1
|
Zisis M, Chondrogianni ME, Androutsakos T, Rantos I, Oikonomou E, Chatzigeorgiou A, Kassi E. Linking Cardiovascular Disease and Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD): The Role of Cardiometabolic Drugs in MASLD Treatment. Biomolecules 2025; 15:324. [PMID: 40149860 PMCID: PMC11940321 DOI: 10.3390/biom15030324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 02/14/2025] [Accepted: 02/19/2025] [Indexed: 03/29/2025] Open
Abstract
The link between cardiovascular disease (CVD) and metabolic dysfunction-associated steatotic liver disease (MASLD) is well-established at both the epidemiological and pathophysiological levels. Among the common pathophysiological mechanisms involved in the development and progression of both diseases, oxidative stress and inflammation, insulin resistance, lipid metabolism deterioration, hepatokines, and gut dysbiosis along with genetic factors have been recognized to play a pivotal role. Pharmacologic interventions with drugs targeting common modifiable cardiometabolic risk factors, such as T2DM, dyslipidemia, and hypertension, are a reasonable strategy to prevent CVD development and progression of MASLD. Recently, a novel drug for metabolic dysfunction-associated steatohepatitis (MASH), resmetirom, has shown positive effects regarding CVD risk, opening new opportunities for the therapeutic approach of MASLD and CVD. This review provides current knowledge on the epidemiologic association of MASLD to CVD morbidity and mortality and enlightens the possible underlying pathophysiologic mechanisms linking MASLD with CVD. The role of cardiometabolic drugs such as anti-hypertensive drugs, hypolipidemic agents, glucose-lowering medications, acetylsalicylic acid, and the thyroid hormone receptor-beta agonist in the progression of MASLD is also discussed. Metformin failed to prove beneficial effects in MASLD progression. Studies on the administration of thiazolinediones in MASLD suggest effectiveness in improving steatosis, steatohepatitis, and fibrosis, while newer categories of glucose-lowering agents such as GLP-1Ra and SGLT-2i are currently being tested for their efficacy across the whole spectrum of MASLD. Statins alone or in combination with ezetimibe have yielded promising results. The conduction of long-duration, large, high-quality, randomized-controlled trials aiming to assess by biopsy the efficacy of cardiometabolic drugs to reverse MASLD progression is of great importance.
Collapse
Affiliation(s)
- Marios Zisis
- Medical School, National and Kapodistrian University of Athens, Mikras Asias 75, 11527 Athens, Greece; (M.Z.); (I.R.)
| | - Maria Eleni Chondrogianni
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
- Endocrine Unit, 1st Department of Propaedeutic and Internal Medicine, Laiko Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Theodoros Androutsakos
- Department of Pathophysiology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Str., 11527 Athens, Greece;
| | - Ilias Rantos
- Medical School, National and Kapodistrian University of Athens, Mikras Asias 75, 11527 Athens, Greece; (M.Z.); (I.R.)
| | - Evangelos Oikonomou
- 3rd Department of Cardiology, “Sotiria” Thoracic Diseases Hospital of Athens, University of Athens Medical School, 11527 Athens, Greece;
| | - Antonios Chatzigeorgiou
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Str., 11527 Athens, Greece;
| | - Eva Kassi
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
- Endocrine Unit, 1st Department of Propaedeutic and Internal Medicine, Laiko Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece
| |
Collapse
|
2
|
Chen J, Yang Y, Su S, Zhang S, Huang J, Chen H, Yang X, Sang A. ANGPTL4 promotes choroidal neovascularization and subretinal fibrosis through the endothelial‒mesenchymal transition. Int Ophthalmol 2024; 44:441. [PMID: 39586852 DOI: 10.1007/s10792-024-03348-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 10/25/2024] [Indexed: 11/27/2024]
Abstract
PURPOSE This study aimed to investigate the possible mechanisms by which ANGPTL4 is involved in the pathogenesis of choroidal neovascularization (CNV) and subretinal fibrosis. METHODS Differentially expressed genes in retinal pigmented epithelium (RPE)-choroid-sclera complex tissues from nAMD patients and control individuals were identified via the GEO database, followed by GO and KEGG analyses. A Venn diagram was used to identify EndMT-related DEGs. A logistic regression model was constructed to screen for prognostic genes. Laser-induced CNV mouse models were established and validated with FFA and OCTA. The expression of ANGPTL4 and EndMT-related markers in the RPE-choroid-sclera complex was measured via RT‒qPCR and Western blotting. TGF-β2-induced HUVECs were used as EndMT cell models, and specific siRNAs targeting ANGPTL4 (si-ANGPTL4) were designed and screened. The effects of ANGPTL4 knockdown on the migration and invasion of HUVECs were also examined. Laser-induced CNV mouse models were constructed, and an intravitreal injection of cholesterol-modified si-ANGPTL4 was used to knock down ANGPTL4. FFA, OCTA and immunofluorescence staining were used to observe CNV formation and subretinal fibrosis, and the expression of ANGPTL4 and EndMT-related markers was determined. RESULTS ANGPTL4 expression was significantly increased in mice with CNV and colocalized with IB4. In TGF-β2-induced EndMT, ANGPTL4 was also upregulated, and its knockdown led to the inhibition of EndMT and cell migration and invasion, while its overexpression promoted the EndMT process. ANGPTL4 knockdown reduced the formation of CNV and subretinal fibrosis in mice with CNV by suppressing EndMT. CONCLUSIONS ANGPTL4 may promote CNV and subretinal fibrosis through EndMT, suggesting that ANGPTL4 may be a novel potential target for nAMD therapy.
Collapse
Affiliation(s)
- Jia Chen
- Suzhou Medical College of Soochow University, Suzhou, 215123, China
- Eye Institute, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Ying Yang
- Eye Institute, Affiliated Hospital of Nantong University, Nantong, 226001, China
- Nantong University, Nantong, 226001, China
| | - Shu Su
- Suzhou Medical College of Soochow University, Suzhou, 215123, China
- Eye Institute, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Shenglai Zhang
- Eye Institute, Affiliated Hospital of Nantong University, Nantong, 226001, China
- Nantong University, Nantong, 226001, China
| | - Ju Huang
- Eye Institute, Affiliated Hospital of Nantong University, Nantong, 226001, China
- Dalian Medical University, Dalian, 116044, China
| | - Hong Chen
- Eye Institute, Affiliated Hospital of Nantong University, Nantong, 226001, China
- Dalian Medical University, Dalian, 116044, China
| | - Xiaowei Yang
- Eye Institute, Affiliated Hospital of Nantong University, Nantong, 226001, China.
- Nantong University, Nantong, 226001, China.
| | - Aimin Sang
- Suzhou Medical College of Soochow University, Suzhou, 215123, China.
- Eye Institute, Affiliated Hospital of Nantong University, Nantong, 226001, China.
| |
Collapse
|
3
|
Wang X, Chang HC, Gu X, Han W, Mao S, Lu L, Jiang S, Ding H, Han S, Qu X, Bao Z. Renal lipid accumulation and aging linked to tubular cells injury via ANGPTL4. Mech Ageing Dev 2024; 219:111932. [PMID: 38580082 DOI: 10.1016/j.mad.2024.111932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 04/02/2024] [Indexed: 04/07/2024]
Abstract
Renal tubular epithelial cells are vulnerable to stress-induced damage, including excessive lipid accumulation and aging, with ANGPTL4 potentially playing a crucial bridging role between these factors. In this study, RNA-sequencing was used to identify a marked increase in ANGPTL4 expression in kidneys of diet-induced obese and aging mice. Overexpression and knockout of ANGPTL4 in renal tubular epithelial cells (HK-2) was used to investigate the underlying mechanism. Subsequently, ANGPTL4 expression in plasma and kidney tissues of normal young controls and elderly individuals was analyzed using ELISA and immunohistochemical techniques. RNA sequencing results showed that ANGPTL4 expression was significantly upregulated in the kidney tissue of diet-induced obesity and aging mice. In vitro experiments demonstrated that overexpression of ANGPTL4 in HK-2 cells led to increased lipid deposition and senescence. Conversely, the absence of ANGPTL4 appears to alleviate the impact of free fatty acids (FFA) on aging in HK-2 cells. Additionally, aging HK-2 cells exhibited elevated ANGPTL4 expression, and stress response markers associated with cell cycle arrest. Furthermore, our clinical evidence revealed dysregulation of ANGPTL4 expression in serum and kidney tissue samples obtained from elderly individuals compared to young subjects. Our study findings indicate a potential association between ANGPTL4 and age-related metabolic disorders, as well as injury to renal tubular epithelial cells. This suggests that targeting ANGPTL4 could be a viable strategy for the clinical treatment of renal aging.
Collapse
Affiliation(s)
- Xiaojun Wang
- Department of Gerontology, Huadong Hospital Affiliated to Fudan University, Shanghai 200040, China; Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai 200040, China
| | - Hung-Chen Chang
- Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai 200040, China; Department of Cardiology, Huadong Hospital Affiliated to Fudan University, Shanghai 200040, China
| | - Xuchao Gu
- Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai 200040, China; Department of Traditional Chinese Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai 200040, China
| | - Wanlin Han
- Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai 200040, China; Department of Cardiology, Huadong Hospital Affiliated to Fudan University, Shanghai 200040, China
| | - Shihang Mao
- Department of ENT Institute and Otorhinolaryngology, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology, NHC Key Laboratory of Hearing Medicine Research, Fudan University, Shanghai, China
| | - Lili Lu
- Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai 200040, China; Department of Traditional Chinese Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai 200040, China
| | - Shuai Jiang
- Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai 200040, China; Department of Thoracic Surgery, Huadong Hospital Affiliated to Fudan University, Shanghai 200040, China
| | - Haiyong Ding
- Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai 200040, China; Department of Urologic Surgery, Huadong Hospital Affiliated to Fudan University, Shanghai 200040, China.
| | - Shisheng Han
- Department of Nephrology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Xinkai Qu
- Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai 200040, China; Department of Cardiology, Huadong Hospital Affiliated to Fudan University, Shanghai 200040, China.
| | - Zhijun Bao
- Department of Gerontology, Huadong Hospital Affiliated to Fudan University, Shanghai 200040, China; Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai 200040, China.
| |
Collapse
|
4
|
Garcia-Beltran C, Peyrou M, Navarro-Gascon A, López-Bermejo A, de Zegher F, Villarroya F, Ibáñez L. Organokines and liver enzymes in adolescent girls with polycystic ovary syndrome during randomized treatments. Front Endocrinol (Lausanne) 2024; 15:1325230. [PMID: 38818508 PMCID: PMC11137167 DOI: 10.3389/fendo.2024.1325230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 04/30/2024] [Indexed: 06/01/2024] Open
Abstract
Introduction Polycystic ovary syndrome (PCOS) is often associated with metabolic-associated fatty liver disease (MAFLD). MAFLD has been associated with altered hepatic function, systemic dysmetabolism, and abnormal circulating levels of signaling molecules called organokines. Here, we assessed the effects of two randomized treatments on a set of organokines in adolescent girls with PCOS and without obesity, and report the associations with circulating biomarkers of liver damage, which were assessed longitudinally in the aforementioned studies as safety markers. Materials and methods Liver enzymes [aspartate aminotransferase (AST), alanine aminotransferase (ALT), and gamma-glutamyl transferase (GGT)] were assessed as safety markers in previous randomized pilot studies comparing the effects of an oral contraceptive (OC) with those of a low-dose combination of spironolactone-pioglitazone-metformin (spiomet) for 1 year. As a post hoc endpoint, the organokines fibroblast growth factor-21 (FGF21), diazepam-binding protein-1 (DBI), and meteorin-like protein (METRNL) were assessed by ELISA after 6 months of OC (N = 26) or spiomet (N = 28). Auxological, endocrine-metabolic, body composition (using DXA), and abdominal fat partitioning (using MRI) were also evaluated. Healthy, age-matched adolescent girls (N = 17) served as controls. Results Circulating ALT and GGT levels increased during OC treatment and returned to baseline concentrations in the post-treatment phase; in contrast, spiomet treatment elicited no detectable changes in ALT and GGT concentrations. In relation to organokines after 6 months of treatment, (1) FGF21 levels were significantly higher in PCOS adolescents than in control girls; (2) DBI levels were lower in OC-treated girls than in controls and spiomet-treated girls; and (3) no differences were observed in METRNL concentrations between PCOS girls and controls. Serum ALT and GGT levels were directly correlated with circulating METRNL levels only in OC-treated girls (R = 0.449, P = 0.036 and R = 0.552, P = 0.004, respectively). Conclusion The on-treatment increase in ALT and GGT levels occurring only in OC-treated girls is associated with circulating METRNL levels, suggesting enhanced METRNL synthesis as a reaction to the hepatic changes elicited by OC treatment. Clinical Trial Registration https://doi.org, identifiers 10.1186/ISRCTN29234515, 10.1186/ISRCTN11062950.
Collapse
Affiliation(s)
- Cristina Garcia-Beltran
- Endocrinology Department, Institut de Recerca Sant Joan de Déu, University of Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | - Marion Peyrou
- Biochemistry and Molecular Biomedicine Department, Biomedicine Institute, University of Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Artur Navarro-Gascon
- Biochemistry and Molecular Biomedicine Department, Biomedicine Institute, University of Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Abel López-Bermejo
- Pediatric Endocrinology Research Group, Girona Institute for Biomedical Research (IDIBGI), Faculty of Medicine, University of Girona and Dr. Josep Trueta Hospital, Girona, Spain
| | - Francis de Zegher
- Leuven Research and Development, University of Leuven, Leuven, Belgium
| | - Francesc Villarroya
- Biochemistry and Molecular Biomedicine Department, Biomedicine Institute, University of Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Lourdes Ibáñez
- Endocrinology Department, Institut de Recerca Sant Joan de Déu, University of Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
5
|
Thorin E, Labbé P, Lambert M, Mury P, Dagher O, Miquel G, Thorin-Trescases N. Angiopoietin-Like Proteins: Cardiovascular Biology and Therapeutic Targeting for the Prevention of Cardiovascular Diseases. Can J Cardiol 2023; 39:1736-1756. [PMID: 37295611 DOI: 10.1016/j.cjca.2023.06.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/27/2023] [Accepted: 06/02/2023] [Indexed: 06/12/2023] Open
Abstract
Despite the best pharmacologic tools available, cardiovascular diseases (CVDs) remain a major cause of morbidity and mortality in developed countries. After 2 decades of research, new therapeutic targets, such as angiopoietin-like proteins (ANGPTLs), are emerging. ANGPTLs belong to a family of 8 members, from ANGPTL1 to ANGPTL8; they have structural homology with angiopoietins and are secreted in the circulation. ANGPTLs display a multitude of physiological and pathologic functions; they contribute to inflammation, angiogenesis, cell death, senescence, hematopoiesis, and play a role in repair, maintenance, and tissue homeostasis. ANGPTLs-particularly the triad ANGPTL3, 4, and 8-have an established role in lipid metabolism through the regulation of triacylglycerol trafficking according to the nutritional status. Some ANGPTLs also contribute to glucose metabolism. Therefore, dysregulation in ANGPTL expression associated with abnormal circulating levels are linked to a plethora of CVD and metabolic disorders including atherosclerosis, heart diseases, diabetes, but also obesity and cancers. Because ANGPTLs bind to different receptors according to the cell type, antagonists are therapeutically inadequate. Recently, direct inhibitors of ANGPTLs, mainly ANGPTL3, have been developed, and specific monoclonal antibodies and antisense oligonucleotides are currently being tested in clinical trials. The aim of the current review is to provide an up-to-date preclinical and clinical overview on the function of the 8 members of the ANGPTL family in the cardiovascular system, their contribution to CVD, and the therapeutic potential of manipulating some of them.
Collapse
Affiliation(s)
- Eric Thorin
- Montreal Heart Institute, Université de Montréal, Montréal, Québec, Canada; Faculty of Medicine, Department of Pharmacology, Université de Montréal, Montréal, Québec, Canada; Faculty of Medicine, Department of Surgery, Université de Montréal, Montréal, Québec, Canada.
| | - Pauline Labbé
- Montreal Heart Institute, Université de Montréal, Montréal, Québec, Canada
| | - Mélanie Lambert
- Montreal Heart Institute, Université de Montréal, Montréal, Québec, Canada; Faculty of Medicine, Department of Pharmacology, Université de Montréal, Montréal, Québec, Canada
| | - Pauline Mury
- Montreal Heart Institute, Université de Montréal, Montréal, Québec, Canada; Faculty of Medicine, Department of Pharmacology, Université de Montréal, Montréal, Québec, Canada
| | - Olina Dagher
- Montreal Heart Institute, Université de Montréal, Montréal, Québec, Canada; Faculty of Medicine, Department of Surgery, Université de Montréal, Montréal, Québec, Canada; Department of Cardiac Sciences, Libin Cardiovascular Institute, Calgary, Alberta, Canada
| | - Géraldine Miquel
- Montreal Heart Institute, Université de Montréal, Montréal, Québec, Canada
| | | |
Collapse
|
6
|
Zheng Z, Lyu W, Hong Q, Yang H, Li Y, Zhao S, Ren Y, Xiao Y. Phylogenetic and expression analysis of the angiopoietin-like gene family and their role in lipid metabolism in pigs. Anim Biosci 2023; 36:1517-1529. [PMID: 37170504 PMCID: PMC10475376 DOI: 10.5713/ab.23.0057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/12/2023] [Accepted: 04/19/2023] [Indexed: 05/13/2023] Open
Abstract
OBJECTIVE The objective of this study was to investigate the phylogenetic and expression analysis of the angiopoietin-like (ANGPTL) gene family and their role in lipid metabolism in pigs. METHODS In this study, the amino acid sequence analysis, phylogenetic analysis, and chromosome adjacent gene analysis were performed to identify the ANGPTL gene family in pigs. According to the body weight data from 60 Jinhua pigs, different tissues of 6 pigs with average body weight were used to determine the expression profile of ANGPTL1-8. The ileum, subcutaneous fat, and liver of 8 pigs with distinct fatness were selected to analyze the gene expression of ANGPTL3, ANGPTL4, and ANGPTL8. RESULTS The sequence length of ANGPTLs in pigs was between 1,186 and 1,991 bp, and the pig ANGPTL family members shared common features with human homologous genes, including the high similarity of the amino acid sequence and chromosome flanking genes. Amino acid sequence analysis showed that ANGPTL1-7 had a highly conserved domain except for ANGPTL8. Phylogenetic analysis showed that each ANGPTL homologous gene shared a common origin. Quantitative reverse-transcription polymerase chain reaction analysis showed that ANGPTL family members had different expression patterns in different tissues. ANGPTL3 and ANGPTL8 were mainly expressed in the liver, while ANGPTL4 was expressed in many other tissues, such as the intestine and subcutaneous fat. The expression levels of ANGPTL3 in the liver and ANGPTL4 in the liver, intestine and subcutaneous fat of Jinhua pigs with low propensity for adipogenesis were significantly higher than those of high propensity for adipogenesis. CONCLUSION These results increase our knowledge about the biological role of the ANGPTL family in this important economic species, it will also help to better understand the role of ANGPTL3, ANGPTL4, and ANGPTL8 in lipid metabolism of pigs, and provide innovative ideas for developing strategies to improve meat quality of pigs.
Collapse
Affiliation(s)
- Zibin Zheng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021,
China
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193,
China
| | - Wentao Lyu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021,
China
| | - Qihua Hong
- College of Animal Sciences, Zhejiang University, Hangzhou 310058,
China
| | - Hua Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021,
China
| | - Ying Li
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, College of Life Science and Engineering, Foshan University, Foshan 528000,
China
| | - Shengjun Zhao
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023,
China
| | - Ying Ren
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023,
China
| | - Yingping Xiao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021,
China
| |
Collapse
|
7
|
Jiao X, Yu H, Du Z, Li L, Hu C, Du Y, Zhang J, Zhang X, Lv Q, Li F, Sun Q, Wang Y, Qin Y. Vascular smooth muscle cells specific deletion of angiopoietin-like protein 8 prevents angiotensin II-promoted hypertension and cardiovascular hypertrophy. Cardiovasc Res 2023; 119:1856-1868. [PMID: 37285486 DOI: 10.1093/cvr/cvad089] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/25/2023] [Accepted: 03/11/2023] [Indexed: 06/09/2023] Open
Abstract
AIMS Angiopoietin-like protein 8 (ANGPTL8) plays important roles in lipid metabolism, glucose metabolism, inflammation, and cell proliferation and migration. Clinical studies have indicated that circulating ANGPTL8 concentrations are increased in patients with hypertension and positively associated with blood pressure. ANGPTL8 deficiency ameliorates blood pressure in mice treated with chronic intermittent hypoxia. Currently, little is known regarding the pathophysiological role of the vascular smooth muscle cell (VSMC)-derived ANGPTL8 in hypertension and hypertensive cardiovascular remodelling. METHODS AND RESULTS Circulating ANGPTL8 concentrations, as determined by enzyme-linked immunosorbent assay, were significantly higher in hypertensive patients than in controls (524.51 ± 26.97 vs. 962.92 ± 15.91 pg/mL; P < 0.001). In hypertensive mice [angiotensin II (AngII) treatment for 14 days] and spontaneously hypertensive rats, ANGPTL8 expression was increased and predominantly located in VSMCs. In AngII-treated mice, systolic and diastolic blood pressure in Tagln-Cre-ANGPTL8fl/fl mice were approximately 15-25 mmHg lower than that in ANGPTL8fl/fl mice. AngII-induced vascular remodelling, vascular constriction, and increased expression of cell markers of proliferation (PCNA and Ki67) and migration (MMP-2 and MMP-9) were strikingly attenuated in Tagln-Cre-ANGPTL8fl/fl mice compared with ANGPTL8fl/fl mice. Furthermore, the AngII-induced increase in the heart size, heart weight, heart/body weight ratio, cardiomyocyte cross-sectional area, and collagen deposition was ameliorated in Tagln-Cre-ANGPTL8fl/fl mice compared with ANGPTL8fl/fl mice. In rat artery smooth muscle cells, ANGPTL8-short hairpin RNA decreased intracellular calcium levels and prevented AngII-induced proliferation and migration through the PI3K-Akt pathway, as shown using LY294002 (inhibitor of PI3K) and Akt inhibitor VIII. CONCLUSION This study suggests that ANGPTL8 in VSMCs plays an important role in AngII-induced hypertension and associated cardiovascular remodelling. ANGPTL8 may be a novel therapeutic target against pathological hypertension and hypertensive cardiovascular hypertrophy.
Collapse
Affiliation(s)
- Xiaolu Jiao
- Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Disease, The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, National Clinical Research Center for Cardiovascular Diseases, No. 2 Anzhen Road, Chaoyang District, Beijing 100029, China
| | - Huahui Yu
- Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Disease, The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, National Clinical Research Center for Cardiovascular Diseases, No. 2 Anzhen Road, Chaoyang District, Beijing 100029, China
| | - Zhiyong Du
- Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Disease, The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, National Clinical Research Center for Cardiovascular Diseases, No. 2 Anzhen Road, Chaoyang District, Beijing 100029, China
| | - Linyi Li
- Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Disease, The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, National Clinical Research Center for Cardiovascular Diseases, No. 2 Anzhen Road, Chaoyang District, Beijing 100029, China
| | - Chaowei Hu
- Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Disease, The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, National Clinical Research Center for Cardiovascular Diseases, No. 2 Anzhen Road, Chaoyang District, Beijing 100029, China
| | - Yunhui Du
- Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Disease, The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, National Clinical Research Center for Cardiovascular Diseases, No. 2 Anzhen Road, Chaoyang District, Beijing 100029, China
| | - Jing Zhang
- Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Disease, The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, National Clinical Research Center for Cardiovascular Diseases, No. 2 Anzhen Road, Chaoyang District, Beijing 100029, China
| | - Xiaoping Zhang
- Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Disease, The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, National Clinical Research Center for Cardiovascular Diseases, No. 2 Anzhen Road, Chaoyang District, Beijing 100029, China
| | - Qianwen Lv
- Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Disease, The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, National Clinical Research Center for Cardiovascular Diseases, No. 2 Anzhen Road, Chaoyang District, Beijing 100029, China
| | - Fan Li
- Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Disease, The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, National Clinical Research Center for Cardiovascular Diseases, No. 2 Anzhen Road, Chaoyang District, Beijing 100029, China
| | - Qiuju Sun
- Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Disease, The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, National Clinical Research Center for Cardiovascular Diseases, No. 2 Anzhen Road, Chaoyang District, Beijing 100029, China
| | - Yu Wang
- Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Disease, The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, National Clinical Research Center for Cardiovascular Diseases, No. 2 Anzhen Road, Chaoyang District, Beijing 100029, China
| | - Yanwen Qin
- Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Disease, The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, National Clinical Research Center for Cardiovascular Diseases, No. 2 Anzhen Road, Chaoyang District, Beijing 100029, China
| |
Collapse
|
8
|
Luo J, Chen D, Mei Y, Li H, Qin B, Lin X, Chan TF, Lai KP, Kong D. Comparative transcriptome findings reveal the neuroinflammatory network and potential biomarkers to early detection of ischemic stroke. J Biol Eng 2023; 17:50. [PMID: 37533068 PMCID: PMC10398984 DOI: 10.1186/s13036-023-00362-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 06/25/2023] [Indexed: 08/04/2023] Open
Abstract
INTRODUCTION Ischemic stroke accounts for 70-80% of all stroke cases, leading to over two million people dying every year. Poor diagnosis and late detection are the major causes of the high death and disability rate. METHODS In the present study, we used the middle cerebral artery occlusion (MCAO) rat model and applied comparative transcriptomic analysis, followed by a systematic advanced bioinformatic analysis, including gene ontology enrichment analysis and Ingenuity Pathway Analysis (IPA). We aimed to identify novel biomarkers for the early detection of ischemic stroke. In addition, we aimed to delineate the molecular mechanisms underlying the development of ischemic stroke, in which we hoped to identify novel therapeutic targets for treating ischemic stroke. RESULTS In the comparative transcriptomic analysis, we identified 2657 differentially expressed genes (DEGs) in the brain tissue of the MCAO model. The gene enrichment analysis highlighted the importance of these DEGs in oxygen regulation, neural functions, and inflammatory and immune responses. We identified the elevation of angiopoietin-2 and leptin receptor as potential novel biomarkers for early detection of ischemic stroke. Furthermore, the result of IPA suggested targeting the inflammasome pathway, integrin-linked kinase signaling pathway, and Th1 signaling pathway for treating ischemic stroke. CONCLUSION The results of the present study provide novel insight into the biomarkers and therapeutic targets as potential treatments of ischemic stroke.
Collapse
Affiliation(s)
- Jiefeng Luo
- Department of Neurology, The Second Affiliated Hospital of Guangxi Medical University, No 166 Dadaxuedong Road, Nanning, Guangxi, 530007, People's Republic of China.
| | - Dingzhi Chen
- Department of Neurology, The Second Affiliated Hospital of Guangxi Medical University, No 166 Dadaxuedong Road, Nanning, Guangxi, 530007, People's Republic of China
| | - Yujia Mei
- Department of Neurology, The Second Affiliated Hospital of Guangxi Medical University, No 166 Dadaxuedong Road, Nanning, Guangxi, 530007, People's Republic of China
| | - Hepeng Li
- Department of Neurology, The Second Affiliated Hospital of Guangxi Medical University, No 166 Dadaxuedong Road, Nanning, Guangxi, 530007, People's Republic of China
| | - Biyun Qin
- Department of Neurology, The Second Affiliated Hospital of Guangxi Medical University, No 166 Dadaxuedong Road, Nanning, Guangxi, 530007, People's Republic of China
| | - Xiao Lin
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Ting Fung Chan
- School of Life Sciences, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Keng Po Lai
- Clinical Medicine Research Center, The Second Affiliated Hospital of Guangxi Medical University, No 166 Dadaxuedong Road, Nanning, Guangxi, 530007, P. R. China.
| | - Deyan Kong
- Department of Neurology, The Second Affiliated Hospital of Guangxi Medical University, No 166 Dadaxuedong Road, Nanning, Guangxi, 530007, People's Republic of China.
| |
Collapse
|
9
|
Zhao Z, Lian H, Liu Y, Sun L, Zhang Y. Application of systemic inflammation indices and lipid metabolism-related factors in coronary artery disease. Coron Artery Dis 2023; 34:306-313. [PMID: 37102240 PMCID: PMC10309097 DOI: 10.1097/mca.0000000000001239] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 03/28/2023] [Indexed: 04/28/2023]
Abstract
OBJECTIVE We aimed to investigate the relationship between coronary artery disease (CAD) and systemic inflammation indices and lipid metabolism-related factors and subsequently, discuss the clinical application of these factors in CAD. METHODS We enrolled 284 consecutive inpatients with suspected CAD and divided them into a CAD group and a non-CAD group according to coronary angiography results. Serum levels of angiopoietin-like protein 3 (ANGPTL3), angiopoietin-like protein 4 (ANGPTL4), fatty acid-binding protein 4 (FABP4), and tumor necrosis factor-α (TNF-α) levels were assessed using the ELISA and the systemic inflammation indices were calculated. Multivariate logistic regression was used to assess the risk factors of CAD. The receiver operating characteristic curve was used to determine the cutoff and diagnostic values. RESULTS The neutrophil-to-high density lipoprotein cholesterol ratio (5.04 vs. 3.47), neutrophil-to-lymphocyte ratio (3.25 vs. 2.45), monocyte-to-high density lipoprotein cholesterol ratio (MHR) (0.46 vs. 0.36), monocyte-to-lymphocyte ratio (0.31 vs. 0.26), systemic immune-inflammation index (SII) (696.00 vs. 544.82), serum TNF-α (398.15 ng/l vs. 350.65 ng/l), FABP4 (1644.00 ng/l vs. 1553.00 ng/l), ANGPTL3 (57.60 ng/ml vs. 52.85 ng/ml), and ANGPTL4 (37.35 ng/ml vs. 35.20 ng/ml) values showed a significant difference between the CAD and non-CAD groups ( P < 0.05). After adjusting for confounding factors, the following values were obtained: ANGPTL3 > 67.53 ng/ml [odds ratio (OR) = 8.108, 95% confidence interval (CI) (1.022-65.620)]; ANGPTL4 > 29.95 ng/ml [OR = 5.599, 95% CI (1.809-17.334)]; MHR > 0.47 [OR = 4.872, 95% CI (1.715-13.835)]; SII > 589.12 [OR = 5.131, 95% CI (1.995-13.200)]. These factors were found to be independently associated with CAD ( P < 0.05). Diabetes combined with MHR > 0.47, SII > 589.12, TNF-α >285.60 ng/l, ANGPTL3 > 67.53 ng/ml, and ANGPTL4 > 29.95 ng/l had the highest diagnostic value for CAD [area under the curve: 0.921, 95% CI, (0.881-0.960), Sensitivity: 88.9%, Specificity: 82.2%, P < 0.001]. CONCLUSION MHR > 0.47, SII > 589.12, TNF-α >285.60 ng/l, ANGPTL3 > 67.53 ng/ml, and ANGPTL4 > 29.95 ng/l were identified as independent CAD risk factors and have valuable clinical implications in the diagnosis and treatment of CAD.
Collapse
Affiliation(s)
- Zhuoyan Zhao
- Department of Cardiology, The Affiliated Hospital of Chengde Medical University, Chengde, China
| | - Huan Lian
- Department of Cardiology, The Affiliated Hospital of Chengde Medical University, Chengde, China
| | - Yixiang Liu
- Department of Cardiology, The Affiliated Hospital of Chengde Medical University, Chengde, China
| | - Lixian Sun
- Department of Cardiology, The Affiliated Hospital of Chengde Medical University, Chengde, China
| | - Ying Zhang
- Department of Cardiology, The Affiliated Hospital of Chengde Medical University, Chengde, China
| |
Collapse
|
10
|
Qin L, Wu J, Sun X, Huang X, Huang W, Weng C, Cai J. The regulatory role of metabolic organ-secreted factors in the nonalcoholic fatty liver disease and cardiovascular disease. Front Cardiovasc Med 2023; 10:1119005. [PMID: 37180779 PMCID: PMC10169694 DOI: 10.3389/fcvm.2023.1119005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 04/13/2023] [Indexed: 05/16/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a chronic metabolic disease characterized by an excessive accumulation of fat in the liver, which is becoming a major global health problem, affecting about a quarter of the population. In the past decade, mounting studies have found that 25%-40% of NAFLD patients have cardiovascular disease (CVD), and CVD is one of the leading causes of death in these subjects. However, it has not attracted enough awareness and emphasis from clinicians, and the underlying mechanisms of CVD in NAFLD patients remain unclear. Available research reveals that inflammation, insulin resistance, oxidative stress, and glucose and lipid metabolism disorders play indispensable roles in the pathogenesis of CVD in NAFLD. Notably, emerging evidence indicates that metabolic organ-secreted factors, including hepatokines, adipokines, cytokines, extracellular vesicles, and gut-derived factors, are also involved in the occurrence and development of metabolic disease and CVD. Nevertheless, few studies have focused on the role of metabolic organ-secreted factors in NAFLD and CVD. Therefore, in this review, we summarize the relationship between metabolic organ-secreted factors and NAFLD as well as CVD, which is beneficial for clinicians to comprehensive and detailed understanding of the association between both diseases and strengthen management to improve adverse cardiovascular prognosis and survival.
Collapse
Affiliation(s)
| | | | | | | | | | - Chunyan Weng
- Department of Cardiology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Jingjing Cai
- Department of Cardiology, The Third Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
11
|
Zhang BH, Yin F, Qiao YN, Guo SD. Triglyceride and Triglyceride-Rich Lipoproteins in Atherosclerosis. Front Mol Biosci 2022; 9:909151. [PMID: 35693558 PMCID: PMC9174947 DOI: 10.3389/fmolb.2022.909151] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/06/2022] [Indexed: 12/11/2022] Open
Abstract
Cardiovascular disease (CVD) is still the leading cause of death globally, and atherosclerosis is the main pathological basis of CVDs. Low-density lipoprotein cholesterol (LDL-C) is a strong causal factor of atherosclerosis. However, the first-line lipid-lowering drugs, statins, only reduce approximately 30% of the CVD risk. Of note, atherosclerotic CVD (ASCVD) cannot be eliminated in a great number of patients even their LDL-C levels meet the recommended clinical goals. Previously, whether the elevated plasma level of triglyceride is causally associated with ASCVD has been controversial. Recent genetic and epidemiological studies have demonstrated that triglyceride and triglyceride-rich lipoprotein (TGRL) are the main causal risk factors of the residual ASCVD. TGRLs and their metabolites can promote atherosclerosis via modulating inflammation, oxidative stress, and formation of foam cells. In this article, we will make a short review of TG and TGRL metabolism, display evidence of association between TG and ASCVD, summarize the atherogenic factors of TGRLs and their metabolites, and discuss the current findings and advances in TG-lowering therapies. This review provides information useful for the researchers in the field of CVD as well as for pharmacologists and clinicians.
Collapse
Affiliation(s)
| | | | - Ya-Nan Qiao
- Institute of Lipid Metabolism and Atherosclerosis, Innovative Drug Research Centre, School of Pharmacy, Weifang Medical University, Weifang, China
| | - Shou-Dong Guo
- Institute of Lipid Metabolism and Atherosclerosis, Innovative Drug Research Centre, School of Pharmacy, Weifang Medical University, Weifang, China
| |
Collapse
|