E.); Molecular Nutrition Unit, Department of Biosciences and Nutrition, Karolinska Institute, Stockholm, Sweden (C.P.); Division of Clinical Chemistry, Department of Laboratory Medicine, Karolinska Institute, Stockholm, Sweden (C.P.); Department of Pathology and Immunology, Medical Faculty, Geneva University, Geneva, Switzerland (S.M., B.R.K.); and Leiden Academic Centre for Drug Research, Division of Biopharmaceutics, Cluster of BioTherapeutics, Leiden University, Leiden, The Netherlands (M.v.E.)
| | - Richard W James
- From the Department of Internal Medicine, Division of Endocrinology, Diabetology, Hypertension and Nutrition, Medical Faculty, Geneva University, Geneva, Switzerland (J.W.B., F.R.J., M.-C.B.-M., R.W.J., M.A.F.); University Centre of Legal Medicine, Unit of Toxicology, Lausanne-Geneva, Switzerland (A.T., E.L., J.-C.P.); Faculty of Biology and Medicine, Lausanne University Hospital, Lausanne University, Lausanne, Switzerland (A.T.); Department of Community Medicine, Service of Therapeutic Education for Chronic Diseases, WHO Collaborating Centre, University Hospitals of Geneva and University of Geneva, Geneva, Switzerland (Z.P.); Department of Medicine, Karolinska Institute, Stockholm, Sweden (J.W.B., P.L., J.H., M.E.); Molecular Nutrition Unit, Department of Biosciences and Nutrition, Karolinska Institute, Stockholm, Sweden (C.P.); Division of Clinical Chemistry, Department of Laboratory Medicine, Karolinska Institute, Stockholm, Sweden (C.P.); Department of Pathology and Immunology, Medical Faculty, Geneva University, Geneva, Switzerland (S.M., B.R.K.); and Leiden Academic Centre for Drug Research, Division of Biopharmaceutics, Cluster of BioTherapeutics, Leiden University, Leiden, The Netherlands (M.v.E.)
| | - Miguel A Frias
- From the Department of Internal Medicine, Division of Endocrinology, Diabetology, Hypertension and Nutrition, Medical Faculty, Geneva University, Geneva, Switzerland (J.W.B., F.R.J., M.-C.B.-M., R.W.J., M.A.F.); University Centre of Legal Medicine, Unit of Toxicology, Lausanne-Geneva, Switzerland (A.T., E.L., J.-C.P.); Faculty of Biology and Medicine, Lausanne University Hospital, Lausanne University, Lausanne, Switzerland (A.T.); Department of Community Medicine, Service of Therapeutic Education for Chronic Diseases, WHO Collaborating Centre, University Hospitals of Geneva and University of Geneva, Geneva, Switzerland (Z.P.); Department of Medicine, Karolinska Institute, Stockholm, Sweden (J.W.B., P.L., J.H., M.E.); Molecular Nutrition Unit, Department of Biosciences and Nutrition, Karolinska Institute, Stockholm, Sweden (C.P.); Division of Clinical Chemistry, Department of Laboratory Medicine, Karolinska Institute, Stockholm, Sweden (C.P.); Department of Pathology and Immunology, Medical Faculty, Geneva University, Geneva, Switzerland (S.M., B.R.K.); and Leiden Academic Centre for Drug Research, Division of Biopharmaceutics, Cluster of BioTherapeutics, Leiden University, Leiden, The Netherlands (M.v.E.)
| |
Collapse
|
23
|
Roopmani P, Sethuraman S, Satheesh S, Maheswari Krishnan U. The metamorphosis of vascular stents: passive structures to smart devices. RSC Adv 2016. [DOI: 10.1039/c5ra19109b] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The role of nanotechnology enabled techniques in the evolution of vascular stents.
Collapse
Affiliation(s)
- Purandhi Roopmani
- Centre for Nanotechnology and Advanced Biomaterials (CeNTAB)
- School of Chemical and Biotechnology
- SASTRA University
- Thanjavur-613 401
- India
| | - Swaminathan Sethuraman
- Centre for Nanotechnology and Advanced Biomaterials (CeNTAB)
- School of Chemical and Biotechnology
- SASTRA University
- Thanjavur-613 401
- India
| | - Santhosh Satheesh
- Jawaharlal Institute of Post Graduate Medical Education and Research (JIPMER)
- Department of Cardiology
- Pondicherry-605 006
- India
| | - Uma Maheswari Krishnan
- Centre for Nanotechnology and Advanced Biomaterials (CeNTAB)
- School of Chemical and Biotechnology
- SASTRA University
- Thanjavur-613 401
- India
| |
Collapse
|
24
|
Levkau B. HDL-S1P: cardiovascular functions, disease-associated alterations, and therapeutic applications. Front Pharmacol 2015; 6:243. [PMID: 26539121 PMCID: PMC4611146 DOI: 10.3389/fphar.2015.00243] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 10/08/2015] [Indexed: 12/17/2022] Open
Abstract
Sphingosine-1-phosphate (S1P) is a bioactive sphingolipid contained in High-density lipoproteins (HDL) and has drawn considerable attention in the lipoprotein field as numerous studies have demonstrated its contribution to several functions inherent to HDL. Some of them are partly and some entirely due to the S1P contained in HDL (HDL-S1P). Despite the presence of over 1000 different lipids in HDL, S1P stands out as it possesses its own cell surface receptors through which it exercises key physiological functions. Most of the S1P in human plasma is associated with HDL, and the amount of HDL-S1P influences the quality and quantity of HDL-dependent functions. The main binding partner of S1P in HDL is apolipoprotein M but others may also exist particularly under conditions of acute S1P elevations. HDL not only exercise functions through their S1P content but have also an impact on genuine S1P signaling by influencing S1P bioactivity and receptor presentation. HDL-S1P content is altered in human diseases such as atherosclerosis, coronary artery disease, myocardial infarction, renal insufficiency and diabetes mellitus. Low HDL-S1P has also been linked to impaired HDL functions associated with these disorders. Although the pathophysiological and molecular reasons for such disease-associated shifts in HDL-S1P are little understood, there have been successful approaches to circumvent their adverse implications by pharmacologically increasing HDL-S1P as means to improve HDL function. This mini-review will cover the current understanding of the contribution of HDL-S1P to physiological HDL function, its alteration in disease and ways for its restoration to correct HDL dysfunction.
Collapse
Affiliation(s)
- Bodo Levkau
- Institute for Pathophysiology, West German Heart and Vascular Center, University Hospital Essen , Essen, Germany
| |
Collapse
|