1
|
Zhang D, Kukkar D, Kim KH, Bhatt P. A comprehensive review on immunogen and immune-response proteins of SARS-CoV-2 and their applications in prevention, diagnosis, and treatment of COVID-19. Int J Biol Macromol 2024; 259:129284. [PMID: 38211928 DOI: 10.1016/j.ijbiomac.2024.129284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 01/03/2024] [Accepted: 01/04/2024] [Indexed: 01/13/2024]
Abstract
Exposure to severe acute respiratory syndrome-corona virus-2 (SARS-CoV-2) prompts humoral immune responses in the human body. As the auxiliary diagnosis of a current infection, the existence of viral proteins can be checked from specific antibodies (Abs) induced by immunogenic viral proteins. For people with a weakened immune system, Ab treatment can help neutralize viral antigens to resist and treat the disease. On the other hand, highly immunogenic viral proteins can serve as effective markers for detecting prior infections. Additionally, the identification of viral particles or the presence of antibodies may help establish an immune defense against the virus. These immunogenic proteins rather than SARS-CoV-2 can be given to uninfected people as a vaccination to improve their coping ability against COVID-19 through the generation of memory plasma cells. In this work, we review immunogenic and immune-response proteins derived from SARS-CoV-2 with regard to their classification, origin, and diverse applications (e.g., prevention (vaccine development), diagnostic testing, and treatment (via neutralizing Abs)). Finally, advanced immunization strategies against COVID-19 are discussed along with the contemporary circumstances and future challenges.
Collapse
Affiliation(s)
- Daohong Zhang
- College of Food Engineering, Ludong University, Yantai 264025, Shandong, China; Bio-Nanotechnology Research Institute, Ludong University, Yantai 264025, Shandong, China
| | - Deepak Kukkar
- Department of Biotechnology, Chandigarh University, Gharuan, Mohali 140413, Punjab, India; University Center for Research and Development, Chandigarh University, Gharuan, Mohali 140413, Punjab, India
| | - Ki-Hyun Kim
- Department of Civil & Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul 04763, Republic of Korea.
| | - Poornima Bhatt
- Department of Biotechnology, Chandigarh University, Gharuan, Mohali 140413, Punjab, India; University Center for Research and Development, Chandigarh University, Gharuan, Mohali 140413, Punjab, India
| |
Collapse
|
2
|
Yamada CAO, de Paula Oliveira Santos B, Lemos RP, Batista ACS, da Conceição IMCA, de Paula Sabino A, E Lima LMTDR, de Magalhães MTQ. Applications of Mass Spectrometry in the Characterization, Screening, Diagnosis, and Prognosis of COVID-19. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1443:33-61. [PMID: 38409415 DOI: 10.1007/978-3-031-50624-6_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Mass spectrometry (MS) is a powerful analytical technique that plays a central role in modern protein analysis and the study of proteostasis. In the field of advanced molecular technologies, MS-based proteomics has become a cornerstone that is making a significant impact in the post-genomic era and as precision medicine moves from the research laboratory to clinical practice. The global dissemination of COVID-19 has spurred collective efforts to develop effective diagnostics, vaccines, and therapeutic interventions. This chapter highlights how MS seamlessly integrates with established methods such as RT-PCR and ELISA to improve viral identification and disease progression assessment. In particular, matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF-MS) takes the center stage, unraveling intricate details of SARS-CoV-2 proteins, revealing modifications such as glycosylation, and providing insights critical to formulating therapies and assessing prognosis. However, high-throughput analysis of MALDI data presents challenges in manual interpretation, which has driven the development of programmatic pipelines and specialized packages such as MALDIquant. As we move forward, it becomes clear that integrating proteomic data with various omic findings is an effective strategy to gain a comprehensive understanding of the intricate biology of COVID-19 and ultimately develop targeted therapeutic paradigms.
Collapse
Affiliation(s)
- Camila Akemi Oliveira Yamada
- Laboratory for Macromolecular Biophysics - LBM, Department of Biochemistry and Immunology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- Interunit Postgraduate Program in Bioinformatics, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Bruno de Paula Oliveira Santos
- Laboratory for Macromolecular Biophysics - LBM, Department of Biochemistry and Immunology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Rafael Pereira Lemos
- Laboratory for Macromolecular Biophysics - LBM, Department of Biochemistry and Immunology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- Interunit Postgraduate Program in Bioinformatics, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Ana Carolina Silva Batista
- Laboratory for Macromolecular Biophysics - LBM, Department of Biochemistry and Immunology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- Interunit Postgraduate Program in Bioinformatics, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | - Adriano de Paula Sabino
- Interunit Postgraduate Program in Bioinformatics, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- Laboratory of Clinical and Molecular Hematology - Faculty of Pharmacy, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | - Mariana T Q de Magalhães
- Laboratory for Macromolecular Biophysics - LBM, Department of Biochemistry and Immunology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
- Interunit Postgraduate Program in Bioinformatics, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
- Biochemistry and Immunology Postgraduate Program, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|
3
|
Awatade NT, Wark PAB, Chan ASL, Mamun SMAA, Mohd Esa NY, Matsunaga K, Rhee CK, Hansbro PM, Sohal SS. The Complex Association between COPD and COVID-19. J Clin Med 2023; 12:jcm12113791. [PMID: 37297985 DOI: 10.3390/jcm12113791] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/26/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is significant cause of morbidity and mortality worldwide. There is mounting evidence suggesting that COPD patients are at increased risk of severe COVID-19 outcomes; however, it remains unclear whether they are more susceptible to acquiring SARS-CoV-2 infection. In this comprehensive review, we aim to provide an up-to-date perspective of the intricate relationship between COPD and COVID-19. We conducted a thorough review of the literature to examine the evidence regarding the susceptibility of COPD patients to COVID-19 infection and the severity of their disease outcomes. While most studies have found that pre-existing COPD is associated with worse COVID-19 outcomes, some have yielded conflicting results. We also discuss confounding factors such as cigarette smoking, inhaled corticosteroids, and socioeconomic and genetic factors that may influence this association. Furthermore, we review acute COVID-19 management, treatment, rehabilitation, and recovery in COPD patients and how public health measures impact their care. In conclusion, while the association between COPD and COVID-19 is complex and requires further investigation, this review highlights the need for careful management of COPD patients during the pandemic to minimize the risk of severe COVID-19 outcomes.
Collapse
Affiliation(s)
- Nikhil T Awatade
- Immune Health Program, Hunter Medical Research Institute and University of Newcastle, Newcastle 2305, Australia
| | - Peter A B Wark
- Immune Health Program, Hunter Medical Research Institute and University of Newcastle, Newcastle 2305, Australia
- Department of Respiratory and Sleep Medicine, John Hunter Hospital, Newcastle 2305, Australia
| | - Andrew S L Chan
- Department of Respiratory and Sleep Medicine, Royal North Shore Hospital, St. Leonards 2065, Australia
- Northern Clinical School, Faculty of Medicine and Health, The University of Sydney, Sydney 2006, Australia
| | - S M Abdullah Al Mamun
- Department of Respiratory Medicine & Sleep Medicine, Evercare Hospitals Dhaka, Dhaka 1229, Bangladesh
| | | | - Kazuto Matsunaga
- Department of Respiratory Medicine and Infectious Disease Graduate School of Medicine, Yamaguchi University, 1-1-1 Minami-kogushi, Ube 755-8505, Japan
| | - Chin Kook Rhee
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Philip M Hansbro
- Immune Health Program, Hunter Medical Research Institute and University of Newcastle, Newcastle 2305, Australia
- Centre for Inflammation, Faculty of Science, School of Life Sciences, Centenary Institute and University of Technology Sydney, Sydney 2050, Australia
| | - Sukhwinder Singh Sohal
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston 7248, Australia
| |
Collapse
|
4
|
Jiang F, Liu Y, Xue Y, Cheng P, Wang J, Lian J, Gong W. Developing a multiepitope vaccine for the prevention of SARS-CoV-2 and monkeypox virus co-infection: A reverse vaccinology analysis. Int Immunopharmacol 2023; 115:109728. [PMID: 36652758 PMCID: PMC9832108 DOI: 10.1016/j.intimp.2023.109728] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/01/2023] [Accepted: 01/09/2023] [Indexed: 01/13/2023]
Abstract
BACKGROUND Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and monkeypox virus (MPXV) severely threaten human health; however, currently, no vaccine can prevent a co-infection with both viruses. METHODS Five antigens were selected to predict dominant T and B cell epitopes screened for immunogenicity, antigenicity, toxicity, and sensitization. After screening, all antigens joined in the construction of a novel multiepitope vaccine. The physicochemical and immunological characteristics, and secondary and tertiary structures of the vaccine were predicted and analyzed using bio- and immunoinformatics. Finally, codon optimization and cloning in-silico were performed. RESULTS A new multiepitope vaccine, named S7M8, was constructed based on four helper T lymphocyte (HTL) epitopes, six cytotoxic T lymphocyte (CTL) epitopes, five B cell epitopes, as well as Toll-like receptor (TLR) agonists. The antigenicity and immunogenicity scores of the S7M8 vaccine were 0.907374 and 0.6552, respectively. The S7M8 vaccine was comprised of 26.96% α-helices, the optimized Z-value of the tertiary structure was -5.92, and the favored area after majorization in the Ramachandran plot was 84.54%. Molecular docking showed that the S7M8 vaccine could tightly bind to TLR2 (-1100.6 kcal/mol) and TLR4 (-950.3 kcal/mol). In addition, the immune stimulation prediction indicated that the S7M8 vaccine could activate T and B lymphocytes to produce high levels of Th1 cytokines and antibodies. CONCLUSION S7M8 is a promising biomarker with good antigenicity, immunogenicity, non-toxicity, and non-sensitization. The S7M8 vaccine can trigger significantly high levels of Th1 cytokines and antibodies and may be a potentially powerful tool in preventing SARS-CoV-2 and MPXV.
Collapse
Affiliation(s)
- Fan Jiang
- Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The 8th Medical Center of PLA General Hospital, Beijing, China,The Second Brigade of Cadet, Basic Medical Science Academy of Air Force Medical University, Xi’an, China,Department of Infectious Diseases, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Yinping Liu
- Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The 8th Medical Center of PLA General Hospital, Beijing, China
| | - Yong Xue
- Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The 8th Medical Center of PLA General Hospital, Beijing, China
| | - Peng Cheng
- Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The 8th Medical Center of PLA General Hospital, Beijing, China
| | - Jie Wang
- Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The 8th Medical Center of PLA General Hospital, Beijing, China
| | - Jianqi Lian
- Department of Infectious Diseases, Tangdu Hospital, Air Force Medical University, Xi'an, China.
| | - Wenping Gong
- Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The 8th Medical Center of PLA General Hospital, Beijing, China.
| |
Collapse
|
5
|
Sohal SS. Therapeutic Modalities for Asthma, COPD, and Pathogenesis of COVID-19: Insights from the Special Issue. J Clin Med 2022; 11:jcm11154525. [PMID: 35956140 PMCID: PMC9369734 DOI: 10.3390/jcm11154525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 08/02/2022] [Indexed: 12/10/2022] Open
Affiliation(s)
- Sukhwinder Singh Sohal
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, TAS 7248, Australia
| |
Collapse
|
6
|
Khan S, Fakhar Z, Hussain A, Ahmad A, Jairajpuri DS, Alajmi MF, Hassan MI. Structure-based identification of potential SARS-CoV-2 main protease inhibitors. J Biomol Struct Dyn 2022; 40:3595-3608. [PMID: 33210561 PMCID: PMC7682383 DOI: 10.1080/07391102.2020.1848634] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 11/04/2020] [Indexed: 01/09/2023]
Abstract
To address coronavirus disease (COVID-19), currently, no effective drug or vaccine is available. In this regard, molecular modeling approaches are highly useful to discover potential inhibitors of the main protease (Mpro) enzyme of SARS-CoV-2. Since, the Mpro enzyme plays key roles in mediating viral replication and transcription; therefore, it is considered as an attractive drug target to control SARS-CoV-2 infection. By using structure-based drug design, pharmacophore modeling, and virtual high throughput drug screening combined with docking and all-atom molecular dynamics simulation approach, we have identified five potential inhibitors of SARS-CoV-2 Mpro. MD simulation studies revealed that compound 54035018 binds to the Mpro with high affinity (ΔGbind -37.40 kcal/mol), and the complex is more stable in comparison with other protein-ligand complexes. We have identified promising leads to fight COVID-19 infection as these compounds fulfill all drug-likeness properties. However, experimental and clinical validations are required for COVID-19 therapy.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Shama Khan
- Department of Clinical Microbiology and Infectious Diseases, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
| | - Zeynab Fakhar
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Johannesburg, South Africa
| | - Afzal Hussain
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Aijaz Ahmad
- Department of Clinical Microbiology and Infectious Diseases, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
- National Health Laboratory Service, Infection Control, Charlotte Maxeke Johannesburg Academic Hospital, Johannesburg, South Africa
| | - Deeba Shamim Jairajpuri
- Department of Medical Biochemistry, College of Medicine and Medical Sciences, Arabian Gulf University, Manama, Bahrain
| | - Mohamed F. Alajmi
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Md. Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
7
|
Goyzueta-Mamani LD, Chávez-Fumagalli MA, Alvarez-Fernandez K, Aguilar-Pineda JA, Nieto-Montesinos R, Davila Del-Carpio G, Vera-Lopez KJ, Lino Cardenas CL. Alzheimer's Disease: A Silent Pandemic - A Systematic Review on the Situation and Patent Landscape of the Diagnosis. Recent Pat Biotechnol 2022; 16:355-378. [PMID: 35400333 DOI: 10.2174/1872208316666220408114129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 01/13/2022] [Accepted: 02/17/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Alzheimer's disease (AD) is characterized by cognitive impairment, tau protein deposits, and amyloid beta plaques. AD impacted 44 million people in 2016, and it is estimated to affect 100 million people by 2050. AD is disregarded as a pandemic compared with other diseases. To date, there is no effective treatment or diagnosis. OBJECTIVE We aimed to discuss the current tools used to diagnose COVID-19, to point out their potential to be adapted for AD diagnosis, and to review the landscape of existing patents in the AD field and future perspectives for AD diagnosis. METHOD We carried out a scientific screening following a research strategy in PubMed; Web of Science; the Derwent Innovation Index; the KCI-Korean Journal Database; SciELO; the Russian Science Citation index; and the CDerwent, EDerwent, and MDerwent index databases. RESULTS A total of 326 from 6,446 articles about AD and 376 from 4,595 articles about COVID-19 were analyzed. Of these, AD patents were focused on biomarkers and neuroimaging with no accurate, validated diagnostic methods, and only 7% of kit development patents were found. In comparison, COVID-19 patents were 60% about kit development for diagnosis; they are highly accurate and are now commercialized. CONCLUSION AD is still neglected and not recognized as a pandemic that affects the people and economies of all nations. There is a gap in the development of AD diagnostic tools that could be filled if the interest and effort that has been invested to tackle the COVID-19 emergency could also be applied for innovation.
Collapse
Affiliation(s)
- Luis Daniel Goyzueta-Mamani
- Laboratory of Genomics and Neurovascular Diseases, Vicerrectorado de investigacion, Universidad Catolica de Santa Maria, Arequipa, Peru
| | - Miguel Angel Chávez-Fumagalli
- Laboratory of Genomics and Neurovascular Diseases, Vicerrectorado de investigacion, Universidad Catolica de Santa Maria, Arequipa, Peru
| | - Karla Alvarez-Fernandez
- Laboratory of Genomics and Neurovascular Diseases, Vicerrectorado de investigacion, Universidad Catolica de Santa Maria, Arequipa, Peru
| | - Jorge A Aguilar-Pineda
- Laboratory of Genomics and Neurovascular Diseases, Vicerrectorado de investigacion, Universidad Catolica de Santa Maria, Arequipa, Peru
| | - Rita Nieto-Montesinos
- Laboratory of Genomics and Neurovascular Diseases, Vicerrectorado de investigacion, Universidad Catolica de Santa Maria, Arequipa, Peru
| | - Gonzalo Davila Del-Carpio
- Laboratory of Genomics and Neurovascular Diseases, Vicerrectorado de investigacion, Universidad Catolica de Santa Maria, Arequipa, Peru
| | - Karin J Vera-Lopez
- Laboratory of Genomics and Neurovascular Diseases, Vicerrectorado de investigacion, Universidad Catolica de Santa Maria, Arequipa, Peru
| | - Christian L Lino Cardenas
- Cardiovascular Research Center, Cardiology Division, Massachusetts General Hospital, Boston, MA, USA
| |
Collapse
|
8
|
Aruleba RT, Adekiya TA, Ayawei N, Obaido G, Aruleba K, Mienye ID, Aruleba I, Ogbuokiri B. COVID-19 Diagnosis: A Review of Rapid Antigen, RT-PCR and Artificial Intelligence Methods. Bioengineering (Basel) 2022; 9:153. [PMID: 35447713 PMCID: PMC9024895 DOI: 10.3390/bioengineering9040153] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/22/2022] [Accepted: 03/23/2022] [Indexed: 12/15/2022] Open
Abstract
As of 27 December 2021, SARS-CoV-2 has infected over 278 million persons and caused 5.3 million deaths. Since the outbreak of COVID-19, different methods, from medical to artificial intelligence, have been used for its detection, diagnosis, and surveillance. Meanwhile, fast and efficient point-of-care (POC) testing and self-testing kits have become necessary in the fight against COVID-19 and to assist healthcare personnel and governments curb the spread of the virus. This paper presents a review of the various types of COVID-19 detection methods, diagnostic technologies, and surveillance approaches that have been used or proposed. The review provided in this article should be beneficial to researchers in this field and health policymakers at large.
Collapse
Affiliation(s)
- Raphael Taiwo Aruleba
- Department of Molecular and Cell Biology, Faculty of Science, University of Cape Town, Cape Town 7701, South Africa;
| | - Tayo Alex Adekiya
- Department of Pharmacy and Pharmacology, School of Therapeutic Science, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown 2193, South Africa;
| | - Nimibofa Ayawei
- Department of Chemistry, Bayelsa Medical University, Yenagoa PMB 178, Bayelsa State, Nigeria;
| | - George Obaido
- Department of Computer Science and Engineering, University of California, San Diego, La Jolla, CA 92093-0404, USA
| | - Kehinde Aruleba
- School of Computing and Mathematical Sciences, University of Leicester, Leicester LE1 7RH, UK
| | - Ibomoiye Domor Mienye
- Department of Electrical and Electronic Engineering Science, University of Johannesburg, Johannesburg 2006, South Africa; (I.D.M.); (I.A.)
| | - Idowu Aruleba
- Department of Electrical and Electronic Engineering Science, University of Johannesburg, Johannesburg 2006, South Africa; (I.D.M.); (I.A.)
| | - Blessing Ogbuokiri
- Department of Mathematics and Statistics, York University, Toronto, ON M3J 1P3, Canada;
| |
Collapse
|
9
|
Alyasseri ZAA, Al‐Betar MA, Doush IA, Awadallah MA, Abasi AK, Makhadmeh SN, Alomari OA, Abdulkareem KH, Adam A, Damasevicius R, Mohammed MA, Zitar RA. Review on COVID-19 diagnosis models based on machine learning and deep learning approaches. EXPERT SYSTEMS 2022; 39:e12759. [PMID: 34511689 PMCID: PMC8420483 DOI: 10.1111/exsy.12759] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 05/17/2021] [Accepted: 06/07/2021] [Indexed: 05/02/2023]
Abstract
COVID-19 is the disease evoked by a new breed of coronavirus called the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Recently, COVID-19 has become a pandemic by infecting more than 152 million people in over 216 countries and territories. The exponential increase in the number of infections has rendered traditional diagnosis techniques inefficient. Therefore, many researchers have developed several intelligent techniques, such as deep learning (DL) and machine learning (ML), which can assist the healthcare sector in providing quick and precise COVID-19 diagnosis. Therefore, this paper provides a comprehensive review of the most recent DL and ML techniques for COVID-19 diagnosis. The studies are published from December 2019 until April 2021. In general, this paper includes more than 200 studies that have been carefully selected from several publishers, such as IEEE, Springer and Elsevier. We classify the research tracks into two categories: DL and ML and present COVID-19 public datasets established and extracted from different countries. The measures used to evaluate diagnosis methods are comparatively analysed and proper discussion is provided. In conclusion, for COVID-19 diagnosing and outbreak prediction, SVM is the most widely used machine learning mechanism, and CNN is the most widely used deep learning mechanism. Accuracy, sensitivity, and specificity are the most widely used measurements in previous studies. Finally, this review paper will guide the research community on the upcoming development of machine learning for COVID-19 and inspire their works for future development. This review paper will guide the research community on the upcoming development of ML and DL for COVID-19 and inspire their works for future development.
Collapse
Affiliation(s)
- Zaid Abdi Alkareem Alyasseri
- Center for Artificial Intelligence Technology, Faculty of Information Science and TechnologyUniversiti Kebangsaan MalaysiaBangiMalaysia
- ECE Department‐Faculty of EngineeringUniversity of KufaNajafIraq
| | - Mohammed Azmi Al‐Betar
- Artificial Intelligence Research Center (AIRC)Ajman UniversityAjmanUnited Arab Emirates
- Department of Information TechnologyAl‐Huson University College, Al‐Balqa Applied UniversityIrbidJordan
| | - Iyad Abu Doush
- Computing Department, College of Engineering and Applied SciencesAmerican University of KuwaitSalmiyaKuwait
- Computer Science DepartmentYarmouk UniversityIrbidJordan
| | - Mohammed A. Awadallah
- Artificial Intelligence Research Center (AIRC)Ajman UniversityAjmanUnited Arab Emirates
- Department of Computer ScienceAl‐Aqsa UniversityGazaPalestine
| | - Ammar Kamal Abasi
- Artificial Intelligence Research Center (AIRC)Ajman UniversityAjmanUnited Arab Emirates
- School of Computer SciencesUniversiti Sains MalaysiaPenangMalaysia
| | - Sharif Naser Makhadmeh
- Artificial Intelligence Research Center (AIRC)Ajman UniversityAjmanUnited Arab Emirates
- Faculty of Information TechnologyMiddle East UniversityAmmanJordan
| | | | | | - Afzan Adam
- Center for Artificial Intelligence Technology, Faculty of Information Science and TechnologyUniversiti Kebangsaan MalaysiaBangiMalaysia
| | | | - Mazin Abed Mohammed
- College of Computer Science and Information TechnologyUniversity of AnbarAnbarIraq
| | - Raed Abu Zitar
- Sorbonne Center of Artificial IntelligenceSorbonne University‐Abu DhabiAbu DhabiUnited Arab Emirates
| |
Collapse
|
10
|
Ali S, Alam M, Khatoon F, Fatima U, Elasbali AM, Adnan M, Islam A, Hassan MI, Snoussi M, De Feo V. Natural products can be used in therapeutic management of COVID-19: Probable mechanistic insights. Biomed Pharmacother 2022; 147:112658. [PMID: 35066300 PMCID: PMC8769927 DOI: 10.1016/j.biopha.2022.112658] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/18/2022] [Accepted: 01/18/2022] [Indexed: 02/06/2023] Open
Abstract
The unexpected emergence of the new Coronavirus disease (COVID-19) has affected more than three hundred million individuals and resulted in more than five million deaths worldwide. The ongoing pandemic has underscored the urgent need for effective preventive and therapeutic measures to develop anti-viral therapy. The natural compounds possess various pharmaceutical properties and are reported as effective anti-virals. The interest to develop an anti-viral drug against the novel severe acute respiratory syndrome Coronavirus (SARS-CoV-2) from natural compounds has increased globally. Here, we investigated the anti-viral potential of selected promising natural products. Sources of data for this paper are current literature published in the context of therapeutic uses of phytoconstituents and their mechanism of action published in various reputed peer-reviewed journals. An extensive literature survey was done and data were critically analyzed to get deeper insights into the mechanism of action of a few important phytoconstituents. The consumption of natural products such as thymoquinone, quercetin, caffeic acid, ursolic acid, ellagic acid, vanillin, thymol, and rosmarinic acid could improve our immune response and thus possesses excellent therapeutic potential. This review focuses on the anti-viral functions of various phytoconstituent and alkaloids and their potential therapeutic implications against SARS-CoV-2. Our comprehensive analysis provides mechanistic insights into phytoconstituents to restrain viral infection and provide a better solution through natural, therapeutically active agents.
Collapse
Affiliation(s)
- Sabeeha Ali
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Manzar Alam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Fatima Khatoon
- Amity Institute of Neuropsychology & Neurosciences, Amity University, Noida, Uttar Pradesh 201303, India
| | - Urooj Fatima
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | | | - Mohd Adnan
- Department of Biology, College of Science, University of Hail, P.O. Box 2440, Hail, Saudi Arabia
| | - Asimul Islam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Mejdi Snoussi
- Department of Biology, College of Science, University of Hail, P.O. Box 2440, Hail, Saudi Arabia
| | - Vincenzo De Feo
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, Fisciano, Italy.
| |
Collapse
|
11
|
Rustagi V, Bajaj M, Tanvi, Singh P, Aggarwal R, AlAjmi MF, Hussain A, Hassan MI, Singh A, Singh IK. Analyzing the Effect of Vaccination Over COVID Cases and Deaths in Asian Countries Using Machine Learning Models. Front Cell Infect Microbiol 2022; 11:806265. [PMID: 35223534 PMCID: PMC8877421 DOI: 10.3389/fcimb.2021.806265] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 12/16/2021] [Indexed: 12/15/2022] Open
Abstract
Coronavirus Disease 2019 (COVID-19) is spreading across the world, and vaccinations are running parallel. Coronavirus has mutated into a triple-mutated virus, rendering it deadlier than before. It spreads quickly from person to person by contact and nasal or pharyngeal droplets. The COVID-19 database ‘Our World in Data’ was analyzed from February 24, 2020, to September 26, 2021, and predictions on the COVID positives and their mortality rate were made. Factors such as Vaccine data for the First and Second Dose vaccinated individuals and COVID positives that influence the fluctuations in the COVID-19 death ratio were investigated and linear regression analysis was performed. Based on vaccination doses (partial or complete vaccinated), models are created to estimate the number of patients who die from COVID infection. The estimation of variance in the datasets was investigated using Karl Pearson’s coefficient. For COVID-19 cases and vaccination doses, a quartic polynomial regression model was also created. This predictor model helps to predict the number of deaths due to COVID-19 and determine the susceptibility to COVID-19 infection based on the number of vaccine doses received. SVM was used to analyze the efficacy of models generated.
Collapse
|
12
|
Lu W, Eapen MS, Singhera GK, Markos J, Haug G, Chia C, Larby J, Brake SJ, Westall GP, Jaffar J, Kalidhindi RSR, Fonseka ND, Sathish V, Hackett TL, Sohal SS. Angiotensin-Converting Enzyme 2 (ACE2), Transmembrane Peptidase Serine 2 (TMPRSS2), and Furin Expression Increases in the Lungs of Patients with Idiopathic Pulmonary Fibrosis (IPF) and Lymphangioleiomyomatosis (LAM): Implications for SARS-CoV-2 (COVID-19) Infections. J Clin Med 2022; 11:jcm11030777. [PMID: 35160229 PMCID: PMC8837032 DOI: 10.3390/jcm11030777] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 01/24/2022] [Indexed: 02/07/2023] Open
Abstract
We previously reported higher ACE2 levels in smokers and patients with COPD. The current study investigates if patients with interstitial lung diseases (ILDs) such as IPF and LAM have elevated ACE2, TMPRSS2, and Furin levels, increasing their risk for SARS-CoV-2 infection and development of COVID-19. Surgically resected lung tissue from IPF, LAM patients, and healthy controls (HC) was immunostained for ACE2, TMPRSS2, and Furin. Percentage ACE2, TMPRSS2, and Furin expression was measured in small airway epithelium (SAE) and alveolar areas using computer-assisted Image-Pro Plus 7.0 software. IPF and LAM tissue was also immunostained for myofibroblast marker α-smooth muscle actin (α-SMA) and growth factor transforming growth factor beta1 (TGF-β1). Compared to HC, ACE2, TMPRSS2 and Furin expression were significantly upregulated in the SAE of IPF (p < 0.01) and LAM (p < 0.001) patients, and in the alveolar areas of IPF (p < 0.001) and LAM (p < 0.01). There was a significant positive correlation between smoking history and ACE2 expression in the IPF cohort for SAE (r = 0.812, p < 0.05) and alveolar areas (r = 0.941, p < 0.01). This, to our knowledge, is the first study to compare ACE2, TMPRSS2, and Furin expression in patients with IPF and LAM compared to HC. Descriptive images show that α-SMA and TGF-β1 increase in the IPF and LAM tissue. Our data suggests that patients with ILDs are at a higher risk of developing severe COVID-19 infection and post-COVID-19 interstitial pulmonary fibrosis. Growth factors secreted by the myofibroblasts, and surrounding tissue could further affect COVID-19 adhesion proteins/cofactors and post-COVID-19 interstitial pulmonary fibrosis. Smoking seems to be the major driving factor in patients with IPF.
Collapse
Affiliation(s)
- Wenying Lu
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, TAS 7248, Australia; (W.L.); (M.S.E.); (J.M.); (G.H.); (C.C.); (J.L.); (S.J.B.)
- National Health and Medical Research Council (NHMRC) Centre of Research Excellence (CRE) in Pulmonary Fibrosis, Respiratory Medicine and Sleep Unit, Royal Prince Alfred Hospital, Camperdown, NSW 2050, Australia
| | - Mathew Suji Eapen
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, TAS 7248, Australia; (W.L.); (M.S.E.); (J.M.); (G.H.); (C.C.); (J.L.); (S.J.B.)
- National Health and Medical Research Council (NHMRC) Centre of Research Excellence (CRE) in Pulmonary Fibrosis, Respiratory Medicine and Sleep Unit, Royal Prince Alfred Hospital, Camperdown, NSW 2050, Australia
| | - Gurpreet Kaur Singhera
- Department of Anesthesiology, Pharmacology & Therapeutics, University of British Columbia, Vancouver, BC V6Z 1Y6, Canada; (G.K.S.); (T.L.H.)
- UBC Centre for Heart Lung Innovation, St. Paul’s Hospital, Vancouver, BC V6Z 1Y6, Canada
| | - James Markos
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, TAS 7248, Australia; (W.L.); (M.S.E.); (J.M.); (G.H.); (C.C.); (J.L.); (S.J.B.)
- Department of Respiratory Medicine, Launceston General Hospital, Launceston, TAS 7250, Australia
| | - Greg Haug
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, TAS 7248, Australia; (W.L.); (M.S.E.); (J.M.); (G.H.); (C.C.); (J.L.); (S.J.B.)
- Department of Respiratory Medicine, Launceston General Hospital, Launceston, TAS 7250, Australia
| | - Collin Chia
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, TAS 7248, Australia; (W.L.); (M.S.E.); (J.M.); (G.H.); (C.C.); (J.L.); (S.J.B.)
- Department of Respiratory Medicine, Launceston General Hospital, Launceston, TAS 7250, Australia
| | - Josie Larby
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, TAS 7248, Australia; (W.L.); (M.S.E.); (J.M.); (G.H.); (C.C.); (J.L.); (S.J.B.)
- Department of Respiratory Medicine, Launceston General Hospital, Launceston, TAS 7250, Australia
| | - Samuel James Brake
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, TAS 7248, Australia; (W.L.); (M.S.E.); (J.M.); (G.H.); (C.C.); (J.L.); (S.J.B.)
| | - Glen P. Westall
- Department of Allergy, Immunology and Respiratory Medicine, The Alfred Hospital, Melbourne, VIC 3004, Australia; (G.P.W.); (J.J.)
- Department of Immunology and Pathology, Monash University, Melbourne, VIC 3800, Australia
| | - Jade Jaffar
- Department of Allergy, Immunology and Respiratory Medicine, The Alfred Hospital, Melbourne, VIC 3004, Australia; (G.P.W.); (J.J.)
- Department of Immunology and Pathology, Monash University, Melbourne, VIC 3800, Australia
| | - Rama Satyanarayana Raju Kalidhindi
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health Professions, North Dakota State University, Fargo, ND 58105, USA; (R.S.R.K.); (N.D.F.); (V.S.)
| | - Nimesha De Fonseka
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health Professions, North Dakota State University, Fargo, ND 58105, USA; (R.S.R.K.); (N.D.F.); (V.S.)
| | - Venkatachalem Sathish
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health Professions, North Dakota State University, Fargo, ND 58105, USA; (R.S.R.K.); (N.D.F.); (V.S.)
| | - Tillie L. Hackett
- Department of Anesthesiology, Pharmacology & Therapeutics, University of British Columbia, Vancouver, BC V6Z 1Y6, Canada; (G.K.S.); (T.L.H.)
- UBC Centre for Heart Lung Innovation, St. Paul’s Hospital, Vancouver, BC V6Z 1Y6, Canada
| | - Sukhwinder Singh Sohal
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, TAS 7248, Australia; (W.L.); (M.S.E.); (J.M.); (G.H.); (C.C.); (J.L.); (S.J.B.)
- Correspondence: ; Tel.: +61-3-6324-5434
| |
Collapse
|
13
|
Brake SJ, Eapen MS, McAlinden KD, Markos J, Haug G, Larby J, Chia C, Hardikar A, Singhera GK, Hackett TL, Lu W, Sohal SS. SARS-CoV-2 (COVID-19) Adhesion Site Protein Upregulation in Small Airways, Type 2 Pneumocytes, and Alveolar Macrophages of Smokers and COPD – Possible Implications for Interstitial Fibrosis. Int J Chron Obstruct Pulmon Dis 2022; 17:101-115. [PMID: 35046647 PMCID: PMC8761078 DOI: 10.2147/copd.s329783] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 11/14/2021] [Indexed: 12/15/2022] Open
Abstract
Background Smokers and patients with COPD are highly susceptible to SARS-CoV-2 infection, leading to severe COVID-19. Methods This cross-sectional study involved resected lung tissues from 16 patients with GOLD stage I or II COPD; of which 8 were current smokers COPD (COPD-CS), and 8 ex-smokers COPD (COPD-ES), 7 normal lung function smokers (NLFS), 9 patients with small airways disease (SAD), and 10 were never-smoking normal controls (NC). Immunostaining for ACE2, Furin, and TMPRSS2 was performed and analysed for percent expression in small airway epithelium (SAE) and counts for positively and negatively stained type 2 pneumocytes and alveolar macrophages (AMs) were done using Image ProPlus V7.0. Furthermore, primary small airway epithelial cells (pSAEC) were analysed by immunofluorescence after exposure to cigarette smoke extract (CSE). Results ACE2, Furin, and TMPRSS2 expression significantly increased in SAE and type 2 pneumocytes in all the subjects (except Furin for NLFS) compared to NC (p < 0.001). Similar significance was observed for ACE2 positive AM (p < 0.002), except COPD-ES, which decreased in ACE2 positive AMs (p < 0.003). Total type 2 pneumocytes and AMs significantly increased in the pathological groups compared to NC (p < 0.01), except SAD (p = 0.08). However, AMs are significantly reduced in COPD-ES (p < 0.003). Significant changes were observed for tissue co-expression of Furin and TMPRSS2 with ACE2 in SAE, type 2 pneumocytes and AMs. These markers also negatively correlated with lung function parameters, such as FEV1/FVC % predicted, FEF25-75%, DLCO% predicted. A strong co-localisation and expression for ACE2 (p < 0.0001), Furin (p < 0.01), and TMPRSS2 (p < 0.0001) was observed in pSAEC treated with 1% CSE than controls. Discussion The increased expression of ACE2, TMPRSS2 and Furin, in the SAE, type 2 pneumocytes and AMs of smokers and COPD are detrimental to lung function and proves that these patient groups could be more susceptible to severe COVID-19 infection. Increased type 2 pneumocytes suggest that these patients are vulnerable to developing post-COVID-19 interstitial pulmonary fibrosis or fibrosis in general. There could be a silently developing interstitial pathology in smokers and patients with COPD. This is the first comprehensive study to report such changes.
Collapse
Affiliation(s)
- Samuel James Brake
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, TAS, 7248, Australia
| | - Mathew Suji Eapen
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, TAS, 7248, Australia
| | - Kielan Darcy McAlinden
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, TAS, 7248, Australia
| | - James Markos
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, TAS, 7248, Australia
- Department of Respiratory Medicine, Launceston General Hospital, Launceston, TAS, 7250, Australia
| | - Greg Haug
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, TAS, 7248, Australia
- Department of Respiratory Medicine, Launceston General Hospital, Launceston, TAS, 7250, Australia
| | - Josie Larby
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, TAS, 7248, Australia
- Department of Respiratory Medicine, Launceston General Hospital, Launceston, TAS, 7250, Australia
| | - Collin Chia
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, TAS, 7248, Australia
- Department of Respiratory Medicine, Launceston General Hospital, Launceston, TAS, 7250, Australia
| | - Ashutosh Hardikar
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, TAS, 7248, Australia
- Department of Cardiothoracic Surgery, Royal Hobart Hospital, Hobart, TAS, 7000, Australia
| | - Gurpreet Kaur Singhera
- Department of Anesthesiology, Pharmacology, and Therapeutics, University of British Columbia, Vancouver, BC, Canada
- Department of Medicine, University of British Columbia Centre for Heart Lung Innovation, St. Paul’s Hospital, Vancouver, BC, Canada
| | - Tillie L Hackett
- Department of Anesthesiology, Pharmacology, and Therapeutics, University of British Columbia, Vancouver, BC, Canada
- Department of Medicine, University of British Columbia Centre for Heart Lung Innovation, St. Paul’s Hospital, Vancouver, BC, Canada
| | - Wenying Lu
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, TAS, 7248, Australia
| | - Sukhwinder Singh Sohal
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, TAS, 7248, Australia
- Correspondence: Sukhwinder Singh Sohal Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, College of Health and Medicine, University of Tasmania, Locked Bag – 1322, Newnham Drive, Launceston, TAS, 7248, AustraliaTel +61 3 6324 5434 Email
| |
Collapse
|
14
|
Asrani P, Tiwari K, Eapen MS, McAlinden KD, Haug G, Johansen MD, Hansbro PM, Flanagan KL, Hassan MI, Sohal SS. Clinical features and mechanistic insights into drug repurposing for combating COVID-19. Int J Biochem Cell Biol 2022; 142:106114. [PMID: 34748991 PMCID: PMC8570392 DOI: 10.1016/j.biocel.2021.106114] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/24/2021] [Accepted: 11/01/2021] [Indexed: 02/07/2023]
Abstract
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) emerged from Wuhan in China before it spread to the entire globe. It causes coronavirus disease of 2019 (COVID-19) where mostly individuals present mild symptoms, some remain asymptomatic and some show severe lung inflammation and pneumonia in the host through the induction of a marked inflammatory 'cytokine storm'. New and efficacious vaccines have been developed and put into clinical practice in record time, however, there is a still a need for effective treatments for those who are not vaccinated or remain susceptible to emerging SARS-CoV-2 variant strains. Despite this, effective therapeutic interventions against COVID-19 remain elusive. Here, we have reviewed potential drugs for COVID-19 classified on the basis of their mode of action. The mechanisms of action of each are discussed in detail to highlight the therapeutic targets that may help in reducing the global pandemic. The review was done up to July 2021 and the data was assessed through the official websites of WHO and CDC for collecting the information on the clinical trials. Moreover, the recent research papers were also assessed for the relevant data. The search was mainly based on keywords like Coronavirus, SARS-CoV-2, drugs (specific name of the drugs), COVID-19, clinical efficiency, safety profile, side-effects etc.This review outlines potential areas for future research into COVID-19 treatment strategies.
Collapse
Affiliation(s)
- Purva Asrani
- Department of Microbiology, University of Delhi, South Campus, New Delhi, India
| | - Keshav Tiwari
- ICAR - National Institute for Plant Biotechnology, New Delhi, India
| | - Mathew Suji Eapen
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, Australia
| | - Kielan Darcy McAlinden
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, Australia
| | - Greg Haug
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, Australia; Department of Respiratory Medicine, Launceston General Hospital, Launceston 7250, Australia
| | - Matt D Johansen
- Centre for Inflammation, Centenary Institute, Sydney, NSW 2050, Australia; University of Technology Sydney, Faculty of Science, School of Life Sciences, Ultimo, NSW 2007, Australia
| | - Philip M Hansbro
- Centre for Inflammation, Centenary Institute, Sydney, NSW 2050, Australia; University of Technology Sydney, Faculty of Science, School of Life Sciences, Ultimo, NSW 2007, Australia
| | - Katie L Flanagan
- Clinical School, College of Health and Medicine, University of Tasmania, Launceston, Tasmania 7250, Australia; School of Health and Biomedical Science, RMIT University, Melbourne, Victoria, Australia; Department of Immunology and Pathology, Monash University, Melbourne, Victoria, Australia; Tasmania Vaccine Trial Centre, Clifford Craig Foundation, Launceston General Hospital, Launceston, Tasmania 7250, Australia
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Sukhwinder Singh Sohal
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, Australia.
| |
Collapse
|
15
|
Lima NM, Fernandes BL, Alves GF, de Souza JC, Siqueira MM, Patrícia do Nascimento M, Moreira OB, Sussulini A, de Oliveira MA. Mass spectrometry applied to diagnosis, prognosis, and therapeutic targets identification for the novel coronavirus SARS-CoV-2: A review. Anal Chim Acta 2021; 1195:339385. [PMID: 35090661 PMCID: PMC8687343 DOI: 10.1016/j.aca.2021.339385] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 12/16/2021] [Accepted: 12/17/2021] [Indexed: 12/27/2022]
Abstract
Mass spectrometry (MS) has found numerous applications in medicine and has been widely used in the detection and characterization of biomolecules associated with viral infections such as COVID-19. COVID-19 is a multisystem disease and, therefore, the need arises to carry out a careful and conclusive assessment of the pathophysiological parameters involved in the infection, to develop an effective therapeutic approach, assess the prognosis of the disease, and especially the early diagnosis of the infected population. Thus, the urgent need for highly accurate methods of diagnosis and prognosis of this infection presents new challenges for the development of laboratory medicine, whose methods require sensitivity, speed, and accuracy of the techniques for analyzing the biological markers involved in the infection. In this context, MS stands out as a robust analytical tool, with high sensitivity and selectivity, accuracy, low turnaround time, and versatility for the analysis of biological samples. However, it has not yet been adopted as a frontline clinical laboratory technique. Therefore, this review explores the potential and trends of current MS methods and their contribution to the development of new strategies to COVID-19 diagnosis and prognosis and how this tool can assist in the discovery of new therapeutic targets, in addition, to comment what could be the future of MS in medicine.
Collapse
|
16
|
Hussain MS, Sharma P, Dhanjal DS, Khurana N, Vyas M, Sharma N, Mehta M, Tambuwala MM, Satija S, Sohal SS, Oliver BGG, Sharma HS. Nanotechnology based advanced therapeutic strategies for targeting interleukins in chronic respiratory diseases. Chem Biol Interact 2021; 348:109637. [PMID: 34506765 DOI: 10.1016/j.cbi.2021.109637] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/22/2021] [Accepted: 09/06/2021] [Indexed: 02/07/2023]
Abstract
Both communicable and non-communicable chronic respiratory conditions have accorded for suffering of millions of people of all ages and stated to be leading cause of death, morbidity, economic and social pressures, and disability-adjusted life-years (DALYs) worldwide. These illnesses impair patient's health and negatively impacts families and society, particularly in low and middle-income countries. Chronic respiratory diseases (CRDs) affect different organs of respiratory system, involving airways, parenchyma, and pulmonary vasculature. As the number of respiratory diseases are exponentially escalating but still the stakeholders are not paying attention towards its serious complications. Currently, the treatment being used primarily focusses only on alleviating symptoms of these illness rather delivering the therapeutic agent at target site for optimal care and/or prevention. Lately, extensive research is being conducted on airways and systemic inflammation, oxidative stress, airway, or parenchymal rehabilitation. From which macrophages, neutrophils, and T cells, as well as structural cells as fibroblasts, epithelial, endothelial, and smooth muscle cells have been found to be active participants that are involved in these chronic respiratory diseases. The pathogenesis of all these chronic respiratory diseases gets caused differently via mediators and proteins, including cytokines, chemokines, growth factors and oxidants. Presently, the target of prescription therapies is to reduce the inflammation of airways and relieve the airway contraction. In all studies, cytokines have been found to play an imperative role in fostering chronic airway inflammation and remodelling. Owing to the limitations of conventional treatments, the current review aims to summarize the current knowledge about the chronic respiratory disease and discuss further about the various conventional methods that can be used for treating this ailment. Additionally, it also highlights and discusses about the advanced drug delivery system that are being used for targeting the interleukins for the treatment of CRDs.
Collapse
Affiliation(s)
- Md Sadique Hussain
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411, Punjab, India
| | - Parvarish Sharma
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411, Punjab, India
| | - Daljeet Singh Dhanjal
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, 144411, Punjab, India
| | - Navneet Khurana
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411, Punjab, India
| | - Manish Vyas
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411, Punjab, India
| | - Neha Sharma
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411, Punjab, India
| | - Meenu Mehta
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411, Punjab, India; Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Murtaza M Tambuwala
- School of Pharmacy and Pharmaceutical Sciences, Ulster University, Coleraine, Londonderry, BT52 1SA, United Kingdom
| | - Saurabh Satija
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411, Punjab, India; Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, 2007, Australia.
| | - Sukhwinder Singh Sohal
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, 7248, Australia
| | - Brian G G Oliver
- School of Life Sciences, University of Technology Sydney, Sydney, NSW, 2007, Australia; Woolcock Institute of Medical Research, University of Sydney, Sydney, New South Wales, Australia
| | - Hari S Sharma
- Department of Pathology and Clinical Bioinformatics, Erasmus MC, University Medical Center, Dr. Molewaterplein 40, 3015 GD, Rotterdam, the Netherlands.
| |
Collapse
|
17
|
Narożna M, Rubiś B. Anti-SARS-CoV-2 Strategies and the Potential Role of miRNA in the Assessment of COVID-19 Morbidity, Recurrence, and Therapy. Int J Mol Sci 2021; 22:8663. [PMID: 34445368 PMCID: PMC8395427 DOI: 10.3390/ijms22168663] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/07/2021] [Accepted: 08/08/2021] [Indexed: 02/06/2023] Open
Abstract
Recently, we have experienced a serious pandemic. Despite significant technological advances in molecular technologies, it is very challenging to slow down the infection spread. It appeared that due to globalization, SARS-CoV-2 spread easily and adapted to new environments or geographical or weather zones. Additionally, new variants are emerging that show different infection potential and clinical outcomes. On the other hand, we have some experience with other pandemics and some solutions in virus elimination that could be adapted. This is of high importance since, as the latest reports demonstrate, vaccine technology might not follow the new, mutated virus outbreaks. Thus, identification of novel strategies and markers or diagnostic methods is highly necessary. For this reason, we present some of the latest views on SARS-CoV-2/COVID-19 therapeutic strategies and raise a solution based on miRNA. We believe that in the face of the rapidly increasing global situation and based on analogical studies of other viruses, the possibility of using the biological potential of miRNA technology is very promising. It could be used as a promising diagnostic and prognostic factor, as well as a therapeutic target and tool.
Collapse
Affiliation(s)
- Maria Narożna
- Department of Pharmaceutical Biochemistry, Poznan University of Medical Sciences, 4 Święcickiego St., 60-781 Poznan, Poland;
| | - Błażej Rubiś
- Department of Clinical Chemistry and Molecular Diagnostics, Poznan University of Medical Sciences, 49 Przybyszewskiego St., 60-355 Poznan, Poland
| |
Collapse
|
18
|
Wu Y, Cheng X, Jiang G, Tang H, Ming S, Tang L, Lu J, Guo C, Shan H, Huang X. Altered oral and gut microbiota and its association with SARS-CoV-2 viral load in COVID-19 patients during hospitalization. NPJ Biofilms Microbiomes 2021. [PMID: 34294722 DOI: 10.1038/s41522-021-00232-5.pmid:34294722;pmcid:pmc8298611] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2023] Open
Abstract
The human oral and gut commensal microbes play vital roles in the development and maintenance of immune homeostasis, while its association with susceptibility and severity of SARS-CoV-2 infection is barely understood. In this study, we investigated the dynamics of the oral and intestinal flora before and after the clearance of SARS-CoV-2 in 53 COVID-19 patients, and then examined their microbiome alterations in comparison to 76 healthy individuals. A total of 140 throat swab samples and 81 fecal samples from these COVID-19 patients during hospitalization, and 44 throat swab samples and 32 fecal samples from sex and age-matched healthy individuals were collected and then subjected to 16S rRNA sequencing and viral load inspection. We found that SARS-CoV-2 infection was associated with alterations of the microbiome community in patients as indicated by both alpha and beta diversity indexes. Several bacterial taxa were identified related to SARS-CoV-2 infection, wherein elevated Granulicatella and Rothia mucilaginosa were found in both oral and gut microbiome. The SARS-CoV-2 viral load in those samples was also calculated to identify potential dynamics between COVID-19 and the microbiome. These findings provide a meaningful baseline for microbes in the digestive tract of COVID-19 patients and will shed light on new dimensions for disease pathophysiology, potential microbial biomarkers, and treatment strategies for COVID-19.
Collapse
Affiliation(s)
- Yongjian Wu
- Center for Infection and Immunity, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong, China
- School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Engineering Research Center of Molecular Imaging, Guangdong Provincial Key Laboratory of Biomedical Imaging, and Department of Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong, China
- Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, Guangdong, China
- National Clinical Research Center for Infectious Disease, Shenzhen Third People' s Hospital; The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Xiaomin Cheng
- School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Guanmin Jiang
- Center for Infection and Immunity, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong, China
- Guangdong Provincial Engineering Research Center of Molecular Imaging, Guangdong Provincial Key Laboratory of Biomedical Imaging, and Department of Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong, China
- Department of Clinical Laboratory, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, China
| | - Huishu Tang
- Center for Infection and Immunity, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong, China
- Guangdong Provincial Engineering Research Center of Molecular Imaging, Guangdong Provincial Key Laboratory of Biomedical Imaging, and Department of Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong, China
| | - Siqi Ming
- Center for Infection and Immunity, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong, China
- Guangdong Provincial Engineering Research Center of Molecular Imaging, Guangdong Provincial Key Laboratory of Biomedical Imaging, and Department of Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong, China
- National Clinical Research Center for Infectious Disease, Shenzhen Third People' s Hospital; The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Lantian Tang
- Center for Infection and Immunity, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong, China
- Guangdong Provincial Engineering Research Center of Molecular Imaging, Guangdong Provincial Key Laboratory of Biomedical Imaging, and Department of Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong, China
| | - Jiahai Lu
- School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China.
| | - Cheng Guo
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, NY, USA.
| | - Hong Shan
- Guangdong Provincial Engineering Research Center of Molecular Imaging, Guangdong Provincial Key Laboratory of Biomedical Imaging, and Department of Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong, China.
- Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, Guangdong, China.
| | - Xi Huang
- Center for Infection and Immunity, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong, China.
- Guangdong Provincial Engineering Research Center of Molecular Imaging, Guangdong Provincial Key Laboratory of Biomedical Imaging, and Department of Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong, China.
- Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, Guangdong, China.
- National Clinical Research Center for Infectious Disease, Shenzhen Third People' s Hospital; The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, Guangdong, China.
| |
Collapse
|
19
|
Wu Y, Cheng X, Jiang G, Tang H, Ming S, Tang L, Lu J, Guo C, Shan H, Huang X. Altered oral and gut microbiota and its association with SARS-CoV-2 viral load in COVID-19 patients during hospitalization. NPJ Biofilms Microbiomes 2021; 7:61. [PMID: 34294722 PMCID: PMC8298611 DOI: 10.1038/s41522-021-00232-5] [Citation(s) in RCA: 113] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 07/01/2021] [Indexed: 02/06/2023] Open
Abstract
The human oral and gut commensal microbes play vital roles in the development and maintenance of immune homeostasis, while its association with susceptibility and severity of SARS-CoV-2 infection is barely understood. In this study, we investigated the dynamics of the oral and intestinal flora before and after the clearance of SARS-CoV-2 in 53 COVID-19 patients, and then examined their microbiome alterations in comparison to 76 healthy individuals. A total of 140 throat swab samples and 81 fecal samples from these COVID-19 patients during hospitalization, and 44 throat swab samples and 32 fecal samples from sex and age-matched healthy individuals were collected and then subjected to 16S rRNA sequencing and viral load inspection. We found that SARS-CoV-2 infection was associated with alterations of the microbiome community in patients as indicated by both alpha and beta diversity indexes. Several bacterial taxa were identified related to SARS-CoV-2 infection, wherein elevated Granulicatella and Rothia mucilaginosa were found in both oral and gut microbiome. The SARS-CoV-2 viral load in those samples was also calculated to identify potential dynamics between COVID-19 and the microbiome. These findings provide a meaningful baseline for microbes in the digestive tract of COVID-19 patients and will shed light on new dimensions for disease pathophysiology, potential microbial biomarkers, and treatment strategies for COVID-19.
Collapse
Affiliation(s)
- Yongjian Wu
- grid.452859.7Center for Infection and Immunity, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong China ,grid.12981.330000 0001 2360 039XSchool of Public Health, Sun Yat-sen University, Guangzhou, Guangdong China ,grid.452859.7Guangdong Provincial Engineering Research Center of Molecular Imaging, Guangdong Provincial Key Laboratory of Biomedical Imaging, and Department of Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong China ,grid.511004.1Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, Guangdong China ,grid.410741.7National Clinical Research Center for Infectious Disease, Shenzhen Third People’ s Hospital; The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, Guangdong China
| | - Xiaomin Cheng
- grid.12981.330000 0001 2360 039XSchool of Public Health, Sun Yat-sen University, Guangzhou, Guangdong China
| | - Guanmin Jiang
- grid.452859.7Center for Infection and Immunity, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong China ,grid.452859.7Guangdong Provincial Engineering Research Center of Molecular Imaging, Guangdong Provincial Key Laboratory of Biomedical Imaging, and Department of Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong China ,grid.452859.7Department of Clinical Laboratory, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong China
| | - Huishu Tang
- grid.452859.7Center for Infection and Immunity, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong China ,grid.452859.7Guangdong Provincial Engineering Research Center of Molecular Imaging, Guangdong Provincial Key Laboratory of Biomedical Imaging, and Department of Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong China
| | - Siqi Ming
- grid.452859.7Center for Infection and Immunity, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong China ,grid.452859.7Guangdong Provincial Engineering Research Center of Molecular Imaging, Guangdong Provincial Key Laboratory of Biomedical Imaging, and Department of Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong China ,grid.410741.7National Clinical Research Center for Infectious Disease, Shenzhen Third People’ s Hospital; The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, Guangdong China
| | - Lantian Tang
- grid.452859.7Center for Infection and Immunity, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong China ,grid.452859.7Guangdong Provincial Engineering Research Center of Molecular Imaging, Guangdong Provincial Key Laboratory of Biomedical Imaging, and Department of Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong China
| | - Jiahai Lu
- grid.12981.330000 0001 2360 039XSchool of Public Health, Sun Yat-sen University, Guangzhou, Guangdong China
| | - Cheng Guo
- grid.21729.3f0000000419368729Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, NY USA
| | - Hong Shan
- grid.452859.7Guangdong Provincial Engineering Research Center of Molecular Imaging, Guangdong Provincial Key Laboratory of Biomedical Imaging, and Department of Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong China ,grid.511004.1Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, Guangdong China
| | - Xi Huang
- grid.452859.7Center for Infection and Immunity, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong China ,grid.452859.7Guangdong Provincial Engineering Research Center of Molecular Imaging, Guangdong Provincial Key Laboratory of Biomedical Imaging, and Department of Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong China ,grid.511004.1Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, Guangdong China ,grid.410741.7National Clinical Research Center for Infectious Disease, Shenzhen Third People’ s Hospital; The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, Guangdong China
| |
Collapse
|
20
|
Shamsi A, Mohammad T, Anwar S, Amani S, Khan MS, Husain FM, Rehman MT, Islam A, Hassan MI. Potential drug targets of SARS-CoV-2: From genomics to therapeutics. Int J Biol Macromol 2021; 177:1-9. [PMID: 33577820 PMCID: PMC7871800 DOI: 10.1016/j.ijbiomac.2021.02.071] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 02/08/2021] [Accepted: 02/08/2021] [Indexed: 01/18/2023]
Abstract
The emergence of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) from China has become a global threat due to the continuous rise in cases of Coronavirus disease 2019 (COVID-19). The problem with COVID-19 therapeutics is due to complexity of the mechanism of the pathogenesis of this virus. In this review, an extensive analysis of genome architecture and mode of pathogenesis of SARS-CoV-2 with an emphasis on therapeutic approaches is performed. SARS-CoV-2 genome consists of a single, ~29.9 kb long RNA having significant sequence similarity to BAT-CoV, SARS-CoV and MERS-CoV genome. Two-third part of SARS-Cov-2 genome comprises of ORF (ORF1ab) resulting in the formation of 2 polyproteins, pp1a and pp1ab, later processed into 16 smaller non-structural proteins (NSPs). The four major structural proteins of SARS-CoV-2 are the spike surface glycoprotein (S), a small envelope (E), membrane (M), and nucleocapsid (N) proteins. S protein helps in receptor binding and membrane fusion and hence plays the most important role in the transmission of CoVs. Priming of S protein is done by serine 2 transmembrane protease and thus plays a key role in virus and host cell fusion. This review highlights the possible mechanism of action of SARS-CoV-2 to search for possible therapeutic options.
Collapse
Affiliation(s)
- Anas Shamsi
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India.
| | - Taj Mohammad
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Saleha Anwar
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Samreen Amani
- Department of Biochemistry, F/O Life Science, Aligarh Muslim University, Aligarh, India
| | - Mohd Shahnawaz Khan
- Department of Biochemistry, College of Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Fohad Mabood Husain
- Department of Food Science and Nutrition, Faculty of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Md Tabish Rehman
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Asimul Islam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| |
Collapse
|
21
|
Jairajpuri DS, Hussain A, Nasreen K, Mohammad T, Anjum F, Tabish Rehman M, Mustafa Hasan G, Alajmi MF, Imtaiyaz Hassan M. Identification of natural compounds as potent inhibitors of SARS-CoV-2 main protease using combined docking and molecular dynamics simulations. Saudi J Biol Sci 2021; 28:2423-2431. [PMID: 33526965 PMCID: PMC7839507 DOI: 10.1016/j.sjbs.2021.01.040] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/17/2021] [Accepted: 01/19/2021] [Indexed: 12/12/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) has emerged from China and globally affected the entire population through the human-to-human transmission of a newly emerged virus called severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The genome of SARS-CoV-2 encodes several proteins that are essential for multiplication and pathogenesis. The main protease (Mpro or 3CLpro) of SARS-CoV-2 plays a central role in its pathogenesis and thus is considered as an attractive drug target for the drug design and development of small-molecule inhibitors. We have employed an extensive structure-based high-throughput virtual screening to discover potential natural compounds from the ZINC database which could inhibit the Mpro of SARS-CoV-2. Initially, the hits were selected on the basis of their physicochemical and drug-like properties. Subsequently, the PAINS filter, estimation of binding affinities using molecular docking, and interaction analyses were performed to find safe and potential inhibitors of SARS-CoV-2 Mpro. We have identified ZINC02123811 (1-(3-(2,5,9-trimethyl-7-oxo-3-phenyl-7H-furo[3,2-g]chromen-6-yl)propanoyl)piperidine-4-carboxamide), a natural compound bearing appreciable affinity, efficiency, and specificity towards the binding pocket of SARS-CoV-2 Mpro. The identified compound showed a set of drug-like properties and preferentially binds to the active site of SARS-CoV-2 Mpro. All-atom molecular dynamics (MD) simulations were performed to evaluate the conformational dynamics, stability and interaction mechanism of Mpro with ZINC02123811. MD simulation results indicated that Mpro with ZINC02123811 forms a stable complex throughout the trajectory of 100 ns. These findings suggest that ZINC02123811 may be further exploited as a promising scaffold for the development of potential inhibitors of SARS-CoV-2 Mpro to address COVID-19.
Collapse
Affiliation(s)
- Deeba Shamim Jairajpuri
- Department of Medical Biochemistry, College of Medicine and Medical Sciences, Arabian Gulf University, P.O. Box 22971, Manama, Bahrain
| | - Afzal Hussain
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Khalida Nasreen
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Taj Mohammad
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Farah Anjum
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Md. Tabish Rehman
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Gulam Mustafa Hasan
- Department of Biochemistry, College of Medicine, Prince Sattam Bin Abdulaziz University, P.O. Box 173 Al-Kharj, 11942, Saudi Arabia
| | - Mohamed F. Alajmi
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Md. Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| |
Collapse
|
22
|
Structure-based inhibitor screening of natural products against NSP15 of SARS-CoV-2 revealed thymopentin and oleuropein as potent inhibitors. ACTA ACUST UNITED AC 2021; 12:71-80. [PMID: 33776343 PMCID: PMC7985738 DOI: 10.1007/s42485-021-00059-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 02/26/2021] [Accepted: 03/09/2021] [Indexed: 12/26/2022]
Abstract
Coronaviruses are enveloped, non-segmented positive-sense RNA viruses with the largest genome among RNA viruses. Their genome contains a large replicase ORF which encodes nonstructural proteins (NSPs), structural, and accessory genes. NSP15 is a nidoviral RNA uridylate-specific endoribonuclease (NendoU) with C-terminal catalytic domain. The endoribonuclease activity of NSP15 interferes with the innate immune response of the host. Here, we screened Selleckchem Natural product database of the compounds against NSP15, and we found that thymopentin and oleuropein displayed highest binding energies. The binding of these molecules was further validated by molecular dynamic simulations that revealed them as very stable complexes. These drugs might serve as effective counter molecules in the reduction of virulence of this virus; may be more effective if treated in combination with replicase inhibitors. Future validation of both these inhibitors is worth the consideration for patients being treated for COVID-19.
Collapse
|
23
|
Electronic Cigarette Aerosol Is Cytotoxic and Increases ACE2 Expression on Human Airway Epithelial Cells: Implications for SARS-CoV-2 (COVID-19). J Clin Med 2021; 10:jcm10051028. [PMID: 33802256 PMCID: PMC7958963 DOI: 10.3390/jcm10051028] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/19/2021] [Accepted: 02/20/2021] [Indexed: 02/07/2023] Open
Abstract
Tobacco smoking has emerged as a risk factor for increasing the susceptibility to infection from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) via increased expression of angiotensin-converting enzyme-2 (ACE2) in the lung, linked to coronavirus disease 2019 (COVID-19) development. Given the modifiable nature of electronic cigarettes and the delivery of high concentrations of nicotine, we investigate whether electronic cigarette vaping has the potential to increase susceptibility to SARS-CoV-2 infection. We exposed BEAS-2B cells (bronchial epithelium transformed with Ad12-SV40 2B) and primary small airway epithelial cells (SAECs) to electronic cigarette aerosol condensates produced from propylene glycol/vegetable glycerin or commercially bought e-liquid (±added nicotine) and cigarette smoke extract to investigate if electronic cigarette exposure, like cigarette smoke, increases the expression of ACE2 in lung epithelial cells. In BEAS-2B cells, cytotoxicity (CCK-8), membrane integrity (LDH), and ACE2 protein expression (immunofluorescence) were measured for both 4- and 24 h treatments in BEAS-2B cells and 4 h in SAECs; ACE2 gene expression was measured using quantitative polymerase chain reaction (qPCR) for 4 h treatment in BEAS-2B cells. Nicotine-free condensates and higher concentrations of nicotine-containing condensates were cytotoxic to BEAS-2B cells. Higher LDH release and reduced membrane integrity were seen in BEAS-2B cells treated for 24 h with higher concentrations of nicotine-containing condensates. ACE2 protein expression was observably increased in all treatments compared to cell controls, particularly for 24 h exposures. ACE2 gene expression was significantly increased in cells exposed to the locally bought e-liquid condensate with high nicotine concentration and cigarette smoke extract compared with cell controls. Our study suggests that vaping alone and smoking alone can result in an increase in lung ACE2 expression. Vaping and smoking are avoidable risk factors for COVID-19, which, if avoided, could help reduce the number of COVID-19 cases and the severity of the disease. This is the first study to utilize electronic cigarette aerosol condensates, novel and developed in our laboratory, for investigating ACE2 expression in human airway epithelial cells.
Collapse
|
24
|
Liu Z, Meng T, Tang X, Tian R, Guan W. The Promise of Aggregation-Induced Emission Luminogens for Detecting COVID-19. Front Immunol 2021; 12:635558. [PMID: 33679789 PMCID: PMC7928409 DOI: 10.3389/fimmu.2021.635558] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 01/25/2021] [Indexed: 11/13/2022] Open
Abstract
The long-term pandemic of coronavirus disease 2019 (COVID-19) requires sensitive and accurate diagnostic assays to detect severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus and SARS-CoV-2 antibodies in infected individuals. Currently, RNA of SARS-CoV-2 virus is mainly detected by reverse transcription-polymerase chain reaction (RT-PCR)-based nucleic acid assays, while SARS-CoV-2 antigen and antibody are identified by immunological assays. Both nucleic acid assays and immunological assays rely on the luminescence signals of specific luminescence probes for qualitative and quantitative detection. The exploration of novel luminescence probes will play a crucial role in improving the detection sensitivity of the assays. As innate probes, aggregation-induced emission (AIE) luminogens (AIEgens) exhibit negligible luminescence in the free state but enhanced luminescence in the aggregated or restricted states. Moreover, AIEgen-based nanoparticles (AIE dots) offer efficient luminescence, good biocompatibility and water solubility, and superior photostability. Both AIEgens and AIE dots have been widely used for high-performance detection of biomolecules and small molecules, chemical/biological imaging, and medical therapeutics. In this review, the availability of AIEgens and AIE dots in nucleic acid assays and immunological assays are enumerated and discussed. By building a bridge between AIE materials and COVID-19, we hope to inspire researchers to use AIE materials as a powerful weapon against COVID-19.
Collapse
Affiliation(s)
- Zongwei Liu
- Department of Respiratory Medicine, Lianyungang Hospital of Traditional Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Lianyungang, China
| | - Ting Meng
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiaofang Tang
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, China
| | - Ran Tian
- Public Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Weijiang Guan
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, China
| |
Collapse
|
25
|
Asrani P, Hussain A, Nasreen K, AlAjmi MF, Amir S, Sohal SS, Hassan MI. Guidelines and Safety Considerations in the Laboratory Diagnosis of SARS-CoV-2 Infection: A Prerequisite Study for Health Professionals. Risk Manag Healthc Policy 2021; 14:379-389. [PMID: 33568956 PMCID: PMC7868778 DOI: 10.2147/rmhp.s284473] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 12/03/2020] [Indexed: 01/08/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) is an emerging challenging area for the researchers to buckle up against the spread and control of the virus. Since earlier times, the diagnosis has been an important procedure in estimating the fate of epidemics by indicating the extent to which disease has been spread and to the extent, further disease prognosis would occur. The absence of anti-viral therapies and vaccines for COVID-19 at present suggests early diagnosis and isolation of the patients as the only smart approach available as of now. Presently, the increasing death rates, faster rates of transmission, non-availability of vaccines, and treatment have over-pressurized the researchers, health professionals, and government officials to develop effective clinical strategies in diagnosis and to come up with guidelines to be followed during conduction of each diagnostic procedure for maintaining healthcare systems. Since the incubation period of this virus is 2-14 days, a patient can transmit the infection without showing symptoms. Therefore, early diagnosis and isolation of susceptible individuals are the only way to limit the spread of the virus. Significance of diagnosis and triaging, information on specimen collection, safety considerations while handling, transport, and storage of samples have been highlighted in this paper to make people more aware and develop better clinical strategies in the future.
Collapse
Affiliation(s)
- Purva Asrani
- Molecular Biology and Biotechnology, ICAR- National Institute for Plant Biotechnology, New Delhi, 110012, India
| | - Afzal Hussain
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Khalida Nasreen
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, 110025, India
| | - Mohamed Fahad AlAjmi
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Samira Amir
- Department of Chemistry, College of Science and General Studies, Alfaisal University, Riyadh, Kingdom of Saudi Arabia
| | - Sukhwinder Singh Sohal
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, Tasmania, Australia
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, 110025, India
| |
Collapse
|
26
|
Asrani P, Hassan MI. SARS-CoV-2 mediated lung inflammatory responses in host: targeting the cytokine storm for therapeutic interventions. Mol Cell Biochem 2021; 476:675-687. [PMID: 33064288 PMCID: PMC7563911 DOI: 10.1007/s11010-020-03935-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 10/07/2020] [Indexed: 02/07/2023]
Abstract
The recent exposure of novel coronavirus strain, severe acute respiratory syndrome (SARS-CoV-2) has spread to different countries at an alarming rate. Faster transmission rate and genetic modifications have provoked scientists to search for an immediate solution. With an increasing death rate, it becomes important to throw some light on the life cycle of the virus and its associated pathogenesis in the form of lung inflammation through cytokine storm (CS) production. This paper highlights the different stages of viral-mediated inflammatory responses in the host respiratory system. Previously, known anti-inflammatory drugs and therapeutic strategies that might show potential in controlling the CS of Coronavirus disease-2019 (COVID-19) is also mentioned in this study. Our critical analysis provides insights into the inflammation cycle induced in the lungs by early virus replication, downregulation and shedding of angiotensin-converting enzyme 2 (ACE2), and in the CS production. Identification of suitable targets within the inflammatory pathways for devising the therapeutic strategies useful in controlling the prognosis of COVID-19 finds a special mention in this article. However, antibody-dependent enhancement is the key aspect to consider before testing any drug/compound for therapeutic purposes. Our in-depth analysis would provide similarities and differences between the inflammatory responses induced by SARS-CoV and SARS-CoV-2, providing an excellent avenue to further look at how earlier outbreaks of coronaviruses were controlled and where new steps are required?
Collapse
Affiliation(s)
- Purva Asrani
- Division of Biochemistry, Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India.
| |
Collapse
|
27
|
Yanes Cardozo LL, Rezq S, Pruett JE, Romero DG. Androgens, the kidney, and COVID-19: an opportunity for translational research. Am J Physiol Renal Physiol 2021; 320:F243-F248. [PMID: 33464168 DOI: 10.1152/ajprenal.00601.2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) has reached pandemic proportions, affecting millions of people worldwide. Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is the causative agent of COVID-19. Epidemiological reports have shown that the severity of SARS-CoV-2 infection is associated with preexisting comorbidities such as hypertension, diabetes mellitus, cardiovascular diseases, and chronic kidney diseases, all of which are also risk factors for acute kidney injury (AKI). The kidney has emerged as a key organ affected by SARS-CoV-2. AKI is associated with increased morbidity and mortality in patients with COVID-19. Male sex is an independent predictor for AKI, and an increased death rate has been reported in male patients with COVID-19 worldwide. The mechanism(s) that mediate the sex discrepancy in mortality due to COVID-19 remain(s) unknown. Angiotensin-converting enzyme (ACE)2 is the receptor for SARS-CoV-2. Alterations in the ACE-to-ACE2 ratio have been implicated in renal diseases. This perspective aims to discuss data that suggest that androgens, via alterations in the intrarenal renin-angiotensin system, impair renal hemodynamics, predisposing patients to AKI during COVID-19 infection, which could explain the higher mortality observed in men with COVID-19. Clinicians should ensure early and effective cardiometabolic control for all patients to ameliorate the compensatory elevation of ACE2 and alterations in the ACE-to-ACE2 ratio. A better understanding of the role of androgens in SARS-CoV-2-associated AKI and mortality is imperative. The kidney could constitute a key organ that may explain the sex disparities of the higher mortality and worst outcomes associated with COVID-19 in men.
Collapse
Affiliation(s)
- Licy L Yanes Cardozo
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, Mississippi.,Department of Medicine, University of Mississippi Medical Center, Jackson, Mississippi.,Mississippi Center for Excellence in Perinatal Research, University of Mississippi Medical Center, Jackson, Mississippi.,Women's Health Research Center, University of Mississippi Medical Center, Jackson, Mississippi.,Cardio Renal Research Center, University of Mississippi Medical Center, Jackson, Mississippi
| | - Samar Rezq
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, Mississippi.,Mississippi Center for Excellence in Perinatal Research, University of Mississippi Medical Center, Jackson, Mississippi.,Women's Health Research Center, University of Mississippi Medical Center, Jackson, Mississippi.,Cardio Renal Research Center, University of Mississippi Medical Center, Jackson, Mississippi
| | - Jacob E Pruett
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, Mississippi.,Mississippi Center for Excellence in Perinatal Research, University of Mississippi Medical Center, Jackson, Mississippi.,Women's Health Research Center, University of Mississippi Medical Center, Jackson, Mississippi.,Cardio Renal Research Center, University of Mississippi Medical Center, Jackson, Mississippi
| | - Damian G Romero
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, Mississippi.,Mississippi Center for Excellence in Perinatal Research, University of Mississippi Medical Center, Jackson, Mississippi.,Women's Health Research Center, University of Mississippi Medical Center, Jackson, Mississippi.,Cardio Renal Research Center, University of Mississippi Medical Center, Jackson, Mississippi
| |
Collapse
|
28
|
Eapen MS, Lu W, Hackett TL, Singhera GK, Thompson IE, McAlinden KD, Hardikar A, Weber HC, Haug G, Wark PAB, Chia C, Sohal SS. Dysregulation of endocytic machinery and ACE2 in small airways of smokers and COPD patients can augment their susceptibility to SARS-CoV-2 (COVID-19) infections. Am J Physiol Lung Cell Mol Physiol 2021; 320:L158-L163. [PMID: 33174446 PMCID: PMC7869956 DOI: 10.1152/ajplung.00437.2020] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 10/29/2020] [Accepted: 11/02/2020] [Indexed: 12/22/2022] Open
Abstract
Lungs of smokers and chronic obstructive pulmonary disease (COPD) are severely compromised and are susceptible to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) attack. The dangerous combination of enhanced SARS-CoV-2 attachment receptor protein ACE2 along with an increase in endocytic vacuoles will enable viral attachment, entry, and replication. The objective of the study was to identify the presence of SARS-CoV-2 host attachment receptor angiotensin-converting enzyme-2 (ACE2) along with endocytic vacuoles, early endosome antigen-1 (EEA1), late endosome marker RAB7, cathepsin-L, and lysosomal associated membrane protein-1 (LAMP-1) as lysosome markers in the airways of smokers and COPD patients. The study design was cross-sectional and involved lung resections from 39 patients in total, which included 19 patients with Global Initiative for Chronic Obstructive Lung Disease (GOLD) stage I or GOLD stage II COPD, of which 9 were current smokers with COPD (COPD-CS) and 10 were ex-smokers with COPD (COPD-ES), 10 were normal lung function smokers, and 10 were never-smoking normal controls. Immunostaining for ACE2, EEA1, RAB7, and cathepsin-L was done. A comparative description for ACE2, EEA1, RAB7, and cathepsin-L expression pattern is provided for the patient groups. Furthermore, staining intensity for LAMP-1 lysosomes was measured as the ratio of the LAMP-1-stained areas per total area of epithelium or subepithelium, using Image ProPlus v7.0 software. LAMP-1 expression showed a positive correlation to patient smoking history while in COPD LAMP-1 negatively correlated to lung function. The active presence of ACE2 protein along with endocytic vacuoles such as early/late endosomes and lysosomes in the small airways of smokers and COPD patients provides evidence that these patient groups could be more susceptible to COVID-19.
Collapse
Affiliation(s)
- Mathew Suji Eapen
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, Tasmania, Australia
| | - Wenying Lu
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, Tasmania, Australia
| | - Tillie L Hackett
- Department of Anesthesiology, Pharmacology, and Therapeutics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Gurpreet Kaur Singhera
- Department of Medicine, University of British Columbia Centre for Heart Lung Innovation, St. Paul's Hospital, Vancouver, British Columbia, Canada
| | - Isobel E Thompson
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, Tasmania, Australia
| | - Kielan Darcy McAlinden
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, Tasmania, Australia
| | - Ashutosh Hardikar
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, Tasmania, Australia
- Department of Cardiothoracic Surgery, Royal Hobart Hospital, Hobart, Tasmania, Australia
| | - Heinrich C Weber
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, Tasmania, Australia
- Department of Respiratory Medicine, Tasmanian Health Services, North West Hospital, Burnie, Tasmania, Australia
| | - Greg Haug
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, Tasmania, Australia
- Department of Respiratory Medicine, Launceston General Hospital, Launceston, Tasmania, Australia
| | - Peter A B Wark
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, University of Newcastle, New Lambton Heights, New South Wales, Australia
- Department of Respiratory and Sleep Medicine John Hunter Hospital, New Lambton Heights, New South Wales, Australia
| | - Collin Chia
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, Tasmania, Australia
- Department of Respiratory Medicine, Launceston General Hospital, Launceston, Tasmania, Australia
| | - Sukhwinder Singh Sohal
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, Tasmania, Australia
| |
Collapse
|
29
|
Lippi G, Mattiuzzi C. SARS-CoV-2 positive tests efficiently predict pressure on healthcare system. J Med Virol 2020; 93:1907-1909. [PMID: 33295648 DOI: 10.1002/jmv.26718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 11/29/2020] [Accepted: 12/04/2020] [Indexed: 11/08/2022]
Affiliation(s)
- Giuseppe Lippi
- Section of Clinical Biochemistry, Department of Neuroscience, Biomedicine, and Movement, University of Verona, Verona, Italy
| | - Camilla Mattiuzzi
- Service of Clinical Governance, Provincial Agency for Social and Sanitary Services, Trento, Italy
| |
Collapse
|
30
|
Asrani P, Hasan GM, Sohal SS, Hassan MI. Molecular Basis of Pathogenesis of Coronaviruses: A Comparative Genomics Approach to Planetary Health to Prevent Zoonotic Outbreaks in the 21st Century. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2020; 24:634-644. [PMID: 32940573 DOI: 10.1089/omi.2020.0131] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In the first quarter of the 21st century, we are already facing the third emergence of a coronavirus outbreak, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) responsible for the coronavirus disease 2019 (COVID-19) pandemic. Comparative genomics can inform a deeper understanding of the pathogenesis of COVID-19. Previous strains of coronavirus, SARS-CoV, and Middle-East respiratory syndrome-coronavirus (MERS-CoV), have been known to cause acute lung injuries in humans. SARS-CoV-2 shares genetic similarity with SARS-CoV with some modification in the S protein leading to their enhanced binding affinity toward the angiotensin-converting enzyme 2 (ACE2) receptors of human lung cells. This expert review examines the features of all three coronaviruses through a conceptual lens of comparative genomics. In particular, the life cycle of SARS-CoV-2 that enables its survival within the host is highlighted. Susceptibility of humans to coronavirus outbreaks in the 21st century calls for comparisons of the transmission history, hosts, reservoirs, and fatality rates of these viruses so that evidence-based and effective planetary health interventions can be devised to prevent future zoonotic outbreaks. Comparative genomics offers new insights on putative and novel viral targets with an eye to both therapeutic innovation and prevention. We conclude the expert review by (1) articulating the lessons learned so far, whereas the research is still being actively sought after in the field, and (2) the challenges and prospects in deciphering the linkages among multiomics biological variability and COVID-19 pathogenesis.
Collapse
Affiliation(s)
- Purva Asrani
- Division of Biochemistry, Indian Agricultural Research Institute, New Delhi, India
| | - Gulam Mustafa Hasan
- Department of Biochemistry, College of Medicine, Prince Sattam Bin Abdulaziz University, Al-Kharj, Kingdom of Saudi Arabia
| | - Sukhwinder Singh Sohal
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, Australia
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|